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Introduction

In the 1930s physicists were interested in studying nuclear interactions. This kind of
interaction is characterized by a very strong intensity and at the same time a very short range
of influence. One of the first modelizations of this interaction were the works of Bethe and
Peierls [9] and Thomas [47] in which a "zero range potential" was introduced, and of Fermi
([21]) from which the common denominations "Fermi pseudopotential” for point interactions
derives. Later studies aimed at the rigorous definition of this concept led to the work of Berezin
and Faddeev of 1961 [8], where it was formulated through von Neumann-Krein’s theory of
self-adjoint extensions.

The mathematical formulation of a "delta-like" potential (from now on we will use freely
the term delta interaction or point interaction in dimension two and three) is based on the fact
that the corresponding Schrodinger’s operator "—A + 46," must coincide with the free Laplacian
on Cy’(R"\ { y }). This mimics the idea that the particle does not feel the interaction if it cannot
be found at the point y. The theory of self-adjoint extensions, when applied to dimension
two and three (the one dimensional case is much easier and will not considered in this thesis
if not as a comparison case) shows that there exists a one parameter family of self-adjoint
extensions of this symmetric restriction of the free Laplacian in R” indexed by a parameter
a. This constant appears in the abstract treatment as an index for the individual self-adjoint
extension, and it could be recovered as a coupling constant (possibly renormalized, this is
especially relevant in dimension three) or a suitable function of the coupling constant, so that it
should not be confused with the formal coefficient A multiplying the 6 function in —A + A6, if
not in dimension one where the delta interaction can be recovered as a form perturbation of the
Laplacian.

The point interaction can be obtained as a local approximation, starting from a Schrédinger
operator —A + V scaled suitably, but with a taming of the standard ¢ scaling ?V(f); Mmoreover,
only in dimension three, the Schrodinger operator —A+V needs to have a zero-energy resonance
(see Section 1.1 for further details). In dimension one the scaling is the usual delta scaling, and
the point interaction obtained can be considered on the same footing of a perturbation of the
Laplacian by means of a potential. Instead, in dimension two and three, the scaling is different
from the delta scaling and subjected to certain conditions on the approximating potentials and
this bears very relevant differences in spectral properties of regular potentials and singular
interactions of the delta-type. For example, it is known that for n = 1, 2, the operator —A + V
with V € C(R") has an eigenvalues whenever & V(x)dx < 0, while in R3, the potential needs
to reach a certain intensity to cause the insurgence of eigenvalues. This is a consequence of the
Cwikel-Lieb-Rozemblum inequality [34] which bounds the number of negative eigenvalues for
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rather general potentials, however not including point interactions
3
N.(V) < L, f Vol dx.
R3

For the point interaction in R?, despite it being a "one-point support” interaction, instead an
eigenvalue exist if and only if & < 0, and in R? a negative eigenvalue exists for any member
of the family of point interactions, irrespectively from the sign and value of @. In general,
a systematic theory of N-point (N possibly infinite) interactions in R” and of their spectral
properties has been carried out (see the treatise [2] and reference references, updated to 2005
and hugely increased in the last twenty years).

The study of point interaction has also been extended to proper subsets of R”. In [11] the
class of point interaction in a bounded domain coupled with Dirichlet boundary conditions
is constructed using the technique of boundary value spaces and it is also shown how the
introduction of this point interaction alters the spectrum of the free Laplacian in a ball. A
similar approach is taken in [20], in which it is also investigated how the position of the point
interaction with respect to the boundary affects the principal eigenvalue.

There is not much literature about point interaction in unbounded domain different from
R". These domains have characteristics which place them somewhat in the middle of the R"
and bounded case. For instance, the free Laplacian on this kind of domains has typically
purely absolutely continuous spectrum [0, +00) as in the R" case, while for bounded domains
its spectrum is purely discrete (this is true with some restrictions, discussed later in the thesis;
for example this is the case of exterior domains and conical domains as the half-plane; it is not
true anymore for generic quasi-conical domains or for quasi-cylindrical or quasi-bounded sets).
On the other hand the presence of a boundary in unbounded domains affects spectral properties
as in the bounded case. So, for example it is interesting to determine under which conditions
the point-interaction causes the birth of an eigenvalue and how this condition is affected by
boundary conditions. This is one of the main tasks dealt with in the thesis.

When one considers non-compact domains, resonances becomes relevant. Resonances of
the operator H are the poles of the meromorphic continuation in the lower complex half-plane
of the resolvent (H — z?)~!. Loosely speaking, they behave as a sort of complex eigenvalues
corresponding to resonance functions playing the role of eigenfunctions, that are only locally
square integrable, and when H is the generator of a Schrodinger or wave dynamics, they
correspond to solutions decaying in time. Their use is common in Physics but a rigorous
and complete definition has many different declinations (sometimes not equivalent) in the
mathematical literature ([31], [18] are representative examples of a time dependent and a
stationary definition, respectively). As mentioned before, they are of interest because the
solution of the wave or Schrodinger equation propagating on non-compact domains can be
expressed, asymptotically for large times, as an expansion on resonance functions [1] as an
alternative to the spectral theorem based expansion. Also in this case, when point interactions
are considered, resonances have been studied mainly in the R” case. The distribution of complex
(Im z < 0) resonances has been investigated by Albeverio and Karabash [4—6] and by Lipovsky
and Lotoreichik [35]. Real resonance in dimension 3 are discussed in [37]. Properties of the
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resolvent in dimension 2 are instead studied in [15]. Also for the resonances little is known
when the domain considered is an unbounded subset of R”.

In this work we aim to give a first attempt at describing spectral properties and resonances
of the Laplacian perturbed by point interaction on unbounded domains.

In the first chapter, which is preparatory but still contains not previously published material,
we define the N-point interactions in an unbounded domain, with Dirichlet, Neumann or Robin
boundary conditions using the theory of self-adjoint extensions. We also give a different
treatment through a different road and, following the work [46] by Teta, where he defines
quadratic forms corresponding to the point interaction Laplacians in R", we construct quadratic
forms corresponding to delta-interactions in unbounded domains.

The second chapter is devoted to the study of the spectrum of 1-point interaction in un-
bounded domains. The point spectrum in these domains is constituted at most of an eigenvalue,
due to Krein formula. The existence and behavior of the eigenvalue is determined by two
elements: the value of the parameter @ and the position of the point interaction with respect to
the boundary. General conditions are found for exterior domains in R? and R? with Dirichlet
boundary conditions and for domains €, star-shaped with respect to the point in which the
"delta intersction" is located, for Neumann boundary conditions, that include the half-space and
other domains with unbounded boundary. Then the critical @, for which an eigenvalue exists is
determined in some particular cases in which the Green’s function is known explicitly such as
the half-space, the half-plane, the exterior of the disk and the exterior of a sphere. The behavior
of a, changes in a noticeable way when compared to the one in R" for a single interaction.

In the third chapter we define resonances for point interactions in domains (according to a
definition agreeing with the Sjostrand-Zworski theory for regular perturbation of the Laplacian
and of their more general "black-box" definition [18, 43, 44]) and study their distribution on the
half-space and half-plane for 1-point interaction. In the former case, for Dirichlet and Neumann
boundary conditions, we determine that there are infinite resonances (while for N = 1 in R?
there is at most one resonance). Moreover each of this resonances is localized in a precise
vertical strip of the complex plane. Also a logarithmic relation between real and imaginary
part of the resonances is established. As a byproduct of this, an asymptotic on the number of
resonances in a ball of radius R centered at the origin for R — +oo is performed. For Robin
boundary condition in the half-space and Dirichlet and Neumann ones in the half-plane, we
give an estimate on the real part of the resonances contained in a horizontal strip of width .
As a non-trivial application we give the resonance expansion for the wave evolution. Finally,
we studied the semiclassical distribution of resonances for the one-point interaction on the
half-space. A previous result in the one dimensional case of a delta interaction placed on
the half-line with Dirichlet boundary condition at the free end (also called the Winter model
in physical literature) is given in the recent work [17] on the half-line. The present results
constitute a first generalization of this analysis to a three dimensional case.
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The analysis of spectral theory and resonances of point interactions in domains is essentially
a virgin soil, and so there are several refinements, extension and developments of the results
here presented that can be object of future study. Here we mention

a) the completion of the analysis of the exterior domain case to general (Robin) boundary
conditions;

b) the more ambitious analysis of the behavior of point interaction with respect to Glazman
classification of unbounded domains: quasi-conical, quasi-cylindrical and quasi-bounded;

c) the extension of the analysis of the distribution of resonances on more general domains
than the half-space and the corresponding resonance expansion for time dependent
problems.

The characteristic of point interactions on domains is that of being in a sense explicitly solvable
models, less than the point interactions R” case, but more than the regular potential perturbation
of the Laplacian. So the expectation is that their analysis here begun should give on one hand
the chance of new results in the restricted field of study of point interaction, and on the other
hand a source of inspiration and intuition of possible behavior for the standard regular potential
case.



Chapter 1.

Point Interactions in a Domain

1.1. Point Interactions in R3

In this section we recall some properties of the N centers point interaction in R3. Refer to
the book [2] by Albeverio and Hgegh-Krohn for additional details.

We consider the non-negative operator
Hy = —Alce@nyn) -
Its closure is the symmetric operator
Hy = =Alpwy) »
where

D(Hy) ={p € H*®R)|¢(y;) =0,y; € Y,j=1,...,N}.

Hy is not self-adjoint, but in fact has deficiency indices (N, N) and deficiency subspaces
Ran (Hy % i) = span {GO\;;( =V, Gojg(- - yN)}, Im Vi >0

(for the definition of Green’s functions G2 see (A.3) in Appendix A.1). From the theory of
self-adjoint extensions it then follows that there exists an N>-parameters family of self-adjoint
extensions of Hy. Imposing locality of the interactions, we define the self-adjoint extension
—A.y as follows (a = {a j}y: 1)- The domain D(-A, y) is made by all functions ¢ of the form

N
p() = (0 + ) q,GP(x—y), xeR\Y,

J=1
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with ¢, € H*(R?), g; € Cand z* € p(—A,y), Imz > 0. And with y of this form, the action is
given by

(—Aay =W = (-A = D).
Moreover, let € D(—A,.y) and ¢ = 0 in an open set U C R?. Then —A, y = 0 in U.

Through Krein’s formula (Theorem B.1.1), we can also give the expression for the resolvent

N
(=Aay =) = (A =)+ YT @15 (G = 3, IGE = yy),
jil=1
2 ep(=Ayy), Imz>0, (1.1)

where

i j=1

e (), = {—G(z)’3(Yj —y) J#I
a,Y\&J gl —

Remark. Point interactions can be obtained also through local approximation. Here we recall
the result for a one point interaction situated in the origin. The construction is done starting
from a Schrodinger operator —A + V and scaling it suitably, but with a taming of the ¢ scaling
(see [2] and [3] for the missing details):

e For n = 2 the scaling is of the form —A + %V(;) with g(y) = g1y + g2 + 0(y*) and a
relation between g;, g> and V determines the @ in —A, o as € — 0.

e For n = 3 the scaling is of the form —A + 1:58 V(:) with g € R. Again g and V determine

a in the norm resolvent limit, but a further crucial condition appear in 3d: —A + V needs
to have a zero energy resonance or otherwise the scaling limit coincides with the free
Laplacian.
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1.2. Point Interactions in a Domain in R*® Through
Self-Adjoint Extensions

1.2.1. Boundary Conditions

We want to construct Laplacians with point interactions also for domains Q different than
the whole R>. Let ¢, ¥ € C*(Q) and consider

8¢ = [ B = [ Vot TaGdx - [ V- F0Tew) dx

= fg V- (e VP(x) — @) V() da + fg () (~Ap)(x) dx

0 —0
- ﬁg(ﬂx)(%(@ - l//(x)a—f(x)) do + (¢, —AW) 2,

where we repeatedly integrated by parts and used the divergence theorem. We note that for
generic i, ¢ € C*(Q) the Laplacian is not symmetric. In order to have symmetry, the boundary
term must vanish. So we look for subsets of Cz(ﬁ) such that the restriction of the Laplacian to
those ones actually is symmetric. Sufficient conditions are

® ¢licgo = 0and Yl 5o = 0;.
e There exists some real valued n € C(02) such that

O

oy
= Npliespo and  — = Wl ieon -
aV a0 €0Q c0Q

OV |rev
Anyway, we will only consider n being positive real constant in the following.

So to obtain a symmetric Laplacian then boundary conditions must be imposed. We define
respectively

e the Dirichlet Laplacian on Q as the operator with domain

D(=A%P) = {y € C¥(Q) | Yloen =0 ).
e the Robin Laplacian as the one with domain

D(~A%R) = {w € C™(@Q) ‘ (Z—f +0)

_ o}.
x€0Q)

We also name —A*R0 = —A®N_the Neumann Laplacian and it follows that its domain is

:0}.
x€0Q

D(-A™N) = {¢ e C¥(Q) ‘ Z—‘/’
4
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For all these operators the action is the usual action of the Laplacian.

These operators are symmetric but not self-adjoint. That’s because C*(Q) is too small and
the domain of the adjoint properly contains it. The "right" space is H*(Q). Functions in H?
are only defined almost everywhere, but due to Morrey’s embedding theorem (see for example
Theorem 12.55 in [33]) each of them has a continuous rapresentative. Hence the boundary
value can be intended as the classical evaluation of a function. The same does not hold for the
notion of the value of their derivative on the boundary. This means that, to also treat Neumann
and Robin boundary conditions, the evaluation of the boundary must be intended in a different
way, which extends the classical evaluation on continuous functions. The following theorem
states that under regularity hypotheses for 0€2, this extension exists

Theorem 1.2.1 ([33]). Let Q C R”", n > 2 be an open set whose boundary 0€Q is Lipschitz
continuous. There exists a unique linear operator

Tr: H(Q) — [?

loc

(0Q)
such that
(i) Tr(u) = u on dQ for all u € H'(Q) N C(Q).

(ii) the integration by parts formula

0 0
fu—l//dxz—fw—udx+f v Tr (u)v;do,_;
o Ox o Ox; 4Q

(where v is the outward normal vector and o,_, is the (n — 1)-dimensional Hausdorff
measure) holds for all u € H'(Q), for all y € Coy(R") and alli = 1,...,N.

(iii) for every R > 0 there exist two constants cg, eg > 0 depending on R and € such that

f ITr (w)* doryp_y < cge™ f lul* dx + cre f |Vul? dx,
B(0,R)NoQ B(0,R)N(Q\Q;) B(O,R)N(Q\Q,)

for every 0 < & < &g, where Q, = { x € Q | dist (x,0Q) > ¢ }.

The function Tr (u) is called the trace of u on 0Q.

We can observe that if Q is bounded, Tr is bounded from H?*(Q) — L*(0Q). We give the
following definition

Definition 1.2.1. Let Q C R", n > 2 be the half-space H" or an open set with dQ bounded and
Lipschitz. We call the operator
yp : H'(Q) - L*(0Q) ypu = Tr (u)

the Dirichlet trace operator.
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Definition 1.2.2. Let Q C R”, n > 2 be the half-space H" or an open set with 4Q € C"!
bounded. We call the operator

yy  HYQ) - [X0Q)  ypu = Tr(?)
%

the Neumann trace operator.
The following theorems states that for domains of this kind the trace is bounded in L*(Q).

Theorem 1.2.2 ([30]). For the half space H":
e if s > 1, then the operator yp : H*(R") — H* '2(R"") — L2(R"") is bounded;
o if s > 3/2, then the operator yy : H*(R") — H*3?(R"™!) — L>(R"") is bounded.

Theorem 1.2.3 (See Theorem 18.40 in [33]). Let Q C R", n > 2, be an open set whose
boundary 0 is bounded and Lipschitz. Then there exists some constant C such that

||')’Du||L2(aQ) <C ||u||H'(Q) .

Theorem 1.2.4 (See Theorem 18.51 in [33]). Let Q C R", n > 2, be an open set with 6Q € C'*!
bounded. Then

(ypsyn) + HA(Q) = L*(9Q)

is a bounded operator.

From now on, we will only consider cases covered by these result unless otherwise stated.
Hence Q will be one of the following

e the half-space H" = {x = (x1,...,x,) €eR" | x, >0 };

e a domain with dQ Lipschitz and bounded if the domain of the operator considered is
H'(Q);

e a domain with C!"! Q and bounded if the domain of the operator considered is H*(Q).

On these kinds of domains, now we can interpret the boundary value even for functions defined
almost everywhere and so we can consider finally the self-adjoint form of the symmetric
Laplacians defined above (we use the same symbol because the symmetric Laplacians won’t be
used anymore in the following):

e the Dirichlet Laplacian: D(-A®P) = { W € HX(Q) | Yo =0 } = HX(Q);
e the Neumann Laplacian: D(-A®Y) = { ¥ e HAQ) | vy =0 };

e the Robin Laplacian: D(—A®R7) = { v e HAQ) | (yn + myp)y = 0 }
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We remark that 77 will be always supposed to be non-negative. We also use —A® as a generic
symbol for one of the three operators above. The action of the Laplacians defined above is

—A%:D(-A®) - LX(Q) - A%y =-Ay

We will also refer to the Green’s functions of —A® with G2, in place of G2, G or G%R’”
which are the Green’s function with Dirichlet, Neumann and Robin boundary conditions

respectively. In the same way, we will call the generic corrector function hfy and the ones with

specific prescribed boundary conditions h%D, h%,N or h%.R " (see Appendix A.1).

1.2.2. Boundary Triples and Point Perturbations

Here we use the theory of boundary value spaces (the main result used are taken from
[25] and mentioned in Appendix B.3) to construct self-adjoint extensions associated with

point perturbation of the Laplacian in domains € of the type described above with Dirichlet,
N

Neumann or Robin boundary conditions. Let { Vj }j=1 be distinct points in Q. We consider the

closed symmetric operator (HO, D(HO))

D(Ho) = {y e D(-A? | y(y) =0, j=1,....N| (1.2)
Hoy = —AY. (1.3)

In order to find the domain of the adjoint through von Neumann decomposition formula, we
characterize its deficiency subspaces.

Lemma 1.2.1. Let H, = Ran (Hy + i)* be the deficiency subspaces related to the operators H,
defined in (1.2) and (1.3); then

H, = span{G%yj,j: 1,...,N}.

F

Proof. € H. implies

{(lp, (A £ D)2 =0 , Yo € D(Hy).

Y e LA(Q)
But since, ¢(y;)) =0V =1,...,N, we have that
(Gi’/ﬂyl_, (-A = i)p)

— — D _ 3
12Q) ((_A G VFiy;’ ‘70)L2(Q) = ¢y =0,
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which means that span{ G?Ei,yf’j =1,... ,N} C H..Lety, € Ran(Hy +i)* and ¢ € D(H,).

Then there exist numbers c7, . .., cy independent of ¢ such that
N
War (A £ D)2y = ) CEe()). (1.4)
J=1
In fact, let
N
F=9p- > ¢Op (1.5)
=1

where y; € C(Q), x(y;) = 1 and suppx;Nsuppx; =0, j,l=1,...,N, j # 1. Then @ € D(H,).
Substituting (1.5) in (1.4) and using this fact we obtain that c;—f = (Y4, (A £ i)y;). But the
constants c7, ..., cy are uniquely determined by .. In fact, let /. be such that

N
s (=D £ )2y = ) C500)).
i=1

J
Then (s — §2), (A £ @) 2 = 0 Yo € D(Hp), which implies that ¢, = ..

Finally, we observe that

ﬁb

N
e S0t
. J Fiyj

Jj=1

satisfies (1.4), thereby proving H, C span{ G?/iyj’j =1,...,N } |

The next step in the construction of the sought self-adjoint extensions is to find a boundary
value space for Hy. In order to do so, we define the operators I'y, I, : D(Hj) — CN as follows

Tw); = )}iﬁnymn x—ylv, j=1,....N (1.6)
(o), = lim(lﬁ(x) - M) j=1,...,N. (1.7)
x—y; 47r|x —y;

We claim that

Theorem 1.2.5. The triple (CN,T'\,T',) defined by (1.6) and (1.7) forms a boundary value space
fOl" H().
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Proof. By the von Neumann formula (Theorem B.2.1), we can write two generic vectors
¥, ¢ € D(H;) as follows

N
W= o + ;(akG%M +hGo ) =0+ Z Gy +BG ) (8

where ¥, 9o € D(Hy) and ay, by, ay, B € C. We now consider

W, HyQ)120) — (Holr, 9)12(0)- (1.9)

Using the action of Hjj given by von Neumann formula and (1.8) we have (we omit the subscript
of the inner product for brevity)

N
W, Hyp) = (w, HS(@DO + Z @Gy, +/3!G§%,>7,)))

=
8|
=
Q
,~<.wb
2|
ﬁ
5
NS

= (¥, Hopo) +1i

N

N
. =~ Q - 2~ Q
—! Z akﬂl(G Vi’ G\/—Tyz) — Z bk’Bl(G V=i’ Gﬂ,yz)'

k=1 ki=1

Similarly

(Hoy, ¢) = (Howro, o) + Z CVI(HO%, ) Z (Holl/o, G?/jis)ﬁ) liak( yk’sﬁo)

=1 k=1

N N N
) —[ ~Q Q
+lek( ‘F)k’(po) lZakal( Vi’ G‘fy1)+lzbk I(G‘E’W’G\ﬁ’y’)

k=1 k=1 N

=

=
Il
—_

Mz
Mz

—i (G GO +i Y biB(GY .G ) (110)

k,

.\

=1

=
~
Il
—_
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Taking the difference, (1.9) becomes

N N
(GO (Ho = idgo) + Y bu(Go(Ho o+ Do) = " (Ho = i, G )

k=1 =1

E((HO + i)Y, G?ﬁ,y,) + 2i ZN: aka/,( \[M) 2i

k=1 k,

M=
Mz

bkﬁ,( Gfm). (1.11)

|
-

—
]
—_

Now, given the definition of G?Fy and that ¥, @9 € D(H)), each term of the first four sums
+L,Yyj

vanishes. We exchange k and / in the last sum and so

N N
<w,H3¢>—<st,so>ﬂi%a@(%yk A EE A (o |

k=1

_ 0 .
We observe that G i = G iy, This means that

Q Q _ Q Q _ Q Q

(G \/ji»}’l’G\EJk) N (G Viy’ G\[yk) - (G Viyi’ G\ﬁ,yz)’
which implies
N
(¥, Hyp) — (Hytr, ) = Zi;(akaz lﬁk)( iy \[yl). (1.12)

Let’s consider the inner product (G Vine G?[) ) We start with the case k # [. By the definition
VI

Q
of G we have
V$i,y_,~ ’

(6%,-6%,.) = -i(i6%,.G%, ) = ~i(MG, . G2 ) +iG%
:—i(G‘\)ﬁ’yk,HOGQ )+1GQ o)
= ~(6%,,.G%, ) - 1G%, 00 + G, Ow.
equivalent to

Q Q _ I Q Q
(6%, 6%,.) = =5(6%,.00 = G, O0). (L.13)

Now, if k = [, both terms in the difference in (1.13) diverge, but the quantity has still a finite

limit. We rewrite last equation using the definition for G?/ﬁy
20

(6%,-6%,) = ~5(G" 00 =G 00 =h%, 00+ K% )
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The last two terms are finite for £ = [ and we can write
Q 0 _ 0 70 A Q
h@’yk@k) h\ﬁ’yk(ﬂ) = h@’yk@k) h @’yk()’k) =2i Imh\/fi’yk(yk)'
For the first two terms instead holds
0,3 03 _ (03 03
G =G 00 =G -G Ow.

So, to evaluate the expression on the left side, we can take the limit y; — y; of the right one

= V=ily—xil _ = Vil—x \/— — v
e e l l
lim (G*2 -G% = lim = .
y/—>yk( \[ia)’k(yl) V*i’yk(y[)) YIYVk A7 |x; — x| A

So we found that

—_ifGQ A0
(0% ) = (6,00 -G o0) k=L
Vi " Nivi) o) |Im h?z-,yk(yk) +i(V=i- V) k=1

Then (1.12) can be rewritten as

N
(0, Hip) = (Hiw, @) = ) (i = bBe)(G%, 00 = G 00)
klll;ll
1 < _ N B
_Z;ZK@@FwaOﬁE—Vb—EX@@Fwa@%M@Q—mkm@g)(LM)
k=1 k=1

We consider now the operators I'y and I'; acting on D(H}))

Tw)j=a;+b; (1.15)
N
1 -
(Tay), = ;(akG%,yk@j) +0GSL 09) = (@ N=i+ bV —ahly 6) = bl ).
k#j

(1.16)
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Some computations show that

N

(N1, Tog)er = (D, Tig)en = ;_l(a@ ~bB)(G, 0~ G 00)
el

N N
+ D aB(G%, 00— G% 00)+ ) biai(Go, 00 =G (00)

k=1 k=1
k#l k#l
N N
- (akak — biBe)(V=i - Vi) - kz;(a@ = 5B ), 00 = W W) (11TD)

If the second and third sums in (1.17) are zero, then (1.14) and (1.17) coincide and the result
follows. In fact it holds that (GQ o0 =G (%)) = 0Vk,I = 1,...N k # L. That follows

from the following computation Wthh uses the deﬁmtlon of G%

\/g’yj
(G?/;i,yk’G\F yz)LZ(Q): ( x/’ iy xF }I)LZ(Q)
=¥ ( \F)I)LZ(Q) iG Q Vi (yk)
= ( }[)LZ(Q) \/* ) £ lG\/*yl(Yk)

This result allows a general characterization of the self-adjoint extensions of Hj in terms of
operatorial boundary conditions. Theorem B.3.2 tells us that the self-adjoint extensions of H
can be parametrized through the element of the set

W:{E:(BC)‘BC* = CB’,RanE =1

(see Appendix B.3). Let (A, B) € W, then the associated self-adjoint extension H48 of H is
defined as follows

D( HAB) {

b, HYy = Hyy.

The following theorem holds
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Theorem 1.2.6. Fix (A, B) € W. Let H*® be the related self-adjoint extension defined above
and R2® its resolvent. For any z € C\ R, the following representation holds:

D(H?) = {tﬁ e L(Q)y = ¢ + quka’ ¢ € D(=A?), q; = 1),
k=1

N N (1.18)
z:&ﬂﬂm)=§}BH@+Akﬂpk:L””N}
HABy = —Ap* + 2 quGm (1.19)
k=1
Ry =Ry + Z(Br(z) + A BiRYOGOGS, . Yy € LX(Q) (1.20)
Jikol
- Q (Yk) j*k
T2 = : 1.21
(Z)kj { zyk(yk) i ik ( )

where R, = (—A? — 22)7! is the resolvent operator associated to —A with the corresponding
boundary conditions in Q.

