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Abstract. “The rich are getting richer” implies that the population income distributions

are getting more right skewed and heavily tailed. For such distributions, the mean is not

the best measure of the center, but the classical indices of income inequality, including the

celebrated Gini index, are all mean-based. In view of this, Professor Gastwirth sounded an

alarm back in 2014 by suggesting to incorporate the median into the definition of the Gini

index, although noted a few shortcomings of his proposed index. In the present paper we

make a further step in the modification of classical indices and, to acknowledge the possibility

of differing viewpoints, arrive at three median-based indices of inequality. They avoid the

shortcomings of the previous indices and can be used even when populations are ultra heavily

tailed, that is, when their first moments are infinite. The new indices are illustrated both

analytically and numerically using parametric families of income distributions, and further

illustrated using capital incomes coming from 2001 and 2018 surveys of fifteen European

countries. We also discuss the performance of the indices from the perspective of income

transfers.
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1 Introduction

Measuring income inequality has been a challenging task, as each of the indices used for the

purpose attempt to condense the complexities of populations into just one number. Among

the many indices, we have the Atkinson, Bonferroni, Gini, Palma, Pietra, Theil, and Zenga

indices, to name just a few associated with the names of their inventors. Many treatises

have been written on the topic, such as the handbook by Atkinson and Bourguignon (2000,

2015), which also contains many references to earlier studies, and they are voluminous.

The indices are often the areas under certain income-equality curves, which are consider-

ably more difficult to present and explain to the general audience, let alone to easily compare.

For example, the Gini index of inequality is 1 minus twice the area under the Lorenz curve.

(We shall give mathematical definitions later in this paper.) The curves and thus the indices

are based on comparing the mean income of the poor with other means, such as the mean

income of the entire population, the mean income of the nonpoor, and the mean income of

the rich, whatever the definitions of “poor” and “rich” might be. Hence, to be well defined,

the curves and the indices inevitably assume that the mean of the underlying population is

finite. With the rising income inequality, and thus with the distribution of incomes becoming

more skewed and heavily tailed, researchers have therefore sought other ways for measuring

inequality.

Gastwirth (2014) proposed to use the median instead of the mean when “normalizing”

the absolute Gini mean difference, widely known as the GMD. The author noted, however,

that the proposed index might fall outside the class of normalized indices because it compares

the mean income of the poor with the median income of the entire population. There is a

natural remedy to this normalization issue: compare the median income of the poor with

the median of the population. Even more, we can compare the median income of the poor

with the median of the “not poor” or, for example, with the median of the rich, whatever

the latter might mean. This is the path that we take in this paper to arrive at the indices

to be formally introduced in the next section.

In this regard we wish to mention the study of Bennett and Zitikis (2015) where it

is shown that a number of classical indices of income inequality arise naturally from a

Harsanyi-inspired model of choice under risk, with persons acting as reference-dependent

expected-utility maximizers in the face of an income quantile lottery, thus giving rise to a

reinterpretation of the classical indices as measures of the desirability of redistribution in

society. This relativistic approach to constructing indices of income inequality was further

explored by Greselin and Zitikis (2018), although more from the modeller’s perspective than

2



from the philosophical one. The present paper further advances this line of research by

showing how naturally percentile-based indices arise in this relativistic context, and how

they facilitate inequality measurement even in those populations whose distributions are

ultra-heavily tailed, that is, do not possess even a finite first moment.

The rest of the paper is organized as follows. In Section 2 we define the new inequality

indices, alongside the corresponding equality curves, preceded by several known indices for

comparison purposes. In Section 3 we illustrate the new indices and their curves numerically,

using several popular families of distributions. In Section 4, we use the indices to first analyze

capital incomes of European countries using data from a 2001 survey, and then we compare

the results with those obtained from a 2018 survey. In Section 5 we look at the new indices

from the perspective of income transfers. Section 6 concludes the paper. Proofs and other

technicalities are in Appendix A.

2 Inequality indices and their curves

We start with technical prerequisites. Let F be the cumulative distribution function of the

population incomes X, a random variable. We assume that F is non-negatively supported,

that is, F (x) = 0 for all real x < 0. Furthermore, let Q denote the (generalized) inverse of

F , called the quantile function. That is, for each p ∈ (0, 1), Q(p) is the smallest number x

such that F (x) ≥ p. Hence, the population median income is

m = Q(1/2)

and, generally, Q(p) is the p × 100th percentile. Furthermore, the median income of the

poorest p× 100% persons is Q(p/2). Based on these quantities, we shall later describe three

new ways for measuring inequality, but first, we recall the definitions of a few earlier indices

that serve as benchmarks for the new ones.

2.1 In the classical mean-based world

The index of Gini (1914) is the most widely-used measure of inequality. It can be expressed

in a myriad of ways (e.g., Yitzhaki, 1998; Yitzhaki and Schechtman, 2013). For example,

the Gini index can be written in terms of the Bonferroni curve

B(p) =
1

µp

∫ p

0

Q(s)ds, 0 ≤ p ≤ 1,
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as follows:

G = 2

∫ 1

0

(
1−

1
p

∫ p

0
Q(s)ds

µ

)
pdp

= 1−
∫ 1

0

1
p

∫ p

0
Q(s)ds

µ
2pdp

= 1−
∫ 1

0

B(p)2pdp, (2.1)

where

µ =

∫ 1

0

Q(s)ds

is the mean of X.

Zenga (2007) argued that the mean income of those below the percentile Q(p) need to

be compared not with the mean of all the incomes but with the mean income of those above

the percentile Q(p). This point of view led the author to the index

Z = 1−
∫ 1

0

1
p

∫ p

0
Q(s)ds

1
1−p

∫ 1

p
Q(s)ds

dp.

Davydov and Greselin (2019, 2020) suggested to modify Zenga’s idea by comparing the

mean income of those below the percentile Q(p) with the mean income of those above the

percentile Q(1− p). This point of view led the authors to the index

D = 1−
∫ 1

0

1
p

∫ p

0
Q(s)ds

1
p

∫ 1

1−p
Q(s)ds

dp.

Of course, 1/p in the numerator and denominator cancel out, but in this way written D

facilitates an easier comparison with Z.

