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Introduction

In the 1930s physicists were interested in studying nuclear interactions. This kind of
interaction is characterized by a very strong intensity and at the same time a very short range
of influence. One of the first modelizations of this interaction were the works of Bethe and
Peierls [9] and Thomas [47] in which a "zero range potential" was introduced, and of Fermi
([21]) from which the common denominations "Fermi pseudopotential" for point interactions
derives. Later studies aimed at the rigorous definition of this concept led to the work of Berezin
and Faddeev of 1961 [8], where it was formulated through von Neumann-Kreı̆n’s theory of
self-adjoint extensions.

The mathematical formulation of a "delta-like" potential (from now on we will use freely
the term delta interaction or point interaction in dimension two and three) is based on the fact
that the corresponding Schrödinger’s operator "−∆+λδy" must coincide with the free Laplacian
on C∞0 (Rn \ { y }). This mimics the idea that the particle does not feel the interaction if it cannot
be found at the point y. The theory of self-adjoint extensions, when applied to dimension
two and three (the one dimensional case is much easier and will not considered in this thesis
if not as a comparison case) shows that there exists a one parameter family of self-adjoint
extensions of this symmetric restriction of the free Laplacian in Rn indexed by a parameter
α. This constant appears in the abstract treatment as an index for the individual self-adjoint
extension, and it could be recovered as a coupling constant (possibly renormalized, this is
especially relevant in dimension three) or a suitable function of the coupling constant, so that it
should not be confused with the formal coefficient λ multiplying the δ function in −∆ + λδy if
not in dimension one where the delta interaction can be recovered as a form perturbation of the
Laplacian.

The point interaction can be obtained as a local approximation, starting from a Schrödinger
operator −∆ + V scaled suitably, but with a taming of the standard δ scaling 1

ϵd V( x
ϵ
); moreover,

only in dimension three, the Schrödinger operator −∆+V needs to have a zero-energy resonance
(see Section 1.1 for further details). In dimension one the scaling is the usual delta scaling, and
the point interaction obtained can be considered on the same footing of a perturbation of the
Laplacian by means of a potential. Instead, in dimension two and three, the scaling is different
from the delta scaling and subjected to certain conditions on the approximating potentials and
this bears very relevant differences in spectral properties of regular potentials and singular
interactions of the delta-type. For example, it is known that for n = 1, 2, the operator −∆ + V
with V ∈ C∞0 (Rn) has an eigenvalues whenever

∫
Rn V(x) dx < 0, while in R3, the potential needs

to reach a certain intensity to cause the insurgence of eigenvalues. This is a consequence of the
Cwikel-Lieb-Rozemblum inequality [34] which bounds the number of negative eigenvalues for
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rather general potentials, however not including point interactions

N−(V) ≤ Ln

∫
R3

[V(x)]
3
2
− dx.

For the point interaction in R3, despite it being a "one-point support" interaction, instead an
eigenvalue exist if and only if α < 0, and in R2 a negative eigenvalue exists for any member
of the family of point interactions, irrespectively from the sign and value of α. In general,
a systematic theory of N-point (N possibly infinite) interactions in Rn and of their spectral
properties has been carried out (see the treatise [2] and reference references, updated to 2005
and hugely increased in the last twenty years).

The study of point interaction has also been extended to proper subsets of Rn. In [11] the
class of point interaction in a bounded domain coupled with Dirichlet boundary conditions
is constructed using the technique of boundary value spaces and it is also shown how the
introduction of this point interaction alters the spectrum of the free Laplacian in a ball. A
similar approach is taken in [20], in which it is also investigated how the position of the point
interaction with respect to the boundary affects the principal eigenvalue.

There is not much literature about point interaction in unbounded domain different from
Rn. These domains have characteristics which place them somewhat in the middle of the Rn

and bounded case. For instance, the free Laplacian on this kind of domains has typically
purely absolutely continuous spectrum [0,+∞) as in the Rn case, while for bounded domains
its spectrum is purely discrete (this is true with some restrictions, discussed later in the thesis;
for example this is the case of exterior domains and conical domains as the half-plane; it is not
true anymore for generic quasi-conical domains or for quasi-cylindrical or quasi-bounded sets).
On the other hand the presence of a boundary in unbounded domains affects spectral properties
as in the bounded case. So, for example it is interesting to determine under which conditions
the point-interaction causes the birth of an eigenvalue and how this condition is affected by
boundary conditions. This is one of the main tasks dealt with in the thesis.

When one considers non-compact domains, resonances becomes relevant. Resonances of
the operator H are the poles of the meromorphic continuation in the lower complex half-plane
of the resolvent (H − z2)−1. Loosely speaking, they behave as a sort of complex eigenvalues
corresponding to resonance functions playing the role of eigenfunctions, that are only locally
square integrable, and when H is the generator of a Schrödinger or wave dynamics, they
correspond to solutions decaying in time. Their use is common in Physics but a rigorous
and complete definition has many different declinations (sometimes not equivalent) in the
mathematical literature ([31], [18] are representative examples of a time dependent and a
stationary definition, respectively). As mentioned before, they are of interest because the
solution of the wave or Schrödinger equation propagating on non-compact domains can be
expressed, asymptotically for large times, as an expansion on resonance functions [1] as an
alternative to the spectral theorem based expansion. Also in this case, when point interactions
are considered, resonances have been studied mainly in the Rn case. The distribution of complex
(Im z < 0) resonances has been investigated by Albeverio and Karabash [4–6] and by Lipovský
and Lotoreichik [35]. Real resonance in dimension 3 are discussed in [37]. Properties of the
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resolvent in dimension 2 are instead studied in [15]. Also for the resonances little is known
when the domain considered is an unbounded subset of Rn.

In this work we aim to give a first attempt at describing spectral properties and resonances
of the Laplacian perturbed by point interaction on unbounded domains.

In the first chapter, which is preparatory but still contains not previously published material,
we define the N-point interactions in an unbounded domain, with Dirichlet, Neumann or Robin
boundary conditions using the theory of self-adjoint extensions. We also give a different
treatment through a different road and, following the work [46] by Teta, where he defines
quadratic forms corresponding to the point interaction Laplacians in Rn, we construct quadratic
forms corresponding to delta-interactions in unbounded domains.

The second chapter is devoted to the study of the spectrum of 1-point interaction in un-
bounded domains. The point spectrum in these domains is constituted at most of an eigenvalue,
due to Kreĭn formula. The existence and behavior of the eigenvalue is determined by two
elements: the value of the parameter α and the position of the point interaction with respect to
the boundary. General conditions are found for exterior domains in R3 and R2 with Dirichlet
boundary conditions and for domains Ω, star-shaped with respect to the point in which the
"delta intersction" is located, for Neumann boundary conditions, that include the half-space and
other domains with unbounded boundary. Then the critical αc for which an eigenvalue exists is
determined in some particular cases in which the Green’s function is known explicitly such as
the half-space, the half-plane, the exterior of the disk and the exterior of a sphere. The behavior
of αc changes in a noticeable way when compared to the one in Rn for a single interaction.

In the third chapter we define resonances for point interactions in domains (according to a
definition agreeing with the Sjostrand-Zworski theory for regular perturbation of the Laplacian
and of their more general "black-box" definition [18, 43, 44]) and study their distribution on the
half-space and half-plane for 1-point interaction. In the former case, for Dirichlet and Neumann
boundary conditions, we determine that there are infinite resonances (while for N = 1 in R3

there is at most one resonance). Moreover each of this resonances is localized in a precise
vertical strip of the complex plane. Also a logarithmic relation between real and imaginary
part of the resonances is established. As a byproduct of this, an asymptotic on the number of
resonances in a ball of radius R centered at the origin for R → +∞ is performed. For Robin
boundary condition in the half-space and Dirichlet and Neumann ones in the half-plane, we
give an estimate on the real part of the resonances contained in a horizontal strip of width β.
As a non-trivial application we give the resonance expansion for the wave evolution. Finally,
we studied the semiclassical distribution of resonances for the one-point interaction on the
half-space. A previous result in the one dimensional case of a delta interaction placed on
the half-line with Dirichlet boundary condition at the free end (also called the Winter model
in physical literature) is given in the recent work [17] on the half-line. The present results
constitute a first generalization of this analysis to a three dimensional case.
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The analysis of spectral theory and resonances of point interactions in domains is essentially
a virgin soil, and so there are several refinements, extension and developments of the results
here presented that can be object of future study. Here we mention

a) the completion of the analysis of the exterior domain case to general (Robin) boundary
conditions;

b) the more ambitious analysis of the behavior of point interaction with respect to Glazman
classification of unbounded domains: quasi-conical, quasi-cylindrical and quasi-bounded;

c) the extension of the analysis of the distribution of resonances on more general domains
than the half-space and the corresponding resonance expansion for time dependent
problems.

The characteristic of point interactions on domains is that of being in a sense explicitly solvable
models, less than the point interactions Rn case, but more than the regular potential perturbation
of the Laplacian. So the expectation is that their analysis here begun should give on one hand
the chance of new results in the restricted field of study of point interaction, and on the other
hand a source of inspiration and intuition of possible behavior for the standard regular potential
case.



Chapter 1.

Point Interactions in a Domain

1.1. Point Interactions in R3

In this section we recall some properties of the N centers point interaction in R3. Refer to
the book [2] by Albeverio and Høegh-Krohn for additional details.

We consider the non-negative operator

HY = −∆|C∞0 (R3\{y j}
N
j=1) .

Its closure is the symmetric operator

ḢY = −∆|D(ḢY ) ,

where

D(ḢY) = {φ ∈ H2(R3)|φ(y j) = 0, y j ∈ Y, j = 1, . . . ,N}.

ḢY is not self-adjoint, but in fact has deficiency indices (N,N) and deficiency subspaces

Ran (ḢY ± i)⊥ = span
{
G0,3
√
±i

(· − y1), . . . ,G0,3
√
±i

(· − yN)
}
, Im

√
±i > 0

(for the definition of Green’s functions G0,3
z see (A.3) in Appendix A.1). From the theory of

self-adjoint extensions it then follows that there exists an N2-parameters family of self-adjoint
extensions of ḢY . Imposing locality of the interactions, we define the self-adjoint extension
−∆α,Y as follows (α = {α j}

N
j=1). The domain D(−∆α,Y) is made by all functions ψ of the form

ψ(x) = φz(x) +
N∑

j=1

q jG0,3
z (x − y j), x ∈ R3 \ Y,

7



8 Point Interactions in a Domain

with φz ∈ H2(R3), q j ∈ C and z2 ∈ ρ(−∆α,Y), Im z > 0. And with ψ of this form, the action is
given by

(−∆α,Y − z2)ψ = (−∆ − z2)φz.

Moreover, let ψ ∈ D(−∆α,Y) and ψ = 0 in an open set U ⊆ R3. Then −∆α,Yψ = 0 in U.

Through Kreı̆n’s formula (Theorem B.1.1), we can also give the expression for the resolvent

(−∆α,Y − z2)−1 = (−∆ − z2)−1 +

N∑
j,l=1

[ΓΩα,Y(z)]−1
jl (G0,3

z (· − yl), ·)G0,3
z (· − y j),

z2 ∈ ρ(−∆α,Y), Im z > 0, (1.1)

where

ΓΩα,Y(z) jl =

−G0,3
z (y j − yl) j , l

α j −
iz
4π j = l

.

Remark. Point interactions can be obtained also through local approximation. Here we recall
the result for a one point interaction situated in the origin. The construction is done starting
from a Schrödinger operator −∆ + V and scaling it suitably, but with a taming of the δ scaling
(see [2] and [3] for the missing details):

• For n = 2 the scaling is of the form −∆ + g(ln ε)
ε2 V( ·

ε
) with g(y) = g1y + g2y2 + o(y2) and a

relation between g1, g2 and V determines the α in −∆α,0 as ε→ 0.

• For n = 3 the scaling is of the form −∆ + 1+gε
ε2 V( ·

ε
) with g ∈ R. Again g and V determine

α in the norm resolvent limit, but a further crucial condition appear in 3d: −∆ + V needs
to have a zero energy resonance or otherwise the scaling limit coincides with the free
Laplacian.
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1.2. Point Interactions in a Domain in R3 Through
Self-Adjoint Extensions

1.2.1. Boundary Conditions

We want to construct Laplacians with point interactions also for domains Ω different than
the whole R3. Let φ, ψ ∈ C2(Ω) and consider

(−∆φ, ψ)L2(Ω) =

∫
Ω

(−∆φ)(x)ψ(x) dx =
∫
Ω

∇φ(x) · ∇ψ(x) dx −
∫
Ω

∇ ·
(
ψ(x)∇φ(x)

)
dx

=

∫
Ω

∇ ·
(
φ(x)∇ψ(x) − ψ(x)∇φ(x)

)
dx +

∫
Ω

φ(x)(−∆ψ)(x) dx

=

∫
∂Ω

(
φ(x)

∂ψ

∂ν
(x) − ψ(x)

∂φ

∂ν
(x)

)
dσ + (φ,−∆ψ)L2(Ω),

where we repeatedly integrated by parts and used the divergence theorem. We note that for
generic ψ, φ ∈ C2(Ω) the Laplacian is not symmetric. In order to have symmetry, the boundary
term must vanish. So we look for subsets of C2(Ω) such that the restriction of the Laplacian to
those ones actually is symmetric. Sufficient conditions are

• φ|x∈∂Ω = 0 and ψ|x∈∂Ω = 0;.

• There exists some real valued η ∈ C(∂Ω) such that

∂φ

∂ν

∣∣∣∣∣
x∈∂Ω
= −ηφ|x∈∂Ω and

∂ψ

∂ν

∣∣∣∣∣
x∈∂Ω
= −ηψ|x∈∂Ω .

Anyway, we will only consider η being positive real constant in the following.

So to obtain a symmetric Laplacian then boundary conditions must be imposed. We define
respectively

• the Dirichlet Laplacian on Ω as the operator with domain

D(−∆Ω,D) =
{
ψ ∈ C∞(Ω)

∣∣∣∣ ψ|x∈∂Ω = 0
}
.

• the Robin Laplacian as the one with domain

D(−∆Ω,R,η) =
{
ψ ∈ C∞(Ω)

∣∣∣∣∣ (∂ψ
∂ν
+ ηψ

)∣∣∣∣∣
x∈∂Ω
= 0

}
.

We also name −∆Ω,R,0 = −∆Ω,N, the Neumann Laplacian and it follows that its domain is

D(−∆Ω,N) =
{
ψ ∈ C∞(Ω)

∣∣∣∣∣ ∂ψ∂ν
∣∣∣∣∣
x∈∂Ω
= 0

}
.
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For all these operators the action is the usual action of the Laplacian.

These operators are symmetric but not self-adjoint. That’s because C∞(Ω) is too small and
the domain of the adjoint properly contains it. The "right" space is H2(Ω). Functions in H2

are only defined almost everywhere, but due to Morrey’s embedding theorem (see for example
Theorem 12.55 in [33]) each of them has a continuous rapresentative. Hence the boundary
value can be intended as the classical evaluation of a function. The same does not hold for the
notion of the value of their derivative on the boundary. This means that, to also treat Neumann
and Robin boundary conditions, the evaluation of the boundary must be intended in a different
way, which extends the classical evaluation on continuous functions. The following theorem
states that under regularity hypotheses for ∂Ω, this extension exists

Theorem 1.2.1 ([33]). Let Ω ⊆ Rn, n ≥ 2 be an open set whose boundary ∂Ω is Lipschitz
continuous. There exists a unique linear operator

Tr : H1(Ω)→ L2
loc(∂Ω)

such that

(i) Tr (u) = u on ∂Ω for all u ∈ H1(Ω) ∩C(Ω).

(ii) the integration by parts formula∫
Ω

u
∂ψ

∂xi
dx = −

∫
Ω

ψ
∂u
∂xi

dx +
∫
∂Ω

ψTr (u)νi dσn−1

(where ν is the outward normal vector and σn−1 is the (n − 1)-dimensional Hausdorff
measure) holds for all u ∈ H1(Ω), for all ψ ∈ C1

0(Rn) and all i = 1, . . . ,N.

(iii) for every R > 0 there exist two constants cR, εR > 0 depending on R and Ω such that∫
B(0,R)∩∂Ω

|Tr (u)|2 dσn−1 ≤ cRε
−1

∫
B(0,R)∩(Ω\Ωε)

|u|2 dx + cRε

∫
B(0,R)∩(Ω\Ωε)

∥∇u∥2 dx,

for every 0 < ε ≤ εR, where Ωε = { x ∈ Ω | dist (x, ∂Ω) > ε }.

The function Tr (u) is called the trace of u on ∂Ω.

We can observe that if ∂Ω is bounded, Tr is bounded from H2(Ω)→ L2(∂Ω). We give the
following definition

Definition 1.2.1. Let Ω ⊆ Rn, n ≥ 2 be the half-space Hn or an open set with ∂Ω bounded and
Lipschitz. We call the operator

γD : H1(Ω)→ L2(∂Ω) γDu = Tr (u)

the Dirichlet trace operator.
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Definition 1.2.2. Let Ω ⊆ Rn, n ≥ 2 be the half-space Hn or an open set with ∂Ω ∈ C1,1

bounded. We call the operator

γN : H2(Ω)→ L2(∂Ω) γDu = Tr
(
∂u
∂ν

)
the Neumann trace operator.

The following theorems states that for domains of this kind the trace is bounded in L2(Ω).

Theorem 1.2.2 ([30]). For the half space Hn:

• if s ≥ 1, then the operator γD : H s(Rn)→ H s−1/2(Rn−1) ↪−→ L2(Rn−1) is bounded;

• if s > 3/2, then the operator γN : H s(Rn)→ H s−3/2(Rn−1) ↪−→ L2(Rn−1) is bounded.

Theorem 1.2.3 (See Theorem 18.40 in [33]). Let Ω ⊆ Rn, n ≥ 2, be an open set whose
boundary ∂Ω is bounded and Lipschitz. Then there exists some constant C such that

∥γDu∥L2(∂Ω) ≤ C ∥u∥H1(Ω) .

Theorem 1.2.4 (See Theorem 18.51 in [33]). Let Ω ⊆ Rn, n ≥ 2, be an open set with ∂Ω ∈ C1,1

bounded. Then

(γD, γN) : H2(Ω)→ L2(∂Ω)

is a bounded operator.

From now on, we will only consider cases covered by these result unless otherwise stated.
Hence Ω will be one of the following

• the half-space Hn = { x = (x1, . . . , xn) ∈ Rn | xn > 0 };

• a domain with ∂Ω Lipschitz and bounded if the domain of the operator considered is
H1(Ω);

• a domain with C1,1 ∂Ω and bounded if the domain of the operator considered is H2(Ω).