Proof. By the von Neumann decomposition formula, we can write

N
w=go+ ) (@G +biG ). W € D(H). (1.22)
k=1

We fix z € C \ R and set

N

¢ =+ ) (@G +bGE Z %G, (1.23)
k=1

q; =) =a;+b;. (1.24)

We show that ¢° € D(—A®). The boundary condition is satisfied because ¢ is a finite sum of
terms satisfying it. We only need to prove that ¢* € H*(Q). The decaying at infinity is fast
enough for all terms y, € D(H,) and it implies ¢, € H*(Q). So we need to check only possible
singularities. These are contained in the set { y; };~,. Around each y; the behaviour of the
function ¢° is controlled by the one of

e~ V=il e~ Vilx-ydl eid=vil

= +b - .
T = e e = T T am =
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Both f; and V f; are finite for x — yy,

1
lim fi(x) = = (a V=i + b Vi — iqi2) (1.25)
X—)yk
(1 — iz )x — yil) e V(1 4+ V=i|x — yil)
Vi) = qelx — x0) G- x) Sl
4r|x — il Ar|x — yil (1.26)
= Vilx-yil (] \/' _ _ :
e + L|X X
— bi(x - x0) U VI =YD X2y iy + 2.

4m|x — yk|3 4 |x — il

which means that Vf;, € L*(B,(y;)) for r > 0 small enough. Also Af; € L*(Q). In fact, using
the definition ogif the Green function, we have

e V=ilx—yl e Vilx—yyl e~ Valx=yxl
Afi(x) = —ia;

+ iby — Zqx + (—ax — b + ) (x — yi),
Ar|x — yil Ar|x — yil 47t |x — yil

but the distributional term is cancelled due to ¢ = a;+b. So ¢* € D(H,) and the representations
(1.22) and

N
Y=g+ ) GG, ¢ € D(-A%) (1.27)
k=1

are equivalent.

The value ¢*(yy) is linked to (I'y¢), and (I';¢),. In fact

N
— 1 Q Q Q Q Q Q
@) = lim (@GS (0 +BiG | (0= aGE,W) + ) (@G 00 +biG 00 = 6GE,00)

1=
I+

—

. N
%4
= Cob) = qu - + e, 00 = D 16,00 = Coi + Ty

=1
I#k

Combining this with the boundary relation AI'1¢y = BI',y, we obtain

N

N
D Bugty)) = ) (BT@) + g (1.28)

Jj=1 j=1

and the representation of D(H*?) in (1.18) is proved.
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Lety € HA® and ¢ € D(H,). In order to prove the formula for the action of H4% we consider
the inner product

N N
HAB , - (HAB Z + GQ , ) — H* Z, + H*GQ, ,
(HYy, )20 (¢ ;qk 2)e iy = H ) ;qk( G2 0)

N
= (Hot", @) + ), (G2, ).
k=1

This equation being valid Y¢ € D(H,) implies (1.19).

Using Theorem B.1.1 with Hy and —A® we can write

N
R0 = Rp+ > q(¢)G2,, (1.29)
=1

with g;(¢) to be determined. Comparing this expression with (1.27), we have that R,¢ = ¢*. So,
recalling (1.28), we have

N N
D BuR(y)) = D (BLR) + A)ya;(9),

Jj=1 j=1

or, in matrix form BR,p(z) = (BI'(z) + A)g(¢). Solving for g we obtain g(¢) = (BI'(z) +
A)"!'BR.¢(x), which corresponds to

N
q() = Y (BL() + A)j BuR.o(y).
k=1
Substituting this expression into (1.29) gives the desired result. O

Remark. A property of the operator I'; and I'; is that they describe the asymptotic behaviour of
any ¢ € D(Hy) as x — y:

Y~ 4;(1“1'1’)1( + (oY) + o(1).
7 |x = yil
This suggests that the boundary condition AI'j¢y = BI',y pairs the asymptotic behaviour of the
coeflicient of the singular part I';y with the evaluation I';¢ of the regular part of . Whenever
Vk =1,...N, the coefficient of the singular part (I';), depends only on the regular part (I';);
in the same point, the interaction described by this self-adjoint extension is said to be local.
This condition can be achieved asking both A and B to be diagonal. We can parametrize the
most general local interaction of this kind by having A i = @;0x and Bj = 0 %, with ¢; € R. In
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this case the resolvent has the simpler form

N
RV = Ry + ) () RUGOGS,, (1.30)
Jik

with

-G, ) J#k

[y = | , 1.31
Tar@ {a/k -5+ h,00 =k o

To end this section we explicitly discuss the case, which will be studied in the next chapter,
that is the one center interaction. We will use the symbol —Aﬁy to describe the one point

interaction Laplacians with generic boundary conditions on dQ. Similarly —A%}P , —Aff;;“ and

QR, . . ce . .
—A4y " will be used when a specific boundary condition is considered.

Proposition 1.2.1. Let —Afzy be the one parameter family of one center interaction Laplacians
inQ cR3. Foranyze p(—Afzy) N p(—=A®), the following representation holds:

D(-82,) = {v € @Iy = ¢ + 4GS, & € D(-A").q =T, ¢') =T2q}  (132)
_Af,ylr// = -A¢* + quGSy (1.33)
(A2, = ) = (A% = 27Ny + (M) A= A IGE, Ve LAQ)  (1.34)

zy°
174

Q —
Fy@=a-

+h2, (). (1.35)

Similarly, letting ¥ = { y1,...,yn }, =A%, ~ASY-AZY —AZ) symbols will indicate the
N-points interaction local Laplacians. Their definitions is immediate from Theorem 1.2.6 after

the substitutiosn Aj = ;0 x and B = 6.

1.3. Point Interactions in a Domain in R? Through
Self-Adjoint Extensions

We can follow the same construction contained in the previous section, to build N-points
interactions as self-adjoint extensions of the Laplacians for domains in R2. The different form
of the Green function for —A — z? in R? (see Appendix A.1), causes a different choice for the



22 Point Interactions in a Domain

boundary triple (C, T}, T,), that is

(rllﬁ)jZIim(—M) =1,....N (1.36)
Xy ln|x—yj|
1
(Do), = lim (w(x) + 5T, Inlx —y|) j=1....N. (1.37)
xX—y; T

This triple is proved to be a boundary value space for the operator H,, which has an analogous
definition of the n = 3 case, which just the caveat of Q being a domain in R?. So, through
Theorem B.3.2, a family of self adjoint extensions is defined. If we limit ourselves to the local
case we can characterize this family AQ them as follows (also compare this with the N-point
interaction Laplacian in the whole R? constructed throughout chapter 11.4 of [2]).

Theorem 1.3.1. Let Y = {yj };\/:1 and ay,...,ay € R. For any z € C\ R, the following

representation holds:

D(-a8) ={y e @y = ¢ +quG @€ D(-A%), q; = (),
(1.38)
&) = Z(ra (i k=1.....N|

(A2 = —Ag +2 qucm (1.39)

k=1

(=A%, =)'y = (A= 2)" w+Z<r£3y>j,( A=) YOOGS, Yy e LX(Q)  (1.40)
Jik,l

G2, %) J#Fk

ISR o =k

Yk

T2y (), = { (1.41)
(07

where vy is Euler’s constant.
We also give the explicitly the representation for the one center case.

Proposition 1.3.1. Let AQ be the one parameter family of one center interaction Laplacians

in Q c R?. Forany z € p(— A(”) N p(=A®), the following representation holds:

D(-42) = {w € P@Iy = ¢ + 4G, ¢° € D(-A", 4 =Ty, ) =T2,a}  (142)

—AQ W = —Ag* + 22qGE, (1.43)

(=05, =)y = (A" =2y + T5) (A% = D) Y GD, Vg e LH(Q)  (1.44)
1 <

@) =a+ 20 ), (1.45)

2
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1.4. Point Interactions Through Quadratic Forms

Another path to construct point interactions is through quadratic forms. Kato’s representa-
tion theorem states that, given a symmetric, densely defined, closed and bounded from below
quadratic form ¢, there exists a unique self-adjoint operator Q such that

qW, o) = (Q¥,¢) Yy e D(T) and VYo € D(q).

So, we aim to construct the quadratic forms associated with the self-adjoint operators —Ai y-
In order to do so we will follow the same approach taken by Teta in [46] to construct point
interaction quadratic form in the whole R". Differences will arise in order to take count of the
boundaries of Q.

1.4.1. Dirichlet, Neumann and Robin Quadratic Forms

Here we recall the definitions of the classic Dirichlet, Neumann and Robin quadratic forms:

e the Dirichlet quadratic form D is defined as

DO = HY@ D°w) = [ IVUCF dr = 0l

e the Neumann quadratic form N is defined as

DN = H'Q@) N9 = [ 0P dx = 0l

Q

e the Robin quadratic form R*" is defined as
DR™) = H'(Q) (1.46)

Ry, ) = f VyPdx+7 | (Go)0P do = 1P, + 1 IyodlEape, - (147)
Q o0
F* will be used as a generic symbol for the classic quadratic forms.

1.4.2. N-Points Quadratic Forms on a Domain

Our aim is constructing quadratic forms who corresponds to self-adjoint extension of the
Laplacian. The elements of the domain of these quadratic forms will have a regular part,
which belongs to D(F®) and a singular part, being a linear combination of the functions Gy,
Moreover we want the new form to agree with F® over D(F*®*). With these ideas in mind and
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using the classical forms expressions, we can define the N-points Dirichlet, Neumann and
Robin quadratic forms as follows.

N N
Definition 1.4.1. Let ¥ = {y; | _, be distinct points in Q C R" withn = 1,2 and @ = { a; | _
with @; e RVi=1,..., N. For each imaginary z with Imz > 0 we define

e the N-points interaction Dirichlet quadratic form

D(DZy) = {t// €L Q) |Iq1,....qustyy — Zq,GQD €H, (Q)} (1.48)
DYy, ¥) = DYy (W, ) + Z(ri’YD(z))k@q,» (1.49)
jik=1

D) = V(v Zq,GQD) Zq,GQD 2 Wl s (1.50)

L2(Q) L2(Q)

e the N-points interaction Neumann quadratic form

D(Ngy) = { v € L(Q)

A1, .. G st — quGQNEH(Q)} (1.51)

j=1

N
N2 o 0) = NS W) + ) (T @)dia (1.52)

k=1
N ) = V(v Zq,GQN) Zq,GQN 2 Wl (1.53)

L2(Q) LX(Q)

e the N-points interaction Robin quadratic form (7 being positive)

D(Rgn)—{’ﬁELz(Q) HQI,...,antw ZqJGQRUEH(Q)} (154)
1
. J
ROTWaw) = R W) + ) (U5 @)y (1.55)
Jik=1

2

ZCIJG?}I;U
N
n|olv - Y a,6%)
j=1

R (W, y) =

V(v Z%G?Qf”)

L2(Q) L2(Q)

(1.56)

2 2
+ Z ”lp”LZ(Q)

L2(0Q)
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FQY and TQ will be used to denote collectively quadratic forms of this kind.

Proposition 1.4.1. The quadratic forms Fﬁy are independent of the choice of 7 € iR.

Proof. To start, we observe that D(Fw y) 1s independent of z. In fact, if ¥ — ngy e H'(Q)
(H)(Q) for D), then also ¢ — qGW y € H'(Q) (Hy(Q) respectively). This is true because
¥ — 4Gy, = W — qGE) + (G2, wy)» which is a sum of functions in H'(Q) (or Hj(Q)).
This also implies that for dlfferent value of z we can still use the same g. Extending this to
N-points is straightforward.

Let z,w € iR. We consider T YW, ¥) — »SY(‘/” ). We distinguish between the Dirichlet
form and the other ones.

e For DQY we have
N N
) - Dy = (90 - ) 0,629). 9o - quc?;,?)) + 2 P
j=1 =

- 2w Zq,G?;’,w—iqu?y’,?) ( (v- iq G20}V (w—ich‘jy‘i))
k=1 = -
IquQD v - quGwyk) (1.57)

1

W P+ w{y -

J

Now we manipulate the terms containing gradients
N N
(¥(o- Y a622)5( zchgz;;)) (¥~ Y 628) oo zcha;z))
N N
(D am(oap - cap) vlu- Y watd))
. =

J 1
N N N N
QD QD QD QD QD 2~QD _  2~QD
- (Z CI]‘V(Gz,y(,- - Gw,yj)> Z ka(Gz Yk Gw Yk )) (lﬁ - Z Qsz,yj ’ ( Gw N GZ Yk ))
N N N N
2~QD _ 2-~QD QD QD QD 2~QD _ _2~QD
+(Z qj (W Gy =7 Gy, ) ¥ Z Gz, )+(Z qj (Gz,y_/ _Gw,y_/)’ Z q"( WGy, —T Gy, ))
(1.58)

where we integrated by parts and used that y — 3 =19 JG?yIj) €H 1(Q) and the definition
of GP.
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e For R R (including the n = O case) we have

R?i/n(w’ lr//) - Rfvz:g(lr//a l//) = ( ( Z q]G?yR }7), V()ﬁ - i C[kGS}’}:vn)) + Z2 ||l//||2
k=1
( GQ R,y RVES Z quZ i )-l-n()/D( Z qu?yl; 77)’ yD(l//_i QkG?yl: ,7))
k=1 L2(0Q)
ot )

N
Q, R QR,
1= aGE)
i=1 k=1

N
X
-3 a6, v(w—zchﬁi")) w2 1P+ -
& =

J

—n(yn(w Zq]Gfif"), (w iquﬁﬁﬂ)) . (1.59)
L2(6)

k=1

We integrate by parts the terms with gradients
3 Q 4 Q 3 Q Q,
R, R, R, R,
(9= 2 a6887) 5o = 3 a2 - (9= Y ai625) 5(o Z a6 -
j=1 k=1 j=1
N N N N
QR, QR, QR, G R QR, QR,
= (lr//_z quz,y.,' 7], Z Qk( sz )kn 2Gz Vi 77)) (Z QJ( 77 sz,y_,' TI), 'ﬁ‘Z Qsz,yk ’7)
4 k=1

J=1

N N
QR, QR, QR, QR, Q R, QR
+(Z qj(Gz,y_/- n_Gw,y_,vn)’ Z C]k( ZGWykn_ 2Gzyk 77))_H7( (lﬁ Z q] Z)’/ ) Z q]c)’D( Z,Vk 77_G 7
QRn))

J
N N
QR, Q R QR, Q R, Q R
+’7(Z q ij(GZ,yj -G, y]"), 71)(1# Z UG ))+’7(Z q ij(GZ,yj T_ '7) Z fm’D( Wy —
=1 =1

where we used the definition of G,‘E’R’”. If we substitute (1.60) into (1.59), some tedious
computations shows that all the boundary terms cancel out.

In both cases the remaining terms are

N N
FEW0) = Fy ) = ( = 246 . awe, - zzGi?yk))

j=1 k=1
N N N N
+ . ZGQ _ ZGQ GQ . GQ _ GQ ZGQ _ ZGQ
gj\W Oy, =<0y ) kG, qj\Gzy; wy; | Ai\W Oy, =20y,
Jj=1 k=1 j=1 k=1

N
+(z2—w2>||w||2—z2(w—2q/ & quGm) ( - > a6, v - quGw)
J=1 j=1

)

(1.60)
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After eliminating all the cancelling terms, we are left with

N
FRW0) - Fhwp) = @ -w) Y 7alGL,,. G2,

Jlk=1

)L2 (@)

Jk=1

N
= >(62,00 - G2,.0))aia
k=

last step being due to the resolvent identity. In the terms with j = k, G?yj(y ;) diverges, but the
difference stays finite. we distinguish n = 2 and n = 3:

e For n = 2 it holds that
G2, 0)) = G, ) = lim (G, (0 - G1L,0)
L
= lim 2(H @ |v =y = B v [x = ;D) = B, 00 + i, ).

We set z = is and w = it with s,7 > 0. Using (C.18), together with (C.22), we have

o . Koslx—y)-Kot|x-y)  y+Ins y+Ins
}23_1( él’(z|x—y,~|)=}g§1j jzﬂ Al Tt

and so

y+In? y+In*
+a;+ .
2n @ 2n

G200 -Gy, ) = —a; -

e For n = 3 it holds

G209 = Gy 0 = lim(G2, () = G1.0)

eizlx—y,-l _ eiwlx—yjl

= lim - K ( -)+h$ ()
=y Ax |x - yj| g 3 Vi

iz g
+ E - hZ,yj(yj) + a;—

w

an T hﬁyj()’j)

In both cases this means that G2, (%) — Gy, (v;) = (Tg (W) — (Tg ,(2)) jx and hence

N N
FEW ) - F W) = > C,00jgeg; - ) (T2

Jk=1 Jk=1

Proposition 1.4.2. The quadratic forms Fff’y are closed and bounded below.
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Proof. zin the definition of FfiY is imaginary. This means that
N
F ) 2 2 Wi, + ) T2y (id;
k=1

We decompose Iy (z) in T}, (z) = I') (z) + K(z) where

G (y) j#k
FO — LYk T
oy @) = {ak_ PR

4n

(K(Z))jk = hz,yk (yj)~

The eigenvalues of I') | (z) are strictly increasing in Im z (see [2] page 116). Let A7 = A(z, @, Y)
be the lowest eigenvalue of Fg,y(z) and 4; = 1;(z, @, Y) be the lowest one for FS, y(2). Then

N N
Z (o y(@jgeq; = Az @, Y) Z 9, |2

k=1 =1
This means that there exists an imaginary zo(«, Y) such that Vz € iR with Im z > Im 2,

Z(Fa y@idrq; = Az @, Y)Z|qj| > Xz, a, Y)Z .’

Jok=1

Now, since both Fg’Y(z) and K(z) are Hermitian and limyy, ;1o || K (z)ll% = 0, as a consequence
of Corollary 6.3.8. in [26], we have that for Im z large enough

Z(r”(z))qukqj > Az, Y)Z a1 > o e Y)Z g
Jk=1

This choice of z is not restrictive because Fﬁy is z independent and so the boundedness from
below is proved.

In order to prove that the forms are closed it is more convenient to consider

Foy:,9) = Foy W) = 22 Wl -

Let {4, } be a sequence in D(F
WYms Wn — ¥) = 0. This implies

NI IR W)

J=1

) such that ¥, — ¢ in L*(Q) and lim,, 10 Fyy (0 —

Y,z

lim

n,m—+co

= lln = @l =0 (1.62)
H(Q)

N P
> 2 @uld) - 4 g - ;) =0, (1.63)

jk=1
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where ¢, = ¢, — 27 1 q} ;- And so there exist ¢ € H'(Q) and ¢, .. ., gy € C such that

llen — SDHHI(Q) =0 (1.64)
N
> 4G, - Z 962 =o. (1.65)
i=t 2@
This means that ¢ = ¢ + Z] 14;G Z) Ll.e e D(Ffiy) and hence FQY is closed. i

At this point we have proved that Fff y are symmetric (it is immediate from their definition),
closed and bounded from below. So there’s a unique bounded from below and self-adjoint

operator associated to Ffiy via Theorem B.4.1. We proceed to prove that this operator is in fact
—A% .
a,Y

Proposition 1.4.3. The quadratic form (Da - D(DQ y)) is associated to the operator — —A%D ay SO
that

Dy, @) = (AU, @y YU € D(=AZY) VYo € D(DS),

where

D(—AQ?)—{weD(D IY = Zq,GQD € Hy(Q),

( Z q,GQ D)()’k) = Z(r?,’yD(Z))ij]j, k=1,... ,N}

J=1

(1.66)

(-AZP = 2w = (A= D)v Z 4,G%P). (1.67)

Proof. We note that if we identify y — 1% =149 jGQ D with ¢, it is immediate to see that the action

.Y
and domain of Aa? described here coincide with the ones in Theorem 1.2.6.

So, let Y € D(— AQ?) pE D(DSY) and be ¢ € L*(Q) such that

DS,Y(‘W ) = (¢, SD)LZ(Q)

or more explicitly

N
( (v quG?f) (SD‘ZCJfG%‘?)) (v Zq‘”GQD,go quGg?)
k=1

+Z< oY @Wald] = @ -u.). (1.68)

Jik=1
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Since, ¢ € D(D% v), the boundary term appearing through integration by parts vanishes and so
last equation becomes

((—A -z )( Zq GQD) quGii?) + Z( oY @dla] = (@ - 2V, @)
L2Q) k=1

This is valid Yy € D(Da y) only if
(8- Z QG2 )= 6 =20 = (A%, =

The remaining terms are

N
((—A -2)w Zq”G?Q?) quG?y?) = 2 07 @ald]
L2

jk=1

Since yD(lp popl 1q¢/G?y‘J)) 71)((,0 Pl lq‘/’Gg‘?) 0, we can integrate by parts twice with

no boundary term and obtain
N
( Z q/G%, Z q{(-A = 2)G3, ) = > M @watq
L2Q)  jk=1
By definition (—-A — zz)GZ . = 0(x — ) and hence
N N .
AL Z 4G )o0 = D 2@l
k=1 k=1

This must be verified \/qf €C,k=1,...,N, which implies

(v Zq””GQD)(yk) Z(rﬂ e

Proposition 1.4.4. The quadratic form (Ra Vv D(Ra v-1) (withn > 0, n = 0 being the Neumann

case) is associated to the operator —Aa y | So that

ROTW, @) = (A "W @) Y € D(=ALy") Yy € DRY,),
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where

D(- AQR") = {w € D(R DIy — Z‘I/GQR” € HX(Q), (yw + nyp)¥ =0,

(1.69)
(v Z 4G5 )0 = Z(r““%z))k,q,, =1,... ,N}
N
(A2 -2y = (A=) w- D 4,62 (1.70)
j=1
Proof. Letyr € D(-ALy™), ¢ € D(RY) and be ¢ € L*(Q) such that
Ri’;(lﬁ ) = (02
or more explicitly
N N
[ty - Yoo o~ Jaroms)) -l Yo~ 3 aro)
j=1 kzl
N
( ( Z q‘”G?yR”), 70(90 D4 G?ff”)) + Z(r "Dnigfq! = (& — 2. 9).
k=1 LXQ) k=1
(1.71)
We integrate by parts the first term, recalling also that ¢ and G?}IA{ "k =1,...,N satisfy the

Robin boundary condition. For these reasons the boundary terms cancel out
N
((—A (] Z 463 )¢ Z GG ”) D M@l = @ -0, (172)
jk=1

Imposing the cancellation of all terms with ¢, regardless of its choice in D(Ra v 1)), we obtain
(1.70). The remaining terms are

[ca-ofo-Satem) Sratom] - Stz
L2(Q)

Jk=1

Following the same path as in the proof for the Dirichlet form leads to (1.69). O
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Chapter 2.

Spectral Properties of One Point
Interactions in Domains

In this chapter we study the spectrum for the one-point interaction Laplacians on domains
like the ones considered in the previous chapter. Before doing this, we characterize the spectrum
of the free Laplacian —A® on this kind of domains.

We start with the following definition.

Definition 2.0.1 (Conical Semi-Infinite Domain). A domain 2 c R” is said to be Conical Semi-
Infinite if there exists some R > 0 and a closed curve C on S"~! such that for all x € Q \ Bg(0),
then 77 € S"~! is in the internal region delimited by C on §"~".

]
We sum up Theorems 6-8 and 11 in [27] with the following

Theorem 2.0.1. Let Q is a conical semi-infinite domain, then the spectra of —A*P and —A*N
are both purely absolutely continuous and equal to [0, +o0).

H" is a conical semi-infinite domain because it fulfills the requirements with R = 1 and C
being the intersection of §” with the set JH" = { x € R" | x,, = 0 }. Hence we can conclude

T(=ATP) = 0o (ATP) = [0, +00) | (=ATT) = 0o (=ATT) = [0, +e0)

For the Robin Laplacian on H" we instead refer to the work [16] by Cossetti and Krejcifik.
They state the following result.

Theorem 2.0.2. Let n > 1 and assume that n € W (0H"; R) is such that
and

Then ap(—AH”’R’") = 0 and o, (AR = [0, +00).

33
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In this theorem the two conditions combine to guarantee the total absence of eigenvalues.
In fact, the first one eliminates the possibility of negative eigenvalues by rendering the operator
non-negative. Instead the non-trivial existence of non-negative embedded eigenvalues is
excluded by the latter one.

Other conditions ensuring the absence of positive eigenvalues for domains with non-compact
boundary can be found in Chapter 7 of [39] (e.g. Theorem 7.2.5. and Theorem 7.4.1.).

For exterior domains it holds the same condition of a purely absolutely continuous spectrum
contained in [0, +00) (See Theorems 4.9 and 4.11 in [32]).

So we can sum up the above results for the Laplacians on H" and on € unbounded with
bounded 0Q and state that in those cases

o(-A?) = 04 (-A?) = [0,+00) and o (-A?) = 0.

So the spectrum is purely absolutely continuous and there are no embedded eigenvalues in the
continuous spectrum. This fact will be useful to determine the one point interaction Laplacians
spectrum.

2.1. Characterization of the Eigenvalues of One Point
Interaction Laplacians

If we recall Proposition 1.2.1 and Proposition 1.3.1, we can observe that the resolvent of
—A® and of —Afiy differ for a rank one operator. Theorem 9.3.5 in [10] states that for such
operators the continuous spectrum is preserved under this perturbation and so

Te(=A7) = T(=A?) = [0, +00).

@y

Moreover, by Theorem 9.3.8 also in [10]), the point spectrum is made of one point at most and

op(—Ag) C (—00,0).

@,y

Remark. The expression of the resolvent reported in Proposition 1.2.1 and Proposition 1.3.1
also shows that the possible negative eigenvalue is 72, where z is the imaginary solution with
Imz > O of the equation Fﬁy(z) = 0. Throughout all this chapter z> will indicate eigenvalues,
while z will be used as a parametrization of the complex plane, employed to identify the

singularities of the resolvent (—A,, — z2)7".

Remark. We recall the eigenvalue properties for the one-point interaction in the whole R”,
n=273.
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For n = 3, the eigenvalue is z2, where 7 is the solution of

a-—220 Imz>0, 2.1)
A

so z = —4ria (72 = —167°a?). The condition Im z > 0 is fulfilled only for & < 0. Moreover,
while for @ = 0, z = 0 is a solution of (2.1), it is not an actual eigenvalue, because the
corresponding solution

03 _ 1
% " drlx -l
of —A% = 0 fails to be in LA(R).
For n = 2, instead, the eigenvalue is 72, where 7 is the solution

In +
0/+2’—y=0 Imz>0
2

(here vy is the Euler constant). Since the possible eigenvalue is negative, the substitution z = ia,

a > 0 returns z = 2ie" > and then 7> = —4e¢ 42,

We give the following

Definition 2.1.1. The critical value a. for —A is

Qe = sup{ aeR | —Afiy admits eigenvalues }

For example we have that @, = 0 for —AY, and o, = +oo for —A¥,.

In the following we investigate the conditions under which the possible negative eigenvalue
exists and determine a, for Dirichlet and Neumann boundary conditions in dimension two and
three.

2.1.1. Exterior Domains with Dirichlet Boundary Conditions

Proposition 2.1.1. Let Q C R? be an exterior domain with C"' boundary and consider y € Q.
The critical value a. for the operator —A?ij isa, = —hfij)(y) <0¢( h%D defined by (A.5) is the

harmonic part of the Green’s function G%’,D ). When the eigenvalue exists, it is non-positive and
unique.

Proof. The eigenvalue is the possible solution of

- %r +h2P() =0, zeiR".
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Setting z = ia with a > 0, we get the equation

L - -1y, ax0, 2.2)
4r i@y

whose solution can be interpreted as the abscissas of the intersections of the curves at each side.