2.2 A transition into the heavy-tailed modern world

Unlike the above three mean-based indices G, Z and D, the index of Gastwirth (2014) is a

mean-median based index. Namely, given the well-known expression

G =
GMD

2µ
(2.2)
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of the Gini index G in terms of the Gini mean difference (GMD), which is often written as

the expectation E(|X1 − X2|), where X1 and X2 are two independent copies of X, Gast-

wirth (2014) argued that comparing the GMD with twice the median would be better than

comparing with twice the mean as in equation (2.2). This viewpoint has given rise to the

index

G2 =
GMD

2m

=

∫ 1

0

(
µ

m
−

1
p

∫ p

0
Q(s)ds

m

)
2pdp

=
µ

m
−
∫ 1

0

1
p

∫ p

0
Q(s)ds

m
2pdp.

Note that µ/m, which can be viewed as the benchmark replacing 1 in the previous indices,

is the mean-median ratio that has been used as an easy to understand – and thus to convey

to the general audience – indicator of wealth and income distribution (e.g., Garratt, 2020).

In the case of symmetric distributions, µ/m is of course equal to 1.

2.3 In the skewed and heavy-tailed modern world: new indices

The above discussion naturally leads to three strategies of defining purely median-based in-

dices of income inequality and their corresponding curves of equality, all based on percentiles

and thus well defined irrespective of whether the income variable X has a finite first or any

other moment.

Strategy 1: Compare the median income of the poorest p×100% persons with the median

| • |︸ ︷︷ ︸
Poor

• |

︸ ︷︷ ︸
All

Figure 2.1: The median of the poor (red) and the median of all (green).

of the entire population (Figure 2.1). This leads to the equality curve

ψ1(p) =
Q(p/2)

Q(1/2)
, 0 < p < 1. (2.3)
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Averaging this curve over all p’s gives rise to the inequality index

Ψ1 = 1−
∫ 1

0

Q(p/2)

Q(1/2)
dp. (2.4)

Note the mathematical similarity between the Bonferroni curve b and the curve ψ1:

b(p) =

1
p

∫ p

0
Q(s)ds∫ 1

0
Q(s)ds

, ψ1(p) =

1
p

∫ p

0
Q(p/2)ds∫ 1

0
Q(1/2)ds

.

Strategy 2: Compare the median income of the poorest p×100% persons with the median

| • |︸ ︷︷ ︸
Poor

• |︸ ︷︷ ︸
Nonpoor

Figure 2.2: The median of the poor (red) and the median of the nonpoor (green).

of the nonpoor (Figure 2.2). This leads to the equality curve

ψ2(p) =
Q(p/2)

Q(1/2 + p/2)
, 0 < p < 1, (2.5)

and, after averaging over all p’s, to the inequality index

Ψ2 = 1−
∫ 1

0

Q(p/2)

Q(1/2 + p/2)
dp. (2.6)

Note the mathematical similarity between the Zenga curve z and the curve ψ2:

z(p) =

1
p

∫ p

0
Q(s)ds

1
1−p

∫ 1

p
Q(s)ds

, ψ2(p) =

1
p

∫ p

0
Q(p/2)ds

1
1−p

∫ 1

p
Q(p+ (1− p)/2)ds

.

Strategy 3: Compare the median income of the poorest p×100% persons with the median

| • |︸ ︷︷ ︸
Poor

| • |︸ ︷︷ ︸
Rich

Figure 2.3: The median of the poor (red) and the median of the rich (green).
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of the richest p× 100% persons (Figure 2.3). This leads to the equality curve

ψ3(p) =
Q(p/2)

Q(1− p/2)
, 0 < p < 1, (2.7)

and, after averaging over all p’s, to the inequality index

Ψ3 = 1−
∫ 1

0

Q(p/2)

Q(1− p/2)
dp. (2.8)

Note the mathematical similarity between the Davydov-Greselin curve d and the curve ψ3:

d(p) =

1
p

∫ p

0
Q(s)ds

1
p

∫ 1

1−p
Q(s)ds

, ψ3(p) =

1
p

∫ p

0
Q(p/2)ds

1
p

∫ 1

1−p
Q(1− p+ p/2)ds

.

Summarizing the above discussion, in view of equations (2.4), (2.6), and (2.8), the three

income-equality curves are connected to the corresponding income-inequality indices via the

equation

Ψk = 1−
∫ 1

0

ψk(p)dp. (2.9)

Note that the three curves ψk take values only in the interval [0, 1], and so the three indices

Ψk are always normalized, that is, Ψk ∈ [0, 1]. In this context it is useful to look at the

following unrealistic but illuminating cases:

• If the income-equality curve ψk is equal to 1 everywhere on (0, 1), which means per-

fect equality, then the income-inequality index Ψk is equal to 0, which means lowest

inequality.

• If the income-equality curve ψk is equal to 0 everywhere on (0, 1), which means extreme

inequality, then the income-inequality index Ψk is equal to 1, which means maximal

inequality.

Hence, these two extreme cases serve as benchmark curves: the one that is identically equal

to 1 is the curve of perfect equality, and the one that is identically equal to 0 is the curve

of extreme inequality. We can therefore say that the three indices Ψk measure the deviation

of the actual curves ψk from the benchmark egalitarian curve ψe(p) = 1, 0 ≤ p ≤ 1, by

calculating the areas between them.
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3 The new indices and curves: a parametric viewpoint

Modelling population incomes using parametric distributions and also fitting such distribu-

tions to income data are common approaches in the area (e.g., Kleiber and Kotz, 2003).

From this perspective, the inequality indices G, Z, D and G2 and their corresponding equal-

ity curves have been amply discussed and illustrated by their inventors and subsequent

researchers. Hence, we devote this section to illustrating only the three indices Ψk and their

corresponding curves ψk.

We use nine parametric families of distributions, most of which are common in modeling

incomes (e.g., Kleiber and Kotz, 2003). They are right skewed and present a full spectrum of

tail heaviness: some are lightly tailed (e.g., exponential), some are heavily tailed (e.g., Pareto

distributions), and others have the right tails of intermediate heaviness (e.g., lognormal). For

their specific parametrizations, next is the list of their quantile functions:

• Uniform(0, θ): Q(p) = θp.

• Exponential(0, θ): Q(p) = −θ log(1− p).

• Gamma(θ, α): Q(p) = θQ0(p), where Q0(p) is the quantile function of the standard

gamma distribution (i.e., θ = 1) whose cumulative distribution function is F0(t) =
1

Γ(α)

∫ t

0
xα−1e−x dx.

• Weibull(θ, τ): Q(p) = −θ
(
log(1− p)

)1/τ
.

• Lognormal(µ, σ): Q(p) = exp {µ+ σΦ−1(p)}, where Φ−1(p) is the quantile function of

the standard normal distribution (i.e., µ = 0 and σ = 1).