On these kinds of domains, now we can interpret the boundary value even for functions defined
almost everywhere and so we can consider finally the self-adjoint form of the symmetric
Laplacians defined above (we use the same symbol because the symmetric Laplacians won’t be
used anymore in the following):

• the Dirichlet Laplacian: D(−∆Ω,D) =
{
ψ ∈ H2(Ω)

∣∣∣ γDψ = 0
}
= H2

0(Ω);

• the Neumann Laplacian: D(−∆Ω,N) =
{
ψ ∈ H2(Ω)

∣∣∣ γNψ = 0
}
;

• the Robin Laplacian: D(−∆Ω,R,η) =
{
ψ ∈ H2(Ω)

∣∣∣ (γN + ηγD)ψ = 0
}
.
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We remark that η will be always supposed to be non-negative. We also use −∆Ω as a generic
symbol for one of the three operators above. The action of the Laplacians defined above is

−∆Ω : D(−∆Ω)→ L2(Ω) − ∆Ωψ = −∆ψ

We will also refer to the Green’s functions of −∆Ω with GΩz,y in place of GΩ,Dz,y , GΩ,Nz,y or GΩ,R,ηz,y

which are the Green’s function with Dirichlet, Neumann and Robin boundary conditions
respectively. In the same way, we will call the generic corrector function hΩz,y and the ones with
specific prescribed boundary conditions hΩ,Dz,y , hΩ,Nz,y or hΩ,R,ηz,y (see Appendix A.1).

1.2.2. Boundary Triples and Point Perturbations

Here we use the theory of boundary value spaces (the main result used are taken from
[25] and mentioned in Appendix B.3) to construct self-adjoint extensions associated with
point perturbation of the Laplacian in domains Ω of the type described above with Dirichlet,
Neumann or Robin boundary conditions. Let

{
y j

}N

j=1
be distinct points in Ω. We consider the

closed symmetric operator
(
H0,D(H0)

)
D(H0) =

{
ψ ∈ D(−∆Ω)

∣∣∣ ψ(y j) = 0, j = 1, . . . ,N
}

(1.2)

H0ψ = −∆ψ. (1.3)

In order to find the domain of the adjoint through von Neumann decomposition formula, we
characterize its deficiency subspaces.

Lemma 1.2.1. LetH± = Ran (H0 ± i)⊥ be the deficiency subspaces related to the operators H0

defined in (1.2) and (1.3); then

H± = span
{

GΩ√
∓i,y j

, j = 1, . . . ,N
}
.

Proof. ψ ∈ H± implies (ψ, (−∆ ± i)φ)L2(Ω) = 0
ψ ∈ L2(Ω)

, ∀φ ∈ D(H0).

But since, φ(y j) = 0 ∀ j = 1, . . . ,N, we have that(
GΩ√
∓i,y j

, (−∆ ± i)φ
)

L2(Ω)
=

(
(−∆ ∓ i)GΩ√

∓i,y j
, φ

)
L2(Ω)
= φ(y j) = 0,
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which means that span
{

GΩ√
∓i,y j

, j = 1, . . . ,N
}
⊆ H±. Let ψ± ∈ Ran (H0 ± i)⊥ and φ ∈ D(H0).

Then there exist numbers c±1 , . . . , c
±
N independent of φ such that

(ψ±, (−∆ ± i)φ)L2(Ω) =

N∑
j=1

c±j φ(y j). (1.4)

In fact, let

φ̃ = φ −

N∑
j=1

φ(y j)χ j, (1.5)

where χ j ∈ C∞0 (Ω), χ(y j) = 1 and supp χ j ∩ supp χl = ∅, j, l = 1, . . . ,N, j , l. Then φ̃ ∈ D(H0).
Substituting (1.5) in (1.4) and using this fact we obtain that c±j = (ψ±, (−∆ ± i)χ j). But the
constants c±1 , . . . , c

±
N are uniquely determined by ψ±. In fact, let ψ̃± be such that

(ψ̃±, (−∆ ± i)φ)L2(Ω) =

N∑
j=1

c±j φ(y j).

Then ((ψ± − ψ̃±), (−∆ ± i)φ)L2(Ω) = 0 ∀φ ∈ D(H0), which implies that ψ± = ψ̃±.

Finally, we observe that

ψ± =

N∑
j=1

c±j G
Ω
√
∓i,y j

satisfies (1.4), thereby provingH± ⊆ span
{

GΩ√
∓i,y j

, j = 1, . . . ,N
}
. □

The next step in the construction of the sought self-adjoint extensions is to find a boundary
value space for H0. In order to do so, we define the operators Γ1,Γ2 : D(H∗0)→ CN as follows

(Γ1ψ) j = lim
x→y j

4π
∣∣∣x − y j

∣∣∣ψ(x), j = 1, . . . ,N (1.6)

(Γ2ψ) j = lim
x→y j

(
ψ(x) −

(Γ1ψ) j

4π
∣∣∣x − y j

∣∣∣
)
, j = 1, . . . ,N. (1.7)

We claim that

Theorem 1.2.5. The triple (CN , Γ1, Γ2) defined by (1.6) and (1.7) forms a boundary value space
for H0.
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Proof. By the von Neumann formula (Theorem B.2.1), we can write two generic vectors
ψ, φ ∈ D(H∗0) as follows

ψ = ψ0 +

N∑
k=1

(
akGΩ√i,yk

+ bkGΩ√
−i,yk

)
, φ = φ0 +

N∑
k=1

(
αkGΩ√i,yk

+ βkGΩ√
−i,yk

)
, (1.8)

where ψ0, φ0 ∈ D(H0) and ak, bk, αk, βk ∈ C. We now consider

(ψ,H∗0φ)L2(Ω) − (H∗0ψ, φ)L2(Ω). (1.9)

Using the action of H∗0 given by von Neumann formula and (1.8) we have (we omit the subscript
of the inner product for brevity)

(ψ,H∗0φ) =
(
ψ,H∗0

(
φ0 +

N∑
l=1

(
αlGΩ√i,yl

+ βlGΩ√
−i,yl

)))

= (ψ,H0φ0) + i
N∑

l=1

αl

(
ψ,GΩ√

i,yl

)
− i

N∑
l=1

βl

(
ψ,GΩ√

−i,yl

)
= (ψ0,H0φ0) +

N∑
k=1

ak

(
GΩ√

i,yk
,H0φ0

)
+

N∑
k=1

bk

(
GΩ√
−i,yk

,H0φ0

)
+ i

N∑
l=1

αl

(
ψ0,GΩ√i,yl

)
− i

N∑
l=1

βl

(
ψ0,GΩ√

−i,yl

)
+ i

N∑
k,l=1

akαl

(
GΩ√

i,yk
,GΩ√

i,yl

)
+ i

N∑
k,l=1

bkαl

(
GΩ√
−i,yk

,GΩ√
i,yl

)
− i

N∑
k,l=1

akβl

(
GΩ√

i,yk
,GΩ√

−i,yl

)
− i

N∑
k,l=1

bkβl

(
GΩ√
−i,yk

,GΩ√
−i,yl

)
.

Similarly

(H∗0ψ, φ) = (H0ψ0, φ0) +
N∑

l=1

αl

(
H0ψ0,GΩ√i,yl

)
+

N∑
l=1

βl

(
H0ψ0,GΩ√

−i,yl

)
− i

N∑
k=1

ak

(
GΩ√

i,yk
, φ0

)
+ i

N∑
k=1

bk

(
GΩ√
−i,yk

, φ0

)
− i

N∑
k,l=1

akαl

(
GΩ√

i,yk
,GΩ√

i,yl

)
+ i

N∑
k,l=1

bkαl

(
GΩ√
−i,yk

,GΩ√
i,yl

)
− i

N∑
k,l=1

akβl

(
GΩ√

i,yk
,GΩ√

−i,yl

)
+ i

N∑
k,l=1

bkβl

(
GΩ√
−i,yk

,GΩ√
−i,yl

)
. (1.10)
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Taking the difference, (1.9) becomes

N∑
k=1

ak

(
GΩ√

i,yk
, (H0 − i)φ0

)
+

N∑
k=1

bk

(
GΩ√
−i,yk

, (H0 + i)φ0

)
−

N∑
l=1

αl

(
(H0 − i)ψ0,GΩ√i,yl

)
−

N∑
l=1

βl

(
(H0 + i)ψ0,GΩ√

−i,yl

)
+ 2i

N∑
k,l=1

akαl

(
GΩ√

i,yk
,GΩ√

i,yl

)
− 2i

N∑
k,l=1

bkβl

(
GΩ√
−i,yk

,GΩ√
−i,yl

)
. (1.11)

Now, given the definition of GΩ√
∓i,y j

and that ψ0, φ0 ∈ D(H0), each term of the first four sums
vanishes. We exchange k and l in the last sum and so

(ψ,H∗0φ) − (H∗0ψ, φ) = 2i
N∑

k,l=1

akαl

(
GΩ√

i,yk
,GΩ√

i,yl

)
− 2i

N∑
k,l=1

blβk

(
GΩ√
−i,yl

,GΩ√
−i,yk

)
.

We observe that GΩ√
−i,y j
= GΩ√

i,y j
. This means that

(
GΩ√
−i,yl

,GΩ√
−i,yk

)
=

(
GΩ√

i,yl
,GΩ√

i,yk

)
=

(
GΩ√

i,yk
,GΩ√

i,yl

)
,

which implies

(ψ,H∗0φ) − (H∗0ψ, φ) = 2i
N∑

k,l=1

(
akαl − blβk

)(
GΩ√

i,yk
,GΩ√

i,yl

)
. (1.12)

Let’s consider the inner product
(
GΩ√

i,yk
,GΩ√

i,yl

)
. We start with the case k , l. By the definition

of GΩ√
∓i,y j

, we have

(
GΩ√

i,yk
,GΩ√

i,yl

)
= −i

(
iGΩ√

i,yk
,GΩ√

i,yl

)
= −i

(
H0GΩ√i,yk

,GΩ√
i,yl

)
+ iGΩ√

i,yl
(yk)

= −i
(
GΩ√

i,yk
,H0GΩ√i,yl

)
+ iGΩ√

−i,yl
(yk)

= −

(
GΩ√

i,yk
,GΩ√

i,yl

)
− iGΩ√

i,yk
(yl) + iGΩ√

−i,yl
(yk),

equivalent to (
GΩ√

i,yk
,GΩ√

i,yl

)
= −

i
2

(
GΩ√

i,yk
(yl) −GΩ√

−i,yl
(yk)

)
. (1.13)

Now, if k = l, both terms in the difference in (1.13) diverge, but the quantity has still a finite
limit. We rewrite last equation using the definition for GΩ√

∓i,y j(
GΩ√

i,yk
,GΩ√

i,yl

)
= −

i
2

(
G0,3
√

i,yk
(yl) −G0,3

√
−i,yl

(yk) − hΩ√
i,yk

(yl) + hΩ√
−i,yl

(yk)
)
.



16 Point Interactions in a Domain

The last two terms are finite for k = l and we can write

hΩ√
−i,yk

(yk) − hΩ√
i,yk

(yk) = hΩ√
−i,yk

(yk) − hΩ√
−i,yk

(yk) = 2i Im hΩ√
−i,yk

(yk).

For the first two terms instead holds

G0,3
√

i,yk
(yl) −G0,3

√
−i,yl

(yk) = G0,3
√

i,yk
(yl) −G0,3

√
−i,yk

(yl).

So, to evaluate the expression on the left side, we can take the limit yl → yk of the right one

lim
yl→yk

(
G0,3
√

i,yk
(yl) −G0,3

√
−i,yk

(yl)
)
= lim

yl→yk

e−
√
−i|xl−xk | − e−

√
i|xl−xk |

4π |xl − xk|
=

√
i −
√
−i

4π
.

So we found that

(
GΩ√

i,yk
,GΩ√

i,yl

)
L2(Ω)
=

−
i
2

(
GΩ√

i,yk
(yl) −GΩ√

−i,yl
(yk)

)
k , l

Im hΩ√
−i,yk

(yk) + i
8π (
√
−i −

√
i) k = l

.

Then (1.12) can be rewritten as

(ψ,H∗0φ) − (H∗0ψ, φ) =
N∑

k,l=1
k,l

(
akαl − blβk

)(
GΩ√

i,yk
(yl) −GΩ√

−i,yl
(yk)

)

−
1

4π

N∑
k=1

(
akαk − bkβk

)
(
√
−i −

√
i) −

N∑
k=1

(
akαk − bkβk

)(
hΩ√

i,yk
(yk) − hΩ√

−i,yk
(yk)

)
. (1.14)

We consider now the operators Γ1 and Γ2 acting on D(H∗0)

(Γ1ψ) j = a j + b j (1.15)

(Γ2ψ) j =

N∑
k=1
k, j

(
akGΩ√i,yk

(y j) + bkGΩ√
−i,yk

(y j)
)
−

1
4π

(a j

√
−i + b j

√
i) − a jhΩ√i,y j

(y j) − b jhΩ√
−i,y j

(y j).

(1.16)
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Some computations show that

(Γ1ψ,Γ2φ)CN − (Γ2ψ,Γ1φ)CN =

N∑
k,l=1
k,l

(
akαl − blβk

)(
GΩ√

i,yk
(yl) −GΩ√

−i,yl
(yk)

)

+

N∑
k,l=1
k,l

akβl

(
GΩ√

i,yk
(yl) −GΩ√

i,yl
(yk)

)
+

N∑
k,l=1
k,l

bkαl

(
GΩ√
−i,yk

(yl) −GΩ√
−i,yl

(yk)
)

−
1

4π

N∑
k=1

(
akαk − bkβk

)
(
√
−i −

√
i) −

N∑
k=1

(
akαk − bkβk

)(
hΩ√

i,yk
(yk) − hΩ√

−i,yk
(yk)

)
. (1.17)

If the second and third sums in (1.17) are zero, then (1.14) and (1.17) coincide and the result
follows. In fact it holds that

(
GΩ√
±i,yk

(yl) −GΩ√
±i,yl

(yk)
)
= 0 ∀k, l = 1, . . .N k , l. That follows

from the following computation which uses the definition of GΩ√
±i,y j(

GΩ√
±i,yk

,GΩ√
∓i,yl

)
L2(Ω)
= ∓i

(
±GΩ√

±i,yk
,GΩ√

∓i,yl

)
L2(Ω)

= ∓i
(
±GΩ√

±i,yk
,H0GΩ√

∓i,yl

)
L2(Ω)
± iGΩ√

±i,yl
(yk)

=
(
GΩ√
±i,yk

,GΩ√
∓i,yl

)
L2(Ω)
∓ iGΩ√

±i,yk
(yl) ± iGΩ√

±i,yl
(yk).

□

This result allows a general characterization of the self-adjoint extensions of H0 in terms of
operatorial boundary conditions. Theorem B.3.2 tells us that the self-adjoint extensions of H0

can be parametrized through the element of the set

W =
{

E =
(
B C

) ∣∣∣∣ BC∗ = CB∗,Ran E = n
}

(see Appendix B.3). Let (A, B) ∈ W, then the associated self-adjoint extension HAB of H0 is
defined as follows

D
(
HAB

)
=

{
ψ ∈ D(H∗0)

∣∣∣ AΓ1ψ = BΓ2ψ
}
, HABψ = H∗0ψ.

The following theorem holds
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Theorem 1.2.6. Fix (A, B) ∈ W. Let HAB be the related self-adjoint extension defined above
and RAB

z its resolvent. For any z ∈ C \ R, the following representation holds:

D
(
HAB

)
=

{
ψ ∈ L2(Ω)|ψ = φz +

N∑
k=1

qkGΩz,yk
, φz ∈ D(−∆Ω), q j = (Γ1ψ) j,

N∑
j=1

Bk jφ
z(y j) =

N∑
j=1

(BΓ(z) + A)k jq j, k = 1, . . . ,N
} (1.18)

HABψ = −∆φz + z2
N∑

k=1

qkGΩz,yk
(1.19)

RAB
z ψ = Rzψ +

N∑
j,k,l

(BΓ(z) + A)−1
jl B jkRzψ(yk)GΩz,y j

, ∀ψ ∈ L2(Ω) (1.20)

Γ(z)k j =

−GΩz,y j
(yk) j , k

hΩz,yk
(yk) − iz

4π j = k
, (1.21)

where Rz = (−∆Ω − z2)−1 is the resolvent operator associated to −∆ with the corresponding
boundary conditions in Ω.

Proof. By the von Neumann decomposition formula, we can write

ψ = ψ0 +

N∑
k=1

(
akGΩ√i,yk

+ bkGΩ√
−i,yk

)
, ψ0 ∈ D(H0). (1.22)

We fix z ∈ C \ R and set

φz = ψ0 +

N∑
k=1

(
akGΩ√i,yk

+ bkGΩ√
−i,yk

)
−

N∑
k=1

qkGΩz,yk
(1.23)

q j = (Γ1ψ) j = a j + b j. (1.24)

We show that φz ∈ D(−∆Ω). The boundary condition is satisfied because φz is a finite sum of
terms satisfying it. We only need to prove that φz ∈ H2(Ω). The decaying at infinity is fast
enough for all terms ψ0 ∈ D(H0) and it implies ψ0 ∈ H2(Ω). So we need to check only possible
singularities. These are contained in the set { yk }

N
k=1. Around each yk the behaviour of the

function φz is controlled by the one of

fk(x) = ak
e−
√
−i|x−yk |

4π |x − yk|
+ bk

e−
√

i|x−yk |

4π |x − yk|
− qk

eiz|x−yk |

4π |x − yk|
.
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Both fk and ∇ fk are finite for x→ yk,

lim
x→yk

fk(x) = −
1

4π
(ak

√
−i + bk

√
i − iqkz) (1.25)

∇ fk(x) = qk(x − xk)
eiz|x−yk |(1 − iz |x − yk|)

4π |x − yk|
3 − ak(x − xk)

e−
√
−i|x−yk |(1 +

√
−i |x − yk|)

4π |x − yk|
3

− bk(x − xk)
e−
√

i|x−yk |(1 +
√

i |x − yk|)
4π |x − yk|

3 ∼
x − yk

4π |x − yk|
(−iak + ibk + z2qk),

(1.26)

which means that ∇ fk ∈ L2(Br(yk)) for r > 0 small enough. Also ∆ fk ∈ L2(Ω). In fact, using
the definition ogìf the Green function, we have

∆ fk(x) = −iak
e−
√
−i|x−yk |

4π |x − yk|
+ ibk

e−
√

i|x−yk |

4π |x − yk|
− zqk

e−
√

z|x−yk |

4π |x − yk|
+ (−ak − bk + qk)δ(x − yk),

but the distributional term is cancelled due to qk = ak+bk. So φz ∈ D(H0) and the representations
(1.22) and

ψ = φz +

N∑
k=1

qkGΩz,yk
, φz ∈ D(−∆Ω) (1.27)

are equivalent.

The value φz(yk) is linked to (Γ1ψ)k and (Γ2ψ)k. In fact

φz(xk) = lim
x→yk

(
akGΩ√i,yk

(x) + bkGΩ√
−i,yk

(x) − qkGΩz,yk
(x)

)
+

N∑
l=1
l,k

(
alGΩ√i,yl

(yk) + blGΩ√
−i,yl

(yk) − qlGΩz,yl
(yk)

)

= (Γ2ψ)k − qk
iz
4π
+ qkhΩz,yk

(yk) −
N∑

l=1
l,k

qlGΩz,yl
(yk) = (Γ2ψ)k + Γ(z)klql.