The corrector function h%yD solves the boundary value problem

iay . 2.3
R (x) = e in 6Q 2.3)

ia,y 47| x—y|

{(—A +a@)h*P(x)=0 inQ

By the regularity of the boundary data we can claim that the solution is smooth in Q. This fact
can be derived also from the representation of the problem (2.3) in terms of layer potentials
related to 0Q2, see e.g. Theorem 7.15 in [36]. Moreover, the solution sought has to be in

H?(Q), so it must hold limy,_, hgzly)(x) = 0 (we observe that the boundary data also obey to
the same condition ). Hence, Ye > 0O there exists R > 0 large enough such that ‘hﬁ? (x)‘ <eg,

Vx such that [x — y| > R. We define U = Q N Bg(y). By the maximum principle in the form of
Theorem A.2.1, we can claim that hg:yD is strictly positive in U and that reaches its maximum
on the boundary,

QD
hia,y

(x) < suph’(x) Vx € U
ou

Given V, W open subset of R? the following inclusion holds
AV NW)c(VNaw)u @V N Ww). (2.4)

This implies

ia,y ia,y

sup hl%]y)(x) < max{ sup AP(x), sup hg’]?(x)}
U

QNIBr() OQNBR(y)
e~ eyl
< max{s, sup 4—_} < max{g, sup 4—_}
8QNBR(Y) lx =yl s 4mlx -yl
e—akl
T Al =y

for R large enough. Since |h§3:yD‘ < ¢ arbitrary, outside Bg(y) for sufficiently large R, we can
claim that

—alx—yl

h2P(x) < sup———  VxeQ.
? a0 4mlx -yl
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By the minimum principle Theorem A.2.1, we can also claim that

hQD(y)>1nth (x)>m1n{ inf A2P(x), inf hQ,D(X)}

1wy QNdBr(y) AQNBR(y)

e—alx—yl —alx—y|
> ming —& min ——— » > ming —¢,inf ——— » > —¢.
a0nBx() 47 [x = ] 90 47 |x -yl
Since € can be chosen smaller and smaller for R large enough, we can claim that

P (y) > 0. (2.5)

iay

QD
za)

Moreover, the derivative solves

QD

( A+a2) w = —Daky) inQ
’“( ) = in 9Q

e~

The solution belongs to C2(Q) N C (ﬁ) thanks to the regularity of the source and boundary

value. With the help of the maximum principle for the Dirichlet problem Theorem A.2.2, we
can write that

ahg:])? . . eyl QD
~2-(x) = ming inf| - mf( 2ah;(x))

QD
a};’%(x) < max{sup(— e_j:y‘ ), sup( 2ahfz yD (x))}
Q

0Q

Q.D

This implies that —= 6h"” < 0 and that

o=l el
< maxq su ,supla———| ;.
{agp( 4m ) agp( 2n|x—y|)}

We now inquiry the value of hg’ly)(y) as a — +oo. The negativity of the derivative with

QD
ia,y

Y
PG

respect to a leaves two alternatives: the limit is —co or it is finite and less than h(?;f)(y). Let’s

consider
oh; —alx-y| e~
hfz D(x)‘ f da < max{sup(e—), su p( —)} da.
v oo\ 4m oo \ 2m|x —y|

Both the functions argument of sup in the equation above tends to O as |x| — +oco. This means
that Ve > 0 there exists a R > 0, such that both functions are less than £ whenever x ¢ Bg(y).
Now let U’ = 9Q N Bg(y). This set being compact and being both functions continuous on
0Q (y is an internal point) imply that the supremum on this U’ is actually attained for both

QD
ia,y
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functions. So there exist x;, x, € U’ such that

el e~y 4 el e~ a2yl
Su = an supla =a .
UP 4r 47 UP 21 |x =y 27 [x =y

Then, we can write that
(e—a|x—y|) 3 { e } . ( o-aleyl ) 3 { oo }
su < max ,e&r and supla——— | < max{a———, .
i\ A 4 s\ 27—l 27 1x: —
The arbitrarity of &, together with the fact max{A, B} < A + Bif A, B > 0 implies

—alx1—y| —alxz -yl
e e
hg’D(x)' sf da + fa— da
Y A 21 |x; =y

e~ e~ 1
= +c,

- - Sla+
Ar|xy — x| 2m|x, — |x2 — ¥l

for some ¢ € R*. So

. QD
lim |h iy

a—+00

(y)' <c< +o0,

which implies

lim A2 (y) > —co.

a—+oo la.y

Let’s go back to (2.2). We have just proved that the right side stays finite for a — +oo,
while the left side goes to +co. Both sides are continuous, so to have at least a solution in
[0, +00) it must hold that & < —hg’yD(y). By recalling (2.5) with a = 0 we observe that o, < 0.
The eigenvalue if existent is unique because we already proved that the point spectrum is made
of a single point at most. O

Proposition 2.1.2. Let Q C R? be an exterior domain with C"' boundary and consider y € Q.
Define the function

f:OAXQAX(0+o00] >R (2.6)
In(5)lo(alx—y)+y
fey,a) =g (0 + ) : @7
1oy 2n
where h%D, defined in (A.5), is the harmonic part of the Green’s function and I, the modified

Bessel function of the first kind of order 0 defined in (C.17). Then the function

g:QAxXQ->R glxy = lir(l)gf(x,y,a)

is well-defined and the critical value for the operator —Afﬁ’}],) isa. = —g0,y).
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There is at most one eigenvalue and it is non-positive.

Proof. We know that the possible eigenvalue is unique and non-positive. So it is the eventual
solution of

In%+7y

QD/.\ _ .
Q+T+hz’y (y)—O ZElR+,
which can be rewritten as
Ing +
o+ =2 Y 0Dy 0 a3 0. 2.8)
2 .y

We recall that hf;yD solves

(A + az)hf;y‘” inQ

Ko (x) = %=Koalx—y)  inoQ’

where K is the modified Bessel function of the second kind of order 0 (see (C.20) with n = 0).
So by the regularity of the boundary data, for a > 0, the solution is smooth in € and continuous
on its boundary. As in the proof of Proposition 2.1.1, we observe that the solution sought has to
be in H*(Q), so it must hold limyy - ie0 h*P(x) = 0. Hence, Y& > 0 there exists a ball B large

ia,y
enough such that ‘hgzyD' < &, ¥x € R?\ Bg(y). We can consider the strong maximum principle
over the set U = Q N Bg(y) and claim that

Hiay () > inf B 0(x) - Vx € UL

Recalling (2.4), we can write

ia,y

mfhQ (x)>m1n{ inf A>P(x), inf hQ’D(x)}

QMdBr(y) QN BR(y)
' _ Ko(alx - . . Kolalx—
> ming —¢, inf M > ming —¢, inf M
0QNBR(Y) 2n oQ 21
= —&.

hQD

Being ' ‘ bounded by & outside Bg(y), choosing R sufficiently large we can claim that

Hod(x) > -6 YxeQ.

hQD hQD

This implies that and moreover
(2.8) goes to +oo for a — +oo.,

(y) are bounded from below and so the left side of
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We recall that the function Jy(w) solves the differential equation (C.6). If we set u(r) =
Jo(iar), with r = |x — y|, it follows that u solves

which, because off the expression of the Laplacian operator in polar coordinates, is equivalent
to (A + a®)u = 0. Using the definition (C.17) of the modified Bessel function of order zero I,
we have that u(r) = Iy(ar) = Iy(a|x — y|). It follows then that u solves the following boundary
value problem

- 2 =
{( A+ a*)u(x,y,a) = 0 (2.9)

M(X, ) ia)lxef)ﬂ = I()(Cl |)C - y|)|x€(')Q

Since hfj’yD and u(-,y,a) solve the same linear homogeneous equation, then any linear

combination of those functions will solve the same equation. The boundary value will be the
corresponding linear combination of the boundary values for the original problems. This means
that f solves

Py, @)y = Koaiein Shtabeoyiey : (2.10)
» V> Alresn 2 €0

{(—A +d)f(x,y,a) =0

Both hf;:yD(x) and /y(a |x — y|) are continuous for x = y because they are harmonic in . So it
makes sense to evaluate f(y,y,a) and since I,(0) = 1 it holds that

ng +
fO,y.a) = EP) + LY (2.11)
1y 2r
A comparison between this expression and (2.8) show that we can rewrite (2.8) as
a+ f(y,y,a)=0 (2.12)

and hence the behaviour of f(y, y,a) for a — 0* determines the existence of a solution for (2.8).
We prove that the boundary datum of the problem (2.10) is continuous from the right in a = 0.
In fact, thanks to the expansion (C.22) of K for small argument we have

0 Ko(alx =y +Inshlalx=yD+y — Infx -yl
a0+ 2 B 2r

This means that problem (2.10) depends continuously on a and the function g(x, y) = lim,_o+ f(x,y, a)
is the solution of

_Ag(x9 y) =0
__Injx—yl

8%, Yiesn = 21 |xedQ
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The boundary data regularity implies that g(-,y) € C*(Q)NC (5). This means that g(y, y) is
finite and using the form (2.12) of (2.8) we conclude that a solution (which is the only one) is
possible if and only if @ < —g(y, y). O

Remark. In dimension 3 the critical value a, is non-positive as a consequence of the maximum
principle and of the positivity of the boundary datum for problem (2.3).

In dimension 2 the sign of a. is not a priori determined, because the function

In|x —y|

l/’O(x’ )’) == o

is not positive in general (or even of definite sign on 9Q2). Instead, for a fixed €2, one can get
operators —Aﬁf for which «. is arbitrarily negative large by locating the point interaction close
enough to the boundary.

2.1.2. Star-Shaped Domains with Neumann Boundary Condition

Definition 2.1.2 (Star-Shaped Domain). Let xy € Q € R” with 0Q € C%!. We say that Q is
star-shaped with respect to x; if

(x—2x0)-n(x) >0 VxedQ, (2.13)

where n(x) is the unit outer normal to 0€ at x.

Proposition 2.1.3. Let Q c R? be an unbounded domain with C* boundary, star-shaped with
respect to y € Q and such that o (—A*N) = 0, (—=A*N) = [0, +00). Then the crirical value a,
for the operator —Aﬁ’;\l is a. = —hQ’N(y) >0¢( h?)’,D defined by (A.6) is the harmonic part of the

Neumann Green'’s function GQ N). When the eigenvalue A exists, it is non-positive and unique.
Moreover, when a < 0 it holds that

< —1671%a’. (2.14)

Proof. We know that the point spectrum of A N is made at most of one non-positive point.
This eigenvalue, if existent, is equal to z2, with z solvmg

a—-—+h3() =0, zeiR"
47r

Setting z = ia with a > 0, we get the equation

a+ 4— + hf;)N(y) a>0. (2.15)
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Here, the function th is the solution of the boundary value problem

(—A+ ah (%) =0
{ Mo (x | =2 e veQ azo (2.16)
We can rewrite this problem as
(—A +a)h(x) = 0
{a - (x) o _—a‘x4:|(;j;;||3)c—);|)(x -y)- n(x)‘xeag, yeQ a>0. 2.17)

For a — 0%, the boundary term in (2.17) converges to

X=Yy
dr|x -y

So it makes sense to pass to the limit in the boundary value problem (2.17) and this way it
becomes

{ —ARGN(x) =
QN x=y .

Vg y(0) -n()| = —g=mon)| . yeQ.

By regularity of the boundary and boundary value we have that hQN eC®(Q)nNnC 1(ﬁ) and this

implies that ho+,y(Y) is finite.

The right hand side of the boundary condition in (2.17) is the product of a scalar negative

function and (x — y) - n(x). This observation combined with € being star-shaped with respect to
QN

y implies that az;_ny < 0 on 0Q. hgj\f < 0 is then a consequence of Proposition A.2.1, which can
be applied thanks to the assumption of Q having C? boundary.

We now prove that for a large enough, the left hand side of (2.15) is positive. To do so we
consider set a > b > 0 and consider the following auxiliar boundary value problem

(=A + D) (x) = 0
ahf“j ’ eI pplx— , yeQ.
— (%) = —W(Jc —y) - n(x) = f(O)(x —y) - n(X)|e00
€90 7T|x x€dQ
(2.18)

Then, we define the boundary value problem, whose equation data are the difference of (2.18)
and (2.17)

ib,y ia,y ia,y ia,y

—A(FN(x) = BN (x)) + b2 hQN( ) — EN() = (@ — PN (x)
(QN XQN x) ( * X) ¢ ! , yeQ. (2.19)
2(h8N - 20| = (f) - f@)x—y) 0|
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The right hand side of the first equation in (2.19) is non positive because a > b > 0 and we
have proven that hfig < 0. The same fact holds for the right hand side of the other equation
because the function f is increasing

df a

d—(a) = e >0, VYa>0. (2.20)
a

4 fx =yl
This means that we can apply Proposition A.2.1 to the problem (2.19) concluding that, whenever

a > b > 0, one has hfzyN > hf;yN In particular, since it has been proven that hff;l\;(y) is finite, it

holds that also Va > 0 hﬁff is bounded below. We can then conclude that, for a large enough

L hNG) > 0 (2.21)

a +
4 " ey

The functions in (2.15) are all continuous in a and so for a solution to exists it needs to happen
that @ < hf}*yN(y).

Next we rewrite (2.15) as

a= —47r(h9’N + @).

ia,y

If @ <0, then 0 < a < —4na and (2.14) follows. |

Proposition 2.1.4. Let Q c R? be an unbounded domain with C* boundary, star-shaped with
respect to y € Q and such that c(—=A*N) = 7, .(~A®N) = [0, +00). Then the operator —Aff
has one eigenvalue A and it is non-positive, regardless of a.

QN
h;

. : , . QN
In addition, the harmonic part iy of the Neumann Green’s function of Q) obeys hia’y <0

in QVYa > 0and lim,_o+ hQ’N(y) > —00

ia.y

Proof. We know that the point spectrum of —Afﬁ’;\l is made at most of one non-positive point.
This eigenvalue 72, if existent, is such that z is a solution of

<

In £ +
a/+—3ﬂ U +h3Np) =0 zeiR*

(h%,N is defined in (A.6)), or equivalently

Ing +
o+ 27 BNy =0 a=0. (2.22)
21 iay

Here the function h%,N is the solution of the boundary value problem

(—A +a)h(x) = 0
N ’

= 2(LKo(alx - D)

, yeQ ax=0. (2.23)
T(x)

x€AQ)

x€0Q
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By definition of normal derivative and since Kj(w) = —K;(w) (K;(w) being the modified Bessel
function of the second kind of order 1), we can rewrite this problem as

(-A + aZ)hley\I(x) = o . o
a alx— , Y€ y = 0. .
Vhfwa(x) n(x)‘ = —5 K'I(x'_yly D(x—y)- n(x)
Thanks to (C.23) we have that
-Y X—y
lim . — —K alx — = _ ,
a=07 1@l yl)| - 27x —yP

which means that, the boundary term is continuous for @ — 0*. So it makes sense to pass to
the limit in the boundary value problem (2.24) and this way it becomes

hQ N( X) =
hQN(x) n(x) Y . n(x) , YEQ.

2P x€0Q

By regularity of the boundary and boundary value we have that h(?;lj, € C*(Q) N C(Q) and this
implies that h(?;i(y) is finite. So, the left side of (2.22) goes to —co as a approaches 0.

The right hand side of the boundary condition in (2.24) is the product of a scalar negative
function and (x — y) -n(x). This observation combined with Q being star-shaped with respect to

y implies that Bh’”‘ < 0 on Q. The C? regularity of Q allows us to invoke Proposition A.2.1
and conclude that hf;yN <0.

Proving that for a large enough the left side of (2.22) is positive, implies that the existence
of a solution. Let a > b > 0 and consider the problem

{( A+ Dl (x) =
, YEQ. (2.25)

B 2b7r Kll()lzlxy—|yl>(x y) - n(x)' = f(D)(x —y) - n(X)|,e00

As done in the three dimensional case, we consider the boundary value problem difference of
the ones with b and a

ia,y ia,y ia,y

—A hQN hQN bz hQN hQN bz hQN
(gﬁbN} (X)QN )+ ( o () = My () = @ =PI . yeQ.  (2.26)
2(h8N - 20| = (f) - f@)x-y) 0|

a>b>0and hgf; < 0, imply the non-positivity of the right side of the first equation. It also
holds that

V@) = - Kah =y 20, (227)
a 2
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which together with a > b > 0 and the fact that the domain is star shaped with respect to y,

implies that also ﬁ(hgf; - hgg

o )(X)'xEBQ < 0. So we can apply Proposition A.2.1 and have that

R ) 2 Byt () 2 hgiN () > —oo.

Hence for large a, the left side of (2.22) is positive (the other terms are either constant or
diverge to +o0 as a — +oo) regardless of @, implying that a solution exists Ya. O

Remark. We conjecture that this the last two propositions hold also in an exterior domain,
resembling the results valid for the Dirichlet case. Note that in exterior domains, condition
(x —y) - n(x) is never true. In fact what is missing is a way to bound from below hff)N (y) for
large a > 0.

2.2. The Half-Space

In this and following sections, we explicitly study the spectrum of —Aff,y for different

domains Q. We start with the half-space H® = {x = (X1, X2, x3) € R3 | x>0 } The point
source is located in y = (yy, y2, y3) with y3 > 0.

2.2.1. Dirichlet Boundary Condition

The Green’s function for H* with Dirichlet boundary condition can be found by a simple
reflection argument. We have that 0H®> = { xeR? | x3=0 } We define y = (1, y,, —y3). Let

x € OH3, then

=V = VO =y + (= y2)2 + (5 +¥3)2 = V1 —y1)? + (2 = y2)? + (03 +y3)2 = |x — ).

It follows that

D iz|x=yl|
h, 7 (x) = ———
" (9 4r)x -yl

is the solution of (A.5). We can now prove the following

3,D

Proposition 2.2.1. The operator —Agy has a. = —8;7 < 0. When the eigenvalue A exists, it is
such that .
1 2
_16n%? < A < —(47ra ¥ —) . (2.28)
2y;
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The corresponding eigenfunction is

e_ \M|X—)’| e_ \/mpf—ﬂ

»Y) = - —. 2.29
Ui) = = (2.29)
Proof. The eigenvalues are solutions of ng,’D(z) =0, that is
; iz]y=l
A (2.30)
4 Amrly -y

with z2 = 1 € R and Im z > 0. We already know that the possible eigenvalue is negative, but we
will anyway directly prove that no positive eigenvalues can occur.

First we look for positive eigenvalues. To do so we substitute the ansatz z = a with a € R in
(2.30), obtaining

. 2iy3a

ia e
a—-—+ =0.

47 8mys

By equating real and imaginary part we get the system

cos (2yza) = —8nay;
sin (2yza) = 2yza

The second equation admits solution only if 2y;a = 0. If y; = 0, then the first equation cannot
be true, so this candidate solution is discarded. If a = 0, the first equation admits a solution if

e 1
and only if @ = ~For-

Whenever zero is a solution of the algebraic equation for the eigenvalues, one has to check
whether the corresponding solution is in L? or not. In this case

1 1
dmlx -yl Amlx -3

',[/0()(,', )’) =

This function is in L*>(H>) because

_ oyl =y oxdyl V3

lro(x, y) = — < — = —,
drlx—yllx =yl =~ 4drlx—yllx =y 2mlx—yllx-Yl|

with the last side of the inequality being in L>(H?).
To find negative eigenvalues we substitute z = ia, with a > 0, in (2.30) so it becomes

e—2y3a

= —4ra — a. (2.31)
2y;

We name the first and second members of (2.31) f(a) and g(a) respectively. It holds that:
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e f(0)= %3 and g(0) = —4na;
e 0> fl(a)>g'(a) Ya>0;
e f(0)>g(0) fora > —87:?.

This implies that for « > —ﬁ no solution can exist and so there are no negative eigenvalues

for the operator. If instead a < —@, given that 0 = lim,_,, f(a) > lim,_,, g(a) = —co and
that both functions are smooth in a, it must necessarily exist an @ > 0 such that it solves the
equation. This solution is unique because in the interval (@, +c0) f decreases slower than g and
they are equal in a.

A useful fact about f is that for a > 0, 0 < f(a) < 1. Then the solution, if existing, must
satisfy

1
O0<-dna—a < —
Y3

or equivalently a € [—47ra/ - i, —47m) and hence (2.28) follows. O

Remark. We can use the quadratic form DE[; to check if the result above does make sense.
3

: H3.D _ : H3.D
Since, 0,(=A,, ") C (—00,0), for the function G iy

3 3 . . .« .
must hold that DE;(G%?, G%’?) < 0. This will set some condition on the parameters @ € R

and y; € R*, which shouldn’t be stricter than the ones found directly for —A?ij .

to even be a plausible eigenfunction, it

So we compute (using z> = 1 = — 4], (1.49) and (1.50))

~Vly o VT A e VA
ngy(G%}?,G%?) = -l ) SCHG S P L1 s
B} Wy R+ |4 x =y 4mlx -] ar 4rly — V|
1 g2 Vidllx-yl e~ VIAUx—y+=3) =2 Vidllx=5i ] e Vidlys
=-— 5 — 2 — + —— |dx+a+ + .
167% Jrowrs\ |x -y lx — yllx =yl |x — Y] 4r 8my;
(2.32)

We have that

o2 Vs e~ 2Vl
[ ™
R2xR+ X — Y] U=x=y JR2x[-ys,400) U]

Passing to polar coordinates, the integration over u3 is converted to the one on the region
t =cosf > —y;/r(t € [-1,1]). If y3/r > 1, the condition is verified Vr € [—1, 1], so we can
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rewrite the last equation as

o2 VAl oo
f dx—27rf f —Zﬁdrdwznf f e 2 W qr dr
ke |x —

o o2 \Fr (2.33)
= _(2 —2\F>3)+2ﬂy3f dr.
] ¥3 r
In a similar fashion we prove that
~2 -3 +oo 2\
f  dx= ——e Vs oy, f < dr (2.34)
R2xR+ X — | |/1| v r
and
= VIA(x=yl+x=3D)
f . SN (2.35)
rxer X = ylx =Y 1]

Substitute the expression for the integrals in the quadratic form we get

=2 |Alys
e ( ~E3D ~HD Al e (l )
D‘”(G\fy G ) @t & i 8 \y3 V)

We V|A| = a > 0 and define

2ay3 1
d(a):a+i+e (—+a).
8 8m \y;

We look for the minimum of this function for a € [0, +o0). We study the sign of the derivative

dd 1 —2ay3
—(a)= — - 1+2 >0,
da (@) 8 8 (1 +2ays) 2

which happens for 1 + 2ay; < ¢*®2. This condition holds true Ya, so the function is monotone
increasing in [0, +oc0], and then the minimum is attained for a = 0. But

1
d0)=a+ —
8y’
which is non positive for @ < —8— This means that, for such values of «, DIHI (Gﬂf;D, GH?})

is negative regardless of the value of 4 < 0 (has a negative maximum). This is in agreement
with the study of the associated operator —ASY -
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2.2.2. Neumann Boundary Condition

Also in this case, a reflection argument helps. The normal external derivative on dH? is
nothing else than —%. So, a smooth function even in x; satisfies the boundary condition in

(A.6). Let f : R — C be smooth in a neighborhood of dH?>. It is straightforward to verify that
g, y) = f(Ix =yD + fUx =y = flx = yD + f(lx =YD,

which means that g is even in x3. By definition of Ggﬁ (see (A.3)), then

GH3 N iz|x=y| ezl
. _ "
o O el ar )
and hence
iz]x=y|
PENoy— ¢ 7
T
Proposition 2.2.2. The operator —AE{;’N has a. = Fln > 0. When the eigenvalue A exists, it is
such that
1 2
(5= —4ra) <a<-1670 for a<0 (2.36)
Y3
and
1 2 1
—(— - 4m) <1<0, for 0<a<—. (2.37)
2y; 87y
The corresponding eigenfunction is
e~ VA=Y o= VIl
,y) = + —. 2.38
Yiy) = g (2.38)
Proof. This time the equation for z is
. 2iy32
iz e
- 817, =0. (2.39)

We know there are no positive eigenvalues. To find the negative eigenvalues we substitute
z = ia with a > 0 in (2.39), getting

-2y3a
e
=a+4na.

2y;
Let f(a) be the first member and g(a) the other one. It holds that:

e both functions are smooth, f is decreasing and g is increasing;
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i 1ima—>+oo f(a) =0 and lima_,+oo g(a) = +o00;

e f(0) > g(0) when a <

87ry
It follows that a solution, which is unique, is admitted only for @ < 8— and furthermore that
solution is @ = 0 for @ = ﬁ. Though 0 is not an eigenvalue because the corresponding
candidate eigenfunction
1 1
w()(x >y ) =

+
dr|x =yl 4mlx -

is not in L2(H*). The positive sign in hgz’N does not allow the partial cancellation that allowed
for sufficiebtly fast decay in the Dirichlet case.
Moreover, since f is decreasing, g is increasing and f(0) = i, the solution must obey
1
—4ra < a £ — —4na.
2y;

If @ < O this condition is equivalent to (2.36) for A. Instead, if @ > 0, since the function
p(x) = —x? has a maximum in 0, then A = —a? takes values in

1 2
—(— —47ra) <A1<0.
2y3

O

Remark. As for the Dirichlet case, the negativity of the quadratic form on Gﬂf}D 1S a necessary

condltlon for it to be an eigenfunction relative to 4 < 0. We verify that this condition holds. By
72 =1 =—]1, (1.52) and (1.53), in fact we have

NH3V(GH3,N’ GH3 1 f
e\ i, =14 .

Equations (2.33), (2.34) and (2.35) and simple computations lead to

NHS(G]HBN GHS ) - |/1|_€_2my3(l+ |/1|)
Vay’ 8m 8t \y3 ’

_ 2 _
e~ Vllx-yl e—\/mlx—yl 1] e~ V-3l

dx+a+

4t |x -y 4n|x—y| A Anly -3y

We set V|A| = a > 0 and define

—2ay3 1
n(a):a/+i—e (—+a),

whose derivative is

1 —2ay3

dn
— = — 1+2 >
da(a) 2 = (1 +2ay3) 2 0,
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which is positive Ya > 0. Then, n attain its minimum for a = 0. But

1
H(O) =a— %
3
and so eigenvalues can exist only when a < #}3, which agrees with the condition for the

existence of eigenvalues for —Aﬁ’yN.

2.2.3. Robin Boundary Condition

Before the study of the eigenvalue for the Robin condition, we discuss some preliminary
facts about the Robin Green’s function on H?.

The Green’s function on H? for the Robin problem is given by the formula (see the analysis
by Keller [29])

R eidhyl eieh=3l 0 +oo . oid—ybsl
G,V (x) = - -2— P —————ds. 2.40
zy (X) 47r|x—y| 47T|x—§| 6)(3 L‘ ¢ 47T|x—§+bsl g ( )

Here y is the usual reflected of y through the half-plane x; = 0 and b = (0,0, 1). In order for
this expression to be actually meaningful, we have to ask the integral to be finite. In this case
this condition is equivalent to ask that

ezzlx—y+bs|

0, (2.41)

lim e’ ————— =

i’ Anlx =y + bs|
and this happens if and only if Im z > —7. This means that for a fixed 7, this representation is
only valid for Imz > —n.