• Log-Cauchy(µ, σ): Q(p) = exp {µ+ σ tan(π(p− 1/2))}.

• Pareto-II (σ, α): Q(p) = σ
(
(1− p)−1/α − 1

)
.

• Pareto-III (σ, γ): Q(p) = σ
(
(1− p)−1 − 1

)γ
.

• Pareto-IV (σ, α, γ): Q(p) = σ
(
(1− p)−1/α − 1

)γ
.

We have computed the inequality indices Ψk for these distributions under various pa-

rameter choices. The results are in Table 3.1, where we also report the rankings of the

distributions based on the new indices: rank 1 corresponds to the lowest inequality and rank

16 to the highest inequality. It is encouraging to see that while the magnitudes of the indices

differ, the rankings induced by them are fairly similar.
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Distributions Inequality indices Ranks based on
Ψ1 Ψ2 Ψ3 Ψ1 Ψ2 Ψ3

Uniform(0, θ) 0.5010 0.6936 0.6147 6 2 3-4
Exponential(0, θ) 0.5583 0.8327 0.7026 7 7 7
Gamma(θ, α = 0.5) 0.6874 0.9378 0.8020 12 10 11
Gamma(θ, α = 2) 0.4360 0.6974 0.5956 3 3 2
Weibull(θ, τ = 0.5) 0.7237 0.9681 0.8358 13 13 13
Weibull(θ, τ = 2) 0.3810 0.6022 0.5239 1 1 1
Lognormal(µ, σ = 1) 0.4779 0.7886 0.6648 4 5 5
Lognormal(µ, σ = 2) 0.6648 0.9527 0.8122 11 12 12
Log-Cauchy(µ, σ = 1) 0.6054 0.9382 0.7470 9 11 9
Log-Cauchy(µ, σ = 2) 0.7470 0.9935 0.8551 14 16 14
Pareto-II (σ, α = 1) 0.6147 0.9242 0.7736 10 9 10
Pareto-II (σ, α = 2) 0.5868 0.8863 0.7407 8 8 8
Pareto-III (σ, γ = 0.5) 0.4302 0.7344 0.6147 2 4 3-4
Pareto-III (σ, γ = 2) 0.7736 0.9932 0.8795 16 15 16
Pareto-IV (σ, α = 0.5, γ = 0.5) 0.4803 0.8288 0.6887 5 6 6
Pareto-IV (σ, α = 2, γ = 2) 0.7495 0.9852 0.8598 15 14 15

Table 3.1: The inequality indices Ψk for various parametric distributions and the rankings
of these distributions based on the indices.

In Table 3.1 we have four groups consisting of four distributions. The groups reflect the

fact that in Figures 3.1–3.3, the distributions are grouped into four rows each containing

four panels. The figures depict the three income-equality curves ψk for the distributions

specified in Table 3.1.

Since the curves are ratios of percentiles, the scale parameter of each distribution has no

effect on the inequality indices. The same is true for the log-location parameter (eµ) of the

lognormal and log-Cauchy distributions. However, the shape (α, γ) and the log-scale (eσ)

parameters are the primary drivers of the underlying inequality. To explore this effect, we

choose a couple of values of each of these parameters for plotting. In the plots of Figures 3.1–

3.3, the uniform distribution serves as a benchmark for comparing the curves. In each plot,

the dash-dotted line (invisible in the top left panels of the figures) marks the curve ψk in the

case of the uniform distribution. Numerical evaluations labeled ‘area’ represent the areas of

the corresponding shaded regions above the curves ψk, which are the values of the inequality

indices.

From Table 3.1 and Figures 3.1–3.3 we observe several facts, which can also be verified

mathematically:

• ψ1 for Pareto-III (σ, γ = 2) and ψ3 for Pareto-II (σ, α = 1) coincide, thus giving identical

9



Figure 3.1: The income-equality curve ψ1 and the shaded-in area (i.e., Ψ1) above it for the
distributions of Table 3.1, with the dash-dotted line depicting ψ1 of the uniform distribution.

inequality indices 0.7736.

• ψ1 for Pareto-II (σ, α = 1) and ψ3 for both Uniform(0, θ) and Pareto-III (σ, γ = 0.5)

coincide, thus giving identical inequality indices 0.6147.

• ψ1 for Lognormal(µ, σ = 2) and ψ3 for Lognormal(µ, σ = 1) coincide, thus giving

10



Figure 3.2: The income-equality curve ψ2 and the shaded-in area (i.e., Ψ2) above it for the
distributions of Table 3.1, with the dash-dotted line depicting ψ2 of the uniform distribution.

identical inequality indices 0.6648.

• The curves ψ1 for Log-Cauchy(µ, σ = 2) and ψ3 for Log-Cauchy(µ, σ = 1) coincide,

thus giving identical inequality indices 0.7470.

We conclude this section with the note that there are, of course, many other parametric
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Figure 3.3: The income-equality curve ψ3 and the shaded-in area (i.e., Ψ3) above it for the
distributions of Table 3.1, with the dash-dotted line depicting ψ3 of the uniform distribution.

distributions for modelling incomes (see, e.g., Kleiber and Kotz, 2003), and one of them is

the Dagum distribution. For statistical inference for the ratio of any two quantiles of this

distribution – and the three equality curves ψk(p) are such ratios – we refer to Jȩdrzejczak

et al. (2023).
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4 A nonparametric viewpoint

We now consider nonparametric ways for estimating all the aforementioned indices of in-

equality and their corresponding equality curves, with an analysis of real data.

4.1 Estimators of the new indices

Let X1, . . . , Xn denote incomes of randomly selected persons, with X1:n ≤ · · · ≤ Xn:n denot-

ing the ordered incomes. The empirical counterparts of the three indices Ψk are (see their

justifications in Appendix A)

Ψ1,n = 1− 1

⌊n/2⌋

⌊n/2⌋∑
k=1

Xk:n

X⌈n/2⌉:n
, (4.1)

Ψ2,n = 1− 1

⌊n/2⌋

⌊n/2⌋∑
k=1

Xk:n

X⌈n/2⌉+k:n

, (4.2)

Ψ3,n = 1− 1

⌊n/2⌋

⌊n/2⌋∑
k=1

Xk:n

Xn−k+1:n

, (4.3)

where, for every real x ≥ 0, ⌊x⌋ is the largest integer that does not exceed x, and ⌈x⌉ is the
smallest integer that is not below x. (These are the classical floor and ceiling functions.)