Combining this with the boundary relation AΓ1ψ = BΓ2ψ, we obtain

N∑
j=1

Bk jφ
z(y j) =

N∑
j=1

(BΓ(z) + A)k jq j (1.28)

and the representation of D(HAB) in (1.18) is proved.
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Let ψ ∈ HAB and φ ∈ D(H0). In order to prove the formula for the action of HAB we consider
the inner product

(HABψ, φ)L2(Ω) =

(
HAB

(
φz +

N∑
k=1

qkGΩz,yk

)
, φ

)
L2(Ω)
= (H∗0φ

z, φ) +
N∑

k=1

qk

(
H∗0GΩz,yk

, φ
)

= (H0φ
z, φ) +

N∑
k=1

qkz2(GΩz,yk
, φ).

This equation being valid ∀φ ∈ D(H0) implies (1.19).

Using Theorem B.1.1 with H0 and −∆Ω we can write

RAB
z φ = Rzφ +

N∑
j=1

q j(φ)GΩz,y j
, (1.29)

with qk(φ) to be determined. Comparing this expression with (1.27), we have that Rzφ = φ
z. So,

recalling (1.28), we have

N∑
j=1

Bk jRzφ(y j) =
N∑

j=1

(BΓ(z) + A)k jq j(φ),

or, in matrix form BRzφ(z) = (BΓ(z) + A)q(φ). Solving for q we obtain q(φ) = (BΓ(z) +
A)−1BRzφ(x), which corresponds to

q j(φ) =
N∑

k,l=1

(BΓ(z) + A)−1
jk BklRzφ(yl).

Substituting this expression into (1.29) gives the desired result. □

Remark. A property of the operator Γ1 and Γ2 is that they describe the asymptotic behaviour of
any ψ ∈ D(H0) as x→ yk:

ψ ∼
1

4π |x − yl|
(Γ1ψ)k + (Γ2ψ)k + o(1).

This suggests that the boundary condition AΓ1ψ = BΓ2ψ pairs the asymptotic behaviour of the
coefficient of the singular part Γ1ψ with the evaluation Γ2ψ of the regular part of ψ. Whenever
∀k = 1, . . .N, the coefficient of the singular part (Γ2ψ)k depends only on the regular part (Γ1ψ)k

in the same point, the interaction described by this self-adjoint extension is said to be local.
This condition can be achieved asking both A and B to be diagonal. We can parametrize the
most general local interaction of this kind by having A jk = α jδ jk and B jk = δ jk, with α j ∈ R. In
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this case the resolvent has the simpler form

RAB
z ψ = Rzψ +

N∑
j,k

(ΓΩα,Y(z))−1
jk Rzψ(yk)GΩz,y j

, (1.30)

with

(ΓΩα,Y(z)) jk =

−GΩz,yk
(y j) j , k

αk −
iz
4π + hΩz,yk

(yk) j = k
. (1.31)

To end this section we explicitly discuss the case, which will be studied in the next chapter,
that is the one center interaction. We will use the symbol −∆Ωα,y to describe the one point
interaction Laplacians with generic boundary conditions on ∂Ω. Similarly −∆Ω,Dα,y , −∆Ω,Nα,y and
−∆
Ω,R,η
α,y will be used when a specific boundary condition is considered.

Proposition 1.2.1. Let −∆Ωα,y be the one parameter family of one center interaction Laplacians
in Ω ⊂ R3. For any z ∈ ρ(−∆Ωα,y) ∩ ρ(−∆Ω), the following representation holds:

D
(
−∆Ωα,y

)
=

{
ψ ∈ L2(Ω)|ψ = φz + qGΩz,y, φ

z ∈ D(−∆Ω), q = Γ1ψ, φ
z(y) = ΓΩα,yq

}
(1.32)

−∆Ωα,yψ = −∆φ
z + z2qGΩz,y (1.33)

(−∆Ωα,y − z2)−1ψ = (−∆Ω − z2)−1ψ + (ΓΩα,y)
−1(−∆Ω − z2)−1ψ(y)GΩz,y, ∀ψ ∈ L2(Ω) (1.34)

ΓΩα,y(z) = α −
iz
4π
+ hΩz,y(y). (1.35)

Similarly, letting Y = { y1, . . . , yN }, −∆Ωα,Y , −∆Ω,Dα,Y −∆
Ω,N
α,Y −∆

Ω,R,η
α,Y symbols will indicate the

N-points interaction local Laplacians. Their definitions is immediate from Theorem 1.2.6 after
the substitutiosn A jk = α jδ jk and B = δ jk.

1.3. Point Interactions in a Domain in R2 Through
Self-Adjoint Extensions

We can follow the same construction contained in the previous section, to build N-points
interactions as self-adjoint extensions of the Laplacians for domains in R2. The different form
of the Green function for −∆ − z2 in R2 (see Appendix A.1), causes a different choice for the
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boundary triple (CN ,Γ1,Γ2), that is

(Γ1ψ) j = lim
x→y j

(
−

2πψ(x)
ln

∣∣∣x − y j

∣∣∣
)

j = 1, . . . ,N (1.36)

(Γ2ψ) j = lim
x→y j

(
ψ(x) +

1
2π

(Γψ) j) ln |x − y|
)

j = 1, . . . ,N. (1.37)

This triple is proved to be a boundary value space for the operator H0, which has an analogous
definition of the n = 3 case, which just the caveat of Ω being a domain in R2. So, through
Theorem B.3.2, a family of self adjoint extensions is defined. If we limit ourselves to the local
case we can characterize this family −∆Ωα,Y them as follows (also compare this with the N-point
interaction Laplacian in the whole R2 constructed throughout chapter II.4 of [2]).

Theorem 1.3.1. Let Y =
{

y j

}N

j=1
and α1, . . . , αN ∈ R. For any z ∈ C \ R, the following

representation holds:

D
(
−∆Ωα,Y

)
=

{
ψ ∈ L2(Ω)|ψ = φz +

N∑
k=1

qkGΩz,yk
, φz ∈ D(−∆Ω), q j = (Γ1ψ) j,

φz(yk) =
N∑

j=1

(ΓΩα,Y(z))k jq j, k = 1, . . . ,N
} (1.38)

(−∆Ωα,Y)ψ = −∆φz + z2
N∑

k=1

qkGΩz,yk
(1.39)

(−∆Ωα,Y − z2)−1ψ = (−∆ − z2)−1ψ +

N∑
j,k,l

(ΓΩα,Y)−1
jl (−∆ − z2)−1ψ(yk)GΩz,y j

, ∀ψ ∈ L2(Ω) (1.40)

(ΓΩα,Y(z))k j =

−GΩz,y j
(yk) j , k

αk +
γ+ln z

2i
2π + hΩz,yk

(yk) j = k
, (1.41)

where γ is Euler’s constant.

We also give the explicitly the representation for the one center case.

Proposition 1.3.1. Let −∆Ωα,y be the one parameter family of one center interaction Laplacians
in Ω ⊂ R2. For any z ∈ ρ(−∆Ωα,y) ∩ ρ(−∆Ω), the following representation holds:

D
(
−∆Ωα,y

)
=

{
ψ ∈ L2(Ω)|ψ = φz + qGΩz,y, φ

z ∈ D(−∆Ω), q = Γ1ψ, φ
z(y) = ΓΩα,y(z)q

}
(1.42)

−∆Ωα,yψ = −∆φ
z + z2qGΩz,y (1.43)

(−∆Ωα,y − z2)−1ψ = (−∆Ω − z2)−1ψ + (ΓΩα,y)
−1(−∆Ω − z2)−1ψ(y)GΩz,y, ∀ψ ∈ L2(Ω) (1.44)

ΓΩα,y(z) = α +
γ + ln z

2i

2π
+ hΩz,y(y). (1.45)
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1.4. Point Interactions Through Quadratic Forms

Another path to construct point interactions is through quadratic forms. Kato’s representa-
tion theorem states that, given a symmetric, densely defined, closed and bounded from below
quadratic form q, there exists a unique self-adjoint operator Q such that

q(ψ, φ) = (Qψ, φ) ∀ψ ∈ D(T ) and ∀φ ∈ D(q).

So, we aim to construct the quadratic forms associated with the self-adjoint operators −∆Ωα,Y .
In order to do so we will follow the same approach taken by Teta in [46] to construct point
interaction quadratic form in the whole Rn. Differences will arise in order to take count of the
boundaries of Ω.

1.4.1. Dirichlet, Neumann and Robin Quadratic Forms

Here we recall the definitions of the classic Dirichlet, Neumann and Robin quadratic forms:

• the Dirichlet quadratic form DΩ is defined as

D(DΩ) = H1
0(Ω) DΩ(ψ, ψ) =

∫
Ω

|∇ψ(x)|2 dx = ∥ψ∥2L2(Ω) ;

• the Neumann quadratic form NΩ is defined as

D(NΩ) = H1(Ω) NΩ(ψ, ψ) =
∫
Ω

|∇ψ(x)|2 dx = ∥ψ∥2L2(Ω) ;

• the Robin quadratic form RΩ,η is defined as

D(RΩ,η) = H1(Ω) (1.46)

RΩ,η(ψ, ψ) =
∫
Ω

|∇ψ(x)|2 dx + η
∫
∂Ω

|(γDψ)(x)|2 dσ = ∥ψ∥2L2(Ω) + η ∥γDψ∥
2
L2(∂Ω) . (1.47)

.

FΩ will be used as a generic symbol for the classic quadratic forms.

1.4.2. N-Points Quadratic Forms on a Domain

Our aim is constructing quadratic forms who corresponds to self-adjoint extension of the
Laplacian. The elements of the domain of these quadratic forms will have a regular part,
which belongs to D(FΩ) and a singular part, being a linear combination of the functions Gz,y j .
Moreover we want the new form to agree with FΩ over D(FΩ). With these ideas in mind and
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using the classical forms expressions, we can define the N-points Dirichlet, Neumann and
Robin quadratic forms as follows.

Definition 1.4.1. Let Y =
{

y j

}N

j=1
be distinct points in Ω ⊂ Rn with n = 1, 2 and α =

{
α j

}N

j=1
with α j ∈ R ∀i = 1, . . . ,N. For each imaginary z with Im z > 0 we define

• the N-points interaction Dirichlet quadratic form

D(DΩα,Y) =

 ψ ∈ L2(Ω)

∣∣∣∣∣∣∣ ∃q1, . . . , qn s.t.ψ −
N∑

j=1

q jGΩ,Dz,y j
∈ H1

0(Ω)

 (1.48)

DΩα,Y(ψ, ψ) = DΩz,Y(ψ, ψ) +
N∑

j,k=1

(ΓΩ,Dα,Y (z))k jqkq j (1.49)

DΩz,Y(ψ, ψ) =

∥∥∥∥∥∥∥∇
(
ψ −

N∑
j=1

q jGΩ,Dz,y j

)∥∥∥∥∥∥∥
2

L2(Ω)

− z2

∥∥∥∥∥∥∥ψ −
N∑

j=1

q jGΩ,Dz,y j

∥∥∥∥∥∥∥
2

L2(Ω)

+ z2 ∥ψ∥2L2(Ω) ; (1.50)

• the N-points interaction Neumann quadratic form

D(NΩα,Y) =

 ψ ∈ L2(Ω)

∣∣∣∣∣∣∣ ∃q1, . . . , qn s.t.ψ −
N∑

j=1

q jGΩ,Nz,y j
∈ H1(Ω)

 (1.51)

NΩα,Y(ψ, ψ) = NΩz,Y(ψ, ψ) +
N∑

j,k=1

(ΓΩ,Nα,Y (z))k jqkq j (1.52)

NΩz,Y(ψ, ψ) =

∥∥∥∥∥∥∥∇
(
ψ −

N∑
j=1

q jGΩ,Nz,y j

)∥∥∥∥∥∥∥
2

L2(Ω)

− z2

∥∥∥∥∥∥∥ψ −
N∑

j=1

q jGΩ,Nz,y j

∥∥∥∥∥∥∥
2

L2(Ω)

+ z2 ∥ψ∥2L2(Ω) ; (1.53)

• the N-points interaction Robin quadratic form (η being positive)

D(RΩ,ηα,Y ) =

 ψ ∈ L2(Ω)

∣∣∣∣∣∣∣ ∃q1, . . . , qn s.t.ψ −
N∑

j=1

q jGΩ,R,ηz,y j
∈ H1(Ω)

 (1.54)

RΩ,ηα,Y (ψ, ψ) = RΩ,ηz,Y (ψ, ψ) +
N∑

j,k=1

(ΓΩ,R,ηα,Y (z))k jqkq j (1.55)

R
Ω,η
z,Y (ψ, ψ) =

∥∥∥∥∥∥∥∇
(
ψ −

N∑
j=1

q jGΩ,R,ηz,y j

)∥∥∥∥∥∥∥
2

L2(Ω)

− z2

∥∥∥∥∥∥∥ψ −
N∑

j=1

q jGΩ,R,ηz,y j

∥∥∥∥∥∥∥
2

L2(Ω)

+ z2 ∥ψ∥2L2(Ω) + η

∥∥∥∥∥∥∥γD

(
ψ −

N∑
j=1

q jGΩ,R,ηz,y j

)∥∥∥∥∥∥∥
2

L2(∂Ω)

.

(1.56)
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FΩα,Y and F Ωz,Y will be used to denote collectively quadratic forms of this kind.

Proposition 1.4.1. The quadratic forms FΩα,Y are independent of the choice of z ∈ iR.

Proof. To start, we observe that D(FΩα,Y) is independent of z. In fact, if ψ − qGΩz,y ∈ H1(Ω)
(H1

0(Ω) for DΩα,Y), then also ψ − qGΩw,y ∈ H1(Ω) (H1
0(Ω) respectively). This is true because

ψ − qGΩw,y = (ψ − qGΩz,y) + (qGΩz,y − qGΩw,y), which is a sum of functions in H1(Ω) (or H1
0(Ω)).

This also implies that for different value of z we can still use the same q. Extending this to
N-points is straightforward.

Let z,w ∈ iR. We consider F Ωz,Y(ψ, ψ) − F Ωw,Y(ψ, ψ). We distinguish between the Dirichlet
form and the other ones.

• For DΩα,Y we have

DΩz,Y(ψ, ψ) −DΩw,Y(ψ, ψ) =
(
∇

(
ψ −

N∑
j=1

q jGΩ,Dz,y j

)
,∇

(
ψ −

N∑
k=1

qkGΩ,Dz,yk

))
+ z2 ∥ψ∥2

− z2
(
ψ −

N∑
j=1

q jGΩ,Dz,y j
, ψ −

N∑
k=1

qkGΩ,Dz,yk

)
−

(
∇

(
ψ −

N∑
j=1

q jGΩ,Dw,y j

)
,∇

(
ψ −

N∑
k=1

qkGΩ,Dw,yk

))

− w2 ∥ψ∥2 + w2
(
ψ −

N∑
j=1

q jGΩ,Dw,y j
, ψ −

N∑
k=1

qkGΩ,Dw,yk

)
. (1.57)

Now we manipulate the terms containing gradients

(
∇

(
ψ −

N∑
j=1

q jGΩ,Dz,y j

)
,∇

(
ψ −

N∑
k=1

qkGΩ,Dz,yk

))
−

(
∇

(
ψ −

N∑
j=1

q jGΩ,Dw,y j

)
,∇

(
ψ −

N∑
k=1

qkGΩ,Dw,yk

))
=

= −

(
∇

(
ψ −

N∑
j=1

q jGΩ,Dz,y j

)
,

N∑
k=1

qk∇

(
GΩ,Dz,yk

−GΩ,Dw,yk

))
−

( N∑
j=1

q j∇

(
GΩ,Dz,y j

−GΩ,Dw,y j

)
,∇

(
ψ −

N∑
k=1

qkGΩ,Dz,yk

))

−

( N∑
j=1

q j∇

(
GΩ,Dz,y j

−GΩ,Dw,y j

)
,

N∑
k=1

qk∇

(
GΩ,Dz,yk

−GΩ,Dw,yk

))
=

(
ψ−

N∑
j=1

q jGΩ,Dz,y j
,

N∑
k=1

qk

(
w2GΩ,Dw,yk

− z2GΩ,Dz,yk

))

+

( N∑
j=1

q j

(
w2GΩ,Dw,y j

−z2GΩ,Dz,y j

)
, ψ−

N∑
k=1

qkGΩ,Dz,yk

)
+

( N∑
j=1

q j

(
GΩ,Dz,y j

−GΩ,Dw,y j

)
,

N∑
k=1

qk

(
w2GΩ,Dw,yk

−z2GΩ,Dz,yk

))
,

(1.58)

where we integrated by parts and used that ψ −
∑N

j=1 q jGΩ,Dz,y j ∈ H1
0(Ω) and the definition

of GΩ,D·,· .
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• For RΩ,R,ηα,Y (including the η = 0 case) we have

R
Ω,η
z,Y (ψ, ψ) − RΩ,ηw,Y(ψ, ψ) =

(
∇

(
ψ −

N∑
j=1

q jGΩ,R,ηz,y j

)
,∇

(
ψ −

N∑
k=1

qkGΩ,R,ηz,yk

))
+ z2 ∥ψ∥2

−z2
(
ψ−

N∑
j=1

q jGΩ,R,ηz,y j
, ψ−

N∑
k=1

qkGΩ,R,ηz,yk

)
+η

(
γD

(
ψ−

N∑
j=1

q jGΩ,R,ηz,y j

)
, γD

(
ψ−

N∑
k=1

qkGΩ,R,ηz,yk

))
L2(∂Ω)

−

(
∇

(
ψ−

N∑
j=1

q jGΩ,R,ηw,y j

)
,∇

(
ψ−

N∑
k=1

qkGΩ,R,ηw,yk

))
−w2 ∥ψ∥2+w2

(
ψ−

N∑
j=1

q jGΩ,R,ηw,y j
, ψ−

N∑
k=1

qkGΩ,R,ηw,yk

)
− η

(
γD

(
ψ −

N∑
j=1

q jGΩ,R,ηw,y j

)
, γD

(
ψ −

N∑
k=1

qkGΩ,R,ηw,yk

))
L2(∂Ω)

. (1.59)

We integrate by parts the terms with gradients

(
∇

(
ψ −

N∑
j=1

q jG
Ω,R,η
z,y j

)
,∇

(
ψ −

N∑
k=1

qkG
Ω,R,η
z,yk

))
−

(
∇

(
ψ −

N∑
j=1

q jG
Ω,R,η
w,y j

)
,∇

(
ψ −

N∑
k=1

qkG
Ω,R,η
w,yk

))
=

=

(
ψ−

N∑
j=1

q jG
Ω,R,η
z,y j ,

N∑
k=1

qk

(
w2GΩ,R,ηw,yk −z2GΩ,R,ηz,yk

))
+

( N∑
j=1

q j

(
w2GΩ,R,ηw,y j −z2GΩ,R,ηz,y j

)
, ψ−

N∑
k=1

qkG
Ω,R,η
z,yk

)

+

( N∑
j=1

q j

(
GΩ,R,ηz,y j −GΩ,R,ηw,y j

)
,

N∑
k=1

qk

(
w2GΩ,R,ηw,yk −z2GΩ,R,ηz,yk

))
+η

(
γD

(
ψ−

N∑
j=1

q jG
Ω,R,η
z,y j

)
,

N∑
k=1

qkγD

(
GΩ,R,ηz,yk −GΩ,R,ηw,yk

))

+η

( N∑
j=1

q jγD

(
GΩ,R,ηz,y j −GΩ,R,ηw,y j

)
, γD

(
ψ−

N∑
k=1

qkG
Ω,R,η
z,yk

))
+η

( N∑
j=1

q jγD

(
GΩ,R,ηz,y j −GΩ,R,ηw,y j

)
,

N∑
k=1

qkγD

(
GΩ,R,ηw,yk −GΩ,R,ηz,yk

))
,

(1.60)

where we used the definition of GΩ,R,η·,· . If we substitute (1.60) into (1.59), some tedious
computations shows that all the boundary terms cancel out.