We want to obtain a more useful expression for the function

5 ezl 0 +00 ida=y+bs|
hH‘ ,R,ﬂ x) = — + 2 6—775 — _ ds
2 ) 4r|x -y 0x3 Jo dr|x -y +bs|

3 3
because h?}y’R’"(y) appears in l“]f’y’R"’(z). The presence of the derivative makes it difficult to
evaluate the function in y. In order to get rid of the partial derivative, we would like to bring it

3
under the integral sign. While doing so, since what we are really interested in is just hf}y’R’"(y),
we can just assume that x € B,(y) for some 0 < r < y;. Now we can claim that

e (2.41) guarantees integrability.

o Since |x =y +bs* = (x1 —y1)2+ (2 =) 2+ (3 +y3+ )2 and 0 < y3 —r < x3 < y3 + 1,
y3 > 0 and s > 0, the argument of the absolute values functions in the integrand is always
greater than zero. This means that the integrand is smooth and so in particular that Vs > 0
its partial derivative with respect to x; exists and is continuous Vx3 € (y3 —r,y3 + 1)
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e We compute

eizlx—§+bs|—ns

P il (izlx = 3+ bsl = 1)(x3 +y3 + 5)
= [ -
(9)C3 (6’ )

4r|x —y + bs| Art|x -y + bs|’
and estimate

a eizlx—§+bs|
—_ e_ns -
6x3( 4ﬂ|x—§+bs|)

< e—‘mzlx—?+bs'—'7f(|z| =+ bs| " + =T+ bs|‘2).

By simple geometrical considerations we have that max,eg ) [x =y + bs| = 2y3 +r + s
and min,ep () |x =y + bs| = 2y3 — r + 5. Then

e Im z(2y3-r+s5) forImz >0

—Imz(2y3Fsgn (Im z)r+s)
o~ Imz(2ys+r+s) ’

e Im z|x—y+bs| <
- for Imz < 0

from which follows

0 eizlx—i+bx|
- e_ns _
(9X3( 47T|x—y+bs|)

which is integrable because Imz +7 > 0and 0 < r < y;.

<e Imz(2y3¢sgn(Imz)r)e—(lmzﬂ])s(lzl (S + 2y3 _ r)—l + (S + 2y3 _ 7')_2),

All this considered, by dominated convergence theorem we conclude that

o +00 eizlx—§+bs| +00 0 eizlx—§+bs|
— e ds = S [ — | ds. 2.42
0x3 Jo ¢ 4r|x —y + bs| ’ j(: ¢ 6x3(47r|x—§+bs|) g (2.42)

We can notice that the function argument of the partial derivative depends on x; only through
terms of the form x; + y; + 5. This means that

o eiax=y+bs| P pidlx=y+bs|
(9_x3(47r|x -y+ bsl) B a(4ﬂ|x -y+ bs|)'

So we can use integration by parts to rewrite (2.42) as

oo +00 ide=y+bs|
+n e———  ds
0 0 4r|x —y + bs|

The condition 17 + Im z > 0 implies both that the upper evaluation of the first term is zero and
3
that the second term is finite. hEIy’R"’ is then

. il +o0 i +bs|
RERN(x) = — _ 42 f P _ ds
&y Art|x =) 1 0 Art|x —y + bs|

—ns e

o +00 eizlx—§+hsl q eizlx—§+bs|
-— e ——AS = e
0x3 Jo 4rt|x —y + bs| 4r|x —y + bs|
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and now we can evaluate it on y

R . eZiy3z +00 s eiz(2y3+s)
hey™0) = ~ 87y; - 277[() ¢ 47(2y; + 5) ds.

The substitution ¢ = 2yss in the integral, combined with the last equality in (C.2) implies

+0o0 ei12y3+s) e2iv3z +oo o= 2y3(n-in)t e
er—— ds= dr = E, (2 -1z
f(; 4n(2y; + ) A jo‘ r+1 A 12 )

(E is the exponential integral which is defined in (C.1)) and finally we can write hf;’R’"(y) as

621)732

H3 R, _
hz,y n(y) - -

+ 2L EE| (2y3(n - i2).
8my; 2w

Remark. It is interesting to notice that in the limit 7 — +oo0 and 7 — 0* we obtain hEIy’D (v) and
3 . . .
hffy’N(y) respectively. This is evident for  — 0*. Instead for the other case we use (C.3), so that

2iy3z —2y3(n—iz) —2y3n
e N ol € e
h]H[3,R,77 - _ + L2y 10
' 0) 8mys  2m 2y3(n — iz) n?
2iy32 ~2y3(n—iz) : 1 —2y37
- 4 le2>’3’7(e—(1 + 25 0(—2)) + O(e . ))
8my;  2m PARY] n n ]
2iy3z 2iy3z —2y3n 2iy3z —2y3n
e e
= - + + 0 £ =2 + 0 £ .
8my;  4mys n 8mys n

Now we can prove the following.

Proposition 2.2.3. The operator —AT},’R’U with n > 0 has

1
= —— — LE 2ya), (2.43)
8ny; 2w

Qc

where E, is the exponential integral defined in (C.1). ¥Yn > O the critical value a. lies in
11
(_ 8my3 > 8my3 )

There is at most a single eigenvalue A and it is non-positive. The corresponding eigenfunc-
tion is

(2.44)

L (] o (T € VIlx=5+bs|
lp/l (X’ )’) =
0

_ 2z 4
Anlx—y| Adnlx—3 ~ox Anlx—y+bs|

(b =(0,0,1)).

Remark. We notice that the last part of Proposition 2.2.3 implies that A7 < AP, if AR and AP

are the eigenvalues of —AE}R’" and —A]ffi,’D respectively. (c.f. with Theorem 3.2. in [7]).
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Proof. The equation for eigenvalues is

. 2iy3z
iz e + le2>’3”E1(2y3(77 —i7) =0, Imz>0. (2.45)
4 8my; 2nm

Since we know there exists at most an eigenvalue and that it is negative, we substitute z = ia
with a > 0. (2.45) becomes

e—2y3a

a i
f@=a+ - e %62’3”E1(2y3(7] +a)) = 0.
3

Since there exists at most a solution in [0, +o0), studying the values of the continuous function
f at the extrema of the interval is sufficient to conclude whether or not a solution exists. It
holds that £(0) = a — #}3 + 3-e®¥1E | (2y3n) and that lim,_, e f(a) = limy_, 00 @ + 1= = +00 and
so an eigenvalue exists only if @ < 87:7 — SLe™E (2y37).

This critical value is always between the corresponding critical values for the Dirichlet and
Neumann problems. Let g(n7) = %esz 1(2y3n). g(0) = O (the corresponding critical value
being g-) while

. n > R 1
lim g(n) = 5—e™"E (2y3n) = lim ——e™" =
1—+00 2n n—+oo 277 2ysn  4mys

(which corresponds to ———). If we prove that g is monotone increasing, the claim follows. It

8my3
holds that

e?(1 + 2ysn)E 1 (2y3n) — 1
2r ’

g =

Setting p = 2ysn, we want e”(1 + p)E (p) > 1 to hold Yp > 0. By recalling the inequalities
(C.5), it follows that, if

1 2 1
- ln(l + —) > (2.46)
2 p
f o of _ 1 2 1 ’ .
a fortiori g’(r7) > 0 ¥ > 0 holds as well. Let g(p) = 5 In (1 + 5) — o It’s easy to verify that ¢

is monotone decreasing in (0, +00), which implies that there is at most one root for g. Moreover
lim,,_,+ g(p) = +oco. Expanding both sides of (2.46) for p — +co0, we get

1 2 I 1 4 1 1 I 1 1 1
sh(145)=- -S4 osro() ad —=o- o —v0()
2 el p p* 30 P

This implies that ¢ > 0 in a neighborhood of infinity, so ¢ has no roots and as a consequence g
1S monotone increasing.

Remark. The critical value a, for —Aggy, regardless of the boundary conditions, as y; — +oo

goes to zero, which is the critical value for a point interaction in R*. This fact confirms the
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intuitive idea that a point interaction very far from the boundary behaves as if it were in the
whole space.

2.3. The Half-Plane

Now we consider the half-plane H? = { x=(x1,x) € R? | x>0 } The point source is in
y =1,y € HA.

2.3.1. Dirichlet Boundary Condition
Lety = (y1, —y2). As in the three dimensional case, a reflection works. So, using (A.1), then
i _
HEP(x) = ZH(()I)(Z x — yl)
The following holds.

Proposition 2.3.1. The operator —A%’D has a. = In(2y,)/(2n). There is at most a single
eigenvalue, which lies in [—4e~*"*=%,0) and the corresponding eigenfunction is

1 1
wae.y) = 5 Ko Vidl v = 1) = - Ko( Vil lx - 51). (2.47)

where Ky is the modified Bessel function of order zero.

Proof. By (1.45), the eigenvalues corresponds to the real solutions of

In £ + j
e+ -2, ZH"(2y22) = 0. (2.48)
2n 4

There are no positive eigenvalues, hence we let z = ia, with a > 0 and look for negative ones.
Using (C.18) with v = 0, (2.48) becomes

Ko(2y,a) = —27a —y — In g (2.49)
We name f(a) and g(a) the first and second member of the equation. f(a) > 0,Va > 0 and so,
if a solution exists it must lie in the region where g(a) > 0. This happens for a < 2¢72**~ and
f(2e777) > g(2e72**) = (. Let’s consider now the behaviour of both functions for a — 0.
Both functions diverge to +oo going towards 0 and this does not allow us to conclude much. A
sufficient condition to claim the existence of a solution would be to show that g is above f in a
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right neighbourhood of 0. Recalling (C.22) we have
f(@)=—-Ina—Iny, —y + O(@*Ina).

Since both f and g have the same order of magnitude for a — 0 (note that the only diverging
terms cancels out, and so the left hand side of (2.48) is continuous in 0, and then O is not a
priori exclusded as a possible solution) and the vanishing terms in f are smaller than any finite
constant for a sufficiently small, we can impose g(a) > f(a) in a right neighbourhood of 0 by
an inequality on the coefficients

—2na—y+In2>—-Iny, —v, (2.50)

equivalent to @ < In (2y,)/(2n).

If @« = In(2y,)/(2n) all the the constant term in (2.50) cancel out. This means that O is
a solution of the equation for such value of @. We then consider the following term in the
expansion at a = 0. This term is

—y% In (ayz)a2

that is positive in a right neighborhood of @ = 0 and then f > g in it and so an even number of
solutions (possibly zero) exists in [0, 2¢~277].

We now consider the derivatives of both f and g. Since Kj(w) = —K;(w), we have that

1
f(a) = =2y,K,(2y,a) and g'(a) = -

If f'(a) > g'(a)Ya € (0,2¢~2"77] the solution, if exists, must be unique. Letting u = 2y,a > 0,
the inequality becomes

Ki(u) < i (2.51)

(C.26), the positivity of I, and K,, and the fact that /, > 1 for positive argument, imply that
(2.51) is verified Yu > 0. Then f"(a) > g’(a) Ya > 0 and so (2.49) has at most a solution in
[0, 2¢~2"*7], This also mean that for & = In (2y,)/(27) there are no solutions other than a = 0.

The eigenfunction is obtained combining (A.1), (2.47), 22 = A = — || and (C.18) with v = 0.

We state that the candidate eigenfunction

Ix—yl)

1
Wo(x,y) = ——ln( Y
lx =yl

2r
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is not in L2(H?). We note that the logarithmic singularity at x = y is square integrable and that
limyy— 400 Yo(x, y) = 0. We claim that the decay is too slow. In fact

|x—y|2) _ _iln((xl — )’ + () —y2>2)
A\ —y)* + (2 + y)?
S [ —]
4n (X1 = y1)* + (x2 +y2)

1
) =——1 (
Yolx,y) el 57

Using the polar coordinates

v, = 0
{x‘ YEZPEST 10, +00), G€[0,n1,

X, = psinf

we rewrite ¢ as follows

4y,p sin 6 )

1
0= ——1 (1— ,
Vo, ) dn " p?cos?0 + (psinf + y,)?

Excluding the cases 8 = 0 or § = m, where the function is identically zero (according to the
boundary condition imposed), we estimate its behaviour for p — +co.

1 4y,psin@  y;sinf

o)~ — T = 2
Yo(p, 0) 2 T p
Then
2 -2
sin” 6
oo, OF ~ 2252 for p — +oo,
2 p

which decays too slowly to be integrable with respect to the measure p dp in (R, +00) for some
R > 0. O

Remark. We rewrite (2.49) isolating «

1 In% +y
a = —2—K0(2y2a) - 2 .
T

We let @ — —oo, and study how the corresponding solution behaves. Since for a approaching
zero from the right, the two singularities cancel out and the limit is finite, there are no finite
point to which a can go as @ — —oo. Instead, for a — +oo the first term goes to —co, while the
latter vanishes. Hence we have that 4 — —oo for @ — —o0.

Remark. Also in this case we check the result by verifying that the quadratic form is negative
on the eigenfunction.

o 1 Vidl
S R
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since by definition the integral part of the quadratic form evaluated on the Green’s function of
the domain is negative. Let’s substitute V]| = @ > 0 in the upper bound above and let’s name
it d(a). If d is negative on some non-zero measure subset of [0, +0), then same holds for the
quadratic form. Let’s examine d(a) for a — 0*:

_ In(@2y,)

. . 1 a
lim d(a) = lim o + Z(y+1n— ~In(na)-y)=a o

a—0* 2

((C.22) has been used). So the quadratic form is negative in a right neighbourhood of 0 for

a < % which is the same condition found directly looking for the eigenvalues.

2.3.2. Neumann Boundary Condition

The same reasoning of the 3d case, together with (A.1) let us conclude that

[ -
N0 = =g Hy (e =)

is the solution of (A.6) for Q = H?.

Proposition 2.3.2. The operator —A%’N has a. = +oo. Regardless of @ € R and y, > 0 there is
always a single eigenvalue A and it lies in (—oco, —4e~**2Y). The corresponding eigenfunction
is

1 1 _
wax.y) = =Ko VIallx = y1) + Ko Vil lx - 3) (2.52)

where K is the modified Bessel function of order zero.

. . . . . . 2
Proof. The possible negative eigenvalue is 72, where 7 is the solution of FE}JN(Z) = 0, after the
. . . . . . . 2 .
substitution z = ia, a > 0. a = 0 is escluded from possible solutions because lim,_,y+ FEIJ’N(ta) =

+00 and so the function ngy’N cannot be defined continuously in zero. The equation is ((C.18)
has been used)

Ko(2y,a) =2ra +7y +In g. (2.53)

We name f(a) the former side of the equation and the latter side g(a). We observe that:
e both functions are smooth for a > 0;
e lim, o+ f(a) = +oco and lim,_,¢+ g(a) = —oo;
e lim, ., . f(a) = 0and lim,_,, g(a) = +oo.

Those facts allows us to claim that there necessarily exists a solution for a > 0. Moreover
we have that f(a) > 0 Va > 0, while g(a) > 0 for a > 2¢->**~7. The solution must then lie in
(2777 +00).
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The solution is unique. To prove it we look at the derivatives of both functions:

1
f(a) = =2y, K,(2y,a) g(a) = o

If f'(a) < g'(a) Ya € (2¢7¥77, +c0) the claim is proven. The inequality is written as
=2y, K (2y,a) < 1/a, which, posing u = 2y,a, is equivalent to

1
Kl (l/l) > )
u
verified Yu > 0 (and subsequently Ya > 0) because the left side is positive and the right side is

negative.

The eigenfunction is obtained combining (A.1), (2.52), z> = A = —|4] and (C.18) with
v =0. O

Remark. We verify that, regardless of the values of @ and y,, the quadratic form evaluated on

2N . . . ..
G%’Ij is negative. In the same way as in the Dirichlet case we have that

o 1 Vial
o5 ) e S i)

The term in parenthesys on the right side diverges to —oo for 4 — 0* regardless of y, > 0 (see
(C.22)). This implies that the quadratic form is somewhere negative in [0, +c0) Ya and Yy, > 0.

Remark. Also in the Neumann case, by rewriting (2.53) isolating « as follows

1 Ing +7y
= — Ko(2y2a) -
= 0(2y2a) P

we can determine how the eigenvalue behaves for a large. In this case also @ — +oco admits
an eigenvalue. Both terms goes to +oo for a — 0* and hence 4 — 0 for @ — +co. As in
the Dirichlet case, the function tends to —co only for a — +o00 and so for « — +co one has
A — —oo.

2.4. Exterior of a Disk

In this section Q = {x € R?||x| > R}. The point interaction location y = (y;,y,) will be
described through the polar coordinates p and ¢, while x by r and 6.
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2.4.1. Dirichlet Boundary Condition

The Green’s function for —A — z? on Q can be proven to be equal to (see for example [45])

. +0o
i in(O— J.(zR)
G () = g D e ¢)(Jn(zr<) - H(l)(ZR)Hff)(zr<))H,51)(zr>), (2.54)

where r. = min (r, p) and r. = max (7, p) and H( ) is the Hankel function of the first kind of
order n. By (C.8) and (C.11) comes that J_n(u)H(l)(v) J.(w)HP (v) for u,v € C. Hence we
can rewrite

+00 +oo
D Lo Gr) = ) cos (100 = G)u(arIH (zr),

which is equal to H(() )(z \/r2 + p? = 2rpcos (0 — qb)) m(z |x — yl) because of (C.13). So we
can rewrite (2.54) in the form

. +o00

ino-g)_JIn(ZR)
GIP(x) =GP (x,y)— = » "= HV(zr)H(zr.)
o K H(R) ’ (2.55)

n=—0o

= G2(x,y) — hEP(x).

Hence

i Ju(zR)
hey (x MO e H D (zr OH, (ar),
4 Z H(l)( R) n

n=—co

and

g,
h3 ) =4 Z H(lgi )) (l)(Zp))z' (2.56)

Proposition 2.4.1. The operator —Aﬁ’)]? with |y| = p and Q being the exterior of a disk of radius

R with Dirichlet boundary conditions has a. = 1 -~ In (. is not attained though). When

2R2

existent, the eigenvalue A < 0 is unique and the relative eigenfunction is

= I,
Ya(x,y) = —Ko(\/_ =) -3 Z o= "”K((‘/\/:R)) K (NArOK,(Vidls). (257

Proof. The eigenvalue 72, which is unique and non-positive, is such that z is a solution of

v+InZ - ] J (ZR) 2
@+ o Z 0GR (H () = 0. (2.58)

n=—o0o
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If we substitute z = ia, with a > 0 in (2.58) and use (C.17) and (C.18), it becomes

2
fla) =a+ (Ku(ap)) =0. (2.59)

y+Ing +i io I,(aR)
2n 2 K, (aR)

n=—oo

We now study the solution of this equation in (0, +c0). We start looking at the behaviour
of the different terms for a — 0*. The logaritmic term diverges to —co. To study the sum we
rewrite it as

+00 +00

I,(aR) 2 Ip(aR) —
K, _ K AV
=, % (ak) (Krtan)) = O (Kotap)) + = Z:; cala)
2
with ¢,(a) = _,Ié;((‘;’g) (Kn(ap)) .We start considering the zeroth term. By (C.19) we have that

Iy(w) = 1 + OW?) for w — 0. Then, (C.21), paired with some Landau symbols algebra, allows
us to write
Iy(aR)
Ko(aR)

2 2R 1
(Ko(ap)) = -Ina+1In s O(E) for a— 0.

We are left to study the infinite sum in the limit a — 0. By (C.23) follows

2n
cu(a) ~ %(S) a—0 (2.60)

that is the general term of a summable sequence (p > R by hypotheses). In addition (C.31) and
(C.32)allows us to get the bound

cpla) <

Je

cosh (aR)eaR(R)2" PRy 1(R)2” _ M 1(R)2”
p b

2n /_) 4n 4n

where the last inequality is valid for a < M for some M > 0 (which is sufficient, since we are
looking for the limit towards 0). Moreover this also implies that the sum is continuous in every
interval (0, M) with M > 0. So for sufficiently small a > 0, ¢,(a) is bounded by a summable
sequence which does not depend on a. By this and (2.60), by dominated convergence we can
claim that

+00 +00 +00 1 /(R 2n 1 R 2
alir(l)l+ nZ:; cnla) = z:all)r(l)l+ cp(a) = ,,z:; ﬂ(;) = —Eln(l - (/—)) ) < +00.

n=1

Putting all this together, we have that

. 1 R

On the other side f goes to +oo for a — +co. That’s because:
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: a __ .
e lim, ;o In5 = +oo;

e [, and K, are positive on (0, +o0).

Now, since f is continuous in (0, M), YM > 0, we can determine whether the solution exists
or not just by the nature of the sign at the extrema of the interval. Since there is an M large
enough such that f(M) > 0, then the equation f(a) = 0 has at least one solution in this interval
only if

< ! In R
a<-—-——In|——|=ca..
2 \p*—R?

The fact that this possible solution is unique is a consequence of —Afff being a one-rank
extension of —AP combined with the aforementioned result from [10] which guarantess that the
point spectrum is at most made of one point.

The eigenfunction is found combining (2.55), z2 = —|4|, (C.17) and (C.18).Because of
(2.61), f can be extended continuously to @ = 0 and so, for @ = ., a = 0 is a solution of (2.59).

O

Remark. Also for this kind of geometry it holds that @, — +co when the point interaction gets
away from the boundary (here meaning that p — +c0). It also holds that

lim @, = —oco.
p—R*

This result suggests that if the point interaction gets closer and closer to the boundary mantaining
its intensity a, then under a threshold distance no eigenvalues are possible anymore. We can
explain this fact with the incompatibility of the Dirichlet boundary condition with a very strong
interaction near the boundary.

2.4.2. Neumann Boundary Condition

The Neumann Green’s function of —A — z? on Q is given by (see [12])

i J(zR
GQN 4 Z PG ¢)(J( ) - (1)(’1( )) ,(1])(Z”<))H,(ll)(zr>)

i J; (ZR)
02 m(é) ¢)

(2.62)
H(zroHY (zrs).

Then

ey () = 42 " Jm(z( )) H@roH " er).
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Proposition 2.4.2. The operator —Aff,’yN with |y| = p and Q being the exterior of a disk of radius
R with Neumann boundary conditions has a. = +oo. There is always a single eigenvalue A
which happens to be negative. Its associate eigenfunction is

1 1 +0o0
Ya(x,y) = 2—7TK0< Mlx —yl) ~ 5 Z in(©-¢) Kn’((\/\/iR)) K,( \/_ Alr)K, (\/_r>) (2.63)

Proof. As always the unique possible eigenvalue is negative. In this case it corresponds to the
imaginary solution with positive imaginary part of

y+Ing J(zR) HO 2
@t Z T R) H{"(@zp)) =0. (2.64)

So we set z = ia, with a > 0 in the previous equation. Using (C.17) and (C.18), the previous
equation becomes

y+l¢ | & I'@R)

=N (K ap) =0, (2.65)

)= 2 2x L4 (“Kj(@R))

where the minus sign has been taken out to get a positive terms sum. This observation implies
that f(a) — —oo for a — 0", because the logarithmic term goes to —co and the other ones are
negative or constant. Since f is singular in zero, it implies that a = 0 can’t be a solution of
(2.65). So, proving that f is contionuous in (0, +c0) and determining for which values of @ f is
positive in a neighbourhood plus of infinity, equals determining the ones with which (2.65) has
a solution.

We prove that f is continuous in (0, +00). Let’s consider (C.24) and (C.25). The positivity of
both 7,(w) and K,(w) implies that we can claim that I}(w) < I,_;(w) and that =K} (w) > 2K, (w)
forn=1,2,.... We rewrite the sum in (2.65) as

+00 l;(aR) ’( ) (a ) 5
o (—K,;W( Katap) = (—[0('( R))(KOW’) +ZZ W(Kn(am) . (2.66)

We call ¢,(a) the general term of the last sum. Through the inequalities above, we can bound ¢,
with the general term of a converging sum

aR I,_,(aR) > (R\"
cnla) < 7m(m(ap)) ~ (5) n— 400 (2.67)

(to get the asymptotics of the upper bound, (C.33) has been employed), which converges because
R < p. By (2.67) follows that there exists an 7 such that c¢,(a) < 2(R/p)*", ¥n > n. Since
definitely in n, ¢, is bounded by the terms of a convergent series, then uniform convergence
holds and hence the series converges to a continuous function (each ¢, is continuous).
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Combining (2.66) and (2.67) with this bound and recalling that I)(w) = I;,(w) and K (w) =
—K,(w), we can write that

— I'(aR)
— (=K, (aR))

I(aR)
K(aR)

"\ 2aR I,_(aR)
K,(aR)

(Kntap)) < 2o (Koap)) + (K@p)) +L,  268)

n=1

for some finite L > 0. The right hand side of (2.68) contains a finite quantity of terms depending
on a. If all of them stay finite in the limit @ — +o00, we can claim that also the left end side stays
finite for such limit. To study the behaviour of these terms we state the asymptotic behaviours
for the functions I,(w) and K,(w) for w — +oo

e’ T
L(w) ~ Ku(w) ~ 1| ——e™. 2.69
(w) N7 (w) € (2.69)
So that
I (aR) 2 2B
e (aR)(Ko(ap)) ~ e >0 for a— +oo (2.70)
2aR I,_(aR > R _
iﬂ(l(n(ap)) ~ D20 D 0 for g— 400 and n=1,....7 (2.71)
n K,(aR) nop

The infinite sum in (2.65) is hence finite for a — +oco0, which implies that f(a) — +oo for
a — +oo independently on the value of a. O

2.5. Exterior of a Sphere

Here we consider Q = {x € R?||x| > R}. The point interaction is placed in y = (0, 0, y3). We
set [y| = p. x is instead located by the polar coordinates r and 6, those respectively being the
distance from the origin and the angle between x and the x; axis.