When it is desirable to emphasize the dependence of the indices on incomes, we do so by

writing them as Ψk,n(X), where X = (X1:n, . . . , Xn:n) is the vector of all the (ordered)

incomes in the sample. Next are a few immediate consequences of definitions (4.1)–(4.3).

Property 4.1. For every real c ≥ 0, we have Ψk,n(cX) = Ψk,n(X).

This property implies, for example, that changing the currency with which the incomes

are reported does not affect the values of the three inequality indices.

Property 4.2. We have the inequality Ψk,n(X) ≥ Ψk,n(X + c) for every real c ≥ 0. The

inequality is strict under the following two conditions: first, c > 0, and second, there is at

least one ratio inside the sum of the definition of Ψk,n that is not equal to 1. (Note that none

of the ratios exceeds 1.)

This property implies that adding the same amount of income to everybody does not

increase inequality and, under a minor caveat specified in the property, the index even

decreases. To see the necessity of the assumption, consider the case when all X’s are equal,
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which gives Ψk,n(X) = 0 and also Ψk,n(X+ c) = 0 irrespective of the value of c. For a proof

of Property 4.2, as well as for proofs of other properties (see Appendix A).

Property 4.3. When c→∞, we have Ψk,n(X+ c)→ 0.

Intuitively, this property says that if we keep adding the same positive amount of income

to everyone, all else being equal, then we shall eventually eliminate the inequality.

4.2 Estimators of the earlier indices

Next we report the definitions of the empirical estimators of Z, D, G and G2 obtained by

replacing the population quantile function Q by the empirical quantile function Qn, which

is given by the equation

Qn(p) = X⌈np⌉:n (4.4)

for every p ∈ (0, 1]. Slightly modifying the obtained expression in an asymptotically equiv-

alent way to make it intuitively and computationally more appealing, we arrive at the esti-

mator

Zn = 1− 1

n

n−1∑
i=1

1
i

∑i
k=1Xk:n

1
n−i

∑n
k=i+1Xk:n

of Z, which appears in Greselin and Pasquazzi (2009). Likewise, we arrive at

Dn = 1− 1

n

n∑
i=1

1
i

∑i
k=1Xk:n

1
i

∑n
k=n−i+1Xk:n

,

which is an empirical estimator of D that appeared in Davydov and Greselin (2020). (Of

course, 1/i in the numerator and denominator cancel out.) The same reasoning leads to the

empirical Gini index

Gn = 1− 2

n

n∑
i=1

∑i
k=1Xk:n∑n
k=1Xk:n

+
1

n

= 1− 1

X̄n2

n∑
i=1

(
2(n− i) + 1

)
Xi:n,

where the last equation follows from simple algebra, with X̄ denoting the mean ofX1, . . . , Xn.

Note that the last expression for Gn is the one that places the empirical Gini index into

the family of S-Gini indices introduced by Donaldson and Weymark (1980) and Weymark

14



(1980/81); see also Zitikis and Gastwirth (2002) for further references and statistical infer-

ence.

Note 4.1. The asymptotically negligible term 1/n on the right-hand side of the first equation

of Gn ensures that Gn makes sense for all sample sizes. Without this term we may get

counterintuitive values. For example, when the ‘incomes’ are X1 = 1, X2 = 2 and X3 = 3,

we have Gn = 2/9, whereas Gn without the added 1/n = 1/3 would give the negative value

−1/9, which is incompatible with the meaning of the index.

Finally, using the same arguments as above but now with the right-most expression for

G2 given in Section 2.2 as our starting point, we arrive at

G2,n =
X̄

X⌈n/2⌉:n
− 2

n2

n∑
i=1

∑i
k=1Xk:n

X⌈n/2⌉:n

as an empirical estimator of G2. As before, X̄ stands for the mean of X1, . . . , Xn.

4.3 An analysis of capital incomes from the ECHP 2001 survey

Using the formulas for calculating the aforementioned indices from data, we now analyze

capital incomes reported in the European Community Household Panel survey (ECHP, 2001)

that was conducted by Eurostat in 2001, which is the last of the eight waves of the survey.

Specifically, the data come from 59,750 households with 121,122 persons from the fifteen

European countries specified in Table 4.1 using the ISO 3166-1 alpha-2 (two-letter) codes.

By looking at the means and medians in Table 4.1, we see how skewed to the right the

distributions of the countries are. Figure 4.1 (with G2,n excluded due to its large values)

visualizes the index values calculated using formulas (4.1)–(4.3) and reported in Table 4.1.

For a more detailed description of the data and relevant references, we refer to Greselin et

al. (2014, Section 1). Next are several observations based on Table 4.1 and Figure 4.1.

Portugal has the lowest value of Ψ1,n, with the median income of the poorest p × 100%

persons equal, after averaging over all p ∈ (0, 1), to 84.7% of the median income of the entire

population.

The opposite happens in France, which provides the highest contrast among the countries

when comparing the median income of the poorest p×100% persons with the overall median

income: after averaging such ratios over all p ∈ (0, 1), we obtain 21.7%.

For France, we also observe the largest value of Ψ3,n. The median income of the poorest

p × 100% people is equal, after averaging over all p ∈ (0, 1), to only 15.5% of the median
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Figure 4.1: The income-inequality indices Gn, Zn, Dn, and the new indices Ψk,n for the
fifteen European countries with n = nP specified in Table 4.1 (based on ECHP, 2001).

income of the richest p× 100% persons in the population.

When we are interested in comparing the median income of the poorest p×100% persons

with the median income of the remaining (1− p)× 100% part of the population, the index

Ψ2,n tells us that Finland is the country in which such a contrast, after averaging over all

p ∈ (0, 1), is the largest.

Figures 4.2–4.4 depict the three income-equality curves ψk,n for the fifteen European

countries specified in Table 4.1, with the shaded-in areas above them depicting the values of

the indices Ψk,n. The curves have been obtained via formulas (2.3)–(2.7) by replacing Q by

Qn given by equation (4.4) with n = nP , where nP is the number of people in the sample

who possess capital incomes, and nT is the total sample size of the given country.