In both cases the remaining terms are

F Ωz,Y(ψ, ψ) − F Ωw,Y(ψ, ψ) =
(
ψ −

N∑
j=1

q jGΩz,y j
,

N∑
k=1

qk

(
w2GΩw,yk

− z2GΩz,yk

))

+

( N∑
j=1

q j

(
w2GΩw,y j

− z2GΩz,y j

)
, ψ −

N∑
k=1

qkGΩz,yk

)
+

( N∑
j=1

q j

(
GΩz,y j
−GΩw,y j

)
,

N∑
k=1

qk

(
w2GΩw,yk

− z2GΩz,yk

))

+ (z2 − w2) ∥ψ∥2 − z2
(
ψ −

N∑
j=1

q jGΩz,y j
, ψ −

N∑
k=1

qkGΩz,yk

)
+ w2

(
ψ −

N∑
j=1

q jGΩw,y j
, ψ −

N∑
k=1

qkGΩw,yk

)
.

(1.61)
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After eliminating all the cancelling terms, we are left with

F Ωz,Y(ψ, ψ) − F Ωw,Y(ψ, ψ) = (z2 − w2)
N∑

j,k=1

q jqk

(
GΩw,y j

,GΩz,yk

)
L2(Ω)

=

N∑
j,k=1

(
GΩz,y j

(yk) −GΩw,yk
(y j)

)
q jqk,

last step being due to the resolvent identity. In the terms with j = k, GΩ·,y j
(y j) diverges, but the

difference stays finite. we distinguish n = 2 and n = 3:

• For n = 2 it holds that

GΩz,y j
(y j) −GΩw,y j

(y j) = lim
x→y j

(
GΩz,y j

(x) −GΩw,x(y j)
)

= lim
x→y j

i
4

(
H(1)

0 (z
∣∣∣x − y j

∣∣∣) − H(1)
0 (w

∣∣∣x − y j

∣∣∣)) − hΩz,y j
(y j) + hΩw,y j

(y j).

We set z = is and w = it with s, t > 0. Using (C.18), together with (C.22), we have

lim
x→y j

i
4

(
H(1)

0 (z
∣∣∣x − y j

∣∣∣) = lim
x→y j

K0(s
∣∣∣x − y j

∣∣∣) − K0(t
∣∣∣x − y j

∣∣∣)
2π

= −
γ + ln s

2π
+
γ + ln t

2π

and so

GΩz,y j
(y j) −GΩw,y j

(y j) = −α j −
γ + ln z

i

2π
+ α j +

γ + ln w
i

2π
.

• For n = 3 it holds

GΩz,y j
(y j) −GΩw,y j

(y j) = lim
x→y j

(
GΩz,y j

(x) −GΩw,x(y j)
)

= lim
x→y j

eiz|x−y j| − eiw|x−y j|

4π
∣∣∣x − y j

∣∣∣ − hΩz,y j
(y j) + hΩw,y j

(y j)

= −α j +
iz
4π
− hΩz,y j

(y j) + α j −
iw
4π
+ hΩw,y j

(y j).

In both cases this means that GΩz,y j
(yk) −GΩw,yk

(y j) = (ΓΩα,Y(w)) jk − (ΓΩα,Y(z)) jk and hence

F Ωz,Y(ψ, ψ) − F Ωw,Y(ψ, ψ) =
N∑

j,k=1

(ΓΩα,Y(w))k jqkq j −

N∑
j,k=1

(ΓΩα,Y(z))k jqkq j.

□

Proposition 1.4.2. The quadratic forms FΩα,Y are closed and bounded below.
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Proof. z in the definition of FΩα,Y is imaginary. This means that

FΩα,Y(ψ, ψ) ≥ z2 ∥ψ∥2L2(Ω) +

N∑
j,k=1

(ΓΩα,Y(z))k jqkq j.

We decompose ΓΩα,Y(z) in ΓΩα,Y(z) = Γ0
α,Y(z) + K(z) where

(Γ0
α,Y(z)) jk =

−G0,3
z,yk(y j) j , k

αk −
iz
4π j = k

(K(z)) jk = hz,yk(y j).

The eigenvalues of Γ0
α,Y(z) are strictly increasing in Im z (see [2] page 116). Let λ0

1 = λ
0
1(z, α,Y)

be the lowest eigenvalue of Γ0
α,Y(z) and λ1 = λ1(z, α,Y) be the lowest one for ΓΩα,Y(z). Then

N∑
j,k=1

(Γ0
α,Y(z))k jqkq j ≥ λ

0
1(z, α,Y)

N∑
j=1

∣∣∣q j

∣∣∣2 .
This means that there exists an imaginary z0(α,Y) such that ∀z ∈ iR with Im z > Im z0

N∑
j,k=1

(Γ0
α,Y(z))k jqkq j ≥ λ

0
1(z, α,Y)

N∑
j=1

∣∣∣q j

∣∣∣2 > λ0
1(z0, α,Y)

N∑
j=1

∣∣∣q j

∣∣∣2 .
Now, since both Γ0

α,Y(z) and K(z) are Hermitian and limIm z→+∞ ∥K(z)∥2F = 0, as a consequence
of Corollary 6.3.8. in [26], we have that for Im z large enough

N∑
j,k=1

(ΓΩα,Y(z))k jqkq j ≥ λ1(z, α,Y)
N∑

j=1

∣∣∣q j

∣∣∣2 > λ0
1(z0, α,Y)

N∑
j=1

∣∣∣q j

∣∣∣2 .
This choice of z is not restrictive because FΩα,Y is z independent and so the boundedness from
below is proved.

In order to prove that the forms are closed it is more convenient to consider

FΩα,Y,z(ψ, ψ) = FΩα,Y(ψ, ψ) − z2 ∥ψ∥2L2(Ω) .

Let { ψn } be a sequence in D(FΩα,Y,z) such that ψn → ψ in L2(Ω) and limn,m→+∞ FΩα,Y,z(ψn −

ψm, ψn − ψm) = 0. This implies

lim
n,m→+∞

∥∥∥∥∥∥∥
(
ψn −

N∑
j=1

qn
jG
Ω
z,y j

)
−

(
ψm −

N∑
j=1

qm
j GΩz,y j

)∥∥∥∥∥∥∥
H1(Ω)

= ∥φn − φm∥H1(Ω) = 0 (1.62)

N∑
j,k=1

(ΓΩα,Y(z)) jk

(
qn

j − qm
j

)(
qn

k − qn
k

)
= 0, (1.63)
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where φn = ψn −
∑N

j=1 qn
jG
Ω
z,y j

. And so there exist φ ∈ H1(Ω) and q1, . . . , qN ∈ C such that

∥φn − φ∥H1(Ω) = 0 (1.64)∥∥∥∥∥∥∥
N∑

j=1

qn
jG
Ω
z,y j
−

N∑
j=1

q jGΩz,y j

∥∥∥∥∥∥∥
L2(Ω)

= 0. (1.65)

This means that ψ = φ +
∑N

j=1 q jGΩz,y j
, i.e. ψ ∈ D

(
FΩα,Y

)
and hence FΩα,Y is closed. □

At this point we have proved that FΩα,Y are symmetric (it is immediate from their definition),
closed and bounded from below. So there’s a unique bounded from below and self-adjoint
operator associated to FΩα,Y via Theorem B.4.1. We proceed to prove that this operator is in fact
−∆Ωα,Y .

Proposition 1.4.3. The quadratic form (DΩα,Y ,D(DΩα,Y)) is associated to the operator −∆Ω,Dα,Y so
that

DΩα,Y(ψ, φ) = (−∆Ω,Dα,Y ψ, φ)L2(Ω) ∀ψ ∈ D(−∆Ω,Dα,Y ) ∀φ ∈ D(DΩα,Y),

where

D(−∆Ω,Dα,Y ) =
{
ψ ∈ D(DΩα,Y)|ψ −

N∑
j=1

q jGΩ,Dz,y j
∈ H2

0(Ω),

(
ψ −

N∑
j=1

q jGΩ,Dz,y j

)
(yk) =

N∑
j=1

(ΓΩ,Dα,Y (z))k jq j, k = 1, . . . ,N
} (1.66)

(−∆Ω,Dα,Y − z2)ψ = (−∆ − z2)
(
ψ −

N∑
j=1

q jGΩ,Dz,y j

)
. (1.67)

Proof. We note that if we identify ψ−
∑N

j=1 q jGΩ,Dz,y j with φz, it is immediate to see that the action
and domain of −∆Ω,Dα,Y described here coincide with the ones in Theorem 1.2.6.

So, let ψ ∈ D(−∆Ω,Dα,Y ), φ ∈ D(DΩα,Y) and be ϕ ∈ L2(Ω) such that

DΩα,Y(ψ, φ) = (ϕ, φ)L2(Ω)

or more explicitly

(
∇

(
ψ −

N∑
j=1

qψj G
Ω,D
z,y j

)
,∇

(
φ −

N∑
k=1

qφkGΩ,Dz,yk

))
− z2

(
ψ −

N∑
j=1

qψj G
Ω,D
z,y j
, φ −

N∑
k=1

qφkGΩ,Dz,yk

)
+

N∑
j,k=1

(ΓΩ,Dα,Y (z))k jq
φ
k qψj = (ϕ − z2ψ, φ). (1.68)
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Since, φ ∈ D(DΩα,Y), the boundary term appearing through integration by parts vanishes and so
last equation becomes(

(−∆ − z2)
(
ψ −

N∑
j=1

qψj G
Ω,D
z,y j

)
, φ −

N∑
k=1

qφkGΩ,Dz,yk

)
L2(Ω)

+

N∑
j,k=1

(ΓΩ,Dα,Y (z))k jq
φ
k qψj = (ϕ − z2ψ, φ)L2(Ω).

This is valid ∀φ ∈ D(DΩα,Y) only if

(−∆ − z2)
(
ψ −

N∑
j=1

qψj G
Ω,D
z,y j

)
= ϕ − z2ψ = (−∆Ωα,Y − z2)ψ.

The remaining terms are(
(−∆ − z2)

(
ψ −

N∑
j=1

qψj G
Ω,D
z,y j

)
,

N∑
k=1

qφkGΩ,Dz,yk

)
L2(Ω)

=

N∑
j,k=1

(ΓΩ,Dα,Y (z))k jq
φ
k qψj .

Since γD

(
ψ −

∑N
j=1 qψj G

Ω,D
z,y j

)
= γD

(
φ −

∑N
j=1 qφj G

Ω,D
z,y j

)
= 0, we can integrate by parts twice with

no boundary term and obtain(
ψ −

N∑
j=1

qψj G
Ω,D
z,y j
,

N∑
k=1

qφk (−∆ − z2)GΩ,Dz,yk

)
L2(Ω)

=

N∑
j,k=1

(ΓΩ,Dα,Y (z))k jq
φ
k qψj .

By definition (−∆ − z2)GΩ,Dz,yk = δ(x − yk) and hence

N∑
k=1

qφk
(
ψ −

N∑
j=1

qψj G
Ω,D
z,y j

)
(yk) =

N∑
j,k=1

(ΓΩ,Dα,Y (z))k jq
φ
k qψj .

This must be verified ∀qφk ∈ C, k = 1, . . . ,N, which implies

(
ψ −

N∑
j=1

qψj G
Ω,D
z,y j

)
(yk) =

N∑
j=1

(ΓΩ,Dα,Y (z))k jq
ψ
j .

□

Proposition 1.4.4. The quadratic form (RΩ,ηα,Y ,D(RΩα,Y , η)) (with η ≥ 0, η = 0 being the Neumann
case) is associated to the operator −∆Ω,R,ηα,Y so that

RΩ,ηα,Y (ψ, φ) = (−∆Ω,R,ηα,Y ψ, φ)L2(Ω) ∀ψ ∈ D(−∆Ω,R,ηα,Y ) ∀φ ∈ D(RΩα,Y),
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where

D(−∆Ω,R,ηα,Y ) =
{
ψ ∈ D(RΩ,ηα,Y )|ψ −

N∑
j=1

q jGΩ,R,ηz,y j
∈ H2(Ω), (γN + ηγD)ψ = 0,

(
ψ −

N∑
j=1

q jGΩ,R,ηz,y j

)
(yk) =

N∑
j=1

(ΓΩ,R,ηα,Y (z))k jq j, k = 1, . . . ,N
} (1.69)

(−∆Ω,R,ηα,Y − z2)ψ = (−∆ − z2)
(
ψ −

N∑
j=1

q jGΩ,R,ηz,y j

)
. (1.70)

Proof. Let ψ ∈ D(−∆Ω,R,ηα,Y ), φ ∈ D(RΩ,ηα,Y ) and be ϕ ∈ L2(Ω) such that

RΩ,ηα,Y (ψ, φ) = (ϕ, φ)L2(Ω)

or more explicitly

(
∇

(
ψ −

N∑
j=1

qψj G
Ω,R,η
z,y j

)
,∇

(
φ −

N∑
k=1

qφkGΩ,R,ηz,yk

))
− z2

(
ψ −

N∑
j=1

qψj G
Ω,R,η
z,y j

, φ −

N∑
k=1

qφkGΩ,R,ηz,yk

)
+ η

(
γD

(
ψ −

N∑
j=1

qψj G
Ω,R,η
z,y j

)
, γD

(
φ −

N∑
k=1

qφkGΩ,R,ηz,yk

))
L2(Ω)

+

N∑
j,k=1

(ΓΩ,R,ηα,Y (z))k jq
φ
k qψj = (ϕ − z2ψ, φ).

(1.71)

We integrate by parts the first term, recalling also that ψ and GΩ,R,ηz,yk , k = 1, . . . ,N satisfy the
Robin boundary condition. For these reasons the boundary terms cancel out

(
(−∆− z2)

(
ψ−

N∑
j=1

qψj G
Ω,R,η
z,y j

)
, φ−

N∑
k=1

qφkGΩ,R,ηz,yk

)
+

N∑
j,k=1

(ΓΩ,R,ηα,Y (z))k jq
φ
k qψj = (ϕ− z2ψ, φ). (1.72)

Imposing the cancellation of all terms with φ, regardless of its choice in D(RΩα,Y , η)), we obtain
(1.70). The remaining terms are(

(−∆ − z2)
(
ψ −

N∑
j=1

qψj G
Ω,R,η
z,y j

)
,

N∑
k=1

qφkGΩ,R,ηz,yk

)
L2(Ω)

=

N∑
j,k=1

(ΓΩ,R,ηα,Y (z))k jq
φ
k qψj .

Following the same path as in the proof for the Dirichlet form leads to (1.69). □
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Chapter 2.

Spectral Properties of One Point
Interactions in Domains

In this chapter we study the spectrum for the one-point interaction Laplacians on domains
like the ones considered in the previous chapter. Before doing this, we characterize the spectrum
of the free Laplacian −∆Ω on this kind of domains.

We start with the following definition.

Definition 2.0.1 (Conical Semi-Infinite Domain). A domain Ω ⊂ Rn is said to be Conical Semi-
Infinite if there exists some R > 0 and a closed curve C on S n−1 such that for all x ∈ Ω \ BR(0),
then x

|x| ∈ S n−1 is in the internal region delimited by C on S n−1.

We sum up Theorems 6-8 and 11 in [27] with the following

Theorem 2.0.1. Let Ω is a conical semi-infinite domain, then the spectra of −∆Ω,D and −∆Ω,N

are both purely absolutely continuous and equal to [0,+∞).

Hn is a conical semi-infinite domain because it fulfills the requirements with R = 1 and C
being the intersection of S n with the set ∂Hn = { x ∈ Rn | xn = 0 }. Hence we can conclude

σ(−∆H
n,D) = σac(−∆H

n,D) = [0,+∞) σ(−∆H
n,N) = σac(−∆H

n,N) = [0,+∞)

For the Robin Laplacian on Hn we instead refer to the work [16] by Cossetti and Krejčiřik.
They state the following result.

Theorem 2.0.2. Let n ≥ 1 and assume that η ∈ W1,∞(∂Hn;R) is such that

η ≥ 0

and

x · ∇η ≤ 0.

Then σp(−∆H
n,R,η) = ∅ and σac(−∆H

n,R,η) = [0,+∞).

33
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In this theorem the two conditions combine to guarantee the total absence of eigenvalues.
In fact, the first one eliminates the possibility of negative eigenvalues by rendering the operator
non-negative. Instead the non-trivial existence of non-negative embedded eigenvalues is
excluded by the latter one.

Other conditions ensuring the absence of positive eigenvalues for domains with non-compact
boundary can be found in Chapter 7 of [39] (e.g. Theorem 7.2.5. and Theorem 7.4.1.).

For exterior domains it holds the same condition of a purely absolutely continuous spectrum
contained in [0,+∞) (See Theorems 4.9 and 4.11 in [32]).

So we can sum up the above results for the Laplacians on Hn and on Ω unbounded with
bounded ∂Ω and state that in those cases

σ(−∆Ω) = σac(−∆Ω) = [0,+∞) and σp(−∆Ω) = ∅.

So the spectrum is purely absolutely continuous and there are no embedded eigenvalues in the
continuous spectrum. This fact will be useful to determine the one point interaction Laplacians
spectrum.

2.1. Characterization of the Eigenvalues of One Point
Interaction Laplacians

If we recall Proposition 1.2.1 and Proposition 1.3.1, we can observe that the resolvent of
−∆Ω and of −∆Ωα,y differ for a rank one operator. Theorem 9.3.5 in [10] states that for such
operators the continuous spectrum is preserved under this perturbation and so

σc(−∆Ωα,y) = σc(−∆Ω) = [0,+∞).

Moreover, by Theorem 9.3.8 also in [10]), the point spectrum is made of one point at most and

σp(−∆Ωα,y) ⊂ (−∞, 0).

Remark. The expression of the resolvent reported in Proposition 1.2.1 and Proposition 1.3.1
also shows that the possible negative eigenvalue is z2, where z is the imaginary solution with
Im z ≥ 0 of the equation ΓΩα,y(z) = 0. Throughout all this chapter z2 will indicate eigenvalues,
while z will be used as a parametrization of the complex plane, employed to identify the
singularities of the resolvent (−∆α,y − z2)−1.

Remark. We recall the eigenvalue properties for the one-point interaction in the whole Rn,
n = 2, 3.
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For n = 3, the eigenvalue is z2, where z is the solution of

α −
iz
4π
= 0 Im z ≥ 0, (2.1)

so z = −4πiα (z2 = −16π2α2). The condition Im z ≥ 0 is fulfilled only for α ≤ 0. Moreover,
while for α = 0, z = 0 is a solution of (2.1), it is not an actual eigenvalue, because the
corresponding solution

G0,3
0,y =

1
4π |x − y|

of −∆R
3

α,y = 0 fails to be in L2(R3).