2.5.1. Dirichlet Boundary Condition

In [12] it is reported that the Green’s function for —A — z? on Q is given by

Jn(ZR)

= (zro) | (). (2.72)
hy (2R)

.+
G2P(x) = ﬁ Z(Zn + 1)P,(cos 9)(jn(zr<) -
n=0
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Here P, is the n-th Legendre polynomial. Using (C.39), and the addition theorems (C.37) and
(C.38) we can rewrite the first term of the product in (2.72) as

prpme CLICUESBTCICIES)

i

. “+00
|74 .
s Z(Zn + 1)P,(cos 8) ju(zrohP(zrs) =
n=0

T dnlx—y|

This means that

M) = Z( {’;fZZR) (H o)) -

Proposition 2.5.1. The operator A 2 with |y| = p and Q being the exterior of a sphere
of radius R with Dirichlet boundary condltzons has critical value o, = m (o, is not
attained though). When existent, the eigenvalue A < 0 is unique and has the following

associated eigenfunction

_‘/W|X—}| ()(\/_R)
Vaey) = G Z(z + DP(cost) - )k<\/_ Arol(Ndlr).  (2.73)

Proof. The condition Ty (z) = 0 is explicitly
L. i@n + 1)]" R )(h(l)( 0)) = (2.74)
A g h(”( R)

The single negative eigenvalue can be studied by substituting z = ia with @ > 0 in (2.74):

+00 (1)
ot 24 In GaR) 4oy =
f@=a+ - ;@n * D35 gy i P =0 (2.75)

These spherical Bessel functions’ arguments contain an i factor. This can be removed converting
them into the modified spherical Bessel functions iﬁll) and k, via (C.40) and (C.41) obtaining

= i) (aR)

a 1
f@=a+ -+ ZZ;a(zzH Do bap)) =

We study the function f in the interval (0, +o0). We observe that if ¢,(a) is the general term
of the infinite sum, it holds that

1 (R 2n+1
cy(a) ~ —(—) forn — +o0, Ya > 0.
2p\p
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This implies that ¢, is definitely bounded by a summable sequence. Since each term of the sum
is continuous in (0, +00) it means that f is continuous there. Then, to assure the existence of
a solution it suffices to know its sign at the extrema: discording signs imply the eigenvalue
existence due to the intermediate value theorem. We start by examining f(a) as a — 0*. We
can find that

1 (R 2n+1
cp(a) ~ —(—) fora — 0,
2p\p

using (C.44). In addition, (C.47), combined with (C.31) and (C.32) return the following bound
for ¢, (a)

2aR 2n+1 2R 2n+1
Cn(a) < u(ﬁ) < M(E) ,

4p P 4 \p

where the last inequality is valid forn = 0,1,2,... and a < 1 (in particular this is valid for
sufficiently small positive a). So the dominated convergence theorem can be applied and we
can switch order between sum and limit, so that

+00 +00 2n+1
. (R TR
Jim 2@ =) %(5) R 2)

n=0 n=0

This means that

: R
M@=t TRy

Hence for a = a = 01is a solution of (2.75).

- R
47r(p2—R2) B

Since each term in the infinite sum is positive and that the linear term diverges to +co when
a — +oo, we have that f does the same regardless of the sign of @. This means that in order to
have a solution to (2.75) the condition.

< R
a < —_——
4n(p? — R?)
needs to be satisfied. Since by the a priori result in [10] we know that the point spectrum is
made of at most one point, the possible solution is then unique.

At last we prove that in fact 4 = 0 is not an eigenvalue. We need to verify that the
corresponding o ¢ L*(Q). To do so we use the solution of the Laplace problem in the whole
space (A.4), together with the image method and the Kelvin transform. This transformation
maps outside point inside the disk of radius R centered in the origin and viceversa. It also maps
the point on the circle of radius R on themselves. Moreover it preserves harmonicity. Let u be
an harmonic function on U C R" with U not containing the origin, then its Kelvin transform
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K[u](x) is defined as
Klul(o) = (§ ) (2.76)
We note that if |x| = R, then
=y = % x| — 2%)6 -y P = =20y + P = -yl (2.77)

Using the formula of the fundamental solution of Laplace equation in R? (A.4), and Kelvin
transform (2.76), we can write the expression for i

R

Yoly) =

R |
4 |x| ‘y — X

We expand both terms for |x| — +oco, obtaining

1 _1+O(1) R _R+0(1)
drbe—yl - dmbd AR gy - 2] dmold )

so that Yo(x,y) = ;ﬁl which has a decay not sufficiently fast to be square integrable at

infinite. o

Remark. Also in this case, the limit lim,_, .., @. = 0, and zero is the critical value for the whole
R3. Sending the point interaction towards the <, instead causes @, — —oo: the boundary
"feels" the point interaction too close and this interferes with the realization of the Dirichlet
boundary condition.

2.5.2. Neumann Boundary Condition

In this case the Green’s function is given by (see [12])

GS}’,N(X) = ' Z(Zn + 1)P,(cos 9)(]n(ZF<) - {I”)Ei ;)h(l)( r<))h(])(zr>) (2.78)

here j, and R denote respectively the derivative of j, and A" In the same manner as in the
Dirichlet case we can write

iyl s J2zR)
Gy ==~ = Z(2n + 1)P,(cos 6) (1)/(zR)h“)<Zr<)hfP<zr>)

= G (x,y) - hi?f‘(x).
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Proposition 2.5.2. The operator —Af,z”yl\l with |y| = p and Q being the exterior of a sphere of
radius R with Neumann boundary conditions, has critical value

R 1 R\
%= =7 IR ln(l _ (;) ) (2.79)

(. is not attained though). When existent, the eigenvalue A < 0 is unique and has the following
associated eigenfunction

o~ VIl (1
Val5,3) = g ‘/_Za + DPy(co )k((\/‘f__ b V(KA. (2.80)

Proof. To study the behaviour of the possible negative eigenvalue (which is unique if existent,
by the aforementioned result in [10] on the point spectrum of finite-rank extensions), we set
z=1lain Fﬁf(z) = 0, obtaining

B a 1 X i (aR) -
f@=a+ -~ HZ;a(z n+ ) gy (aap)” = 0 (2.81)

(the minus sign was taken both in and out the sum to make it a positive term sum, since
k'(aR) < 0 Vn and Ya > 0).

We prove that f happens to be continuous in (0, +00) so that we can discuss the existence
of the solution just by determining the sign of f at both ends of the interval. Employing the
positivity of both i\ and k,, together with (C.48) and (C.49) we get the bounds i’ (w) < z(l) L(w)
and —k,(w) > ””k »(w). These are useful to prove that the infinite sum converges Ya > 0. Let S
call ¢,(a) the general term of the series. It follows that

c(a) <a R

lkn(R)(”( p))* ~ T

o

-(1) 2n+1
2 11 ar 2 1(R
n+ ) 7 2n+ ( ) ’ (2.82)

This means that c,(a) is definitely bound by a summable sequence not depending on a. Moreover
cn(a) is a sequence of continuous functions, hence f is continuous. The above asymptotic of
this upper bound is obtained using (C.33) together with (C.47).

Since ¢, (a) —» 0 fora — +oc0o ¥Vn =0,1,..., (2.82) allows to conclude that for dominated
convergence, also the sum vanishes in the limit. We can then conclude that f diverges to +co
for a — +oo0.

Now we move to the behaviour of f towards 0. Substituting (C.44), (C.45) and (C.46) in
the definition of ¢,(a) we find that

R3 R 2n+1
co(a)~”6—a3 en(@) ~ == (—) n=1,2... for a— D0,
0
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Since the zeroth term goes to 0, we can ignore it when considering the limit and start the sum
at n = 1. Now, to get the value of f(0") we would like to bring the limit inside the infinite
sum. To do so we employ the dominated convergence theorem and so we need to prove that
cn(a) is bounded by an a-independant summable sequence. Recalling that ifll)'(w) < zf,ll_) ,(w) and
-k (w) > %kn(w), some computations involving the use of (C.47), (C.31) and (C.32) lead to

the bound

2n+1 2n+1
2n+1 R 2n+1 R
@) < =TT @Ry D[=) <« ST (@R (=
4o n+1 Jol 4o n+1 Je,
valid for small a and n = 1, 2, . ... Being this bounding sequence summable, we can apply the

dominated convergence theorem and claim
+0o0

+00 2n+1 2
R R R

i S0 = 5 58] = a1 (5)
a—0* “~2pn+1\p 2(p*=R?) 2R Jo,

n=1

This implies that

. _ R 1 R\’
algg fla)=a- I ? = R " IR ln(l - (/—)) ) (2.83)

We can then conclude that the solution exists only when f(0*) < 0 and so for

< R + ! In|1 R 2
a nfl-|—]|=a
4n(p?> — R?)  4nR p

Equation (2.83) implies that we can extend continuously f in 0. So if @ = ., a = 0 is a solution

of I' fny (ia) = 0. Following the same ideas as in the Dirichlet case, we can write

R

wO(xa )’) =

+
4r|x =yl

R2
41| ’y - By

Since both terms are positive, there is no hope for cancellation. ¥ (x,y) ~ |x|™! for |x| = +c0
and then it is not square integrable in €. O
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Q Boundary Condition Eigenfunction Q. Is a. attained
H3 Dirichlet (2.29) —ﬁ Yes
H3 Neumann (2.38) ﬁ No
H3 Robin (2.44) (2.43) Not Determined
H> Dirichlet (2.47) In(%2) No
H? Neumann (2.52) +00 No
Exterior of a Disk Dirichlet (2.57) —5-In (pz_LRz) No
Exterior of a Disk Neumann (2.63) +00 No
Exterior of a Sphere Dirichlet (2.73) —m No
Exterior of a Sphere Neumann (2.80) (2.79) No

Table 2.1.: A brief recap of the specific domains studied in this chapter with different boundary condi-
tions. The equations defining the eigenfunctions and the critical values for each of those
problems are recalled.



Chapter 3.

Resonances of One Point Interactions in
Hl’l

3.1. Resonances of N-Points Interactions in a Domain
Let Q c R", n = 2,3 be a domain of the kind already considered, i.e. external domains or
H". The resolvent
(-A% =27 LX(Q) —» LA(Q)
acts as follows

(=A% = 2)7 f)(x) = fg G2.(x0)f(y)dy = fg (G23(x) = B2y (0))f () dy.

We observe that the map z — G%(x) is holomorphic in all C, smooth in x and y. But the kernel
G?v(x) does not go to zero when Imz < 0. So it ceases to be an L? kernel. Though, if we
consider some p € C°(€2), then the map

p(=A% = 22)p t LA(Q) — LA (3.1

(p(=A% = 22) ' pf)(x) = fg PG ()P f() dy, (3.2)

called truncated resolvent, is well defined Vz € C. So, if we consider the restriction (~A®—z%)"" :
Lfomp(Q) — L? (Q), even if initially defined only for Imz > 0, it can be holomorphically

r loc
continued to C.

Now we consider the N-points interactions on 2. We explicitly rewrite here the expression
(1.30) for the resolvent

N
(=A2y =)y = (A% = )Ny Y @) (A% = 7)o G,
ik
defined for Imz > 0. We want to extend this perturbed resolvent as well. We observe that:

71
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e The first term is simply the free resolvent, which can be holomorphically extended to the
whole C as recalled above.

e The other terms contain the composition of the free resolvent (—A® — z?)~! with the
projector onto the function nyj. So also these factors can be extended to all C.

e The factors (I} y(z));.kl are not defined whenever the matrix Iy, (2) is singular.

Summarizing we can state the following

Proposition 3.1.1. Let p € C°(Q2). The map
2 p(=Agy —2) 't LA(Q) - LA(Q)
extends as a meromorphic family of operators to 7 € C. Its poles are the solution of
det (T%,(2) = 0.
For each of this poles:
o when z # 0 and Imz > 0, the value 7> is an eigenvalue;

e when Imz < 0, the corresponding 7* is called a resonance;

e if0is a pole, it is an eigenvalue if the corresponding solution is in L*(Q), while instead it
is called zero energy resonance if the associated solution of —AS, = 0 is in Ly, (Q) but
not in L*(Q).

Considering the one particle center, the resonances that are not 0 energy resonances are the
solution of
Q —
[,@ =0, Imz<O.

The previous definitions agrees with the treatment based on the black box description of
Sjostrand and Zworski in [44] and [43]. See also the treatise [18] by Dyatlov and Zworski.

In the following sections we study the resonances when Q = H", n = 2, 3 with different
boundary conditions.

3.2. Resonances for the Half-Space

3.2.1. Dirichlet Boundary Condition

Proposition 3.2.1. The resonances 7*> of —AE[;’D are determined by the values z with the
following properties:



Resonances of One Point Interactions in H” 73

e Ya € R and y € H? there are exactly two values of z, with opposite real part, in every
region of the form 1}‘—’; <|Rezl < % withk=1,2,....

Moreover

(3.3)

Imz = L In (—Sm (2y; Re Z)).

2y; 2y;Rez

o for a < ——— there is an additional unique z on the negative imaginary semi-axis, while
8my3

for a > _zz;T there are two additional resonances, one for Re z € (—ﬁ, 0) and one for

T

Rez € (0, E)

=1 In(z - j =&kt i n(Z
o Ifa= - In (2 + kﬂ') for some non-negative even k, then 7 = it el v In (2 + kﬂ)

generates an additional resonance.

o Ifa = @ In (—’—5 - kﬂ)for some negative odd k, then 7 = 4}% + % - 2’; In (—’—2r - kﬂ')

generates an additional resonance.

Proof. Following the idea in the previous section, the resonances are the solution of FE&;D(z) =0,
that is (2.30) with Imz < 0. We plug z = a + ib in (2.30), with the prescription b < 0. This way
we get

b—ai o
4r 8mys

€08 (2y3a) + isin (2ysa)

@+ 0.

Equating real and imaginary part of both sides, we obtain the system in a and b

—a— b _ e—2y3b00S(2y3a)
o B (3.4)

4 — p=2y3b sin (2y3a)
4r 8my3

We observe that if a = 0, the second equation is satisfied Yb. The first equation of the
system is then

Since lim,_,_, f(b) = +c0 and f is a continuous function, a solution in (—oo, 0) exists only if
£(0) < 0. This happens when a < —(87y3)~!, otherwise there are no resonances on the negative
imaginary semi-axis. The possible solution is in fact unique because f’(b) = (1 — e 2)/(4r) <
0Vb <O.

Another case of interest in the study of (3.4) is when a = 2"772, forsome k = +1,+2,....In
this case it is easy to see that the system does not admit any solution, because the right side of
the second equation of the system is zero, while the left one isn’t. So there are no resonances
on the lines Rez = %, k==+1,%2,... outside the real axis.
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Also, since we already considered the a = 0 case, we can rewrite the second equation of the
system (3.4) as

, a#0. (3.5
2ysa

In this way we can verify by hand that no solution can exist on the upper half complex
plane, barring the ones on the real axis and on the positive imaginary semi-axis, this being a
consequence of the self-adjointness of the operator. Since the left side is always smaller than 1,
a solution is possible only if & < 0. In this form it is also easy to see that there are no solution
when 7 + 2km < 2ys3|a| < 2n + 2kn, k = 0,1,2,..., because in that case the left side would be
negative, while the right hand side wouldn’t.

We now consider the case a = & + % for some k € Z. (3.4) is then

b = —4na
80 = (=1)(2 + kn)
This system is overdetermined and so can have a solution only for certain values of « and ys.

Let’s distinguish the different cases:

e if k is positive odd or negative even, then no solution exists regardless of « and y; (a
would be in one of the intervals mentioned above for which no solution exists);

e if k is non-negative even, then there is a resonance in 7 = & + é‘}—’i - i In (g + kﬂ) if
a = ﬁln(%r +k7r);

e if k is negative odd, then there is a resonance in z = & + 2’% - fys In (—g - kﬂ') if
@ =gIn(-% - kn).

At this point, we divide side by side the equations of the system (3.4). Note that it is legit
doing so, since we already examined the cases in which one of the sides vanishes. So, dividing
the second one by the first, we get

a
tan (2 = - ,
an (2ysa) dra + b
which, solved for b gives
a
b=—-4nrq - ———. 3.6
e tan (2y3a) (3-6)
Substituting b in the second equation of (3.4), we get the following equation in a
1 2 _ _ 2y3a
o) = S0 _ wmon-in ) 3.7)
2y361

The following properties about 4 holds:
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e hiseven (as g does as well) and so we can limit ourself to consider a > 0.

o lim,_h(a) = e ¥ ! and Yk =0,1,2,...

lim h(a) = e ¥,  lim h(a) = +c0 and  lim h(a) = 0.
a_);r/22)+3kn a— n;‘+k7r a— at+kn

e The derivative of / is

—Sraya 23 tan (2y3a) — 2y3a(1 + tan? (2y3a))
W (a) = —2yse " miy .

tan (2ysa)
We claim that 4'(a) > 0 Va > 0. This is a consequence of the inequality

tan ¢

)= —— <
p(0) 1 + tan?¢

being satisfied V¢ > 0. In fact p(0) = 0 and p’(¢) = Lotan’s o 1, which implies that the

I+tan2¢t —

above inequality is valid V¢ > O with the equality only valid in ¢ = 0.

e The continuity of % and its derivative in every interval of the form (’;—f, %) with

k=0,1,2,..., together with 4’(a) > 0, implies that the 4 is monotone increasing in each
of those intervals.

e The second derivative 4" is given by

2yza
1(a) = 4y3e ™ 00 (cof? (2y3a) + 2 e (2y30)

+ dyja* csc® (2y3a) — 8ysa cot (2ysa) csc? (2y3a)). (3.8)
It holds that #”” > 0 when
£ +sintcos’t + 2sin’t — 4rsintcost > 0,

with ¢ = 2ysa. This expression is greater or equal than > — 2¢, which is positive for ¢ > 2.
So h’(a) > 0 Ya > 1/y; in its domain. Since 1/y; < n/y; < kn/y; fork = 1,2,..., then

h” > 0 1n each interval (';—’; (21‘2;31)”) with k = 1,2, ... and is convex here.

About g we recall that:

e g is continuous and smooth outside zero.
e In each interval of the form (’;—’:, %) with k = 1,2,..., g is positive and has a unique
maximum M, which is the solution of

_ 2ysacos (2yza) — sin (2y3a)

g'(a) 0

2y3(12
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in a said interval. Moreover, since

24+ 2km 2
g'(zzy ):— B <0, Vk=1,2,...,
3 (2 + 2kr)

S +2km
2y3

each maximum point is contained in (%’, ), and in particular in these intervals both
sin (2ysa) and cos (2y3) are positive.

e We also have that

(2y3a) - 2) sin (2y3a) + 4ya cos (2y,a)

x3

g'(a) =~

Then, g is concave whevever g(a) = ((2y3a)2 - 2) sin (2y3a) + 4y,a cos (2y,a) > 0. But,
since q(’;—’;) = 4kr > 0 and ¢'(a) = 8y a® cos (2ysa), it follows that in every interval

kn 5+2knm .
¥ 2 g 18 concave.

e In [0, ) g is monotone decreasing and lim,_,g g(a) = 1 which is the absolute supremum
for g.

Now we claim that in each interval of the form (k’; , (21‘2;1)”) with k = 1,2,..., (3.7) has
exactly one solution.

Let a; be the smallest solution in the k — th interval. We distinguish the two cases a;, > M;
and a; < M;. If a; > M, the solution is unique because in [ak, (2]‘”)”) h is increasing, while g

2y3

kn 5+2kn
37 2y

is decreasing. If a; < M, given that M, € ( ) the function r(a) = h(a) — g(a) is strictly

convex in (’;—’;, Mk). But this, together with lim _ «+ r(a) = 0 implies that at there is at most
y3

a zero for r in (';—’;, Mk). In fact, if there were two internal zeros a; < d, there would be two

numbers b, and b, such that ’;” < by < ay < by < My and ¥ (b) = ¥ (by) = 0. This contradicts
the function r being convex (' is strictly increasing), hence only a solution is possible. For
each interval, this possible unique solution in fact exists. That’s because:

» H(57) = 8(55) = 0and i (57) = 0 < g/(55) =

n+2kn n +2kn\ _—
° h( 25 )—+ooandg(—)—0.

It remains to consider the interval [O, i) Here g is monotone decreasing and / is monotone
increasing, so, at most there is one solution. The solution actually exists only if lim,_,o(h(a) —

g(a)) < 0, which happens if and only if @ > _W



Resonances of One Point Interactions in H” 77

500

1000

1500

2500

3000

2000

Figure 3.1.: Plot of the real part versus imaginary part of the first 100 values z with Re z > & for which
7% is a resonance for @ = 0 and y3 = 1 in the Dirichlet half-space case.

7 J
Figure 3.2.: First 10 z with Re z > 7 such that z? is a resonance for & = 0 and y3 = 1 as intersections of

(3.6) (red) and (3.3) (blue) in the Dirichlet half-space case.

For each solution of (3.7), we can recover the corresponding imaginary part through the
relation b = zl% In g(a). o
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Asymptotics of the Resonance Counting Function

Now we consider the set Z(—Aﬂiy’D) of complex z such that z° is an eigenvalue or a resonance
of —ALY. Let’s define

N_ol® = #{z e (-A5P) | < R

the counting function for the the elements of Z(—AE{;’D ) counted with the appropriate multiplicity.

We now prove that (see [4] for an analogous result for N-point interactions in R")

Proposition 3.2.2. Va € R and y € H? it holds that

lIl (N—AH3 D (R))
lim ———— =1,
R—+c0 InR

kr  (2k+Drm

5 )
Proof. Let ai be the resonance of —AE;D such that ¢, € ( ) and {ay}x= ».... the associated

. ¥3? 23
sequence. We start by proving that
2k +1/2

lim q = 212 (3.9)

k—+0co 2y3
We observe that, even if it can occur that a; € (%, 23—;;), it still happens that, definitely in %,
ai € (’;—’3’, %) This is true because, recalling (3.7), we have that

2k +1/2)m\ 1 . 8oy
g( 2 ) = ki fd lm Ma)=e

2y3

and so there exists a %, such that Vk > %, g < h when both evaluated at the middle point of the
k-th interval, which implies that the unique solution is in the first half of the interval. Let y be

- (kr (k+1/2)m
n (%’ ( ;;3/ : ) and {y}=0,1... = {y + %}Z:O,l,...' We have that
sin (2ysy) —8ray;— 2302
=——" and A =e V3" tn 230 .
80 2y3y + 2In o)

Both sequences goes to zero, but {i(y;)} does so faster than {g(y;)}, which implies that for
sufficiently large /, g(y;) > h(y;) and so the solution in the (k + /)-th interval must be in

Qk+D+1/2)n o o (kn Qk+1/2)m
(yl, B e ) The arbitrarity of y in (y3 T ) leads to (3.9).

So we have that a; = % + o(1) for k — +0c0. We use this property to estimate

N_ wp(R)as R — +oo excluding at most a finite quantity of resonances. Doing so is equivalent
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to find the highest k for which

1 in (2
FRLIRIELICC) B
4}73 2ysay

Substituting the asymptotic expression for k — +oo, we get
1 g 2 2 1 2 p2
(2k + E) 2 +1n (Zk + E)n T+ o(1) < 42R?.

If we set s = (Zk + %)7(, it becomes
5% +1n% (s) + o(1) < 4y3R*.

We are concerned about large value of s, so, since the left side happens to be increasing for s
sufficiently large, the largest s satisfying the inequality will be the one satisfying

5% +1n% (s) + o(1) = 4y3R*.

We look for the asymptotic for s solving the equation, when R — +oc0. We write

s = 4¥2R? —In? (5) + o(1). (3.10)

We see that for large R, s > 1, so that s < 2y;R and s = O(R). This implies that In? (s) =
O(lnz(R)). Now we substitute this in (3.10), obtaining

In® (R
5= 2ysRA |1+ O(HR—(Z)) +o(1) = 23R + o(1).
And so for k holds
3 1
k=|2R- =
B

But in this way we only counted the resonances with positive real part, so to get the right
number, we have to multiply by 2, since for each resonance there is another one, symmetric
with respect to the imaginary axis. So

|
N_o(R) = 2%31% - Z|'
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The sought limit is then

Bp _ 1
lll (N—AHS.’D (R)) ln (2\‘ n R 4J)
lim ———— = lim ———~
R—o+c0 InR R—+00 InR
3 1 3 1
= lim
R—+o0 11’1 R
2y3
. ln( d R) . InR
= lim = lim — =1
R—+o0 InR R—+00 IN R

3.2.2. Neumann Boundary Condition

oy 3
Proposition 3.2.3. The resonances z* of —AE{;N

following properties:

are determined by the values z with the

e Va € Randy € H? there are exactly two values z, with opposite real part, in every region

of the form (2];;1)” <|Rezl < (k;% withk =0,1,.... Moreover
1 sin (2y; Re
Imz=—In ( M) (.11
2y3 2y3 Rez

o fora > Fly; there is an additional unique 7 on the negative imaginary semi-axis.
o [fa = 8@3 ln( + kﬂ') for some positive odd k, then 7 = & + 2"—; - E ln( + kﬂ') generates

an additional resonance. .
o Ifa = 8ﬂy3 In (—— - kﬂ') for some negative even k, then 7 = - S+ 2}—3 - 2)7 ln( - kﬂ')

generates an additional resonance.

Proof. The resonances z> corresponds to the solution z of (2.39) with negative imaginary part.
So, in order to study them, we plug z = a + ib with b < 0 into (2.39), obtaining

o4 b—ai B e_2y3bcos (2ysza) + isin (2y3a) 0.

vy 8my;

By separating real and imaginary part, we get the system

87y . (3.12)

a —2yab sin (2y3a)
dr 8my3

{a + 43 _ e—zygbcos(Zysa)
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If z is purely imaginary (a = 0), then the second equation is valid Vb. The first one is then
written as

b e_2y3b
by=a+ — - =0
fb)y=a 4 8mys
lim,_,_o f(b) = =00, f(0) = a — 87:?, and the continuity of f imply that a solution exist only if

Q> 8711? f/(b) = (1 + e‘2y3b)/ (4r) ensures unicity.

For the same reason as in the Dirichlet case, there are no solutions for a = 2"—;
We now rewrite (3.12)” s second equation as
sin (2yza ,
SIMEYsD) _ b g 40, (3.13)
2y3Cl

Since the left side is always less than one in absolute value, it is automatically fulfillled that
b < 0. Moreover, the negativity of the right hand side, implies that no solutions exist for
2krn < 2yslal < m+ 2km, k=0,1,2,....

Next we consider a = 4)43 + 2’% for some k € Z. In this case (3.12) becomes

b =—-4rna
eSnayg — (_1)k+1(g + kﬂ)
It follows that:

e no solution is possible for both k non-negative even and k negative odd;

e if k is positive odd, then there is a resonance in z = ﬁ + 2"—; - 2)43 In (’5’ + kﬂ') ifa =
o In (’% + kﬂ');

e if k is negative even, there is a resonance in 7 = 4—’;3 + % - i In (—’—5 - k]T) if @ =
o In (=% — kn)

In the same way as in the Dirichlet case, we find the expression (3.6) of b in terms of a. By
substituting this expression in (3.13), we get an equation for a

_sin(2yza)

2yza
_e T moe = _p(q), (3.14)
2y3(1

g(a)

where g and £ are the same of the previous subsection ones. We use the information we know

about those functions to claim that also in this case there is a unique solution for each interval
(7r+2k7r mtkn )
2ys 7 ys

g(—”f;k”) = 0 so in each interval there is at least a solution;
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Figure 3.3.: Plot of the real part versus imaginary part of the first 100 values z with Re z > %n such that

7% is a resonance for @ = 0 and y3 = 1 in the Neumann half-space case.

e in each of those intervals, —/ is monotone decreasing and concave;

¢ in each of those intervals, g is negative and has a unique minimum 1, and since

3
27 + 2km 2
g'(2 . ): D50, for k=0,1,...,
Y3 (37 + 2kn)
42k Sm+2km
then my, € (;T ZT) and here g also happens to be convex.

At this point, an analogous argument to the one used in the Dirichlet case proves unicity. Let a;
be the smallest solution in the k-th interval. If a; > my the unicity follows, because in |ay, ’”%
—h is decreasing, while g is increasing. Otherwise, defining u(a) = g(a) + h(a), the unicity

. . . +
comes from its convexity in (”*2}%, ak] and u(’%ﬁ"”) =0.