Comparing the plots of Figures 4.2–4.4 derived from the actual data with the ones of

Figures 3.1–3.3 generated from the parametric distributions, for most of the countries we

see that the distributions of capital incomes are similar to Pareto. The only exception is

Portugal, where the three equality curves ψk,n behave differently: having found no apparent

correspondence with any of the parametric models of Section 3, the histogram of Portugal
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Figure 4.2: The income-equality curve ψ1,n and the shaded-in area (i.e., Ψ1,n) above it for
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Figure 4.3: The income-equality curve ψ2,n and the shaded-in area (i.e., Ψ2,n) above it for
the fifteen European countries, where n = nP is specified in Table 4.1 (based on ECHP,
2001).
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Figure 4.4: The income-equality curve ψ3,n and the shaded-in area (i.e., Ψ3,n) above it for
the fifteen European countries, where n = nP is specified in Table 4.1 (based on ECHP,
2001).
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suggests a bimodal distribution. For all the other countries, the histograms are strongly

skewed with strictly decreasing bars when viewing from left to right, thus following the

familiar J-shape mimicking the power law of the Pareto density.

4.4 A comparison with capital incomes from the EU-SILC 2018

survey

To get an insight into more recent European situation, we further analyse data coming

from the EU Statistics on Income and Living Conditions survey (EU-SILC, 2018), which

substituted the ECHP survey after its eighth wave in 2001.

We note at the outset that in the EU-SILC survey, the capital incomes are available only

at the level of households, and sample sizes are approximately seven times larger if compared

with the earlier ECHP survey. Hence, the EU-SILC data give rise to more accurate estimates.

In our study we use the following variables:

HY040G: income from rental of a property or land.

HY090G: interests, dividends, profit from capital investments in unincorporated business.

PY080: pensions received from individual private plans.

As the data refer to households, an equivalence scale needs to be employed to make meaning-

ful comparisons of monetary incomes of social units with different numbers of inhabitants,

and to also take into account the economies of scale (within each household) with regard to

the consumption of certain goods. An equivalence scale acts as a weight, giving rise to an

equivalence income that can be used for inequality, poverty and welfare analyses. We opt for

the modified Organization for Economic Cooperation and Development (OECD) equivalence

scale, which gives weight 1 to the household head, 0.5 to the other adult members of the

household, and 0.3 to the members under 14 years of age.

We analyse the same fifteen European countries as in previous Section 4.3, and consider

the 340,540 households surveyed by the EU-SILC in 2018. A summary is provided in Ta-

ble 4.2. For a useful comparison of means and medians, we apply the official average national

currency exchange rates (year 2018) for the three countries that have not adopted the Euro:

Denmark, Great Britain, and Sweden, whose currencies are the Danish Krone, the British

Pound, and the Swedish Krona, respectively. Hence, all the analyzed data are in Euro.

The differences between the means and medians in Table 4.2 facilitate the assessment

of skewness of income distributions. The list of countries with lower inequality (having a
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two-digit rank in at least one of the new indices) is comprised of Denmark, Benelux, France,

Ireland, Spain, Finland and Sweden. To compare with the 2001 data, Ireland has joined

the list while Germany, Luxembourg, Great Britain and Greece left it. Portugal, that was

the country with the highest inequality in 2001, in 2018 was joined by Greece in the list for

the primacy of the highest inequality, as seen from the rankings produced by the three new

indices. Figure 4.1 (with G2,n excluded due to its large values) visualizes the index values
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Figure 4.5: The income-inequality indices Gn, Zn, Dn, and the new indices Ψk,n for the
fifteen European countries with n = nP specified in Table 4.2 (based on EU-SILC, 2018).

calculated using formulas (4.1)–(4.3) and reported in Table 4.2.

Figures 4.6–4.8 depict the three income-equality curves ψk,n for the fifteen European

countries specified in Table 4.2, with the shaded-in areas above them depicting the values of

the indices Ψk,n. We observe from the simultaneous inspection of the plots that, in general,

the Pareto models fit well the data, and that the Gamma distribution (θ, α = 0.5) can be a

good model for the capital incomes in Denmark, France, Ireland, Spain and Sweden.
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Figure 4.6: The income-equality curve ψ1,n and the shaded-in area (i.e., Ψ1,n) above it for
the fifteen European countries, where n = nP is specified in Table 4.2 (based on EU-SILC,
2018).
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Figure 4.7: The income-equality curve ψ2,n and the shaded-in area (i.e., Ψ2,n) above it for
the fifteen European countries, where n = nP is specified in Table 4.2 (based on EU-SILC,
2018).

25



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

DE

area = 0.76

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

DK

area = 0.86

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

NL

area = 0.81

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

BE

area = 0.88

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

LU

area = 0.82

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

FR

area = 0.86

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

GB

area = 0.84

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

IE

area = 0.89

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

p

IT

area = 0.82

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

GR

area = 0.71

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

ES

area = 0.87

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

PT

area = 0.70

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

AT

area = 0.76

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

FI

area = 0.90

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

SE

area = 0.87

Figure 4.8: The income-equality curve ψ3,n and the shaded-in area (i.e., Ψ3,n) above it for
the fifteen European countries, where n = nP is specified in Table 4.2 (based on EU-SILC,
2018).
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5 The effects of income transfers on the new indices

Consider n persons whose ordered incomes we denote by X1:n < · · · < Xn:n. Choose any pair

from these persons and call them L and H. The person L ∈ {1, . . . , n− 1} possesses income

XL:n and the person H ∈ {2, . . . , n} possesses income XH:n. We assume L < H. Hence, L

has less income than H, that is, XL:n < XH:n. Denote X = (X1:n, . . . , Xn:n).

Assume now that H transfers a positive amount c > 0 to L without changing the income

ordering among the n persons. The transfer produces X′ = (X ′
1:n, . . . , X

′
n:n) with the same

ordering X ′
1:n < · · · < X ′

n:n of the coordinates as in the case of X. (See Appendix A for

additional technical details.) Succinctly, we denote the transfer by

L
c←− H (5.1)

and read it, e.g., “L receives amount c from H” or “H transfers amount c to L.” We are

interested in how the three indices Ψk,n = Ψk,n(X) react to such transfers, that is, when X

turns into X′.

In addition to L and H, we also involve the “median” person

M := ⌈n/2⌉

whose income is XM :n = Qn(1/2) as per equation (4.4) with p = 1/2. Any person P with

income above the median (i.e., when P > M) is called well-off, and any person P with

income below the median (i.e., when P < M) is called struggling (see Figure 5.1). In what

|︸ ︷︷ ︸
Struggling

• |︸ ︷︷ ︸
Well-off

Figure 5.1: The median (green) delineates the struggling group from the well-off.

follows, we shall be interested in the effects of transfer (5.1) on the new three indices when

both L and H are well-off, both are struggling, and when one of them (i.e., L) is struggling

and the other one (i.e., H) is well-off.