For n = 2, instead, the eigenvalue is z2, where z is the solution

α +
ln z

2i + γ

2π
= 0 Im z ≥ 0

(here γ is the Euler constant). Since the possible eigenvalue is negative, the substitution z = ia,
a > 0 returns z = 2ie−2πα−γ and then z2 = −4e−4πα−2γ.

We give the following

Definition 2.1.1. The critical value αc for −∆Ωα,y is

αc = sup
{
α ∈ R

∣∣∣ −∆Ωα,y admits eigenvalues
}
.

For example we have that αc = 0 for −∆R
3

α,y and αc = +∞ for −∆R
2

α,y.

In the following we investigate the conditions under which the possible negative eigenvalue
exists and determine αc for Dirichlet and Neumann boundary conditions in dimension two and
three.

2.1.1. Exterior Domains with Dirichlet Boundary Conditions

Proposition 2.1.1. Let Ω ⊂ R3 be an exterior domain with C1,1 boundary and consider y ∈ Ω.
The critical value αc for the operator −∆Ω,Dα,y is αc = −hΩ,D0,y (y) ≤ 0 (hΩ,Dz,y defined by (A.5) is the
harmonic part of the Green’s function GΩ,Dz,y ). When the eigenvalue exists, it is non-positive and
unique.

Proof. The eigenvalue is the possible solution of

α −
iz
4π
+ hΩ,Dz,y (y) = 0, z ∈ iR+.
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Setting z = ia with a ≥ 0, we get the equation

a
4π
= −α − hΩ,Dia,y (y), a ≥ 0, (2.2)

whose solution can be interpreted as the abscissas of the intersections of the curves at each side.

The corrector function hΩ,Dia,y solves the boundary value problem(−∆ + a2)hΩ,Dia,y (x) = 0 inΩ
hΩ,Dia,y (x) = e−a|x−y|

4π|x−y| in ∂Ω
. (2.3)

By the regularity of the boundary data we can claim that the solution is smooth in Ω. This fact
can be derived also from the representation of the problem (2.3) in terms of layer potentials
related to ∂Ω, see e.g. Theorem 7.15 in [36]. Moreover, the solution sought has to be in
H2(Ω), so it must hold lim|x|→+∞ hΩ,Dia,y (x) = 0 (we observe that the boundary data also obey to

the same condition ). Hence, ∀ε > 0 there exists R > 0 large enough such that
∣∣∣∣hΩ,Dia,y (x)

∣∣∣∣ < ε,
∀x such that |x − y| ≥ R. We define U = Ω ∩ BR(y). By the maximum principle in the form of
Theorem A.2.1, we can claim that hΩ,Dia,y is strictly positive in U and that reaches its maximum
on the boundary,

hΩ,Dia,y (x) < sup
∂U

hΩ,Dia,y (x) ∀x ∈ U.

Given V,W open subset of R3 the following inclusion holds

∂(V ∩W) ⊂ (V ∩ ∂W) ∪ (∂V ∩W). (2.4)

This implies

sup
∂U

hΩ,Dia,y (x) ≤ max
{

sup
Ω∩∂BR(y)

hΩ,Dia,y (x), sup
∂Ω∩BR(y)

hΩ,Dia,y (x)
}

≤ max
{
ε, sup

∂Ω∩BR(y)

e−a|x−y|

4π |x − y|

}
≤ max

{
ε, sup

∂Ω

e−a|x−y|

4π |x − y|

}
= sup

∂Ω

e−a|x−y|

4π |x − y|
,

for R large enough. Since
∣∣∣∣hΩ,Dia,y

∣∣∣∣ < ε arbitrary, outside BR(y) for sufficiently large R, we can
claim that

hΩ,Dia,y (x) < sup
∂Ω

e−a|x−y|

4π |x − y|
∀x ∈ Ω.
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By the minimum principle Theorem A.2.1, we can also claim that

hΩ,Dia,y (y) ≥ inf
∂U

hΩ,Dia,y (x) ≥ min
{

inf
Ω∩∂BR(y)

hΩ,Dia,y (x), inf
∂Ω∩BR(y)

hΩ,Dia,y (x)
}

≥ min
{
−ε, min

∂Ω∩BR(y)

e−a|x−y|

4π |x − y|

}
≥ min

{
−ε, inf

∂Ω

e−a|x−y|

4π |x − y|

}
≥ −ε.

Since ε can be chosen smaller and smaller for R large enough, we can claim that

hΩ,Dia,y (y) ≥ 0. (2.5)

Moreover, the derivative
∂hΩ,Dia,y

∂a solves(−∆ + a2)
∂hΩ,Dia,y

∂a = −2ahΩ,Dia,y inΩ
∂hΩ,Dia,y

∂a (x) = − e−a|x−y|

4π in ∂Ω
.

The solution belongs to C2(Ω) ∩ C
(
Ω

)
thanks to the regularity of the source and boundary

value. With the help of the maximum principle for the Dirichlet problem Theorem A.2.2, we
can write that 

∂hΩ,Dia,y

∂a (x) ≥ min
{

inf
∂Ω

(
− e−a|x−y|

4π

)
, inf
Ω

(
−2ahΩ,Dia,y (x)

)}
∂hΩ,Dia,y

∂a (x) ≤ max
{

sup
∂Ω

(
− e−a|x−y|

4π

)
, sup
Ω

(
−2ahΩ,Dia,y (x)

)} .

This implies that
∂hΩ,Dia,y

∂a < 0 and that∣∣∣∣∣∣∣∂hΩ,Dia,y

∂a
(x)

∣∣∣∣∣∣∣ ≤ max
{

sup
∂Ω

(
e−a|x−y|

4π

)
, sup
∂Ω

(
a

e−a|x−y|

2π |x − y|

)}
.

We now inquiry the value of hΩ,Dia,y (y) as a → +∞. The negativity of the derivative with
respect to a leaves two alternatives: the limit is −∞ or it is finite and less than hΩ,D0,y (y). Let’s
consider ∣∣∣∣hΩ,Dia,y (x)

∣∣∣∣ ≤ ∫ ∣∣∣∣∣∣∣∂hΩ,Dia,y

∂a

∣∣∣∣∣∣∣ da ≤
∫

max
{

sup
∂Ω

(
e−a|x−y|

4π

)
, sup
∂Ω

(
a

e−a|x−y|

2π |x − y|

)}
da.

Both the functions argument of sup in the equation above tends to 0 as |x| → +∞. This means
that ∀ε > 0 there exists a R > 0, such that both functions are less than ε whenever x < BR(y).
Now let U′ = ∂Ω ∩ BR(y). This set being compact and being both functions continuous on
∂Ω (y is an internal point) imply that the supremum on this U′ is actually attained for both
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functions. So there exist x1, x2 ∈ U′ such that

sup
U′

(
e−a|x−y|

4π

)
=

e−a|x1−y|

4π
and sup

U′

(
a

e−a|x−y|

2π |x − y|

)
= a

e−a|x2−y|

2π |x2 − y|
.

Then, we can write that

sup
∂Ω

(
e−a|x−y|

4π

)
≤ max

{
e−a|x1−y|

4π
, ε

}
and sup

∂Ω

(
a

e−a|x−y|

2π |x − y|

)
≤ max

{
a

e−a|x2−y|

2π |x2 − y|
, ε

}
.

The arbitrarity of ε, together with the fact max{A, B} ≤ A + B if A, B ≥ 0 implies∣∣∣∣hΩ,Dia,y (x)
∣∣∣∣ ≤ ∫

e−a|x1−y|

4π
da +

∫
a

e−a|x2−y|

2π |x2 − y|
da

= −
e−a|x1−y|

4π |x1 − x|
−

e−a|x2−y|

2π |x2 − y|2

(
a +

1
|x2 − y|

)
+ c,

for some c ∈ R+. So

lim
a→+∞

∣∣∣∣hΩ,Dia,y (y)
∣∣∣∣ ≤ c < +∞,

which implies

lim
a→+∞

hΩ,Dia,y (y) > −∞.

Let’s go back to (2.2). We have just proved that the right side stays finite for a → +∞,
while the left side goes to +∞. Both sides are continuous, so to have at least a solution in
[0,+∞) it must hold that α ≤ −hΩ,D0,y (y). By recalling (2.5) with a = 0 we observe that αc ≤ 0.
The eigenvalue if existent is unique because we already proved that the point spectrum is made
of a single point at most. □

Proposition 2.1.2. Let Ω ⊂ R2 be an exterior domain with C1,1 boundary and consider y ∈ Ω.
Define the function

f : Ω ×Ω × (0 +∞]→ R (2.6)

f (x, y, a) = hΩ,Dia,y (x) +
ln

(
a
2

)
I0(a |x − y|) + γ

2π
, (2.7)

where hΩ,Dz,y , defined in (A.5), is the harmonic part of the Green’s function and I0 the modified
Bessel function of the first kind of order 0 defined in (C.17). Then the function

g : Ω ×Ω→ R g(x, y) = lim
a→0+

f (x, y, a)

is well-defined and the critical value for the operator −∆Ω,Dα,y is αc = −g(y, y).
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There is at most one eigenvalue and it is non-positive.

Proof. We know that the possible eigenvalue is unique and non-positive. So it is the eventual
solution of

α +
ln z

2i + γ

2π
+ hΩ,Dz,y (y) = 0 z ∈ iR+,

which can be rewritten as

α +
ln a

2 + γ

2π
+ hΩ,Dia,y (y) = 0 a ≥ 0. (2.8)

We recall that hΩ,Dia,y solves (−∆ + a2)hΩ,Dia,y = 0 inΩ
hΩ,Dia,y (x) = 1

2πK0(a |x − y|) in ∂Ω
,

where K0 is the modified Bessel function of the second kind of order 0 (see (C.20) with n = 0).
So by the regularity of the boundary data, for a > 0, the solution is smooth in Ω and continuous
on its boundary. As in the proof of Proposition 2.1.1, we observe that the solution sought has to
be in H2(Ω), so it must hold lim|x|→+∞ hΩ,Dia,y (x) = 0. Hence, ∀ε > 0 there exists a ball BR large

enough such that
∣∣∣∣hΩ,Dia,y

∣∣∣∣ < ε, ∀x ∈ R2 \ BR(y). We can consider the strong maximum principle
over the set U = Ω ∩ BR(y) and claim that

hΩ,Dia,y (x) > inf
∂U

hΩ,Dia,y (x) ∀x ∈ U.

Recalling (2.4), we can write

inf
∂U

hΩ,Dia,y (x) > min
{

inf
Ω∩∂BR(y)

hΩ,Dia,y (x), inf
∂Ω∩BR(y)

hΩ,Dia,y (x)
}

> min
{
−ε, inf

∂Ω∩BR(y)

K0(a |x − y|)
2π

}
≥ min

{
−ε, inf

∂Ω

K0(a |x − y|)
2π

}
= −ε.

Being
∣∣∣∣hΩ,Dia,y

∣∣∣∣ bounded by ε outside BR(y), choosing R sufficiently large we can claim that

hΩ,Dia,y (x) > −ε ∀x ∈ Ω.

This implies that hΩ,Dia,y and moreover hΩ,Dia,y (y) are bounded from below and so the left side of
(2.8) goes to +∞ for a→ +∞.
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We recall that the function J0(w) solves the differential equation (C.6). If we set u(r) =
J0(iar), with r = |x − y|, it follows that u solves

−
d2u
dr2 −

1
r

du
dr
+ a2u = 0,

which, because off the expression of the Laplacian operator in polar coordinates, is equivalent
to (−∆ + a2)u = 0. Using the definition (C.17) of the modified Bessel function of order zero I0,
we have that u(r) = I0(ar) = I0(a |x − y|). It follows then that u solves the following boundary
value problem (−∆ + a2)u(x, y, a) = 0

u(x, y, ia)|x∈∂Ω = I0(a |x − y|)|x∈∂Ω
. (2.9)

Since hΩ,Dia,y and u(·, y, a) solve the same linear homogeneous equation, then any linear
combination of those functions will solve the same equation. The boundary value will be the
corresponding linear combination of the boundary values for the original problems. This means
that f solves (−∆ + a2) f (x, y, a) = 0

f (x, y, a)|x∈∂Ω =
K0(a|x−y|)+ln a

2 I0(a|x−y|)+γ
2π

∣∣∣∣
x∈∂Ω

. (2.10)

Both hΩ,Dia,y (x) and I0(a |x − y|) are continuous for x = y because they are harmonic in Ω. So it
makes sense to evaluate f (y, y, a) and since I0(0) = 1 it holds that

f (y, y, a) = hΩ,Dia,y (y) +
ln a

2 + γ

2π
. (2.11)

A comparison between this expression and (2.8) show that we can rewrite (2.8) as

α + f (y, y, a) = 0 (2.12)

and hence the behaviour of f (y, y, a) for a→ 0+ determines the existence of a solution for (2.8).
We prove that the boundary datum of the problem (2.10) is continuous from the right in a = 0.
In fact, thanks to the expansion (C.22) of K0 for small argument we have

lim
a→0+

K0(a |x − y|) + ln a
2 I0(a |x − y|) + γ

2π
= −

ln |x − y|
2π

.

This means that problem (2.10) depends continuously on a and the function g(x, y) = lima→0+ f (x, y, a)
is the solution of −∆g(x, y) = 0

g(x, y)|x∈∂Ω = −
ln |x−y|

2π

∣∣∣
x∈∂Ω

.
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The boundary data regularity implies that g(·, y) ∈ C∞(Ω) ∩ C(Ω). This means that g(y, y) is
finite and using the form (2.12) of (2.8) we conclude that a solution (which is the only one) is
possible if and only if α ≤ −g(y, y). □

Remark. In dimension 3 the critical value αc is non-positive as a consequence of the maximum
principle and of the positivity of the boundary datum for problem (2.3).

In dimension 2 the sign of αc is not a priori determined, because the function

ψ0(x, y) = −
ln |x − y|

2π

is not positive in general (or even of definite sign on ∂Ω). Instead, for a fixed Ω, one can get
operators −∆Ω,Dα,y for which αc is arbitrarily negative large by locating the point interaction close
enough to the boundary.

2.1.2. Star-Shaped Domains with Neumann Boundary Condition

Definition 2.1.2 (Star-Shaped Domain). Let x0 ∈ Ω ⊆ R
n with ∂Ω ∈ C0,1. We say that Ω is

star-shaped with respect to x0 if

(x − x0) · n(x) ≥ 0 ∀x ∈ ∂Ω, (2.13)

where n(x) is the unit outer normal to ∂Ω at x.

Proposition 2.1.3. Let Ω ⊂ R3 be an unbounded domain with C2 boundary, star-shaped with
respect to y ∈ Ω and such that σ(−∆Ω,N) = σac(−∆Ω,N) = [0,+∞). Then the crirical value αc

for the operator −∆Ω,Nα,y is αc = −hΩ,N0,y (y) ≥ 0 (hΩ,Dz,y defined by (A.6) is the harmonic part of the
Neumann Green’s function GΩ,Nz,y ). When the eigenvalue λ exists, it is non-positive and unique.
Moreover, when α ≤ 0 it holds that

λ < −16π2α2. (2.14)

Proof. We know that the point spectrum of −∆Ω,Nα,y is made at most of one non-positive point.
This eigenvalue, if existent, is equal to z2, with z solving

α −
iz
4π
+ hΩ,Nz,y (y) = 0, z ∈ iR+.

Setting z = ia with a ≥ 0, we get the equation

α +
a

4π
+ hΩ,Nia,y (y) = 0, a ≥ 0. (2.15)
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Here, the function hΩ,Nz,y is the solution of the boundary value problem(−∆ + a2)hΩ,Nia,y (x) = 0
∂hΩ,Nia,y

∂n (x)
∣∣∣∣∣
x∈∂Ω
= ∂

∂n

(
e−a|x−y|

4π|x−y|

)∣∣∣∣
x∈∂Ω

, y ∈ Ω a ≥ 0.
(2.16)

We can rewrite this problem as(−∆ + a2)hΩ,Nia,y (x) = 0
∂hΩ,Nia,y

∂n (x)
∣∣∣∣∣
x∈∂Ω
= −

e−a|x−y|(1+a|x−y|)
4π|x−y|3

(x − y) · n(x)
∣∣∣∣
x∈∂Ω

, y ∈ Ω a ≥ 0.
(2.17)

For a→ 0+, the boundary term in (2.17) converges to

−
x − y

4π |x − y|3
.

So it makes sense to pass to the limit in the boundary value problem (2.17) and this way it
becomes −∆hΩ,N0+,y(x) = 0

∇hΩ,N0+,y(x) · n(x)
∣∣∣∣
x∈∂Ω
= −

x−y
4π|x−y|3

· n(x)
∣∣∣∣
x∈∂Ω

, y ∈ Ω.

By regularity of the boundary and boundary value we have that hΩ,N0+,y ∈ C∞(Ω) ∩C1(Ω) and this
implies that hΩ,N0+,y(y) is finite.

The right hand side of the boundary condition in (2.17) is the product of a scalar negative
function and (x − y) · n(x). This observation combined with Ω being star-shaped with respect to

y implies that
∂hΩ,Nia,y

∂n ≤ 0 on ∂Ω. hΩ,Nia,y ≤ 0 is then a consequence of Proposition A.2.1, which can
be applied thanks to the assumption of Ω having C2 boundary.

We now prove that for a large enough, the left hand side of (2.15) is positive. To do so we
consider set a ≥ b ≥ 0 and consider the following auxiliar boundary value problem

(−∆ + b2)hΩ,Nib,y (x) = 0
∂hΩ,Nib,y

∂n (x)
∣∣∣∣∣
x∈∂Ω
= −

e−b|x−y|(1+b|x−y|)
4π|x−y|3

(x − y) · n(x)
∣∣∣∣
x∈∂Ω
= f (b)(x − y) · n(x)|x∈∂Ω

, y ∈ Ω.

(2.18)

Then, we define the boundary value problem, whose equation data are the difference of (2.18)
and (2.17)−∆

(
hΩ,Nib,y (x) − hΩ,Nia,y (x)

)
+ b2

(
hΩ,Nib,y (x) − hΩ,Nia,y (x)

)
= (a2 − b2)hΩ,Nia,y (x)

∂
∂n

(
hΩ,Nib,y − hΩ,Nia,y

)
(x)

∣∣∣∣
x∈∂Ω
=

(
f (b) − f (a)

)
(x − y) · n(x)

∣∣∣∣
x∈∂Ω

, y ∈ Ω. (2.19)
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The right hand side of the first equation in (2.19) is non positive because a ≥ b ≥ 0 and we
have proven that hΩ,Nia,y ≤ 0. The same fact holds for the right hand side of the other equation
because the function f is increasing

d f
da

(a) =
a

4π |x − y|
e−a|x−y| ≥ 0, ∀a ≥ 0. (2.20)

This means that we can apply Proposition A.2.1 to the problem (2.19) concluding that, whenever
a ≥ b ≥ 0, one has hΩ,Nia,y ≥ hΩ,Nib,y . In particular, since it has been proven that hΩ,N0+,y(y) is finite, it
holds that also ∀a ≥ 0 hΩ,Nia,y is bounded below. We can then conclude that, for a large enough

α +
a

4π
+ hΩ,Nia,y (y) > 0 (2.21)

The functions in (2.15) are all continuous in a and so for a solution to exists it needs to happen
that α ≤ hΩ,N0,y (y).