We can get the corresponding imaginary part b for each of the solution of (3.14) thanks to
the relationship b = 2%3 In (—g(a)). O

Asymptotics of the Resonance Counting Function

We now prove a property analogous to Proposition 3.2.2 for the Neumann case.

Proposition 3.2.4. Ya € R and y € H? it holds that

In(N_,:n(R)
lim ———

= 1.
R—+00 InR
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| ARAEATARH

Figure 3.4.: First 10 z with Rez > %7‘[ such that z? is a resonance for @ = 0 and y; = 1 as intersections
of (3.6) (red) and (3.11) (blue) in the Neumann half space case.

3 .
Proof. Let a? be the resonance of —A, " such thst in a; € (%, (";%) and {ay)i—o,1... the
associated sequence. We start by proving that

) 2k +3/2)m
lim ¢ = ———.

3.15
k—+00 2y3 ( )

2k+3/2)n (k+D)m

GT T), it still happens that, definitely

We observe that, even if it can occur that gy € (

ink,a,€ (%, %) This is true because, recalling (3.14), we have that
(2k + 3/2)71' _ 1 . _ —8nay;
g( 2 ) =Tk o hm k@)= e

2y3

and so there exists a E such that Yk > %, g > —h when both evaluated at the middle point of the
k-th interval, which implies that the unique solution is in the first half of the interval. Let y be

- (Qk+Dr (2k+3/2)m _ 2In
n ( 2 2 ) and {y}=0,1... = {y + 2Y3}1=0,1,...' We have that

Sin 2 _ _2)'3y+217r

g(YI) = M < O and — h(,)’l) = —¢ 87‘([1)13 tan(2y3y).

2y3y + 2In

Both sequences goes to zero, but {i(y;)} does so faster than {g(y;)}, which implies that for
sufficiently large /, g(y;) < h(y;) and so the solution in the (k + /)-th interval must be in

Qk+D+3/2)m . . - (Qk+Dr (2k+3/2)n
(yz, T ) The arbitrarity of y in (—2y3 T ) leads to (3.15).

So we have that a; = % + o(1) for k — +0c0. We use this property to estimate

N_ wn(R)as R — +oo excluding at most a finite quantity of resonances. Doing so is equivalent
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to find the highest k for which

2 Ll 2(_Sin(2)’3ak)) <R

a +
“ay? 2ysay

Substituting the asymptotic expression for k — +oco, we get
3 g 2 2 3 2 p2
(2k + E) 2 +1n (Zk + E)n T+ o(1) < 42R?.

Setting s = (2k + %)n, we get
5% +1n% (s) + o(1) < 4y3R*.

The rest of the proof mimics almost completely the one for the Dirichlet case. m|

3.2.3. Robin Boundary Condition

Recalling that the representation (2.40) holds only in the region Im z > —n, in the study of
3
resonances for —AE;R’”, we will limit ourselves to this region.

3
Proposition 3.2.5. The resonances 7> of —AE;R’” with corresponding 7 in the horizontal strip
-n < Imz <0, if existent, are a finite quantity and all correspond to 7 contained in the region

{zeC| -t<Rez<1, n<Imz<0}

o231
2y3

and () <1< + 3n.

Proof. The resonances z> correspond to the solution z of (2.45) with negative imaginary part.
So, (2.45), has to be solved in the horizontal strip —1 < Im z < 0. For convenience we substitute
w = 1 — iz, obtaining the new equation

_ —2x03(w-1)
o+ 21 C + L E 2ysw) =0, 0<Rew <. (3.16)
47 81y 2n

Now we prove that all the z in this strip which generate resonances must be contained in the
rectangle R, = {w € C|0 <Rew < n, -7 < Imw < 7} for some 7 > 0. Let w = a + ib with
0 < a < n fixed. Plugging in the previous equation we get

a—77+ib_ 1

a+ VAW g=2inb 21e2y3"E1(2y3(a +ib)) = 0. (3.17)
JT

4r i 81y

Let’s take the limit for |b| — +oco of the left side and consider the absolute value of the
summands
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the first two terms are constant;

the third’s modulus diverges to +oo;

the fourth is constant in absolute value (the variation of b changes only its phase);

by (C.3), the last term tends to O for |b| — +oo.

This means that in the limit, the left side’s modulus goes to +co and so the equation cannot
have solution in a sufficiently small neighborhood of infinity, or otherwise that it can’t have
solutions for |b| > 7 for some 7 > 0 as anticipated.

We now prove that the number of resonances in R, ; is finite. If they are an infinite quantity
then, there must be some number of accumulation points in R, . of zeros of the left side of
(3.16). We divide R, . in the three regions R; = {w € C|0 < Rew < 75, & < Imw < 71},

R,=weCl|0O<Rew <n -1t<Imw< —gland R; = {w € C|0 < Rew <1, —¢ <
Imw < &}. Since the function considered is defined in R_1 it can be extended in the open set
inR,; ={weC| —e<Rew <1, e<Imw < 7}. Here the function is holomorphic and so it
having an accumulation point of zeros would imply the function being identically zero. So R,
does not contain accumulating resonances. The same is valid for R;. In R; the function is not
holomorphic, it not being defined in 0. Then O can be an accumulation point of zeros. But (C.4)
implies that the last term in (3.16) is the only one diverging in absolute value and so the left
side cannot be equal to zero in a small neighbourhood of 0. So there cannot be accumulating

resonances in R, » and then in this set the resonances are a finite quantity.

Now we give an upper bound for 7. Considering the first equality in (C.2), we can write

e—t

+00
E (2ys(a + ib)) = e~ 3@+ f dt
1@ysa+ib)) = e o 1+ (ys(a+ib)

= e‘m”(cos (2y3b) — isin (2)’3[?))(1 1 = 2iysbly)

- e—2y3“(cos Qysb)]; = 2ysb sin 2ysb)hy
— i(sin 2ysb)1; +2y3b cos (2y3b)12)),

where

+00 t+ 2 —+00 —t
I = f e B dand I = f
0 (t + 2y3a)* + 4y3b° o (t+2y3a)* +4y;b?

Plugging this expression in (3.17) and separating real and imaginary part we get the system

a+ 2l - ﬁe%(”’“) cos (2y3b) + %ezﬂ(”’“)(cos (2y3b)I; — 2y3bsin (2y3b)12) =0
Z + 87:7e2y3(”‘“) sin (2y3;b) = %ezﬂ(”‘“)(sin (2y3b)I; + 2y3b cos (2y3b)12)

(3.18)



86 Resonances of One Point Interactions in H”

Now we consider the second equation and get an upper bound for the absolute value of the
right end side. First we consider [,

f e t+2ya
11 = e
0 (t + 2y3a)* + 4y2b2

f ” e f(f)dt < max f(r).
0 0<t<+co

But
4y3 — (t + 2y3a)®
(e + 2ys0) + 4y§b2)

=

which is positive in —2y3(|b| + a) < t < 2y3(|b| — a). Since we are looking for an upper bound
on 7, we are considering a region in which |b| > a, so the sought maximum is f (2y3(|b| - a)) =
(4ys|b])! > I,. In the same way

+00 e—t +00 1
I, = dr = g dt < g(0) = ———,
2 fo (1 + 2y50) + 4y202 fo ¢ s dr < g0) 42(@ + b?)

because g is decreasing on the whole [0, +00). So the bound follows

‘l€2y3n(8in (2y3b)11 + 2y3b CoS (2y3b)12) < 162%77(11 + 2y3 |b| I,)
2n 2n

R
2n 4y3 bl 2ys3(a* +b?)
1
< =P —,
81ys bl

We also consider a lower bound for the absolute value of the right side of the same equation

b 1 b 1
4 oo g (2y3b)‘ > u S E1U ) |sin (2y3b)] .
47 87ry3 87ys

Here the absolute value on the right side is omitted, because for |b| large enough the expression
will be positive. Moreover

b 2y3n
2909 i (2y3b)‘ S
4 8mys

‘ 870’3

Now we take the inequality

A
>

2y
8)3’7_

4 8my;  8my; b’
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The set of solutions of this inequality cannot contain any solution of the second equation in
(3.18) and it is equivalent to 2y; 1b]> — €23 |b| — 3ne?¥ > (. The set of solution is

€M + JeDsn + 24y ne

|b| >
4y,

and so

eV 4+ \JeDn + 2dysmein @B 4 P \[1 + 2dyzne 2
T< = :
4ys 4ys

By the identity V1 +1¢ < 1 +1¢/2, we have

e 4 eZym(l + 12y3ne‘2y3’7) e

T < = + 37.
4y; 2y3 7

3.3. Resonances for the Half-Plane

3.3.1. Dirichlet Boundary Condition
We study the resonances in a horizontal strip below the real axis.

Proposition 3.3.1. If @ # In(2y,)/(2n) all the resonances z* of —A%’D with z in the strip

—x < Imz < O (if existent) have actually 7 contained in the smaller strip —y < Imz < —¢& for
some & > 0. Moreover there exist a T > 0 such that all these resonances 7> correspond to z such
that |Re z| < T with

T < 2e7re2«"2*+% \/é—Zﬂa—y

Proof. The resonances are given by those z such that z is a solution of (2.48) with negative
imaginary part. We start by looking for possible resonances on the negative imaginary semiaxis.
To do so we substitute z = —ia with a > 0 in (2.48). It becomes

In=*+vy |
2 (1) : —
a + T + ZHO (—2ly261) - O

It holds that

Inw—-ir if Argw>0
Inw = ]
Inw+ir if Argw <0
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Employing this, (C.18) with v = 0, together with (C.27), the previous equation is written as

In¢ +ir+vy+ Ko(2yra ]
o+ —2 v+ Ko, )—110(2y2a):0.
2 2

The equation can have a solution only if /5(2y,a) = 1, which happens only for @ = 0 and so no
resonance can exist on the negative imaginary semiaxis.

Now we study the resonances generated by z in the strip —y < Imz < 0. First we look at
possible resonances close to the real axis. Since there are no real z solving (2.48) and the left
side of (2.48) is continuous outside 0, for each point of the real axis excepted zero, there is a
neighborhood in which there are no solutions of (2.48). This means that for each non-zero real,
there is a neighbourhood in which there are no z corresponding to resonances. To determine if
this also holds for zero, we study (2.48) near the origin by substituting (C.11) in it. It becomes

2y + T () -y + 0 Inz) = 0.

2ra + 1
T n2i 2

Given that

In— =

4 3. n
2Z- {lné +3mi if  Argz< -3 ’ (3.19)
i

z _im g -z
Inz -2 if Argz> -3

we obtain the two expressions

2na — In(2y,) +2in + O(z°Inz) =0  Argz < -3
2na —In(2y;) + O(z*Inz) =0 Argz > —%

In the first case, independently on the values of @ and y,, the expression tends to a quantity
different from zero (the limit of the imaginary part is 2x). In the second one, instead for
a= %T In (2y,), the expression tends to zero and the possibility of accumulating zeros can’t be
excluded. Finally we also exclude the possibility of resonances accumulating closer and closer
the real axis when |[Re z| — +oco. To verify this, we take the limit z — +oo0 in (2.48). It turns
out that, by using (C.14), (C.15) and (C.16), the left hand side of (2.48) does not tend to zero
and so the equation is not "asymptotically solved". So we can claim that for @ # zl—ﬂ In (2y,), for
& > 0 small enough there are no z corresponding to resonances in the strip —& < Imz < 0.

So we can limit our study to the strip —y < Imz < —&. Recalling (C.9), we can rewrite
(2.48) as
Inz+y i 1
a+ ———+ =Jo(2y22) — =Yo(2y,2) = 0. (3.20)
2r 4 4
The lower complex half-plane is contained in —r < Argz < 7. Hence both (C.28) anf (C.29)

hold and we can plug them into (3.20) obtaining

2ra +In 23 +y = —indo(2y22) — Ko(Riy2). (3.21)
l
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We look for an upper bound of the modulus of the right hand side. The bound
—+00
|K0(2lyzz)| < f e—zyzllmzl cosht dr
0

is a consequence of (C.30). But, recalling that cosh ¢ > %, we have

oo 1 1
|Ko(2iy,2)| < f eI gy = — | - |
0 2 Vy2Imzl — 2 e

Using this in conjunction with (C.7), the bound

1
|~inJo(2y22) — Koiy22)| < me™™ + = T
2\ ne

is then immediate. A lower bound for the modulus of the right end of (3.21) is instead given by

1 Rez)? + &
27ra/+1n%+y > 2rna + In §‘+y > 2na + Eln((ez%)+y‘.
The set of solution of the inequality
1, ((Rez)* +&° sy 1 [T
2na + —In|——— |+ y| > e + = [ —
Ty n( 4 Y= eT T e

in Re z cannot contain any resonance. This set is given by

2 2y T _ 2 _ 290 _ T _ _
(Rez) > 4™ "V _ g2 v (Rez) <d4e ™7 Vi _ g2

By the arbitrarity of £ and the fact that Ae 3" with A, B > 0 vanishes faster than &2, we have

that the second inequality is never verified for £ small enough. So we have proved that exists
some 7 > 0 such that all the resonances in the strip —y < Im z < 0 satisfy [Re z| < 7 and it holds

2y2x T _ _ 2yoxy 1 7 _
< \/4627re +w/},25 dra=2y 82 < Zeﬂe +5 V.sz 2na y-

3.3.2. Neumann Boundary Condition

o 0 2 . . . . .
Proposition 3.3.2. All the resonances 7* of —AE}SN with z in the strip —y < Imz < 0 (if existent)
have 7 actually contained in the smaller strip —y < Imz < —¢ for some € > 0. Moreover there
exist a T > 0 such that all these resonances 7* correspond to z such that |Re z| < T with

2vox L [ —
T < zeﬂe +3 ‘/.Vzg 2na—y
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Proof. We start by examining the simples case of resonances on the negative imaginary semi-
N

axis. To do so we set 7z = —ia with a > 0 in r?j{;, (z) = 0, obtaining
In=* +y i

o 4Hg”(—2iy2a) = 0.

a+
Using the same properties of Bessel function as in the Dirichlet case, this equation is equivalent
to
Ing +im+y—Ko(2y2a) i

—1,(2 = 0.
@+ . + 3 0(2y2a)

Taking the imaginary part of the equation, we see that it can be verified only if /(2y,a) = —1.
This equation has no real solutions and so there are no resonances on the negative imaginary
semi-axis.

There are no real solution of FEQ’;V (z) = 0 outside zero. We also prove that there exists a
neighbourhood of zero in which there are no solution of that equation. Substituting (C.11) into
rﬁ]{’jﬁ (z) =0, leads to

2na + ln§ + 2y — % +1In(»2) + O(Z1nz) =0,
1

which, combined with (3.19) implies

S

2Inz+2ma+2y+In(F) +in+ 0 Inz) =0  Argz < -1
2Inz+2ma+2y+In(3) —in+ 0 Inz) =0  Argz > -

In both cases, for z — 0, the first term’s absolute value diverges to +oo, while all the other
terms stay finite. This means that the absolute value of both the expressions diverges in the
limit and therefore there is a small neighbourhood of zero where the equation has no solutions.
In the same way as in the Dirichlet case one also prove that there are no solution of rf;‘{’j,‘l (@=0
accumulating to the real axis when |Re z| — +o0. All these facts together mean that all z that

generate resonances must obey Im z < —& for some small € > 0.

Then we are interested in fixing y > 0 and studying the resonances in the region —y <
Im z < —&. Since the equation in this case differs from (3.21) only by an opposite side in the
left end side, we have that the same precise steps as the one for the Dirichlet case bring us to
claim that all solutions in the strip must obey |Re z| < 7 with the same upper bound for 7. O

3.4. Why Resonances?

After having established the definition of resonances and studied them for —AEE';, one can
ask what is their purpose.
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Resonances play a role in the description of oscillations and decay of waves propagating in
non-compact domains. For example in [18] (pp. 39-45 and 110-111) an asymptotic expansion
of the solution of the wave equation for large times is constructed. It is also important that the
initial data is compactly supported, so that the slow decay at infinity of the resonance functions
is not a concern This expansion is proved when the wave is scattered on a L, (R") potential.
Here we prove a similar result for a point interaction on the half-space.

First we give a bound for the resolvent in a region with finite resonances.

Theorem 3.4.1. Let @ € R and y = (y1,y2,y3) € H>. For any p € Cy(H?) there exist constants
A,C and T depending on p such that

< Clte ™ j=0,1,2, (3.22)

L2(H3)— H/(H3)

a2 =27
((x)- = max{—x,0})for

1
Imz>-A-6In(1+z), Izl >Co, 6<-—
2y3

and z not being such that 7* is a resonance. In particular, there are only finitely many z in the
region

{zeClImz>-A-6In(1+12)}, (3.23)

for any A > 0 that correspond to resonances z*.

Proof. We start by proving that there are a finite number of resonances in the region (3.23). As
shown in the upcoming section, all resonances are on the curve (3.3). This means that the curve

1 1
Imz=—1In (—),
2y;  \2y3|ReZ]

equivalent to

1
Rez| = -——e M= (3.24)
2y;
is above all resonances. The equation of the curve which delimits the region (3.23) can be

written in explicit form as follows

Rez| = \/(e—““é“‘ _ 1)2 ~(imz)" (3.25)

Both curves are symmetric with respect to the imaginary axis, so we limit ourself to Re z > 0.
If it happens that for Im z large enough, curve (3.25) is above curve (3.24), then for Im z large
enough all resonances are below (3.25) and hence only a finite quantity of them is in the region
described by (3.23). This scenario happens for % > 2y; regardless of the value of A.




92 Resonances of One Point Interactions in H”

In order to prove (3.22) we use (1.34) and write

3 —
[o-aze =27

< [lo-a72 -2

L2(H3)— HI(H3) L2(H3)— HI(H?)

+ rgfk@' HpGH3 AP _ 2y, (3.26)

L2(H)—HIH?)

We recall the following bound for the free truncated resolvent ([18] Theorem 3.1)

||p(—A N Zz)_1p||L2(H3)—>Hf(H3) < C(1 + [y~ Mo, J=01,

where L > diam (supp (p)) and that is also valid if we replace —A with —AE'P_We also observe
that if |z| < Cy, then 1 + |7] < CO“ lz]. So there exists C (we don’t change the constants name in
bounds) such that

2\—1 i—-1 L(mz)- .
”P(_A -7) p||L2(H3)—>Hf(H3) <Cltem,j=0.1,2.

This directly bounds the first term in (3.26). It does the same for the second one if we observe

-1
that G "D isin LIZOC(IHP) and that outside of resonances I“EI;D(z)| is bounded. Hence (3.22)

follows. O

The following theorem describe this resonance expansion of the solution of the wave
equation.

-1
Theorem 3.4.2. Let « € R, y = (y1,y2,y3) € H® and R(z) = (—AE[;D - Zz) . Suppose w(t, x) is
the solution of

(2 - A%P Jwie. 0 =
W(O x) =wp(x) € H Comp
(O x)=wi(x) €L

H)

comp(

3 3
Let { z? } be the set of resonances of AE;D and A the possible negative eigenvalue of AE{;D (see
Proposition 2.2.1 for the condition for it to appear).

Then, for any A > 0,

L] lfa’i—%

W, = ) )+ Ea),

{Imz;>-A}u{ i |/l|}

where the sum is finite and

ﬁm:—M%AW@m+$@m> (3.28)
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.l‘fa:—%

wit, ) = D eI+ fool) + tfor()+  Ea(d),

{Imz;>-A)

where the sum is finite, f; are still defined as in (3.28) and

fool®) + tfoa () = = Reseco (iR@wi + ZR(@wo).
moreover, for any compact, connected set K such that supp (w;) C K, j = 0,1, there exist

constants Cg 4 and Tk 4 such that

—tA
NEA(D|lp2xy < Crae ; (Iwollg @y + willz@sy), = Tka.

Proof. We start by considering the case wy = 0 and supp (w;) C K.

By the functional calculus, the propagator of (3.27) can be written as

U@ = fo "+ (.6 m)G . (3.29)

If zero is an eigenvalue, the last term is replaced by

H3,D\,~H3D
A0 <

Since for znear A # 0, R(z) = (1> - zz)‘l(-, G%;?)G%I; + O(z), where Q(z) is holomorphic

near A and Res,_; (1> — z22) = —(21)7!, we have

sin t/l(
A

H3 D\ ~HD _ . —izt . —izty _
"G\ay Gﬁy = —Res,_, (iR(z)e™™) — Res,—_, (iR(—z)e™™) =TI, + 11_,. (3.30)

If A =0, instead

t(.,Ggﬁ:D)Gﬁi’D = —1Res.- (iR(2)). (3.31)

In the following, the term for 4 # 0 will be reported whenever it is not needed to distinguish
the two cases.

By Stone’s formula for the spectral measure dE, in terms of R(z), we have

dE; = l.(R(Z) — R(—2))zdz.
i
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Hence

Sin t/l( H3,D) H3,D _ 1

+00
w(t, x) — "G, G s = f(; sin 1z(R(z) — R(—z))w,(x) dz

=1 im f ¢ (R(2) = R(=2))wi (x) dz
27'{' e—0* R\(—é‘,&‘)

_ L f ¢ E(R(2) — R(~2))wi (x) dz
2r e,

N i lim e—itZ(R(Z) — R(—Z))Wl(x) dz,

27 -0+

where & is such that there are no non-zero poles of R(z) in D(0, &), X, is the union of
R\ (—&0, &) with the semicircle in the upper complex half-plane of radius & and centered at
zero oriented counterclockwise. o, instead is the semicircle in the upper complex half-plane of
radius &, centered at zero and oriented clockwise.

To prove that the integrand decays fast enough for the integral on X, to be convergebt we
observe that, by the definition of R(z), follows that

(R - RE-2)(-A5°) = (R@) - RE-2)(-A5,° - 2 + 22) = 2(R@) - R(-2),
From this we can conclude that for p € C2(H?) equal to one on supp (w),
p(R@) - R(—Z))(l - Afi”,}")pwl = p(R(z) = R(=2))wi + p(R(z) - R(—z))(_Aff{}D)wl
= (1+ )p(R(2) = R(=2))wi
and so
PR = RC-0)w1 = p(R@ = RE=2)(1+ 27 (1= A7 Jown. (3.32)

This, together with (3.22) shows that the integral converges in L? (H?).

loc

The resolvent is holomorphic in a neighborhhod of the origin and hence the integral over
. . 3
o converges to 0 as € — 0", unless zero is an eigenvalue for —Agy’D. In that case, we study the

expression R(z) — R(—z) near zero. We recall that O is an eigenvalue if and only if a = —ﬁ. In
this case
P \ L el il -1
R(z) —R(—2) = ) R O — 2Pz .
@ = R(=2) 47r|x—y|47r|x’—y|( @y ()) 47r|x—y|47r|x’—y|( ay ( ))

Some computations show that

myslx = yllx = yl\ 3 2
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which means that

[ L wi(x) yi =yl + X =yl
— 1 "“(R(z) — R(— dz = 2
2 ag(l)1+ o ¢ (R@ (=D (x) dz 2ys |x — yl X' — yl( 3 2

= Iow; (x).

Let p € Cy(H?) satisfy p = 1 on K. We choose R large enough so that all the resonances z*
with Imz > —A — dIn (1 + |Re z]) are contained in the ball |z] < R. We deform the contour of
integration in the integral over X, using the following contours:

wp={s=i(A+e+6In(1+sD)| s e[RRI} (3.33)
Y ={zR—-is|0<s<A+e+6In(1+R)}, yr=vxUvz (3.34)
Y& = (=90, R) U (R, +00). (3.35)

€ is chosen in such a way that wg does not cross resonances. We also define
Qi ={z|Imz>-A-e-6In(1 +|Rez)) }\ {0}
and define

[4(1) = i Z Res.—, (pR(z)pe_[z’).

Z.,’EQA

By combining (3.29), (3.30) (or (3.31) when zero is an eigenvalue) and the residue theorem,
we can write that

pUDp = Top + T4(0) + Eg(t) + Ey(1) + Eyee (6) + I + I, (3.36)

where
1,
B0 =5 [ ¢ p(RE) - R-)ow: &
Y

We note that I1_, cancels out with the term in I14 containing the residue at z = —A.

Now we prove that the integrals in (3.36) are negligible in the limit R — +oo for ¢ large
enough. Using (3.32), we bound

+00
||E7’l?(t)wl||H1(H3) <C Hf e—iIZP(R(Z) — R(—z))pwl dz
R Hy ()

<C

];w p(R(z) - R(—z))(l + zz)_l(l - A]‘IE;’D)w] dz

H(H?)

+00
1 C
2\-1
< Cf (I +2°)7 |willg2sy = C arctan (E)'lwllle(H3) < R Wil ) -
0
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While, for the integral over vy, it holds that

A+e+0 In (1+R) ) )
|Ey@Wi| 1, = € H fo e " ®Vp(R(R - is) = R(=R + is) Jowy (—i) ds

A+e+0In (1+R)
< Cf s — itl e lwi [l gy ds
0

—(t—T)(A+s+(5 In (1+R))

~(=T)5
< Ce IWillzeges) < CA+ R Nwillps) ,

where we used (3.22). For ¢t > T, this bound vanish for R — +oo0.

We now show that for 7 > 1,
JEan@W1 |12y < Ce™ IWillzzgen) - (3.37)

In order to do so, we use (3.22) with j = 2, the fact that on wg |z] > A + € and the assumption
that there exist a compact set containing wyg in which there are no poles of R(z). We obtain

+00
—it| s—i(A+e+61n (1+]s])) T5ndl
||EwR(t)w1||H2(H3)sC f e ( )(1+|s|)e D [l || s, ds

—+00
<Ce™ f e DIMAAD(Y 1|1 [[wy | 250y dis

(o)

oo ~5(t-T)+1
< Ce™ f (1+1s1) lIwill 2 ds.

(o)

This last integral is finite if —6(¢ — T) + 1 < -2, which is equivalent to t > 7" + 3/6 and in this
case (3.37) is valid.

Since Cy°(K) C H*(K) is dense in L*(K), the bounds expressed in term of the H* norm are
still valid if it is replaced by [|wi |2 for wy € L2, (H) and hence the theorem is proven for
Wo = 0.

The proof for arbitrary wy € Hclomp(]HP) and w; = O follows the same steps, with the
replacement sin #z/z — cos ¢z in the formula for w(z, x). O

The same idea of an expansion in term of resonances can be carried out for the Schrodinger
operators of the form H = —A + V, where V is such that H is self-adjoint (we include, even
if not rigorously phrased, the case of V being a "point interaction potential"). By the spectral
decomposition, one has that

H= AdE(Q)

o(H)

and also

H = f AdE() H, = f AdEQ).
o(H)N(—00,0] o(H)N(0,+c0)
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If we further assume that o-(H) N (—oo, 0] consists of only a finite number of eigenvalues zﬁ <0
with corresponding eigenfunctions i, € L*(R?), by the spectral calculus we can claim that, for
any f € C7'(R)

FHD) = F@)C Yl

Can a similar decomposition be carried out for f(H,)? This is possible for particular choices
of f. For example, let f(1) = ¢”¥ with A%, ¢ € R*. By functional calculus, it follows that

. 1 oo
e Me(x, X)) = —— f e_”Zz(H - 27N (x, x)2zdz. (3.38)
2ni Jo
The following theorem (see [1] for analogous result in R?) states that an expansion for e+ is

possible and it is made in term of resonances.