Before going into details, we note that the classical Pigou-Dalton principle (PDP) – when

it holds – says that Ψk,n(X) ≥ Ψk,n(X
′) in its weak form and Ψk,n(X) > Ψk,n(X

′) in its strong

form. As we shall soon see, the three new indices will tell us a richer story. Based on it, we

shall be able to choose a preferred index, or at least be prompted to think outside the box,
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which is necessary as Amiel and Cowell (1999) have convincingly argued.

5.1 Index Ψ1,n

Property 5.1. In the case of struggling L and well-off H (i.e., L < M < H), the transfer

L
c←− H diminishes the value of the index Ψ1,n, that is, we have Ψ1,n(X) > Ψ1,n(X

′).

Property 5.2. When both L and H are well-off (i.e., M < L < H), or when both are

struggling (i.e., L < H < M), the transfer L
c←− H does not change the value of the index

Ψ1,n, that is, we have Ψ1,n(X) = Ψ1,n(X
′).

These two properties say that in order to decrease income inequality based on the index

Ψ1,n, a well-off person needs to transfer some amount to a struggling person, whereas any

transfer between two well-off persons or between two struggling ones does not make any

difference.

5.2 Index Ψ2,n

The index Ψ2,n is more sensitive to transfers than the previous index. Specifically, we shall

see from the following properties that Ψ2,n decreases when L
c←− H, unless both H and L

are well-off and H transfers to L only a small amount c > 0.

Property 5.3. In the case of struggling L and well-off H (i.e., L < M < H), or when both

L and H are struggling (i.e., L < H < M), the transfer L
c←− H diminishes the value of

the index Ψ2,n, that is, Ψ2,n(X) > Ψ2,n(X
′).

Property 5.4. When both L and H are well-off (i.e., M < L < H), the transfer L
c←− H

implies Ψ2,n(X) > Ψ2,n(X
′) when

c > c2 :=
XL−M :nX

2
H:n −XH−M :nX

2
L:n

XL−M :nXH:n +XH−M :nXL:n

. (5.2)

Furthermore, we have Ψ2,n(X) = Ψ2,n(X
′) when c = c2, and Ψ2,n(X) < Ψ2,n(X

′) when

c < c2.

Hence, the index Ψ2,n avoids giving the impression of inequality reduction when only a

small amount is transferred among well-off persons. In other words, for the index to decrease

in the case of two well-off persons, the richer one needs to transfer a sufficiently large amount

in order to qualify for inequality reduction. Next is an example illustrating Properties 5.3

and 5.4.
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Example 5.1. Consider a group of seven persons, among whom there are three struggling

ones (denoted by S’s) and three well-off persons (denoted by W ’s). The person M has the

median income XM :7 among these seven persons, and thus a “7” in its notation. Let their

incomes be

X = (X1:7, X2:7, X3:7, X4:7, X5:7, X6:7, X7:7)

= (XS1:7, XS2:7, XS3:7, XM :7, XW1:7, XW2:7, XW3:7)

= ( 1, 3, 5,︸ ︷︷ ︸
Incomes of S’s

Income of M︷︸︸︷
7, 10, 20, 24︸ ︷︷ ︸

Incomes of W ’s

). (5.3)

The index of inequality for this vector is Ψ2,n = 0.8472. Hence, n = 7 and thusM = ⌈3.5⌉ =
4, which gives the median income X4:7 = 7. There are three struggling persons S1 = 1,

S2 = 2, and S3 = 3 with incomes 1, 3, and 5, respectively, and three well-off persons W1 = 5,

W2 = 6, and W3 = 7 with incomes 10, 20, and 24, respectively (see the top-left panel in

Figure 5.2 for a visualization). The horizontal dashed line in each panel of Figure 5.2, noted

as “egalitarian income” and plotted at the height 10, refers to the egalitarian redistribution

of the above specified incomes (whose sum is equal to 70) among the seven participating

persons.

Choose now two well-off persons, say W1(= L) = 5 and W2(= H) = 6. We have

L−M = 1 and H −M = 2. Condition (5.2) is equivalent to

c > c2 =
1× 202 − 3× 102

1× 20 + 3× 10
= 2.

For the ordering of incomes to remain the same after the transfer L
c←− H, we need the

restriction

c <
XH:7 −XL:7

2
= 5.

Hence, to decrease income inequality according to the index Ψ2,n, the person H needs to

transfer to L more than 2, but less than 5 to avoid swapping the position with L.

The top-right panel of Figure 5.2 depicts the transfer from W2 = 6 to W1 = 5 of the

insufficient for inequality decrease amount c = 2, in which case we have the distribution

(1, 3, 5, 7, 12, 18, 24) (5.4)

with the value of the index remaining the same, that is, Ψ2,n = 0.8472.
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Figure 5.2: Distributions of incomes with dots representing units, or amounts, of income:
the blue dots correspond to the original distribution of incomes, the red ones correspond to
reduced incomes due to transfers, and the green dots correspond to increased incomes.

The bottom-left panel of Figure 5.2 depicts the transfer from W2 = 6 to W1 = 5 of the

sufficient for inequality decrease amount c = 4, in which case we have

(1, 3, 5, 7, 14, 16, 24) (5.5)

with the value of the index Ψ2,n = 0.8442.

We now consider a more complex situation, depicted in the bottom-right panel of Fig-

ure 5.2, when every well-off person commits to improving the incomes of the three struggling

persons, with the final distribution of incomes becoming (4, 5, 6, 7, 9, 18, 21). We achieve this

distribution in several steps, each reducing income inequality and maintaining the original or-

dering of the seven persons. Recall that we start from the vector (1, 3, 5, 7, 10, 20, 24), whose
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inequality index is Ψ2,n = 0.8472, and the steps could be these: The transfer S3
1←− W1

results in the distribution

(1, 3, 6, 7, 9, 20, 24) (5.6)

with the index Ψ2,n = 0.8296. The transfer S2
2←− W2 results in

(1, 5, 6, 7, 9, 18, 24) (5.7)

with the index Ψ2,n = 0.7870. Finally, the transfer S1
3←− W3 results in the distribution

(4, 5, 6, 7, 9, 18, 21) (5.8)

depicted in the bottom right panel of Figure 5.2 and having the index Ψ2,n = 0.6640. All

these are inequality-reducing transfers from well-off persons to struggling ones.