Next we rewrite (2.15) as

a = −4π(hΩ,Nia,y + α).

If α ≤ 0, then 0 < a < −4πα and (2.14) follows. □

Proposition 2.1.4. Let Ω ⊂ R2 be an unbounded domain with C2 boundary, star-shaped with
respect to y ∈ Ω and such that σ(−∆Ω,N) = σac(−∆Ω,N) = [0,+∞). Then the operator −∆Ω,Nα,y

has one eigenvalue λ and it is non-positive, regardless of α.

In addition, the harmonic part hΩ,Nia,y of the Neumann Green’s function of Ω obeys hΩ,Nia,y ≤ 0
in Ω ∀a > 0 and lima→0+ hΩ,Nia,y (y) > −∞

Proof. We know that the point spectrum of −∆Ω,Nα,y is made at most of one non-positive point.
This eigenvalue z2, if existent, is such that z is a solution of

α +
ln z

2i + γ

2π
+ hΩ,Nz,y (y) = 0 z ∈ iR+

(hΩ,Nz,y is defined in (A.6)), or equivalently

α +
ln a

2 + γ

2π
+ hΩ,Nia,y (y) = 0 a ≥ 0. (2.22)

Here the function hΩ,Nz,y is the solution of the boundary value problem(−∆ + a2)hΩ,Nia,y (x) = 0
∂hΩ,Nia,y

∂n (x)
∣∣∣∣∣
x∈∂Ω
= ∂

∂n

(
1

2πK0(a |x − y|)
)∣∣∣∣

x∈∂Ω

, y ∈ Ω a ≥ 0. (2.23)
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By definition of normal derivative and since K′0(w) = −K1(w) (K1(w) being the modified Bessel
function of the second kind of order 1), we can rewrite this problem as(−∆ + a2)hΩ,Nia,y (x) = 0

∇hΩ,Nia,y (x) · n(x)
∣∣∣∣
x∈∂Ω
= − a

2π
K1(a|x−y|)
|x−y| (x − y) · n(x)

∣∣∣∣
x∈∂Ω

, y ∈ Ω y ≥ 0. (2.24)

Thanks to (C.23) we have that

lim
a→0+

. −
a

2π
K1(a |x − y|)

x − y
|x − y|

= −
x − y

2π |x − y|2
,

which means that, the boundary term is continuous for a→ 0+. So it makes sense to pass to
the limit in the boundary value problem (2.24) and this way it becomes−∆hΩ,N0+,y(x) = 0

∇hΩ,N0+,y(x) · n(x)
∣∣∣∣
x∈∂Ω
= −

x−y
2π|x−y|2

· n(x)
∣∣∣∣
x∈∂Ω

, y ∈ Ω.

By regularity of the boundary and boundary value we have that hΩ,N0+,y ∈ C∞(Ω) ∩C1(Ω) and this
implies that hΩ,N0+,y(y) is finite. So, the left side of (2.22) goes to −∞ as a approaches 0.

The right hand side of the boundary condition in (2.24) is the product of a scalar negative
function and (x − y) · n(x). This observation combined with Ω being star-shaped with respect to

y implies that
∂hΩ,Nia,y

∂n ≤ 0 on ∂Ω. The C2 regularity of Ω allows us to invoke Proposition A.2.1
and conclude that hΩ,Nia,y ≤ 0.

Proving that for a large enough the left side of (2.22) is positive, implies that the existence
of a solution. Let a ≥ b ≥ 0 and consider the problem

(−∆ + b2)hΩ,Nib,y (x) = 0
∂hΩ,Nib,y

∂n (x)
∣∣∣∣∣
x∈∂Ω
= − b

2π
K1(b|x−y|)
|x−y| (x − y) · n(x)

∣∣∣∣
x∈∂Ω
= f (b)(x − y) · n(x)|x∈∂Ω

, y ∈ Ω. (2.25)

As done in the three dimensional case, we consider the boundary value problem difference of
the ones with b and a−∆

(
hΩ,Nib,y (x) − hΩ,Nia,y (x)

)
+ b2

(
hΩ,Nib,y (x) − hΩ,Nia,y (x)

)
= (a2 − b2)hΩ,Nia,y (x)

∂
∂n

(
hΩ,Nib,y − hΩ,Nia,y

)
(x)

∣∣∣∣
x∈∂Ω
=

(
f (b) − f (a)

)
(x − y) · n(x)

∣∣∣∣
x∈∂Ω

, y ∈ Ω. (2.26)

a ≥ b ≥ 0 and hΩ,Nia,y ≤ 0, imply the non-positivity of the right side of the first equation. It also
holds that

d f
da

(a) =
a

2π
K0(a |x − y|) ≥ 0, (2.27)
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which together with a ≥ b ≥ 0 and the fact that the domain is star shaped with respect to y,
implies that also ∂

∂n

(
hΩ,Nib,y − hΩ,Nia,y

)
(x)

∣∣∣∣
x∈∂Ω
≤ 0. So we can apply Proposition A.2.1 and have that

hΩ,Nia,y (y) ≥ hΩ,Nib,y (y) ≥ hΩ,N0+,y(y) > −∞.

Hence for large a, the left side of (2.22) is positive (the other terms are either constant or
diverge to +∞ as a→ +∞) regardless of α, implying that a solution exists ∀α. □

Remark. We conjecture that this the last two propositions hold also in an exterior domain,
resembling the results valid for the Dirichlet case. Note that in exterior domains, condition
(x − y) · n(x) is never true. In fact what is missing is a way to bound from below hΩ,Na,y (y) for
large a > 0.

2.2. The Half-Space

In this and following sections, we explicitly study the spectrum of −∆Ωα,y for different
domains Ω. We start with the half-space H3 =

{
x = (x1, x2, x3) ∈ R3

∣∣∣ x3 > 0
}
. The point

source is located in y = (y1, y2, y3) with y3 > 0.

2.2.1. Dirichlet Boundary Condition

The Green’s function for H3 with Dirichlet boundary condition can be found by a simple
reflection argument. We have that ∂H3 =

{
x ∈ R3

∣∣∣ x3 = 0
}
. We define y = (y1, y2,−y3). Let

x ∈ ∂H3, then

|x − y| =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 + y3)2 =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 + y3)2 = |x − y| .

It follows that

hH
3,D

z,y (x) =
eiz|x−y|

4π |x − y|

is the solution of (A.5). We can now prove the following

Proposition 2.2.1. The operator −∆H
3,D

α,y has αc = −
1

8πy3
< 0. When the eigenvalue λ exists, it is

such that

−16π2α2 < λ ≤ −
(
4πα +

1
2y3

)2

. (2.28)
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The corresponding eigenfunction is

ψλ(x, y) =
e−
√
|λ||x−y|

4π |x − y|
−

e−
√
|λ||x−y|

4π |x − y|
. (2.29)

Proof. The eigenvalues are solutions of ΓH
3,D

α,y (z) = 0, that is

α −
iz
4π
+

eiz|y−y|

4π |y − y|
= 0, (2.30)

with z2 = λ ∈ R and Im z ≥ 0. We already know that the possible eigenvalue is negative, but we
will anyway directly prove that no positive eigenvalues can occur.

First we look for positive eigenvalues. To do so we substitute the ansatz z = a with a ∈ R in
(2.30), obtaining

α −
ia
4π
+

e2iy3a

8πy3
= 0.

By equating real and imaginary part we get the systemcos (2y3a) = −8παy3

sin (2y3a) = 2y3a
.

The second equation admits solution only if 2y3a = 0. If y3 = 0, then the first equation cannot
be true, so this candidate solution is discarded. If a = 0, the first equation admits a solution if
and only if α = − 1

8πy3
.

Whenever zero is a solution of the algebraic equation for the eigenvalues, one has to check
whether the corresponding solution is in L2 or not. In this case

ψ0(x, y) =
1

4π |x − y|
−

1
4π |x − y|

.

This function is in L2(H3) because

|ψ0(x, y)| =
|x − y| − |x − y|
4π |x − y| |x − y|

≤
|x − y − x + y|

4π |x − y| |x − y|
=

y3

2π |x − y| |x − y|
,

with the last side of the inequality being in L2(H3).

To find negative eigenvalues we substitute z = ia, with a > 0, in (2.30) so it becomes

e−2y3a

2y3
= −4πα − a. (2.31)

We name the first and second members of (2.31) f (a) and g(a) respectively. It holds that:
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• f (0) = 1
2y3

and g(0) = −4πα;

• 0 > f ′(a) > g′(a) ∀a > 0;

• f (0) ≥ g(0) for α ≥ − 1
8πy3

.

This implies that for α > − 1
8πy3

no solution can exist and so there are no negative eigenvalues
for the operator. If instead α < − 1

8πy3
, given that 0 = lima→+∞ f (a) > lima→+∞ g(a) = −∞ and

that both functions are smooth in a, it must necessarily exist an ã > 0 such that it solves the
equation. This solution is unique because in the interval (ã,+∞) f decreases slower than g and
they are equal in ã.

A useful fact about f is that for a ≥ 0, 0 < f (a) ≤ 1. Then the solution, if existing, must
satisfy

0 < −4πα − a ≤
1
y3

or equivalently a ∈
[
−4πα − 1

2y3
,−4πα

)
and hence (2.28) follows. □

Remark. We can use the quadratic form DH
3

α,y to check if the result above does make sense.
Since, σp(−∆H

3,D
α,y ) ⊂ (−∞, 0), for the function GH

3,D
√
λ,y

to even be a plausible eigenfunction, it

must hold that DH
3

α,y

(
GH

3,D
√
λ,y
,GH

3,D
√
λ,y

)
≤ 0. This will set some condition on the parameters α ∈ R

and y3 ∈ R
+, which shouldn’t be stricter than the ones found directly for −∆Ω,Dα,y .

So we compute (using z2 = λ = − |λ|, (1.49) and (1.50))

DH
3

α,y

(
GH

3,D
√
λ,y
,GH

3,D
√
λ,y

)
= − |λ|

∫
R2×R+

∣∣∣∣∣∣ e−
√
|λ||x−y|

4π |x − y|
−

e−
√
|λ||x−y|

4π |x − y|

∣∣∣∣∣∣
2

dx + α +
√
|λ|

4π
+

e−
√
|λ||y−y|

4π |y − y|

= −
|λ|

16π2

∫
R2×R+

(
e−2
√
|λ||x−y|

|x − y|2
− 2

e−
√
|λ|(|x−y|+|x−y|)

|x − y| |x − y|
+

e−2
√
|λ||x−y|

|x − y|2

)
dx + α +

√
|λ|

4π
+

e−2
√
|λ|y3

8πy3
.

(2.32)

We have that ∫
R2×R+

e−2
√
|λ||x−y|

|x − y|2
dx =

u=x−y

∫
R2×[−y3,+∞)

e−2
√
|λ||u|

|u|2
du.

Passing to polar coordinates, the integration over u3 is converted to the one on the region
t = cos θ ≥ −y3/r (t ∈ [−1, 1]). If y3/r ≥ 1, the condition is verified ∀t ∈ [−1, 1], so we can
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rewrite the last equation as∫
R2×R+

e−2
√
|λ||x−y|

|x − y|2
dx = 2π

∫ y3

0

∫ 1

−1
e−2
√
|λ|r dt dr + 2π

∫ +∞

y3

∫ 1

−
y3
r

e−2
√
|λ|r dt dr

=
π
√
|λ|

(
2 − e−2

√
|λ|y3

)
+ 2πy3

∫ +∞

y3

e−2
√
|λ|r

r
dr.

(2.33)

In a similar fashion we prove that∫
R2×R+

e−2
√
|λ||x−y|

|x − y|2
dx =

π
√
|λ|

e−2
√
|λ|y3 − 2πy3

∫ +∞

y3

e−2
√
|λ|r

r
dr (2.34)

and ∫
R2×R+

e−
√
|λ|(|x−y|+|x−y|)

|x − y| |x − y|
=

π
√
|λ|

e−2
√
|λ|y3 . (2.35)

Substitute the expression for the integrals in the quadratic form we get

DH
3

α,y

(
GH

3,D
√
λ,y
,GH

3,D
√
λ,y

)
= α +

√
|λ|

8π
+

e−2
√
|λ|y3

8π

( 1
y3
+

√
|λ|

)
.

We
√
|λ| = a > 0 and define

d(a) = α +
a

8π
+

e−2ay3

8π

( 1
y3
+ a

)
.

We look for the minimum of this function for a ∈ [0,+∞). We study the sign of the derivative

dd
da

(a) =
1

8π
−

e−2ay3

8π
(1 + 2ay3) ≥ 0,

which happens for 1 + 2ay3 ≤ e2ay3 . This condition holds true ∀a, so the function is monotone
increasing in [0,+∞], and then the minimum is attained for a = 0. But

d(0) = α +
1

8πy3
,

which is non positive for α ≤ − 1
8πy3

. This means that, for such values of α, DH
3

α,y

(
GH

3,D
√
λ,y
,GH

3,D
√
λ,y

)
is negative regardless of the value of λ < 0 (has a negative maximum). This is in agreement
with the study of the associated operator −∆Ω,Dα,y .
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2.2.2. Neumann Boundary Condition

Also in this case, a reflection argument helps. The normal external derivative on ∂H3 is
nothing else than − ∂

∂x3
. So, a smooth function even in x3 satisfies the boundary condition in

(A.6). Let f : R→ C be smooth in a neighborhood of ∂H3. It is straightforward to verify that

g(x, y) = f (|x − y|) + f (|x − y|) = f (|x − y|) + f (|x − y|),

which means that g is even in x3. By definition of G0,3
z,y (see (A.3)), then

GH
3,N

z,y (x) =
eiz|x−y|

4π |x − y|
+

eiz|x−y|

4π |x − y|

and hence

hH
3,N

z,y (x) = −
eiz|x−y|

4π |x − y|
.

Proposition 2.2.2. The operator −∆H
3,N

α,y has αc =
1

8πy3
> 0. When the eigenvalue λ exists, it is

such that

−

( 1
2y3
− 4πα

)2

≤ λ < −16π2α2, for α < 0 (2.36)

and

−

( 1
2y3
− 4πα

)2

≤ λ < 0, for 0 ≤ α ≤
1

8πy3
. (2.37)

The corresponding eigenfunction is

ψλ(x, y) =
e−
√
|λ||x−y|

4π |x − y|
+

e−
√
|λ||x−y|

4π |x − y|
. (2.38)

Proof. This time the equation for z is

α −
iz
4π
−

e2iy3z

8πy3
= 0. (2.39)

We know there are no positive eigenvalues. To find the negative eigenvalues we substitute
z = ia with a > 0 in (2.39), getting

e−2y3a

2y3
= a + 4πα.

Let f (a) be the first member and g(a) the other one. It holds that:

• both functions are smooth, f is decreasing and g is increasing;
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• lima→+∞ f (a) = 0 and lima→+∞ g(a) = +∞;

• f (0) ≥ g(0) when α ≤ 1
8πy3

.

It follows that a solution, which is unique, is admitted only for α ≤ 1
8πy3

and furthermore that
solution is a = 0 for α = 1

8πy3
. Though 0 is not an eigenvalue because the corresponding

candidate eigenfunction

ψ0(x, y) =
1

4π |x − y|
+

1
4π |x − y|

is not in L2(H3). The positive sign in hH
3,N

0,y does not allow the partial cancellation that allowed
for sufficiebtly fast decay in the Dirichlet case.

Moreover, since f is decreasing, g is increasing and f (0) = 1
2y3

, the solution must obey

−4πα < a ≤
1

2y3
− 4πα.

If α < 0 this condition is equivalent to (2.36) for λ. Instead, if α ≥ 0, since the function
p(x) = −x2 has a maximum in 0, then λ = −a2 takes values in

−

( 1
2y3
− 4πα

)2

≤ λ < 0.

□

Remark. As for the Dirichlet case, the negativity of the quadratic form on GH
3,D
√
λ,y

is a necessary
condition for it to be an eigenfunction relative to λ < 0. We verify that this condition holds. By
z2 = λ = − |λ|, (1.52) and (1.53), in fact we have

NH
3

α,y

(
GH

3,N
√
λ,y
,GH

3,N
√
λ,y

)
= − |λ|

∫
R2×R+

∣∣∣∣∣∣ e−
√
|λ||x−y|

4π |x − y|
+

e−
√
|λ||x−y|

4π |x − y|

∣∣∣∣∣∣
2

dx + α +
√
|λ|

4π
−

e−
√
|λ||y−y|

4π |y − y|
.

Equations (2.33), (2.34) and (2.35) and simple computations lead to

NH
3

α,y

(
GH

3,N
√
λ,y
,GH

3,N
√
λ,y

)
= α +

√
|λ|

8π
−

e−2
√
|λ|y3

8π

( 1
y3
+

√
|λ|

)
.

We set
√
|λ| = a > 0 and define

n(a) = α +
a

8π
−

e−2ay3

8π

( 1
y3
+ a

)
,

whose derivative is

dn
da

(a) =
1

8π
+

e−2ay3

8π
(1 + 2ay3) ≥ 0,
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which is positive ∀a ≥ 0. Then, n attain its minimum for a = 0. But

n(0) = α −
1

8πy3

and so eigenvalues can exist only when α ≤ 1
8πy3

, which agrees with the condition for the
existence of eigenvalues for −∆Ω,Nα,y .

2.2.3. Robin Boundary Condition

Before the study of the eigenvalue for the Robin condition, we discuss some preliminary
facts about the Robin Green’s function on H3.

The Green’s function on H3 for the Robin problem is given by the formula (see the analysis
by Keller [29])

GH
3,R,η

z,y (x) =
eiz|x−y|

4π |x − y|
−

eiz|x−y|

4π |x − y|
− 2

∂

∂x3

∫ +∞

0
e−ηs eiz|x−y+bs|

4π |x − y + bs|
ds. (2.40)

Here y is the usual reflected of y through the half-plane x3 = 0 and b = (0, 0, 1). In order for
this expression to be actually meaningful, we have to ask the integral to be finite. In this case
this condition is equivalent to ask that

lim
s→+∞

e−ηs eiz|x−y+bs|

4π |x − y + bs|
= 0, (2.41)

and this happens if and only if Im z > −η. This means that for a fixed η, this representation is
only valid for Im z > −η.

We want to obtain a more useful expression for the function

hH
3,R,η

z,y (x) =
eiz|x−y|

4π |x − y|
+ 2

∂

∂x3

∫ +∞

0
e−ηs eiz|x−y+bs|

4π |x − y + bs|
ds,

because hH
3,R,η

z,y (y) appears in ΓH
3,R,η

α,y (z). The presence of the derivative makes it difficult to
evaluate the function in y. In order to get rid of the partial derivative, we would like to bring it
under the integral sign. While doing so, since what we are really interested in is just hH

3,R,η
z,y (y),

we can just assume that x ∈ Br(y) for some 0 < r < y3. Now we can claim that

• (2.41) guarantees integrability.