3 . 3 . .
Theorem 3.4.3. Let H = —AEI,),’D with a # —ﬁ orH = —A%’N with « # 8;7 Then there exists

some ty(x, x', a,y) such that for t > t, the following expansion holds

. 2 3 -1 3
e (1) = ) 2z Res, (M) )62, (06, ()

+00
L N—3 itlx—x'l2 _ i D —iZ _Df_ 1% —ts
+ (2mit) 2e2 27 o (R(e 4s) R( e 4s))e ds, (3.39)
with R(z) = (H — 22)™" = (<A = 22)7". The sum in (3.39) is taken over all z,, lying in the region
—% < Argk < 0 such that z;, is a resonance.

Proof. We give the proof for —AES}SD. The Neumann case is proven similarly. By the definition
of R, (3.38) can be rewritten as

) 1 + 00 ) . 1 +00 ) ;
e ™ (x,x') = 5 fo e R(Z)(x, X')2zdz — = fo e_”ZZGIf};’D(x, x')2zdz.

It holds that

1 +00

_ 2 3 a3 2
— e GY P (x, x')2zdz = (2nin) 2™
27 0 ’

Instead, because of the parity of IAQ(z), we can rewrite the other integral as

1 +00

3 ), ¢ (R(2) - R(=2))(x. x')2z dz.
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Using the residue theorem, this integral can be written as
—it2 (D D ’ 1 —it2 [ H D ’
— | ™ (R@) - R(-2))(x.x)2zdz+ 5= | ¢ (R(z) - R(=2))(x,x')2zdz
2ri Jey, 2nri Jy,

+ ) 22,67 Res.,, (R(2) = R(=2))(x, ), (3.40)

where Cy, is the arc of circumference of radius R going clockwise from z = R to z = Re /4,

Y is the segment going from z = Re~™* towards the origin and the sum is over the z, in the
region delimited by Cg, yx and the real positive semiaxis.

We prove that the integral over Cg vanishes for R — +oco. We prove this just for the term
with R(z). Analogous observations prove the same for R(—z). By Proposition 3.2.1, there are
infinite resonances z, and |z,| — +oo for n — +co. This means that, in order to study the limit
R — +00, we have to distinguish the cases

o R#|z,],Vn eN;
e R =|z,|, for some n € N.

In the former case, the integral is given by

. . 2izy3\ =1 Lizx—yl iz]x’ =y
f e_,fzz(a — L ) ¢ —2:dz. (3.41)
Cr n 8mys/ 4Am|x—y|ldnr|x —y|

We substitute z = Re” and estimate the absolute value of the integrand

2iR*| = 1].

e iy 1 Pt b i)
‘ —itRzeZie( lRele eZlRe y3) 1 elRe [x—y] ezRe [x"—y|
e a —

+
4 81y 4r|x — y|4r|x’ =y

The second factor is bounded, because the path does not cross any resonance, hence it holds
that

|I| < C(x, x/’ y)RZeR sin O(2¢R cos O—|x—y|—|x"—y|) .

Since we are in the complex lower half-plane, sin # < 0. So if the other factor in the exponent
is positive, then in the limit the integral vanishes. By recalling that -7 < 6 < 0, we have that

2tRcosO—|x—y|— ¥ =y > V2Rt — |x — y| - |x' — I,

which is positive for ¢ > Z—‘E(lx -yl + X - yl) and hence the integral vanishes in the limit.

In the other case, the path of integration has to be modified because the previous path would
pass across the pole z,. So, the integral (3.41) has to be replaced by the following sum of



Resonances of One Point Interactions in H” 99

integrals of the same function

1 1 1
-—— codz—— codz—— ...dz,
27 Jeo ¢ 2mi fcg ¢ 2mi fC,% ¢

where C, is the semicircle of radius & centered at z,,, C}2 is the arc of circle of radius R centered
at the origin starting at Re~'% and ending when intersecting C,, and C% is the arc of circle of
radius R centered at the origin between the point R and the intersection with C,.. The path is
run clockwise. The integrals on C;, and C% are proven to vanish in the limit n — +oo for 7 large
enough in the same way as in the first case. We consider the remaining integral, it holds that

1 1 5 iz e2iovs\—1  pizl—yl Pl
=1t
- ...dz=—-=Res,, e’z(oz—— )

+
21 Je, 2 4r - 8mys) Anm|x —yl4x|x’ —yl

In order to find the residue, we study the divergent factor

; 2izys \~1
o ( Ll ) .
( (Z)) ¢ 4r " 8mys

Using the definition of z, we have that

lZn 2iy3 (Z_Zn)

FH3 = — — —Zn) — — + — ZinZn
(M @) = —(@—z) = o T
621)3171 2 l
= | p?r3=z) _ 1) _
8775 (e in (z—2za)

2’)2271 oo 2kl y3

(Z Zn) - _(Z - Zn)
8mys — k!

- ﬁ(e”m - 1) =20+ O - 2.

This means that

3 -1 -3z 4mi
Res,. ((ng’D(Z)) ) = lim - = .
>, Zﬁzna— lZ + 32n 1_61}3Zn
4r 87Ty3
The denominator would vanish only if z, = ';—’37 for some k € Z. In order for this value to be a
resonance, it has to solve
ik 1

— o+ —
4y, 8mys

but the the left side is purely imaginary, while the right one is real. So the equation holds only
if both sides vanish, which happens if and only if z, = 0 and @ = —@. Hence, if we state
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7, = 1,€", we have

. iz, x—Yl izl —]
i 4w e ¢ Z
. n
eXsin — 1 drr|x — y|4r|x' — |
< C/(x X y)ern sin 6, (2try, cos G, —|x—y|—|x"—y|)
Also in this case

2tr,co86, =[x —y| = ¥ =y = V2tr, — |x —y| = ¥ =,

with the last expression being positive for ¢ > 2—\?(|x -y + X - yl). So, in the limit n — +o0
also the integral on C, vanishes for ¢ large enough.

Going back to (3.40), we consider the sum in it. First we observe that R(—z) has no poles in
the region considered, because all its poles are in the upper complex plane. The expression of

3 . .
(—Aq,” — 22)7" and the fact that for R — +oo the region in exam becomes —Z < argz < 0 let us
recollect the expression present in (3.39).

The integral over yx can be expressed, with the substitution z = e™/* 4/s, as follows

1 +oo t (A T A T T ;T ds
— e "IRle™'  \s)—R(—e "4 /s ) x, x')2e7"'4 \se™'* ,
i ), (€% Vs) = R(=e ™% V) Jox, x)2e 7 e 7
which returns the missing term. O

3.5. Semiclassical Asymptotics for Resonances for the
Half-Space

In general, as also the previous treatment shows, it is difficult to obtain explicit information
on all resonances. In order to understand some properties of them, one can study their
asymptotic behaviour on certain regimes. An example of these regimes is the high energy limit.
To fix ideas we limit ourself to the one point interaction. This limit consist in studying the
distribution of the poles of

-1
(—Afiy - zz) , for|z] & +o0.

The high energy limit is an example of semiclassical limit. This is obtained rescaling z dividing
it by a reference constant 4 > 0 (who mimics Planck’s constant) and passing to the limit 4 — 0.

2
This way, the energy (%) goes to infinite, implying that the energies of the phenomena in exam
are way higher than the reference energy 4. In this case the resolvent is then

2\7! »
(‘Aiy - (%) ) = hz(—thﬁy - Zz) , forh— 0.



Resonances of One Point Interactions in H” 101

In applications, typically, the potential which describes the interaction (here the point interac-
tion) is usually assumed to be energy dependent and hence dependent on # in this setting. A
common choice for the interaction is of the form & with 8 > 0 (see for example [17] and [23]).
We consider both positive and negative sign of the point charge. So the operator considered is
—thfh,ﬁ’y and its resonances are the poles in the complex lower half-plane of

23 -1
(—Afh—,ﬂ’y - (Z) = hz(—thfh_ﬁ’y - zz) , forh— 0.

Below we will study the asymptotics of these resonances for Q = H? with both Dirichlet and
Neumann boundary conditions. The approach is borrowed from the work [17] on the half-line
by Datchew and Malawo. There the case of the half-line with a delta interaction at a point
and Dirichlet boundary conditions at the origin is treated. This is called Winter’s model in the
literature (see [42] for a recent analysis and reference)

3.5.1. Dirichlet Boundary Condition

We start by studying the semiclassical resonance asymptotics for —thﬁH] ’_]z . The definition
+h By

of the operator, combined with (2.30) implies that the equation for the resonances is

. 21y3§
s_ % 3.42
drh 8wy, ’ (342)

which can be rewritten as

_618ﬂy3h’ﬁ — (—2ly3% + 87Ty3h—ﬂ)e—2iy3ii8”y3hﬂ. (343)

Setting —w* = —e*33"” and x = —2iy; £ + 87y3h P, previous equation becomes —w = xe*. The
main difference in the two cases is that in the first w — +oo as & — 0%, while in the second
w — 0.

The solutions on the complex plane of —w = xe* are given by x = W;(—w), where W is the
Lambert W function (see Appendix C.1) and k varies over Z. Many facts about the Lambert W
function are reported in [14]. Specifically we use that W;(w) can be expanded in a convergent
series (note that this expansion is valid for both w approaching zero and infinity)

Wi(=w) = In (=w) + 27ik — In (1n (—w) + 2m'k) + R,
=In(w) + 2k + Dir — In (1n (w) + (2k + 1)i7r) + Ry,
where

too oo [ (1n (w) + 2k + 1)i7r)

) o (3.44)
o m=t (In(w) + 2k + D)in)
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and
j+m
j+1

_ Y

Jm m!

Here [Z] are the Stirling numbers, which are the number of ways to arrange p objects in ¢
cycles. The following Lemma holds.

Lemma 3.5.1. The series (3.44) is absolutely convergent for w large (or small) enough and
k € Z. More precisely we have the tail estimate

In (1n W) + 2k + 1)1‘71) In” (1n W) + 2k + 1)1‘71)

r —

. > J:m i+m
In(w)+ @k Dim | o fGmson|  (In(w) + 2k + Dir)”
) (3.45)
In (1n W) + 2k + 1)m)
- In(w) + 2k + i
and
In(In(w) + 2k + Dix)|

<=, (3.46)

In(w) + k + 1)ir 2

Proof. We prove the Lemma for both w big and small and distinguish when different obser-
vations have to be made. (3.46) is fulfilled for w sufficiently large (or small), because the
denominator goes to infinity faster than the numerator. To prove (3.45) we write

In (1n W) + 2k + 1)i7r)
In(w) + 2k + 1)ix

In" (1n W) + 2k + l)iﬂ)

Ry - Cjm

- L \Jtm
720,m>1,(j.m)#(0,1) (ln w) + 2k + 1)171)

ro | p” (1n (w) + (2k + 1)iﬂ) too v | (1n (w) + (2k + 1)i7r)
Cim - =5 +95,.

n | (InGw) + 2k + 1)m)’+’"

CO,m

m=2

(In (w) + 2k + 1)i7r)m
(3.47)

We recall that [’ﬂ = (m—1)!, and so ¢y, = 1/m. So

m 2

+00

513%2

m=2

In (1n (w) + (2k + 1)i7r)
In(w) + 2k + 1)ix

x® 2

R In (In (w) + (2k + 1)ir)
_Ezq “2i-g "

In(w) + 2k + 1)in
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where the last inequality is valid because g < 1/2 for w large (or small) enough. We consider
the other sum

i £ In (In (w) + 2k + Dim)|" &3 €]
S, = —. (348
7 In(w) + @k + D] Zl In(w) + 2k + Djix le Inon) + @+ Dinp T O

Since the double sum is absolutely convergent for large or small w, then it must hold that

m

In(In(w) + 2k + 1)in)| = Cim
( . ) Z |j| —— — 0 for m — +oo.
In(w) + 2k + 1)ir ‘= [In(w) + 2k + 1)in|/

Moreover, for large w, the first multiplicative term is decreasing in w (it is positive and goes to
0) and each term in the sum is decreasing as well. Since all terms are positive, we can conclude
that the expression above is decreasing for large w. This means that there is N such that, setting
w=N,V¥m > 1 we have

m
+00

In (1n (N) + k + 1)i7r)
In(N) + 2k + 1)in

Z |Cj,m|
In(N) + 2k + Dinl/™t ~

J=1

In the same way we have that, for small w, the first multiplicative term is increasing in w (it
is positive and tends to O for w — 0) and each term in the sum is increasing and positive as
well. So the whole expression is increasing for small w and that means that ther is N such that
ifw=+,Ym>1

m
+00

In (= In(N) + (2k + 1)in)
—In(N) + 2k + Dirn

Z |ijm|
|- In(N) + 2k + Din)™' ~

=1

holds. To consider together both cases, we can just put sgn (ln (w)) in front of In (). Then, for
lw| > N large (or [w| < % respectively), it holds that

+00 +00

Z ¢ < Z ¢ .
S In(w) + 2k + D™ T 4 [sen (1n 0w)) 1n (V) + 2K + 1)in"_l

sgn (In (w)) In (N) + (2k + Dix
In (sgn (In (w)) In (N) + (2k + )ir)
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Substituting this in (3.48), we get

In (In (w) + (2k + l)m) sgn (In (w)) In (N) + (2k + Djin

N +00
52 < Iln (w) + 2k + D)in| Z

In(w) + 2k + Diz in (sgn (In (w)) In (N) + 2k + 1)in)
’m (In(w) + 2k + 1)m)'
IIn (W) + 2k + 1)in]?

sgn (1n (w)) In(N) + 2k + Dir
In (sgn (In (w)) In (V) + 2k + Dir)| 2 &=

+0o0
1 m

p

where

In(In (w) + 2k + Diz)  sgn (In(w))In(N) + (2k + D)ir

p:

In(w) + 2k + Dir In (sgn (ln (w)) In(N) + 2k + l)iﬂ)

s)
s(N)
= s(w)

)

Since s is decreasing for large w, p < 1. But it also holds that lim,,_, ,., s(w) = 0, so for large

w, p < % For small w instead s is increasing and lim,,_,o s(w) = 0, which means that for

sufficiently small w, p < % But,

wlarge

wsmall

for p < % This implies

2N'sgn (In () In (V) + (2K + 1)m] ‘m In (w) + 2k + l)m)‘
S,

]m (sgn (In () In (V) + (2K + l)m)’ lIn (w) + (2k + Dyinl®
Given that 'ln (ln w) + 2k + l)in)‘ — +oo for both w — +00 and w — 0, we have that

2N [sgn (In () In (V) + (2K + Dyir)|

< ‘m (In(w) + 2k + Dyin)|,

‘m (sen (In () In (V) + (2 + l)iﬂ)‘
for w large (respectively small) enough. So,

In (In () + 2k + D)
In(w) + 2k + Din

and the thesis follows. O
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. . . 3
So we can write the resonances z;; in terms of the Lambert W function. For —thE{[gB they
are given by

ih
R e LAGORE
2X0’3
ih
= 2’—(1n () + 2k + Dirr = In (In (w) + (2k + D)izr) — 8mxo3h™ + Rk) (3.49)
X0,3

- %((Zk + Diz = In (In (w) + (2k + i) + Rk),

. -8 3
where k varies over Z and w = 3" Instead, for —th]iﬂh’By

h
% = 5 (Wa-w) + Smysh )
2)(,'0,3

ih

= (ln (W) + 2k + Dire — In (In () + (2K + D) + 80377 + Rk) (3.50)
X0,3
ih . |

_ —((Zk + Dim — In (In (w) + 2k + i) + Rk)
X0,3

(here w = ¢ 8m3h™").

Now we show that under some assumptions over z, k is roughly of size h~!.

Lemma 3.5.2. Let € € (0, 1) ve given. Then, for k such that z;, is given by (3.49) or (3.50) and

e<|ul < 1/e, (3.51)
we have
klmh 2
& Mmh 2 (3.52)
2 y3 £

Proof. Using (3.46) and the inverse triangular inequality we have that

In (1n W) + (2k + l)ijr)
In(w) + 2k + Din

1
K — Zle|_§-

Combining this with (3.45) and (3.46) we get

-3l <
k 2—2’
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equivalent to [R;| < 1. We now prove the first inequality in (3.52). For the sake of contradiction
we suppose that & < £. Combining the first inequality of (3.51), |[R| < 1 and (3.49), we get

y3

Kzh  h ‘1
€< lul < ik +— 'ln (ln (w) + 2k + l)iﬂ)' + 25
Y3 2x03 2y3
Then, using 'ky'—fh < £, we have
h +1
e< L ‘m (In(w) + 2k + 1)iﬂ)‘ Ll
Y3 V3

Since the second term in the right side goes to zero faster than the first, it must hold that, for /
small enough

e h
= < —(In(l + 2k + 1)i
2<y3‘n(n(w) (2K + Dyir),
which implies
e7 < [In(w)+ 2k + Din| < 8rysh™® + 2|kl m + 7 < 8mysh™® + eysh™!
and this is absurd for 4 small enough.

2
=

To prove the second inequality (3.52) we suppose for the sake of contradiction that 'ky'—’;h >
By |Ri| < 1, (3.49) and triangular inequality we have that ‘

Kizh  h h 1
gl > A o) + 2k + il — - ‘Arg (In(w) + 2k + 1)i7r)| I
Y3 2x03 2y3 2y3
This, combined with the second inequality of (3.51), implies
Krzh — h 1 & +1
KT B i o) + 2k + i) <~ + & ‘Arg (In(w) + 2k + l)iﬂ)‘ LI,
Y3 2xo03 e 2y 2y;
3
< N
2e

last inequality being valid for # small eoungh. So it holds that
3
2 ki - l; < [In [In (w) + 2k + Dinl],
e

hence

3y3
M= 2 k| < [In(w)| + 7.
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But, since the function f(x) = e*“ — x is increasing in (a, +o0) and 2 k|7 > % we have

f(ﬂ) < f(2 k| n) < In(w) + 7 and so "

gh
y 4
e < 8mysh™® + RAEN T,
ch
which is a contradiction for 4 small enough. O

We now establish asymptotic behaviour for resonances apart from the ones near zero and
near infinity. We distinguish between 0 < 8 < 1 and g > 1. This different treatment is needed
because different values of 5 changes the relative dominance between In (y) and |2k + 1|7 in
(3.49). We start with the case 8 € (0, 1).

Proposition 3.5.1. Let 8 € (0,1) and € € (0, 1) be given. Then there is hy > 0 such that, when
h € (0, hy], all solutions of (3.42) satisfying

’

M | =

e<|z <

obey

h 7272
0<-Imz— - In(2ysh”" [Rezl) < e %,
2y3

Y3
Proof. Since 8 € (0, 1), then the first inequality in (3.52) implies
|2k + Din| > 2|klmr — 7 > eysh™ — x> |In(w)| = 8ny3h ™, (3.53)

for h small enough, so that it is more convenient to rewrite

In (In (w) + (2k + D)ix) = In ((2k + Dir) + In (1 + %)
and
2= %((zk + Dir = In (2K + Dir) + R;), where R, = Ry - ln(l n %)

Using |R;| < 1 and (3.53), we get

In (w)
2k + )in

In (w)

1 -~ 7
* 2k + Din

R;| < IRl + |In

‘+'Arg(1+ )‘Sl+ln2+gﬁ4. (3.54)

Hence, by taking the real and imaginary part of z;; we get

2y3

Rezi = —240m 4 b Arg ((2k + D)in) — 5~ ImR; (3:55)
Imzf = —zinInl(2k+ Dr| + %ReR;{ '
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We now separate real and imaginary part of (3.42)

e 2 M cog (2y3 Rezk) —222Imz; F 8mysh™*

2503 . ¥ +\ _ %03 +
e “h ksm(2hRezk)—2 7 Re 7

Squaring the equations and adding them side by side we have

4y2 2 2
s ((Im zk) (Re z,f) ) + 327y3h P Im zf + 64n’y3h

X
403 ImzE _

e h2

or equivalently
47 Imz = 210 (2y5h 7 [Rezf) + In (1 + 1),

where
4y3(Im z,f)z + 32ysh' P ImzF + 64n’yih* %
' 4y§(Re z,f)Z .
We recall that 0 < In (1 +¢) < f to get
0<—4=2mz} —21n (257 [Ref) < v (3.56)

From (3.55) we have, using (3.52), (3.54) and Arg ((Zk + l)iﬂ) = m/2, that, for sufficiently

small &
2k+1 h
Rez > A+ Lk ‘—I R, ——Arg((2k+1)m)‘
2y3
k h h
| '” —”———|1mR' ——'Arg (2k+1)m)‘
V3 2y3
e wh 2h 7rh >a
2 23 y3 4ys 3
and
h h
Imz;| < — In(2|kl7m+ )+ — |ReR,
| k| 2))3 ( ) 2y3| k|
h h
= 2 n(2kn +—ln(1 ) " ReR!
V3 ( ) 2y3 2 |k| | k
sil (4&) ln2+2h ﬁl (4y3)
eh 3 V3 ch
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For 7/ this, together with Im z;7 < 0, implies

412 In? (22 + 64n%y2n>-% 21,2-28
t< ( ) 32” h - < 2881 2h* %,

- 4y§(Re z,j) - (Re ZZ)

while for 7

412 In* (22) + 32mx0 312 In (22) + 64n%y2h2 % B i

r< < — < 28877 R,

h3(Rez;) (Rez;)

Plugging this inequality into (3.56) gives the desired inequality. O

A different behaviour happens for g > 1

Proposition 3.5.2. Let 8 > 1 and € € (0, 1) be given. Then there is hy > O such that, when
h € (0, hy, all solutions to (3.42)* satisfying

1
e<lz7 < -
E
obey
2ysIn(87y3h*) | 149667 e 20!
Imz + R < ————K*' n(8nysh ) + ,
Mt ks i (R | € g (B 5o
which, using (3.52), implies
& 2 1+96 e 2!
- B 7" Bl B
Imz+ 32y3h1n(87ry3h J(Rez)” < o W In (8ysh ™) + oy, (3.57)
8 2 1 +96&7 g 2!
Im +—hln 8rysh?)(Rez) > —————#*" In(8ry;h™” 3.58
<t gy, (Bl ) Reg) = - (Bmali?) =5 35

Proof. Since 8 > 1, by the second inequality in (3.52), we have
2k + 1|7 <2|klm + 7 < dyse 'h™! + 1 < 8aysh™? = In(w),

for i small enough. Recalling (3.49), we write

) ik +1)
= 2y3((2k+1)m In (87y5h7*) - ln( ’8y3 hﬁ) )
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and so we can ensure that the third term is small for 4 small. Separating both the real and
imaginary part gives

Rez = 2}%( - @k+ D+ Arg (1 + 2 - ImRk)

' (3.59)
Imz; = QLW( —1In (87ry3h‘ﬁ) —1In ‘1 + ’%’;—:”hﬁ‘ + ReRk)
We observe that
i(2k + 1 1 2k +1)? 1
ln‘l n whﬁ‘ - —ln(l " uhzﬁ) = —In(1 +1),
8ys 2 64y3 2
with ¢ = %hzﬂ . Considering the imaginary part in (3.59), we get
3
h h 2k + 1
'Imzk +— ln(8ﬂy3h_ﬁ)' = — |ReR; - ln'l + uhﬁu (3.60)
2y; 2y; 8y3

To deal with Ry, we recall that w = 8xy;h™ and consider

In (1n (w) + (2k + 1)i7r)
In(w) + 2k + 1)in

|In [In (W) + 2k + Dyin] + i%|
<
|87rysh® + (2k + 1)ir|

(A7) [injin (w) + (2K + Dinl + 2]
0 () 8rys + 2k + Dixh|

but

In|In (w) + (2k + 1)in|
In(w) + 2k + )

|Infln (w) + 2k + Din] + iZ| 1 (
<
In (h#) [87ys + 2k + Dyizh?| W (hF)

751'
[In (w) + 2k + l)ﬂl)'

Since
. 1 In|In (w) + 2k + 1)in| 1
1m =
h—0* WBIn(hP)| In(w)+ 2k + Dm 8mys
and
lim 2 -0,
n—0* WP 1n (h=P) [In (w) + 2k + 17|
then

|In [In (w) + 2k + Din| + i 1
< :
In (1) 87ys + (2K + iz 8793
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for h small enough and finally this means that

In(In (w) + 2k + Dir)| K 1n ()
. 3.61
In (w) + 2k + Din 45ys ( )
By (3.45), we can also write
In(In(w) + 2k + Dix)| 7% In* (h )
R - 3.62
T In(w) + 2k + Din 872y2 (3.62)
Turning back to (3.60), we now have
h i In (In (w) + (2k + )ir)
[ —1In(8 h‘ﬁ‘s—RR—R
‘ a5 n (8myah?) 2y, | O e( In(w) + 2k + Dyin )
In (In () + 2k + 1)ir Ok + 1 W+ In? (b
E ( ( , ))—ln'1+l(k—+)hﬁ‘s#+ml. (3.63)
2y3 In(w) + 2k + Dirn 8y; 1672y;

We now find a bound for |A|. After some manipulations we can write

1 2B+1
(ln (87ry3h-ﬁ )+% In(1 +z)) ik 5 + Dk f " Are (87ry3h_ﬁ+(2k+1)iﬂ')
167ry3 1287ry3

A=

h
— — L In(1+1),

By triangle inequality and ¢ > O follows that

s 2k + 1] !
Al < — In(8mysh ™) + %
l6my; 1287y

Arg (87ry3h_'3 -k + 1)m)‘

hﬁ+ 1

h
+—1In(l1+1)+ 5
4ys Y3

In(1+17). (3.64)

This expression can be also bounded using <73

expression for ¢, (2k + 1)? < 2(4k* + 1) and the second inequality in (3.52) as

Arg (87ry3h‘ﬁ + 2k + l)iﬂ')‘ <Z,In(l1+1) <t the

B 3B+ S2PB-1 3R B 2B
21n(87ry3h‘ﬁ)+ —+ 5t T+ =+
my; 1024nx,,  64my;  2560y;  64my; 8m2ys

Al <

For 5 > 1, the dominant term for small / are the first and last term. More specifically the first is
dominant for 8 > 2 and the other for 1 < 8 < 2. What said implies that for 4 small enough
B+1 221
> In (8mysh ™) +
3

Al < ,
| |_8 47%y;
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which implies

A W I0? (hF) e 22!
Imz; + — In(8my3h?)| < + In (8mysh™”) +
| “ 2y3 ( ¥3 ) 167%y3 87y; ( )3 ) Ar2y;
pre 2061
< T In(2myh )+ o —,
Y5 21°y;3

for h sufficiently small.

Now we look at the real part of (3.59)

2k + 1)mh h 2k + 1
Rezk+ﬂ =—Arg(1+whﬁ)—ImRk
2y3 2y3 8y3
h i(2k + 1 4 |In(In(w) + (2k + Din
S—Arg(]_pwhﬁ)’_'__ ( ‘ )—Rk
2y 83 2ys | In(w) + 2k + Dyin

h

In (1n (W) + (2k + l)iﬂ)
"

In(w) + 2k + )in (3.65)

Using that |Arg (1+ is)| < 2|s| for small s, the second inequality in (3.52), (3.61) and (3.62)
we get the bound

+(2k+1)7rh' st R lnz(h‘/") Al ln(h‘ﬁ) Py

‘Re ik < + + + < , (3.66)
2y;

T 2mys  8y3 167%y; 87y3 Y3
last inequality being valid for 4 small enough.