Alternatively, without delving into the psychology of people and thus plausibility of trans-

fers, we can have the following steps, some of which involve two well-off persons and some in-

volve both well-off and struggling persons, leading to the same end-result (4, 5, 6, 7, 9, 18, 21),

the same as above:

1) W1
3←− W2 results in (1, 3, 5, 7, 13, 17, 24) with Ψ2,n = 0.8461

2) W2
3←− W3 results in (1, 3, 5, 7, 13, 20, 21) with Ψ2,n = 0.8450

3) S3
1←− W2 results in (1, 3, 6, 7, 13, 19, 21) with Ψ2,n = 0.8265

4) S2
1←− W2 results in (1, 4, 6, 7, 13, 18, 21) with Ψ2,n = 0.8050

5) S2
1←− W1 results in (1, 5, 6, 7, 12, 18, 21) with Ψ2,n = 0.7844

6) S1
3←− W1 results in (4, 5, 6, 7, 9, 18, 21) with Ψ2,n = 0.6640

Step 1) is justified by our earlier argument at the beginning of this example saying that any

transfer higher than 2 but less than 5 from W2 to W1 is legitimate, and we transfer c = 3.

To justify Step 2), we note that we can only transfer less than (24 − 17)/2 = 3.5 but more

than (3×242−5×172)/(3×24+5×17) = 1.8025, and so we transfer c = 3. All Steps 3)–6)

are from well-off persons to struggling ones, and so the only requirement on the transfers is

that they should maintain the original ordering of incomes. This concludes Example 5.1.

31



5.3 Index Ψ3,n

Property 5.5. In the case of struggling L and well-off H (i.e., L < M < H), the transfer

L
c←− H diminishes the value of the index Ψ3,n, that is, Ψ3,n(X) > Ψ3,n(X

′).

Property 5.6. When both L and H are well-off (i.e., M < L < H), or when both are

struggling (i.e., L < H < M), the transfer L
c←− H increases the value of the index Ψ3,n,

that is, we have Ψ3,n(X) < Ψ3,n(X
′).

Hence, when the goal is to decrease income inequality, these two properties say that well-

off persons must transfer to struggling persons, and the index discourages transfers between

two well-off persons, or between two struggling ones, as the index views such transfers ma-

nipulative with no real consequences. Whether we agree with this or not determines whether

or not we shall adopt the index Ψ3,n for measuring income inequality.

Having by now discussed the three indices and their properties, we next have a numerical

example that illustrates the performance of the three indices side-by-side.

Example 5.2. Consider the six distributions of incomes specified in (5.3)–(5.8) and visual-

ized in Figure 5.2. Table 5.1 contains the numerical values of the three indices for the six

Indices (5.3) (5.4) (5.5) (5.6) (5.7) (5.8)
Ψ1,n 0.5714 0.5714 0.5714 0.5238 0.4286 0.2857
Ψ2,n 0.8472 0.8472 0.8442 0.8296 0.7870 0.6640
Ψ3,n 0.7694 0.7917 0.8046 0.7139 0.6713 0.6217

Table 5.1: The three indices for income distributions (5.3)–(5.8).

income distributions. We see from the values that the index Ψ1,n remains the same when

transfers are only among well-off persons (distributions (5.4) and (5.5)) and diminishes in

the case of transfers from well-off persons to struggling ones (distributions (5.6)–(5.8)). The

performance of the index Ψ2,n has already been amply discussed and so we move on to Ψ3,n.

Unlike Ψ1,n, the index Ψ3,n increases when transfers are only among well-off persons (dis-

tributions (5.4) and (5.5)) but diminishes in the case of transfers from well-off persons to

struggling ones (distributions (5.6)–(5.8)). This concludes Example 5.2.

6 Conclusion

In this paper we have introduced and explored three inequality indices that reflect three

views of measuring income inequality:
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(1) The median income of the poor is compared with the median income of the entire

population.

(2) The median income of the poor is compared with the median income of those who are

not poor.

(3) The median income of the poor is compared with the median of the same proportion

of the richest.

We have presented these inequality indices and their equality curves in two ways: one that

is suitable for modeling populations parametrically, and the other one that is suitable for

direct data-focused computations. Several properties of the indices have been derived and

discussed, most notably their behaviour with respect to income transfers. The indices and

their curves have been illustrated using popular parametric models of income distributions,

and also calculated and interpreted using real data. The new indices do not require any

finite moment and, therefore, are suitable (mathematically) for analyzing all populations,

including those that are ultra heavily tailed, that is, do not even have a finite first moment.
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A Technicalities

Justification of definitions (4.1)–(4.3). The three empirical indices arise from formulas (2.4)–

(2.8) by first replacing the population quantile function Q by the empirical quantile function

Qn in all the formulas. (We have asymptotically insignificantly modified the obtained expres-

sions to facilitate their intuitive appeal.) In detail, with Fn denoting the empirical cumulative

distribution function based on X1, . . . , Xn, the empirical quantile function is given by equa-

tion 4.4. Thus, for example, Qn(1/2) = XM :n, which is the empirical median used in the

definition of Ψ1,n. Note also that ⌊n/2⌋ +M = n, and thus the definition of the index Ψ2,n

does not go beyond the random variables X1, . . . , Xn.

Proof of Property 4.2. The inequality holds because a/b ≤ (a + c)/(b + c) for all (positive)

a ≤ b and c ≥ 0, and to have the strict inequality, we note that a/b < (a+ c)/(b+ c) holds

for all (positive) a < b and c > 0.

Proof of Property 4.3. The property follows from (a+c)/(b+c)→ 1 when c→∞ irrespective

of the values of (positive) a ≤ b.
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Details of definition (5.1).

X ′
i:n = Xi:n for 1 ≤ i ≤ L− 1,

X ′
L:n = XL:n + c,

X ′
i:n = Xi:n for L+ 1 ≤ i ≤ H − 1,

X ′
H:n = XH:n − c,

X ′
i:n = Xi:n for H + 1 ≤ i ≤ n,

where L and H are integers such that 1 ≤ L < H ≤ n, and c > 0 is any positive real number

(i.e., the amount transferred from H to L) such that the following ordering holds:

X1:n < · · · < XL−1:n < XL:n+c < XL+1:n < · · · < XH−1:n < XH:n−c < XH+1:n < · · · < Xn:n.

(A.1)

When inequalities (A.1) hold, we succinctly denote this transfer by L
c←− H.