• Since |x − y + bs|2 = (x1 − y1)2 + (x2 − y2)2 + (x3 + y3 + s)2 and 0 < y3 − r ≤ x3 ≤ y3 + r,
y3 > 0 and s ≥ 0, the argument of the absolute values functions in the integrand is always
greater than zero. This means that the integrand is smooth and so in particular that ∀s ≥ 0
its partial derivative with respect to x3 exists and is continuous ∀x3 ∈ (y3 − r, y3 + r)
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• We compute

∂

∂x3

(
e−ηs eiz|x−y+bs|

4π |x − y + bs|

)
=

(
iz |x − y + bs| − 1

)
(x3 + y3 + s)

4π |x − y + bs|3
eiz|x−y+bs|−ηs

and estimate∣∣∣∣∣∣ ∂∂x3

(
e−ηs eiz|x−y+bs|

4π |x − y + bs|

)∣∣∣∣∣∣ ≤ e− Im z|x−y+bs|−ηs
(
|z| |x − y + bs|−1

+ |x − y + bs|−2
)
.

By simple geometrical considerations we have that maxx∈Br(y) |x − y + bs| = 2y3 + r + s
and minx∈Br(y) |x − y + bs| = 2y3 − r + s. Then

e− Im z|x−y+bs| ≤

e− Im z(2y3−r+s) for Im z ≥ 0
e− Im z(2y3+r+s) for Im z < 0

= e− Im z(2y3∓sgn (Im z)r+s),

from which follows∣∣∣∣∣∣ ∂∂x3

(
e−ηs eiz|x−y+bs|

4π |x − y + bs|

)∣∣∣∣∣∣ ≤ e− Im z(2y3∓sgn (Im z)r)e−(Im z+η)s
(
|z| (s + 2y3 − r)−1 + (s + 2y3 − r)−2

)
,

which is integrable because Im z + η > 0 and 0 < r < y3.

All this considered, by dominated convergence theorem we conclude that

∂

∂x3

∫ +∞

0
e−ηs eiz|x−y+bs|

4π |x − y + bs|
ds =

∫ +∞

0
e−ηs ∂

∂x3

(
eiz|x−y+bs|

4π |x − y + bs|

)
ds. (2.42)

We can notice that the function argument of the partial derivative depends on x3 only through
terms of the form x3 + y3 + s. This means that

∂

∂x3

(
eiz|x−y+bs|

4π |x − y + bs|

)
=
∂

∂s

(
eiz|x−y+bs|

4π |x − y + bs|

)
.

So we can use integration by parts to rewrite (2.42) as

∂

∂x3

∫ +∞

0
e−ηs eiz|x−y+bs|

4π |x − y + bs|
ds =

[
e−ηs eiz|x−y+bs|

4π |x − y + bs|

]+∞
0

+ η

∫ +∞

0
e−ηs eiz|x−y+bs|

4π |x − y + bs|
ds.

The condition η + Im z > 0 implies both that the upper evaluation of the first term is zero and
that the second term is finite. hH

3,R,η
z,y is then

hH
3,R,η

z,y (x) = −
eiz|x−y|

4π |x − y|
+ 2η

∫ +∞

0
e−ηs eiz|x−y+bs|

4π |x − y + bs|
ds
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and now we can evaluate it on y

hH
3,R,η

z,y (y) = −
e2iy3z

8πy3
+ 2η

∫ +∞

0
e−ηs eiz(2y3+s)

4π(2y3 + s)
ds.

The substitution t = 2y3s in the integral, combined with the last equality in (C.2) implies∫ +∞

0
e−ηs eiz(2y3+s)

4π(2y3 + s)
ds =

e2iy3z

4π

∫ +∞

0

e−2y3(η−iz)t

t + 1
dt =

e2y3η

4π
E1(2y3(η − iz))

(E1 is the exponential integral which is defined in (C.1)) and finally we can write hH
3,R,η

z,y (y) as

hH
3,R,η

z,y (y) = −
e2iy3z

8πy3
+
η

2π
e2y3ηE1(2y3(η − iz)).

Remark. It is interesting to notice that in the limit η→ +∞ and η→ 0+ we obtain hH
3,D

z,y (y) and
hH

3,N
z,y (y) respectively. This is evident for η→ 0+. Instead for the other case we use (C.3), so that

hH
3,R,η

z,y (y) = −
e2iy3z

8πy3
+
η

2π
e2y3η

(
e−2y3(η−iz)

2y3(η − iz)
+ O

(
e−2y3η

η2

))
= −

e2iy3z

8πy3
+
η

2π
e2y3η

(
e−2y3(η−iz)

2y3η

(
1 +

iz
η
+ O

( 1
η2

))
+ O

(
e−2y3η

η2

))
= −

e2iy3z

8πy3
+

e2iy3z

4πy3
+ O

(
e−2y3η

η2

)
=

e2iy3z

8πy3
+ O

(
e−2y3η

η2

)
.

Now we can prove the following.

Proposition 2.2.3. The operator −∆H
3,R,η

α,y with η > 0 has

αc =
1

8πy3
−
η

2π
e2y3ηE1(2y3η), (2.43)

where E1 is the exponential integral defined in (C.1). ∀η > 0 the critical value αc lies in(
− 1

8πy3
, 1

8πy3

)
.

There is at most a single eigenvalue λ and it is non-positive. The corresponding eigenfunc-
tion is

ψλ(x, y) =
e−
√
|λ||x−y|

4π |x − y|
−

e−
√
|λ||x−y|

4π |x − y|
− 2

∂

∂x3

∫ +∞

0
e−ηs e−

√
|λ||x−y+bs|

4π |x − y + bs|
ds (2.44)

(b = (0, 0, 1)).

Remark. We notice that the last part of Proposition 2.2.3 implies that λR,η < λD, if λR,η and λD

are the eigenvalues of −∆H
3,R,η

α,y and −∆H
3,D

α,y respectively. (c.f. with Theorem 3.2. in [7]).
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Proof. The equation for eigenvalues is

α −
iz
4π
−

e2iy3z

8πy3
+
η

2π
e2y3ηE1(2y3(η − iz)) = 0, Im z > 0. (2.45)

Since we know there exists at most an eigenvalue and that it is negative, we substitute z = ia
with a > 0. (2.45) becomes

f (a) = α +
a

4π
−

e−2y3a

8πy3
+
η

2π
e2y3ηE1(2y3(η + a)) = 0.

Since there exists at most a solution in [0,+∞), studying the values of the continuous function
f at the extrema of the interval is sufficient to conclude whether or not a solution exists. It
holds that f (0) = α− 1

8πy3
+

η

2πe2y3ηE1(2y3η) and that lima→+∞ f (a) = lima→+∞ α+
a

4π = +∞ and
so an eigenvalue exists only if α < 1

8πy3
−

η

2πe2y3ηE1(2y3η).

This critical value is always between the corresponding critical values for the Dirichlet and
Neumann problems. Let g(η) = η

2πe2y3ηE1(2y3η). g(0) = 0 (the corresponding critical value
being 1

8πy3
) while

lim
η→+∞

g(η) =
η

2π
e2y3ηE1(2y3η) = lim

η→+∞

η

2π
e2y3η

e−2y3η

2y3η
=

1
4πy3

(which corresponds to − 1
8πy3

). If we prove that g is monotone increasing, the claim follows. It
holds that

g′(η) =
e2y3η(1 + 2y3η)E1(2y3η) − 1

2π
.

Setting ρ = 2y3η, we want eρ(1 + ρ)E1(ρ) > 1 to hold ∀ρ > 0. By recalling the inequalities
(C.5), it follows that, if

1
2

ln
(
1 +

2
ρ

)
>

1
ρ + 1

, (2.46)

a fortiori g′(η) > 0 ∀η > 0 holds as well. Let q(ρ) = 1
2 ln

(
1 + 2

ρ

)
− 1

ρ+1 . It’s easy to verify that q

is monotone decreasing in (0,+∞), which implies that there is at most one root for q. Moreover
limρ→0+ q(ρ) = +∞. Expanding both sides of (2.46) for ρ→ +∞, we get

1
2

ln
(
1 +

2
ρ

)
=

1
ρ
−

1
ρ2 +

4
3ρ3 + O

( 1
ρ4

)
and

1
1 + ρ

=
1
ρ
−

1
ρ2 +

1
ρ3 + O

( 1
ρ4

)
.

This implies that q > 0 in a neighborhood of infinity, so q has no roots and as a consequence g
is monotone increasing.

Remark. The critical value αc for −∆H
3

α,y, regardless of the boundary conditions, as y3 → +∞

goes to zero, which is the critical value for a point interaction in R3. This fact confirms the
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intuitive idea that a point interaction very far from the boundary behaves as if it were in the
whole space.

□

2.3. The Half-Plane

Now we consider the half-plane H2 =
{

x = (x1, x2) ∈ R2
∣∣∣ x2 > 0

}
. The point source is in

y = (y1, y2) ∈ H2.

2.3.1. Dirichlet Boundary Condition

Let y = (y1,−y2). As in the three dimensional case, a reflection works. So, using (A.1), then

hH
2,D

z,y (x) =
i
4

H(1)
0

(
z |x − y|

)
The following holds.

Proposition 2.3.1. The operator −∆H
2,D

α,y has αc = ln (2y2)/(2π). There is at most a single
eigenvalue, which lies in [−4e−4πα−2γ, 0) and the corresponding eigenfunction is

ψλ(x, y) =
1

2π
K0

( √
|λ| |x − y|

)
−

1
2π

K0

( √
|λ| |x − y|

)
, (2.47)

where K0 is the modified Bessel function of order zero.

Proof. By (1.45), the eigenvalues corresponds to the real solutions of

α +
ln z

2i + γ

2π
+

i
4

H(1)
0 (2y2z) = 0. (2.48)

There are no positive eigenvalues, hence we let z = ia, with a > 0 and look for negative ones.
Using (C.18) with ν = 0, (2.48) becomes

K0(2y2a) = −2πα − γ − ln
a
2
. (2.49)

We name f (a) and g(a) the first and second member of the equation. f (a) > 0,∀a > 0 and so,
if a solution exists it must lie in the region where g(a) > 0. This happens for a < 2e−2πα−γ and
f (2e−2πα−γ) > g(2e−2πα−γ) = 0. Let’s consider now the behaviour of both functions for a→ 0.
Both functions diverge to +∞ going towards 0 and this does not allow us to conclude much. A
sufficient condition to claim the existence of a solution would be to show that g is above f in a
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right neighbourhood of 0. Recalling (C.22) we have

f (a) = − ln a − ln y2 − γ + O(a2 ln a).

Since both f and g have the same order of magnitude for a→ 0 (note that the only diverging
terms cancels out, and so the left hand side of (2.48) is continuous in 0, and then 0 is not a
priori exclusded as a possible solution) and the vanishing terms in f are smaller than any finite
constant for a sufficiently small, we can impose g(a) > f (a) in a right neighbourhood of 0 by
an inequality on the coefficients

−2πα − γ + ln 2 > − ln y2 − γ, (2.50)

equivalent to α < ln (2y2)/(2π).

If α = ln (2y2)/(2π) all the the constant term in (2.50) cancel out. This means that 0 is
a solution of the equation for such value of α. We then consider the following term in the
expansion at a = 0. This term is

−y2
2 ln (ay2)a2

that is positive in a right neighborhood of a = 0 and then f > g in it and so an even number of
solutions (possibly zero) exists in [0, 2e−2πα−γ].

We now consider the derivatives of both f and g. Since K′0(w) = −K1(w), we have that

f ′(a) = −2y2K1(2y2a) and g′(a) = −
1
a
.

If f ′(a) > g′(a)∀a ∈ (0, 2e−2πα−γ] the solution, if exists, must be unique. Letting u = 2y2a > 0,
the inequality becomes

K1(u) <
1
u
. (2.51)

(C.26), the positivity of In and Kn and the fact that I0 ≥ 1 for positive argument, imply that
(2.51) is verified ∀u > 0. Then f ′(a) > g′(a) ∀a > 0 and so (2.49) has at most a solution in
[0, 2e−2πα−γ]. This also mean that for α = ln (2y2)/(2π) there are no solutions other than a = 0.

The eigenfunction is obtained combining (A.1), (2.47), z2 = λ = − |λ| and (C.18) with ν = 0.

We state that the candidate eigenfunction

ψ0(x, y) = −
1

2π
ln

(
|x − y|
|x − y|

)
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is not in L2(H2). We note that the logarithmic singularity at x = y is square integrable and that
lim|x|→+∞ ψ0(x, y) = 0. We claim that the decay is too slow. In fact

ψ0(x, y) = −
1

4π
ln

(
|x − y|2

|x − y|2

)
= −

1
4π

ln
( (x1 − y1)2 + (x2 − y2)2

(x1 − y1)2 + (x2 + y2)2

)
= −

1
4π

ln
(
1 −

4y2x2

(x1 − y1)2 + (x2 + y2)2

)
.

Using the polar coordinatesx1 − y1 = ρ cos θ
x2 = ρ sin θ

ρ ∈ [0,+∞), θ ∈ [0, π],

we rewrite ψ0 as follows

ψ0(ρ, θ) = −
1

4π
ln

(
1 −

4y2ρ sin θ
ρ2 cos2 θ + (ρ sin θ + y2)2

)
.

Excluding the cases θ = 0 or θ = π, where the function is identically zero (according to the
boundary condition imposed), we estimate its behaviour for ρ→ +∞.

ψ0(ρ, θ) ∼
1

4π
4y2ρ sin θ

ρ2 =
y2

π

sin θ
ρ

Then

|ψ0(ρ, θ)|2 ∼
y2

2

π2

sin2 θ

ρ2 , for ρ→ +∞,

which decays too slowly to be integrable with respect to the measure ρ dρ in (R,+∞) for some
R > 0. □

Remark. We rewrite (2.49) isolating α

α = −
1

2π
K0(2y2a) −

ln a
2 + γ

2π
.

We let α→ −∞, and study how the corresponding solution behaves. Since for a approaching
zero from the right, the two singularities cancel out and the limit is finite, there are no finite
point to which a can go as α→ −∞. Instead, for a→ +∞ the first term goes to −∞, while the
latter vanishes. Hence we have that λ→ −∞ for α→ −∞.

Remark. Also in this case we check the result by verifying that the quadratic form is negative
on the eigenfunction.

DH
3

α,y

(
GH

2,D
√
λ,y
,GH

2,D
√
λ,y

)
< α +

1
2π

(
γ + ln

√
|λ|

2
+ K0(2y2

√
|λ|)

)
,
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since by definition the integral part of the quadratic form evaluated on the Green’s function of
the domain is negative. Let’s substitute

√
|λ| = a > 0 in the upper bound above and let’s name

it d(a). If d is negative on some non-zero measure subset of [0,+∞), then same holds for the
quadratic form. Let’s examine d(a) for a→ 0+:

lim
a→0+

d(a) = lim
a→0+

α +
1

2π

(
γ + ln

a
2
− ln (y2a) − γ

)
= α −

ln (2y2)
2π

((C.22) has been used). So the quadratic form is negative in a right neighbourhood of 0 for
α ≤ ln (2y2)

2π , which is the same condition found directly looking for the eigenvalues.

2.3.2. Neumann Boundary Condition

The same reasoning of the 3d case, together with (A.1) let us conclude that

hH
2,N

z,y (x) = −
i
4

H(1)
0

(
z |x − y|

)
is the solution of (A.6) for Ω = H2.

Proposition 2.3.2. The operator −∆H
2,N

α,y has αc = +∞. Regardless of α ∈ R and y2 > 0 there is
always a single eigenvalue λ and it lies in (−∞,−4e−4πα−2γ). The corresponding eigenfunction
is

ψλ(x, y) =
1

2π
K0

( √
|λ| |x − y|

)
+

1
2π

K0

( √
|λ| |x − y|

)
, (2.52)

where K0 is the modified Bessel function of order zero.

Proof. The possible negative eigenvalue is z2, where z is the solution of ΓH
2,N

α,y (z) = 0, after the
substitution z = ia, a > 0. a = 0 is escluded from possible solutions because lima→0+ Γ

H2,N
α,y (ia) =

+∞ and so the function ΓH
2,N

α,y cannot be defined continuously in zero. The equation is ((C.18)
has been used)

K0(2y2a) = 2πα + γ + ln
a
2
. (2.53)

We name f (a) the former side of the equation and the latter side g(a). We observe that:

• both functions are smooth for a > 0;

• lima→0+ f (a) = +∞ and lima→0+ g(a) = −∞;

• lima→+∞ f (a) = 0 and lima→+∞ g(a) = +∞.

Those facts allows us to claim that there necessarily exists a solution for a > 0. Moreover
we have that f (a) > 0 ∀a > 0, while g(a) > 0 for a > 2e−2πα−γ. The solution must then lie in
(2e−2πα−γ,+∞).
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The solution is unique. To prove it we look at the derivatives of both functions:

f ′(a) = −2y2K1(2y2a) g′(a) =
1
a
.

If f ′(a) ≤ g′(a) ∀a ∈ (2e−2πα−γ,+∞) the claim is proven. The inequality is written as
−2y2K1(2y2a) ≤ 1/a, which, posing u = 2y2a, is equivalent to

K1(u) ≥ −
1
u
,

verified ∀u > 0 (and subsequently ∀a > 0) because the left side is positive and the right side is
negative.

The eigenfunction is obtained combining (A.1), (2.52), z2 = λ = − |λ| and (C.18) with
ν = 0. □

Remark. We verify that, regardless of the values of α and y2, the quadratic form evaluated on
GH

2,N
√
λ,y

is negative. In the same way as in the Dirichlet case we have that

NH
3

α,y

(
GH

2,N
√
λ,y
,GH

2,N
√
λ,y

)
< α +

1
2π

(
γ + ln

√
|λ|

2
− K0

(
2y2

√
|λ|

))
.

The term in parenthesys on the right side diverges to −∞ for λ→ 0+ regardless of y2 > 0 (see
(C.22)). This implies that the quadratic form is somewhere negative in [0,+∞) ∀α and ∀y2 > 0.

Remark. Also in the Neumann case, by rewriting (2.53) isolating α as follows

α =
1

2π
K0(2y2a) −

ln a
2 + γ

2π
,

we can determine how the eigenvalue behaves for α large. In this case also α → +∞ admits
an eigenvalue. Both terms goes to +∞ for a → 0+ and hence λ → 0 for α → +∞. As in
the Dirichlet case, the function tends to −∞ only for a → +∞ and so for α → +∞ one has
λ→ −∞.

2.4. Exterior of a Disk

In this section Ω = {x ∈ R2| |x| > R}. The point interaction location y = (y1, y2) will be
described through the polar coordinates ρ and ϕ, while x by r and θ.
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2.4.1. Dirichlet Boundary Condition

The Green’s function for −∆ − z2 on Ω can be proven to be equal to (see for example [45])

GΩ,Dz,y (x) =
i
4

+∞∑
n=−∞

ein(θ−ϕ)
(
Jn(zr<) −

Jn(zR)

H(1)
n (zR)

H(1)
n (zr<)

)
H(1)

n (zr>), (2.54)

where r< = min (r, ρ) and r> = max (r, ρ) and H(1)
n is the Hankel function of the first kind of

order n. By (C.8) and (C.11) comes that J−n(u)H(1)
−n (v) = Jn(u)H(1)

n (v) for u, v ∈ C. Hence we
can rewrite

+∞∑
n=−∞

ein(θ−ϕ)Jn(zr<)H(1)
n (zr>) =

+∞∑
n=−∞

cos (n(θ − ϕ))Jn(zr<)H(1)
n (zr>),

which is equal to H(1)
0

(
z
√

r2 + ρ2 − 2rρ cos (θ − ϕ)
)
= H(1)

0

(
z |x − y|

)
because of (C.13). So we

can rewrite (2.54) in the form

GΩ,Dz,y (x) = G0,2
z (x, y) −

i
4

+∞∑
n=−∞

ein(θ−ϕ) Jn(zR)

H(1)
n (zR)

H(1)
n (zr<)H(1)

n (zr>)

= G0,2
z (x, y) − hΩ,Dz,y (x).