This new inequality can be used to bound the following quantity

2y
hQ2k + 1)*m?

In (87ry3h‘/3)(Re zk)2 - % In (87ry3h—ﬁ)
3

By factorizing, (3.66) and by the second inequalities in (3.52) and (3.51) respectively

2y3 B 2k + 1| mh ‘ 2k + 1)7rh’
B< ——""  In(8ny;h™” + ——||Rezp + ———
< ik + e " (B )('Zk' 2 ) ST Ty
672

< ————1"'In(8ny;h 7).
= 2k + n (8myah?)
Now we observe that (2k + 1)> > k> Yk € Z, k # 0 (which is escluded by (3.51)). Using this
fact, together with the reciprocal of the first inequality of (3.52), we have
2474

B< ﬂ—yéhﬁﬂ In (87ysh ).
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Finally we can find the bound

Il’l’lzk +

2y3 In (87ysh ") (R )2
€ Tk

h
_ -B
Wk + 12 < ‘Im e + > In (87ry3h )‘

Y3

-8
2y3 In (87y3h )( CZk)Z o (87ysh™)

<
h(2k + 1)*m? 2y3 -
1 96 -4 —2h2,6’—1
< 2% n (8mysh ) + S5 (3.67)
4my; 21°y;

To get (3.57) and (3.58) we use respectively that Vk € Z, k # 0, (2k + 1)*> < 16k* and that
(2k + 1) > k2, together with (3.52). O

Now we consider 8 > 1 for (3.42)".

Proposition 3.5.3. Let 8 > 1 and € € (0, 1) be given. Then there is hy > 0 such that, when
h € (0, hy), all solutions to (3.42)~ satisfying

1
e<|z <~ (3.68)
&
obey
vs In (8mysh ) 2 1+24s™ g 2h2!
I +—( ) < =T 1 In (8nyshP) + :
mz 2k2ﬂ'2h €z 47[};% n ( Y3 ) 27T2y3
which, using (3.52), implies
& > 1+24e™ o221
Imz+ —hIn(8ny;h ?)(Rez) < ————**"In(8ny;h*?) + 3.69
mz 8y3 n( 3 )( eZ) - 47.0,% n( Y3 ) 27T2y3 ( )
2 2 1 + 24 2261
=~ -p _1T e s B\ _
Imz+ 82y3hln (87ysh™*)(Rez)” 2 e W In (8ysh ) oy, (3.70)

Proof. Since 8 > 1, by the second inequality in (3.52), we have
2k + 1|7 < 2|k|m + 7 < dyse'h™' + 1 < 8nysh P = [In(w)),
for h small enough. Recalling (3.50), we write
ih

ik + 1
2 = _(2mk — In (8y5h ) - ln(l - uhﬁ) ; Rk)
2y; 8y3
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and so we can ensure that the third term is small for 4 small. Separating both the real and
imaginary part gives

Rez = Z}L}( - 2k + Arg (1 - L) - ImRk)
(3.71)

Imz = QLW( —1In (87ry3h‘ﬁ) —1In ‘1 - “é’;—:l)hﬁ‘ + ReRk)

We observe that
. 2 2
ln‘l _ l(k_”)hﬁ‘ _ lln(l L Gk+1y
8y3 2

1
o ) =3Il + 0,
3

. _ Qk+1)? ;08
with # = 2=~ o h?.

(3.61) and (3.62) are true and can be proved as done in Proposition 3.5.2. So, by (3.71)

h h In (In (w) + (2k + )ir)
I ] h ‘ <L
‘mzﬁ 2, n(8mysh™)| < 3 In(w) + 2k + Dyin )

Re R, — Re(
Y3

h In (In (w) + 2k + 1)in Ok + 1 h#+ In? (b
;- ( ( , ))—ln'l—whﬁ‘ S#HAL 3.72)
2y3 In(w) + 2k + Din 8y3 167y,
where
—(m (8ﬂy3h_ﬁ)+% In (1+t))% + % Arg (—87ry3h_ﬁ +(2k+1)i7r) \
A= — Ta In (1 + ?).

By triangle inequality and ¢ > O follows that

B+ 2k + 1)K
Al < — In (8rysh ) + B+ T Arg(—87ry3h_ﬁ -k + l)iﬂ)
T2 12872
" na LRI 3.73
+—1In(l+1¢)+ n(l+1). 7
I, (I+1) 2m7 (I+1. (3.73)

Arg (87ry3h‘ﬁ + 2k + 1)i7r)‘ <mIn(l+1¢) <t,the
expression for ¢, (2k + 1)? < 2(4k? + 1) and the second inequality in (3.52) as

This expression can be also bounded using

A< () ¢ S T e e
< n _
16my2 64cy: | 1024myt  32m? | 6dyl | 87y,
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For 8 > 1, the dominant term for small /4 are the first and last term. More specifically the first is
dominant for 8 > 2 and the other for 1 < 8 < 2. What said implies that for 4 small enough

B+1 221
B
Al< 2 : In (87ysh ) + prc
which implies
2B8+1 12 (1,-8 _ .
h h** In (h ) BB+l 2281
Imz; + — In(8my:h7P)| < + In (87my;h7*) +
‘ “ 2y3 ( ¥ ) 167%y; 87y; ( )3 ) 42y
)/l -27,26-1
< T In(8mysh ) + o —,
4ry; 2n%ys
for h sufficiently small.
Now we look at the real part of (3.71)
krh h i(2k + 1
Rez, + Adliis Arg(l - uhﬁ) —ImR,
3l 2y 8y3
h 2k + 1 n (In(ln(w) + 2k + D)ix
< a1 - D | )y,
2y; 8y3 2y3 | In(w)+ 2k + 1)in
p | (in(w) + 2k + Dyin)
+ — - (3.74)
2y; | In(w)+ 2k + 1)in

Using that |Arg (1I+ is)| < 2|s| for small s, the second inequality in (3.52), (3.61) and (3.62)
we get the bound

krh
Y3

ef o P () R In(h ) s
< + + + <
2ry;  8y? 1672y} 87y; my3

Rezk +

, (3.75)

last inequality being valid for & small enough.

This new inequality can be used to bound the following quantity

2
B= |—2k§7312h In (87Ty3h‘5)(Re Zk) - 2%3 In (8ﬂy3h—ﬁ)

By factorizing, (3.75) and by the second inequalities in (3.52) and (3.68) respectively

Y3 5 |k| ch krth
B < 2]{27{2]/1 In (87Ty3h )(le| + 7 Re Tk + y_3

6 —4
< 221 In (8mysh ™).
my;
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Finally we can find the desired bound

y3ln (87ry3h‘5) (R )2
—— ;| RE€Z

h
n 5
Imz + TER < ‘Im Zx + 2 In (87ry3h )‘
2y3In (8ﬂy3h‘ﬁ) 2
— — In(8ny;h7P)| <
h(2k + 1272 ( ez") 2, n(8ysh™) <
1+ 2467 2261
< 2 W I (8myah )+ S —. (3.76)
4my; 2rty;3
O

3.5.2. Neumann Boundary Condition

By the definition of —thIﬁf;y and (2.39) it follows that the resonances are the solution of

. 2iy3 &
1Z e h
+h? - = — =0, 3.77
4rch  8mys ( )

which can be rewritten as w. = x.e™, where x, = +8mysh™ — 2iy;% and w, = e S0 the
solutions are still expressed in terms of the Lambert W function, with the only difference of it
having a positive argument this time. The above mentioned expansion is still valid (one has
only to substitute 2k + 1 with 2k, reason being the change in sign of w)

Wi(y) = In(w) + 2ikr — In (In (w) + 2ikn) + R (3.78)
=85 I (In(w) + 2ikn)

Rk = Cim p— (379)
]Z:(; ; (In (w) + 2ikn)”
The expression for the resonances z; in term of the Lambert W function is
N ih (.. )
i = —(Zlkjr ~In(In (y.) + 2ikn) + Rk). (3.80)
2)C0,3

We state corresponding properties of the one of Dirichle boundary condition without an
explicit proof. The proof of this facts are just slight modifications of the ones in the previous
subsection.
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Lemma 3.5.3. The series (3.79) is absolutely convergent for w large (or small) enough and
k € Z. More precisely we have the tail estimate

In (In (w) + 2ikn) In" (In (w) + 2ikn)
k— . < Jm v
In(w) + 2ikn j20,m=1,(jm)#(0,1) (ln w) + 2ik7r)j+
) (3.81)
In (ln w) + 2ik71)
- In (w) + 2ikn
and
In (In (w) + 2ikn)| |
< - 3.82
In(w) +2ikn |~ 2 (3.82)
Lemma 3.54. Let € € (0, 1) ve given. Then, for k such that z; is given by (3.80) and
€<zl < 1/g, (3.83)
we have
klmh 2
£ Mz 2 (3.84)
2 V3 £

Proposition 3.5.4. Let B € (0,1) and € € (0, 1) be given. Then there is hy > 0 such that, when
h € (0, hyl, all solutions of (3.77) satisfying

e<|7

IA
M| =

obey

2
e,

h 72
0<-Imz——1In (Zyah_l |Re Z|) <=
2y3 y3

Proposition 3.5.5. Let 8 > 1 and € € (0, 1) be given. Then there is hy > 0 such that, when
h € (0, hy), all solutions to (3.77)* satisfying

1
el £ -
e
obey
2y3 5 2l 1+96™ ., |, &R
‘Imzk + W In (87‘()73]1 )(Rezk) < Ty%hﬂ In (87Ty3]’l )+ 47T2y3 ,
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which, using (3.84), implies

Imz+ 28—2h In (87y;h*)(Re z)2 S 26

o . 2281
— 7 B In(8ayshF) + 3.85
o s n(8my;h ™) p (3.85)
8 2 1+966
Imz + ——hIn(8y;h#)(Rez) > T 0E
€73

h,B ) g 8_2 hZB—l
n(8mysh ") — . 3.86
pr n (8mysh ) rr (3.86)

Proposition 3.5.6. Let 8 > 1 and € € (0, 1) be given. Then there is hy > 0 such that, when
h € (0, ho), all solutions to (3.77)" satisfying

1
e<|7d <= (3.87)
e
obey
. 2ys31In (8ﬂy3h—ﬁ) " 2 1+968_4h5+11 - 2281
< L+ _
mar 2k — 1)272h ( ezk) T 4y n( 3 )+ Aty
which, using (3.84), implies
&’ 2 1+24e7 £ 22!
-B +1 -B
Imz + 5 2y3hln(87ry3h )(Rez) < - W In (8ysh ™) + o, (3.88)
8 2 1 +24g7* g 2p?!
- B i #o B _
Imz+ —hln (87ysh™#)(Rez)” > e W' In (8mysh ™) o 689



Appendix A.

Harmonic Functions

A.1. Green’s Functions for the Helmholtz Operator

Here z € CwithImz >0

A.1.1. Green’s Functions in the whole [R”
The plane

Let y € R%. The Green’s function Gy for the operator (—A — %) : H*(R?) — L*(R?) is the
solution of the equation

(-A = G2 = 5(- - y),
namely
i
G23x) = 7Hy (zlx - ) (A.D)

(H(()l) is the Hankel function of the first kind of order 0).

We also recall that the Green’s function Ggﬁ for the Laplace operator —A : H*(R?) — L*(R?)
is the solution of the equation

~AGy), = 6( - ),

namely

1
Gy () = =5 Infx =y (A.2)
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The space

Let y € R®. The Green’s function G3; for the operator (—A — %) : H*(R?) — L*(R?) is the
solution of the equation

(—A = 2)GY = 6(-—y),
namely

eizlx—yl

GY(x) = (A.3)

dr|x —y|

We also recall that the Green’s function Ggﬁ for the operator A : H>(R?) — L*(R%) is the
solution of the equation

—AGgS = 6(- = y),
namely

1

S — A4
4 |x -yl @4

Goy () =

A.1.2. Domain with Dirichlet Boundary Conditions

Let Q be a domain in R” with n = 2 or n = 3 and y € Q. The Green’s function G5 for the
operator (—A®P — 722) : H*(Q) — L*(Q) can be expressed as

GEP(x) = Gy = h3P (),

where, G?j; are defined in (A.1) and (A.3), and h%,D is the solution of the boundary value
problem

{(—A - AP =0 inQ A3)

QD _ ~0n . :
hy” =Gy in 0Q

A.1.3. Domain with Neumann Boundary Conditions

Let Q) be a domain in R” with n = 2 or n = 3, y € Q and v the unit outward normal on 0Q.
The Green’s function G2 for the operator (~A®N — z2) : H2(Q) — L*(Q) can be expressed as

G () = G = hN (),
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where, Gg’;’ are defined in (A.1) and (A.3), and th is the solution of the boundary value
problem

{(—A ~EEN =0 inQ (A6)

9 AN _ 9 ~0n - :
whey = 3,62y in 0Q2

A.1.4. Domain with Robin Boundary Conditions

Let Q be a domain in R” withn = 2 or n = 3, y € Q, v the unit outward normal on 92 and
a positive constant. The Green’s function GS)’,R " for the operator (—A®R7—z2) : H*(Q) — L*(Q)
can be expressed as

GEM(x) = GY(x) - W),

where, G(Z)j;Z are defined in (A.1) and (A.3), and hg’,R " is the solution of the boundary value
problem

{(—A — 2R = 0 inQ

QR7y a1 QR _ 0,n 8 ~0.n . :
th,y + Ehz’y = T]Gz’y + gGZ,y7 in 0Q

A.2. Maximum Principles

Theorem A.2.1 ([19]). Let Q c R" be an open bounded set. Assume u € C*(Q) N C(ﬁ) and
c>0.

(i) If
(-A+cu<0 in Q,
then

maxu < maxu’,
a )

where ut = max{u,0};
(ii) Likewise, if
(FA+cu>0 in Q,
then

maxu > —maxu ,
Q aQ
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where u= = —min{ u,0 }.

Theorem A.2.2 (Maximum Principle for the Dirichlet Problem, [13]). Let Q be an open subset
of R". Assume that

fel*Q) and ueH'(Q)NCQ)

fVu-ch+fucp:ff(p VgoEHé(Q).
Q Q Q

satisfy

Then for all x € Q
min{ infu,inff} <u(x) < max{ sup u, sup f }
oQ Q 5Q Q

Definition A.2.1 (Lyapunov Function for the Laplacian). A positive function ¢ € C*(R") such
that limyy - +0 ¢(x) = +00 and Ap — Ap¢ < 0 for some Ay > 0 is called a Lyapunov function for
the Laplacian.

Proposition A.2.1 ([22]). Let Q be an open set in R" with C* boundary. Let ¢ be a Lyapunov
function for the Laplacian and in addition suppose that g—‘rf > 0 on 0Q, where n is the outward

unit normal vector to 0Q2. Let u € Cb(ﬁ) N H*(Q N Bg) for all R > 0, such that —Au € Cb(ﬁ)
and

—Au(x) + Au(x) <0 xeQ
(";—Z(x) <0 xeoQ

for some A > Ay. Then u < 0.



Appendix B.

Self-Adjoint Extensions of Symmetric
Operators

B.1. Krein’s Formula

Let A be a densely defined, closed symmetric operator in .77 with deficiency indices (N, N),
N € N. Let B and C two self-adjoint extensions of A and denote by A the maximal coomon
part of B and C. Let (M, M), 0 < M < N be the deficiency indices of A and {oiw), ..., ou(w)}
span the corresponding deficiency sbspace of A

A (W) = wo,(W),  @u(w) € DAY, m=1,....M, weC\R (B.1)

and {¢;(w), ..., @pu(w)} linearly independent. Then, the following theorem holds.

Theorem B.1.1 (Krein’s Formula, [2]). Let B, C, A and A as above. Then

M
(B-w)"' = (C-w)' = Z A W)(@n(W), Yom(w).  w € p(B) N p(C),

m,n=1

where the matrix A(w) is nonsingular for w € p(B) N p(C) and A,,,(w) and ¢,,(w), m,n =
1,..., M, may be chosen to be analytic in w € p(B) N p(C). In fact, ¢,,(w) may be defined as

On(W) = @u(wo) + (W = wo)(C =w) ' g,(wo), m=1,....M, wep(C),

where ¢,,(wg), m=1,...,M, wy € C\ R, are linear independent solutions of (B.1) for w = wy
and the matrix A(w) satisfies

[AW)],,, = [AW)],,,, = (W = w)(a(W),  w,w" € p(B) N p(C).
We observe that if A = A, then in the previous theorem M is replaced by N.

123



124 Self-Adjoint Extensions of Symmetric Operators

B.2. Von Neumann Decomposition Formula

Theorem B.2.1 ([40]). Let A be a densely defined, closed symmetric operator in € with
deficiency indices (N, N) and

A" @, (£0) = +ip,(£i), @u(xi)e D(A"), m=1,...,N.

Then A admits self-adjoint extensions. Their domains are made of functions of the form

N
W =@ t+ Z(amwm(_i) + bm‘ypm(l))’

=1
with ¢y € D(A). Moreover

N

AW = Ao +i ) (=anpu(=i) + bugn(i)).

J=1

B.3. Boundary Value Spaces

Definition B.3.1 (Boundary Value Space, [25]). Let A be a densely defined, closed symmetric
operator in .7# with equal, finite or infinite, deficiency indices. A triple (¥,I';,T’,), where 7 is
a Hilbert space and I'; : D(A*) — 7 i = 1,2 are bounded linear operators, is called a boundary
value space of the operator A if

W, A*0) e — (A, @) e = Ty, Tap)y — (Do, T19)y, Vi, € D(AY) (B.2)
themap (I'1,I,):D(A") > ¥ @ is surjective. (B.3)

Theorem B.3.1 ([25]). For any symmetric operator with deficiency indices (N, N) (N < +0)
there exists a boundary value space (V' ,T'1,I,) withdim ¥ = N.

Now let n € N and B, C be complex n X n matrices. Define E = (B C), where E is the n X 2n

matrix obtained by horizontal juxtaposition of Band C. Let W = { E = (B C) ’ BC* =CB*,RanE =n }
The following proposition holds.

Theorem B.3.2 ([11]). Let A be a densely defined, closed symmetric operator in F with
equal deficiency (N,N), N < +oo and let (V' ,T'1,T,) be its boundary value space. There is a
bijective correspondence between the self-adjoint extensions of A and the set W defined above.
A self-adjoint extension A€, corresponding to (B C ) € W, is given by the restriction of A* to
those elements € D(A") satisfying the boundary conditions

BFlgb = Crglﬁ
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B.4. Quadratic Forms

Theorem B.4.1 ([28]). Let q(-,-) be a densely defined, symmetric, closed quadratic form
bounded from below in 7. There exists a self-adjoint and bounded from below operator Q
such that

(i) D(Q) c D(q) and
q(u,v) = (Qu,v),
for every u € D(Q) and v € D(q).
(ii) D(Q) is a core of q.
(iii) If u € D(q), w € J€ and
q(u,v) = (W, v)

holds for every v belonging to a core of q, then u € D(Q) and Qu = w. Q and q have the
same lower bound.
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Appendix C.

Special Functions

Unless otherwise stated, the results within this appendix are taken from [38].

C.1. Lambert W Function

The Lambert W function is defined to be the function satisfying
Ww)e"™ = w.

It is a multivalued function with countable many branches. Fig. C.1 shows some of the branches
ranges. The principal branch is denoted with W, and is separated from the branches W; and
W_, by the curve yy = { —bcotb + ib,—n < b < m }. W and W_; are separated by the half-line
(=00, —1]. The curves separating the other branches are given by

Vi ={=bcotb +ib,2knr < +b < 2k+ 1)r} for k=1,2,...

C.2. Exponential Integral

Let w # 0, then the exponential integral E;(w) is defined by

El(w):f e—;du, (C.1H

where the path of integration does not cross the negative real axis or pass through the origin. If
Rew > 0, then also the following identities hold

E (W) -me " 4 -me 4 (C.2)
w)=¢e u==e u. .
: 0o uU+w o u+l
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Im(W)
s~ =
‘‘‘‘ 4m - Branch k=2
T T
e
_____ I - Branch k=1
m ____._.-—-—--—'—"“”‘_:“:___;-
Principal
el i Re(W)
S Branch k=0
_ﬂ - e e e —— =
_____ =21 Branch k=-1
-3y T T 7"
Branch k=-2
_____ _4-‘-: -
-5 - ==

Figure C.1.: The ranges of some branches of W(w), separated by the curves . The figure is taken
from [14]

E has the following properties:
e for |w| — +oo it holds that

e e
E\(w) = — +0(—): (C.3)
w w
e for w — 0 it holds that

E(w)=—-y—Inw+ O(w); (C4)

e for x > 0 the two following inequalities are verified

1 2
CE () > = ln(l + —) X Ey(x) > — (C.5)
2 X X

+1°



Special Functions 129

C.3. Bessel and Related Functions

C.3.1. Bessel Functions

Let v € C. Consider the differential equation

2
S A W =v)f =0. (C.6)

Va2 T W aw

The two linearly independent solutions of this equations are named J,(w) and Y, (w). These
functions are respectively called Bessel functions of the first and second kind of order v. It
holds that, for n € Z,

|7,(w)] < ™" (C.7)
J_a(w) = (=1)"J,(w). (C.8)

C.3.2. Hankel Functions

The Hankel function of the first kind of order v is defined as
H (W) = J,(w) +iY,(w), (C.9)
while the Hankel function of the second kind of order v is defined as
HPw) = J,(w) — i¥,(w). (C.10)
It holds that

e for small w

)y
HPw) =1+ —l(ln% + y) + O(wW? Inw); (C.11)
n

e the Hankel function of the first kind has the following parity property with respect to
order

HO)(w) = (=1)"H(w); (C.12)

o ifu,v,we R"withw =u—v,|v| <|u| and let @ be the angle between u and v, then

+00

H (1) = > HO(1ul) 1 (1v]) cos (na); (C.13)

n=—oo
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e Hankel functions have the following behaviour for large argument

2 ifzvz-z
HV(w) ~ \/—e(z 2 4) for |w o 400 and -m+56<Argz<2m-6
w
(C.14)
2 _ffzvz-z
Hf)(W)N \/—e (Z : 4) for |w| — 400 and -2m+06<Argz<m-09;
mw
(C.15)

e the Hankel function of the first kind has the following parity property with respect to
argument

H(-w) = (1) H® (w). (C.16)

C.3.3. Modified Bessel Functions

We define the modified Bessel functions as follows

I,(w) = ei"i”/sz(eii”/zw), -1 < +Argw < g (C.17)
K,(w) = gie""”/zHil)(e"”/zw), -1 < Argw < g, (C.18)

where /, and K, denote respectively the modified Bessel function of the first and of the second
kind of order v. We recall some properties of these functions:

e For n non-negative integer the following power series representations hold

wy" . (WTZ)k
L,(w) = (5) Zm (C.19)

k=0

and

—

S

Kal) = %(g) p (n_lli—'_l)‘(‘%z)k +(=1y"*'In %”z,,(w)
+00 i .
LWy (t//(k+1)+¢(n+k+1))(%)
+eh 5(5) Z k\(n + k)! , (C.20)

k=0
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where ¢ is the digamma function. Using the definition of the ¢, for n = 0, last equation
can be written as

w2k

o (C21)

Ko(w) = —(ln g + y)lo(w) 4 ijAk

where A; = Z;‘zl % From last equation it follows (recalling that (1) = —y, with y being
the Euler constant)

Ko(w) = — 1n§ —y+ 0w Inw) forw — 0. (C.22)

e From (C.19) and (C.20) it follows that

1 " - DY w\"
Lo~ (") and Ko~ PZDHY) T for w0 n=1.2..... (C23)
a2 2 (2
e Their derivatives satisfy
W) = L) — —Lw) n=1,2,... (C.24)
w
K/(W) = Kooy (W) — —Ky(w) n=12,... (C.25)
w

and Ij(w) = I,(w) and K}(w) = —K;(w).

e For x positive real, I,,(x) and K,(x) are positive real. In particular Iy(x) > 1 Vx > 0 and
I(0)=1.

e The following cross-product identity

1
IV(W)KV+1(W) + Iv+l(W)Kv(W) = ; (C26)
e The connection formulas
Ko(—w) = Ko(w) — inly(w) (C.27)
Joow) = IpGiw), -1 < Argw < g (C.28)

2
Yow) = —ily(iw) — j—TKo(iw), -1 < Argw < (C.29)

1N

e The integral representation

—+00
K,(w) = f e cosh (v) dt, |Argw|<g. (C.30)
0
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e The inequality (see [48])

h n
Lw) < 2220 (C.31)
n! 2
e The inequality (see [24])
2l = Dle™ <w'K,(w) <2 'n-1)! n=12.... (C.32)

e The following asymptotics

1 [ew) 7 (ew\
I, ~ — K, ~ [—|— f + C.33
W) RS e e

e’ bd
L,(w) ~ K,W) ~ {[=—€e™ |w| > +oo. (C.34)
V2w 2w

C.3.4. Spherical Bessel Functions

We define the spherical Bessel functions of non-negative order n as

Jnw) =[5 da O) (C.35)
w

30 = 3= ), (C.36)
w

where j, and y, denote respectively the spherical Bessel function of the first and of the second
kind of order v. It holds that, for n non-negative integer, if u,v,w € R" withw = u — v and let «
be the angle between u and v, then

COliv||w - 2(2" + DPy(cos @) [ (W)vn(lud). 1 <Ju (C.37)
. +00
51|riv||w| - ;(2,1 + )P, (cos @) (M) ((ul), (C.38)

where P, denotes the n-th Legendre polynomial.

C.3.5. Spherical Hankel functions

The Spherical Hankel function of the first kind of order »n is defined as

BOW) = ju(w) + iy (w). (C.39)
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C.3.6. Modified Spherical Bessel Functions

We define the modified spherical Bessel functions as follows

iDw) =i ja(iw)
k(W) = _’—zri"h;“(iw).

These functions have the following properties:
¢ for n non-negative integer the following power series representations hold

k2k

(1)
(W) =w Z k'(2n + 2k + DN

T (2n—2k—1)!!(—1)k2 k2
00 = 50 2, T

2k2k 2k2k

n+1
+D Zk'(2n+2k+1)” D Z K12k - -’

e they and their derivatives have this asymptotic behaviour towards 0

" W 7(2n — D!
W)~ G ad k)~ T

n

i (wy = = 3+ o) i(w) = ———w" o™ for n=1,2,...

Q2n + D

k;(w) = —7—2r(n +DQ2n-DNw 2 +ow™?) for n=0,1,...;

e they are linked to the modified Bessel functions / and K, through

. T T
iD(w) = JEIH%(W) and  k,(w) = JEK,H%(w);

e their derivatives satisfy

i owy =i (w) - “)(w) for n=1,2,.

Kon) = -

n=1,2,....

(C.40)
(C.41)

(C.42)

(C.43)

(C.44)
(C.45)

(C.46)

(C.47)

(C.48)

(C.49)
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