Proof of Property 5.1. Since L < M < H, the increase in L’s income affects the index

Ψ1,n = 1− 1

⌊n/2⌋

⌊n/2⌋∑
k=1

Xk:n

XM :n

because
XL:n

XM :n

<
XL:n + c

XM :n

,

whereas the decrease in H’s income does not affect Ψ1,n because H is not among the terms

making up the definition of the index. Hence, Ψ1,n(X) > Ψ1,n(X
′).

Proof of Property 5.2. When M < L < H, the index Ψ1,n is not affected by the transfer

L
c←− H because, mathematically speaking, L and H are outside the summation range due

to ⌊n/2⌋ ≤ M and, according to property (A.1), the transfer does not change the ordering

of incomes. In other words, the median income and the incomes below it are not affected by

the transfer, and we therefore have Ψ1,n(X) = Ψ1,n(X
′).

When L < H < M , both L and H are among the terms in the sum making up the

definition of Ψ1,n. Since we have the equations

XL:n

XM :n

+
XH:n

XM :n

=
XL:n + c

XM :n

+
XH:n − c
XM :n

=
X ′

L:n

X ′
M :n

+
X ′

H:n

X ′
M :n
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the value Ψ1,n is not affected by the transfer L
c←− H. This implies Ψ1,n(X) = Ψ1,n(X

′) and

establishes Property 5.2.

Proof of Property 5.3. Consider first the case when L < M < H. Since L < M , we have

L ≤ ⌊n/2⌋, and so the index

Ψ2,n = 1− 1

⌊n/2⌋

⌊n/2⌋∑
k=1

Xk:n

XM+k:n

.

is affected by the transfer L
c←− H because

XL:n

XM+L:n

+
XH−M :n

XH:n

<
XL:n + c

XM+L:n

+
XH−M :n

XH:n − c
,

=
X ′

L:n

X ′
M+L:n

+
X ′

H−M :n

X ′
H:n

which implies Ψ2,n(X) > Ψ2,n(X
′).

When L < H < M , we have L < H ≤ ⌊n/2⌋, and so

XL:n

XM+L:n

+
XH:n

XM+H:n

<
XL:n + c

XM+L:n

+
XH:n − c
XM+H:n

=
X ′

L:n

X ′
M+L:n

+
X ′

H:n

X ′
M+H:n

,

with the inequality holding because XM+L:n < XM+H:n. Hence, Ψ2,n(X) > Ψ2,n(X
′), thus

concluding the proof of Property 5.3.

Proof of Property 5.4. Since M < L < H, the incomes of L and H are above the median

XM :n, and so there are two k’s in the sum in the definition of Ψ2,n that give M + k = L

and M + k = H, respectively. Consequently, Ψ2,n(X) > Ψ2,n(X
′) holds if and only if the

following inequality holds:

XL−M :n

XL:n

+
XH−M :n

XH:n

<
XL−M :n

XL:n + c
+
XH−M :n

XH:n − c
,

=
X ′

L−M :n

X ′
L:n

+
X ′

H−M :n

X ′
H:n

.

Simple algebra shows that the inequality is equivalent to c > c2, where c2 is defined by

equation (5.2). This establishes Property 5.4.
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Proof of Property 5.5. The transfer L
c←− H affects the index

Ψ3,n = 1− 1

⌊n/2⌋

⌊n/2⌋∑
k=1

Xk:n

Xn−k+1:n

via both L and H because

XL:n

Xn−L+1:n

+
Xn−H+1:n

XH:n

<
XL:n + c

Xn−L+1:n

+
Xn−H+1:n

XH:n − c

=
X ′

L:n

X ′
n−L+1:n

+
X ′

n−H+1:n

X ′
H:n

,

which implies Ψ3,n(X) > Ψ3,n(X
′) and establishes Property 5.5.

Proof of Property 5.6. Consider first the case of two well-off persons, that is, M < L < H.

Since ⌊n/2⌋ + ⌈n/2⌉ = n and M = ⌈n/2⌉, we have n − k + 1 > M for every k ≤ ⌊n/2⌋.
Consequently, there are two k’s in the sum in the definition of Ψ3,n that give n−k+1 = L and

n−k+1 = H, respectively, because M < L < H. Hence, the inequality Ψ3,n(X) ≥ Ψ3,n(X
′)

holds if and only if

Xn−L+1:n

XL:n

+
Xn−H+1:n

XH:n

≤ Xn−L+1:n

XL:n + c
+
Xn−H+1:n

XH:n − c
,

=
X ′

n−L+1:n

X ′
L:n

+
X ′

n−H+1:n

X ′
H:n

which is equivalent c ≥ c3, where

c3 =
Xn−L+1:nX

2
H:n −Xn−H+1:nX

2
L:n

Xn−L+1:nXH:n +Xn−H+1:nXL:n

.

Recall now that the transfer L
c←− H does not change the ordering of incomes, and thus we

must have XL:n + c < XH:n − c, which is equivalent to c < c0, where

c0 =
XH:n −XL:n

2
.

Hence, to have L
c←− H for some c > 0, we must have c3 < c0, which is equivalent to

2
(
Xn−L+1:nX

2
H:n −Xn−H+1:nX

2
L:n

)
<

(
XH:n −XL:n

)(
Xn−L+1:nXH:n +Xn−H+1:nXL:n

)
,
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which simplifies to

Xn−L+1:nX
2
H:n −Xn−H+1:nX

2
L:n <

(
Xn−H+1:n −Xn−L+1:n

)
XL:nXH:n.

The latter inequality is impossible because L < H implies XH:n > XL:n and Xn−H+1:n <

Xn−L+1:n. Consequently, it is impossible to have c3 < c0 and so there is not a single c > 0

that satisfies c ≥ c3 and c < c0 simultaneously. This shows that the only possibility that

exists is Ψ3,n(X) < Ψ3,n(X
′).

Consider now the case of two struggling persons, that is, L < H < M . In this case we

have L < H ≤ ⌊n/2⌋ and so L
c←− H affects Ψ3,n because of the inequality

XL:n

Xn−L+1:n

+
XH:n

Xn−H+1:n

>
XL:n + c

Xn−L+1:n

+
XH:n − c
Xn−H+1:n

=
X ′

L:n

X ′
n−L+1:n

+
X ′

H:n

X ′
n−H+1:n

that holds due to Xn−L+1:n > Xn−H+1:n. Hence, Ψ3,n(X) < Ψ3,n(X
′), concluding the proof

of Property 5.6.
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