(2.55)

Hence

hΩ,Dz,y (x) =
i
4

+∞∑
n=−∞

ein(θ−ϕ) Jn(zR)

H(1)
n (zR)

H(1)
n (zr<)H(1)

n (zr>),

and

hΩ,Dz,y (y) =
i
4

+∞∑
n=−∞

Jn(zR)

H(1)
n (zR)

(
H(1)

n (zρ)
)2
. (2.56)

Proposition 2.4.1. The operator −∆Ω,Dα,y with |y| = ρ and Ω being the exterior of a disk of radius

R with Dirichlet boundary conditions has αc = −
1

2π ln
(

R
ρ2−R2

)
(αc is not attained though). When

existent, the eigenvalue λ < 0 is unique and the relative eigenfunction is

ψλ(x, y) =
1

2π
K0

( √
|λ| |x − y|

)
−

1
2π

+∞∑
n=−∞

ein(θ−ϕ) In(
√
|λ|R)

Kn(
√
|λ|R)

Kn(
√
|λ|r<)Kn(

√
|λ|r>). (2.57)

Proof. The eigenvalue z2, which is unique and non-positive, is such that z is a solution of

α +
γ + ln z

2i

2π
+

i
4

+∞∑
n=−∞

Jn(zR)

H(1)
n (zR)

(
H(1)

n (zρ)
)2
= 0. (2.58)
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If we substitute z = ia, with a > 0 in (2.58) and use (C.17) and (C.18), it becomes

f (a) = α +
γ + ln a

2

2π
+

1
2π

+∞∑
n=−∞

In(aR)
Kn(aR)

(
Kn(aρ)

)2
= 0. (2.59)

We now study the solution of this equation in (0,+∞). We start looking at the behaviour
of the different terms for a→ 0+. The logaritmic term diverges to −∞. To study the sum we
rewrite it as

+∞∑
n=−∞

In(aR)
Kn(aR)

(
Kn(aρ)

)2
=

I0(aR)
K0(aR)

(
K0(aρ)

)2
+

1
π

+∞∑
n=1

cn(a),

with cn(a) = In(aR)
Kn(aR)

(
Kn(aρ)

)2
.We start considering the zeroth term. By (C.19) we have that

I0(w) = 1 + O(w2) for w→ 0. Then, (C.21), paired with some Landau symbols algebra, allows
us to write

I0(aR)
K0(aR)

(
K0(aρ)

)2
= − ln a + ln

2R
ρ2 − γ + O

(
1

ln a

)
for a→ 0.

We are left to study the infinite sum in the limit a→ 0. By (C.23) follows

cn(a) ∼
1

2n

(
R
ρ

)2n

a→ 0 (2.60)

that is the general term of a summable sequence (ρ > R by hypotheses). In addition (C.31) and
(C.32)allows us to get the bound

cn(a) <
cosh (aR)eaR

2n

(
R
ρ

)2n

=
e2aR + 1

4n

(
R
ρ

)2n

<
e2MR + 1

4n

(
R
ρ

)2n

,

where the last inequality is valid for a < M for some M > 0 (which is sufficient, since we are
looking for the limit towards 0). Moreover this also implies that the sum is continuous in every
interval (0,M) with M > 0. So for sufficiently small a > 0, cn(a) is bounded by a summable
sequence which does not depend on a. By this and (2.60), by dominated convergence we can
claim that

lim
a→0+

+∞∑
n=1

cn(a) =
+∞∑
n=1

lim
a→0+

cn(a) =
+∞∑
n=1

1
2n

(
R
ρ

)2n

= −
1
2

ln
(
1 −

(
R
ρ

)2)
< +∞.

Putting all this together, we have that

lim
a→0+

f (a) = α +
1

2π
ln

(
R

ρ2 − R2

)
. (2.61)

On the other side f goes to +∞ for a→ +∞. That’s because:
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• lima→+∞ ln a
2 = +∞;

• In and Kn are positive on (0,+∞).

Now, since f is continuous in (0,M), ∀M > 0, we can determine whether the solution exists
or not just by the nature of the sign at the extrema of the interval. Since there is an M large
enough such that f (M) > 0, then the equation f (a) = 0 has at least one solution in this interval
only if

α < −
1

2π
ln

(
R

ρ2 − R2

)
= αc.

The fact that this possible solution is unique is a consequence of −∆Ω,Dα,y being a one-rank
extension of −∆D combined with the aforementioned result from [10] which guarantess that the
point spectrum is at most made of one point.

The eigenfunction is found combining (2.55), z2 = − |λ|, (C.17) and (C.18).Because of
(2.61), f can be extended continuously to a = 0 and so, for α = αc, a = 0 is a solution of (2.59).

□

Remark. Also for this kind of geometry it holds that αc → +∞ when the point interaction gets
away from the boundary (here meaning that ρ→ +∞). It also holds that

lim
ρ→R+

αc = −∞.

This result suggests that if the point interaction gets closer and closer to the boundary mantaining
its intensity α, then under a threshold distance no eigenvalues are possible anymore. We can
explain this fact with the incompatibility of the Dirichlet boundary condition with a very strong
interaction near the boundary.

2.4.2. Neumann Boundary Condition

The Neumann Green’s function of −∆ − z2 on Ω is given by (see [12])

GΩ,Nz,y (x) =
i
4

+∞∑
n=−∞

ein(θ−ϕ)
(
Jn(zr<) −

J′n(zR)

H(1)′
n (zR)

H(1)
n (zr<)

)
H(1)

n (zr>)

= G0,2
z (x, y) −

i
4

+∞∑
n=−∞

ein(θ−ϕ) J′n(zR)

H(1)′
n (zR)

H(1)
n (zr<)H(1)

n (zr>).

(2.62)

Then

hΩ,Nz,y (x) =
i
4

+∞∑
n=−∞

ein(θ−ϕ) J′n(zR)

H(1)′
n (zR)

H(1)
n (zr<)H(1)

n (zr>).
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Proposition 2.4.2. The operator −∆Ω,Nα,y with |y| = ρ and Ω being the exterior of a disk of radius
R with Neumann boundary conditions has αc = +∞. There is always a single eigenvalue λ
which happens to be negative. Its associate eigenfunction is

ψλ(x, y) =
1

2π
K0

( √
|λ| |x − y|

)
−

1
2π

+∞∑
n=−∞

ein(θ−ϕ) I′n(
√
|λ|R)

K′n(
√
|λ|R)

Kn(
√
|λ|r<)Kn(

√
|λ|r>). (2.63)

Proof. As always the unique possible eigenvalue is negative. In this case it corresponds to the
imaginary solution with positive imaginary part of

α +
γ + ln z

2i

2π
+

i
4

+∞∑
n=−∞

J′n(zR)

H(1)′
n (zR)

(
H(1)

n (zρ)
)2
= 0. (2.64)

So we set z = ia, with a > 0 in the previous equation. Using (C.17) and (C.18), the previous
equation becomes

f (a) = α +
γ + ln a

2

2π
−

1
2π

+∞∑
n=−∞

I′n(aR)
(−K′n(aR))

(
Kn(aρ)

)2
= 0, (2.65)

where the minus sign has been taken out to get a positive terms sum. This observation implies
that f (a)→ −∞ for a→ 0+, because the logarithmic term goes to −∞ and the other ones are
negative or constant. Since f is singular in zero, it implies that a = 0 can’t be a solution of
(2.65). So, proving that f is contionuous in (0,+∞) and determining for which values of α f is
positive in a neighbourhood plus of infinity, equals determining the ones with which (2.65) has
a solution.

We prove that f is continuous in (0,+∞). Let’s consider (C.24) and (C.25). The positivity of
both In(w) and Kn(w) implies that we can claim that I′n(w) < In−1(w) and that −K′n(w) > n

w Kn(w)
for n = 1, 2, . . . . We rewrite the sum in (2.65) as

+∞∑
n=−∞

I′n(aR)
(−K′n(aR))

(
Kn(aρ)

)2
=

I′0(aR)
(−K′0(aR))

(
K0(aρ)

)2
+ 2

+∞∑
n=1

I′n(aR)
(−K′n(aR))

(
Kn(aρ)

)2
. (2.66)

We call cn(a) the general term of the last sum. Through the inequalities above, we can bound cn

with the general term of a converging sum

cn(a) <
aR
n

In−1(aR)
Kn(aR)

(
Kn(aρ)

)2
∼

(
R
ρ

)2n

n→ +∞ (2.67)

(to get the asymptotics of the upper bound, (C.33) has been employed), which converges because
R < ρ. By (2.67) follows that there exists an n such that cn(a) < 2(R/ρ)2n, ∀n > n. Since
definitely in n, cn is bounded by the terms of a convergent series, then uniform convergence
holds and hence the series converges to a continuous function (each cn is continuous).
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Combining (2.66) and (2.67) with this bound and recalling that I′0(w) = I1(w) and K′0(w) =
−K1(w), we can write that

+∞∑
n=−∞

I′n(aR)
(−K′n(aR))

(
Kn(aρ)

)2
<

I1(aR)
K1(aR)

(
K0(aρ)

)2
+

n∑
n=1

2aR
n

In−1(aR)
Kn(aR)

(
Kn(aρ)

)2
+ L, (2.68)

for some finite L > 0. The right hand side of (2.68) contains a finite quantity of terms depending
on a. If all of them stay finite in the limit a→ +∞, we can claim that also the left end side stays
finite for such limit. To study the behaviour of these terms we state the asymptotic behaviours
for the functions In(w) and Kn(w) for w→ +∞

In(w) ∼
ew

√
2πw

Kn(w) ∼
√

π

2w
e−w. (2.69)

So that

I1(aR)
K1(aR)

(
K0(aρ)

)2
∼

e−2a(ρ−R)

2aρ
→ 0 for a→ +∞ (2.70)

2aR
n

In−1(aR)
Kn(aR)

(
Kn(aρ)

)2
∼

R
nρ

e−2a(ρ−R) → 0 for a→ +∞ and n = 1, . . . , n. (2.71)

The infinite sum in (2.65) is hence finite for a→ +∞, which implies that f (a)→ +∞ for
a→ +∞ independently on the value of α. □

2.5. Exterior of a Sphere

Here we consider Ω = {x ∈ R3| |x| > R}. The point interaction is placed in y = (0, 0, y3). We
set |y| = ρ. x is instead located by the polar coordinates r and θ, those respectively being the
distance from the origin and the angle between x and the x3 axis.

2.5.1. Dirichlet Boundary Condition

In [12] it is reported that the Green’s function for −∆ − z2 on Ω is given by

GΩ,Dz,y (x) =
iz
4π

+∞∑
n=0

(2n + 1)Pn(cos θ)
(

jn(zr<) −
jn(zR)

h(1)
n (zR)

h(1)
n (zr<)

)
h(1)

n (zr>). (2.72)
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Here Pn is the n-th Legendre polynomial. Using (C.39), and the addition theorems (C.37) and
(C.38) we can rewrite the first term of the product in (2.72) as

iz
4π

+∞∑
n=0

(2n + 1)Pn(cos θ) jn(zr<)h(1)
n (zr>) =

i
4π |x − y|

(
sin (z |x − y|) − i cos (z |x − y|)

)
=

eiz|x−y|

4π |x − y|
.

This means that

hΩ,Dz,y (y) =
iz
4π

+∞∑
n=0

(2n + 1)
jn(zR)

h(1)
n (zR)

(
h(1)

n (zρ)
)2
.

Proposition 2.5.1. The operator −∆Ω,Dα,y with |y| = ρ and Ω being the exterior of a sphere
of radius R with Dirichlet boundary conditions has critical value αc = −

R
4π(ρ2−R2) (αc is not

attained though). When existent, the eigenvalue λ < 0 is unique and has the following
associated eigenfunction

ψλ(x, y) =
e−
√
|λ||x−y|

4π |x − y|
+

√
|λ|

2π2

+∞∑
n=0

(2n + 1)Pn(cos θ)
i(1)
n (
√
|λ|R)

kn(
√
|λ|R)

kn(
√
|λ|r<)kn(

√
|λ|r>). (2.73)

Proof. The condition ΓΩ,Dα,y (z) = 0 is explicitly

α −
iz
4π
+

iz
4π

+∞∑
n=0

(2n + 1)
j(1)
n (zR)

h(1)
n (zR)

(h(1)
n (zρ))2 = 0. (2.74)

The single negative eigenvalue can be studied by substituting z = ia with a ≥ 0 in (2.74):

f (a) = α +
a

4π
−

a
4π

+∞∑
n=0

(2n + 1)
j(1)
n (iaR)

h(1)
n (iaR)

(h(1)
n (iaρ))2 = 0. (2.75)

These spherical Bessel functions’ arguments contain an i factor. This can be removed converting
them into the modified spherical Bessel functions i(1)

n and kn via (C.40) and (C.41) obtaining

f (a) = α +
a

4π
+

1
2π2

+∞∑
n=0

a(2n + 1)
i(1)
n (aR)
kn(aR)

(kn(aρ))2 = 0.

We study the function f in the interval (0,+∞). We observe that if cn(a) is the general term
of the infinite sum, it holds that

cn(a) ∼
π

2ρ

(
R
ρ

)2n+1

for n→ +∞, ∀a > 0.



66 Spectral Properties of One Point Interactions in Domains

This implies that cn is definitely bounded by a summable sequence. Since each term of the sum
is continuous in (0,+∞) it means that f is continuous there. Then, to assure the existence of
a solution it suffices to know its sign at the extrema: discording signs imply the eigenvalue
existence due to the intermediate value theorem. We start by examining f (a) as a→ 0+. We
can find that

cn(a) ∼
π

2ρ

(
R
ρ

)2n+1

for a→ 0+,

using (C.44). In addition, (C.47), combined with (C.31) and (C.32) return the following bound
for cn(a)

cn(a) <
π(e2aR + 1)

4ρ

(
R
ρ

)2n+1

<
π(e2R + 1)

4ρ

(
R
ρ

)2n+1

,

where the last inequality is valid for n = 0, 1, 2, . . . and a < 1 (in particular this is valid for
sufficiently small positive a). So the dominated convergence theorem can be applied and we
can switch order between sum and limit, so that

lim
a→0+

+∞∑
n=0

cn(a) =
+∞∑
n=0

π

2ρ

(
R
ρ

)2n+1

=
πR

2(ρ2 − R2)
.

This means that

lim
a→0+

f (a) = α +
R

4π(ρ2 − R2)
.

Hence for α = − R
4π(ρ2−R2) , a = 0 is a solution of (2.75).

Since each term in the infinite sum is positive and that the linear term diverges to +∞ when
a→ +∞, we have that f does the same regardless of the sign of α. This means that in order to
have a solution to (2.75) the condition.

α ≤ −
R

4π(ρ2 − R2)

needs to be satisfied. Since by the a priori result in [10] we know that the point spectrum is
made of at most one point, the possible solution is then unique.

At last we prove that in fact λ = 0 is not an eigenvalue. We need to verify that the
corresponding ψ0 < L2(Ω). To do so we use the solution of the Laplace problem in the whole
space (A.4), together with the image method and the Kelvin transform. This transformation
maps outside point inside the disk of radius R centered in the origin and viceversa. It also maps
the point on the circle of radius R on themselves. Moreover it preserves harmonicity. Let u be
an harmonic function on U ⊂ Rn with U not containing the origin, then its Kelvin transform
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K[u](x) is defined as

K[u](x) =
R
|x|

u
( R2

|x|2
x
)
. (2.76)

We note that if |x| = R, then

|x∗ − y|2 =
R4

|x|4
|x|2 − 2

R2

|x|2
x · y + |y|2 = |x|2 − 2x · y + |y|2 = |x − y| . (2.77)

Using the formula of the fundamental solution of Laplace equation in R3 (A.4), and Kelvin
transform (2.76), we can write the expression for ψ0

ψ0(x, y) =
1

4π |x − y|
−

R

4 |x|
∣∣∣∣y − R2

|x|2
x
∣∣∣∣ .

We expand both terms for |x| → +∞, obtaining

1
4π |x − y|

=
1

4π |x|
+ O

(
1
|x|2

)
R

4 |x|
∣∣∣∣y − R2

|x|2
x
∣∣∣∣ = R

4πρ |x|
+ O

(
1
|x|2

)
,

so that ψ0(x, y) = ρ−R
4πρ|x| which has a decay not sufficiently fast to be square integrable at

infinite. □

Remark. Also in this case, the limit limρ→+∞ αc = 0, and zero is the critical value for the whole
R3. Sending the point interaction towards the ∂Ω, instead causes αc → −∞: the boundary
"feels" the point interaction too close and this interferes with the realization of the Dirichlet
boundary condition.

2.5.2. Neumann Boundary Condition

In this case the Green’s function is given by (see [12])

GΩ,Nz,y (x) =
iz
4π

+∞∑
n=0

(2n + 1)Pn(cos θ)
(

jn(zr<) −
j′n(zR)

h(1)′
n (zR)

h(1)
n (zr<)

)
h(1)

n (zr>), (2.78)

here j′n and h(1)′
n denote respectively the derivative of jn and h(1)

n . In the same manner as in the
Dirichlet case we can write

GΩ,Nz,y (x) = =
eiz|x−y|

4π |x − y|
−

iz
4π

+∞∑
n=0

(2n + 1)Pn(cos θ)
j′n(zR)

h(1)′
n (zR)

h(1)
n (zr<)h(1)

n (zr>)

= G0,3
z (x, y) − hΩ,Nz,y (x).



68 Spectral Properties of One Point Interactions in Domains

Proposition 2.5.2. The operator −∆Ω,Nα,y with |y| = ρ and Ω being the exterior of a sphere of
radius R with Neumann boundary conditions, has critical value

αc =
R

4π(ρ2 − R2)
+

1
4πR

ln
(
1 −

(
R
ρ

)2)
(2.79)

(αc is not attained though). When existent, the eigenvalue λ < 0 is unique and has the following
associated eigenfunction

ψλ(x, y) =
e−
√
|λ||x−y|

4π |x − y|
+

√
|λ|

2π2

+∞∑
n=0

(2n + 1)Pn(cos θ)
i(1)′
n (
√
|λ|R)

k′n(
√
|λ|R)

kn(
√
|λ|r<)kn(

√
|λ|r>). (2.80)

Proof. To study the behaviour of the possible negative eigenvalue (which is unique if existent,
by the aforementioned result in [10] on the point spectrum of finite-rank extensions), we set
z = ia in ΓΩ,Nα,y (z) = 0, obtaining

f (a) = α +
a

4π
−

1
2π2

+∞∑
n=0

a(2n + 1)
i(1)′
n (aR)

(−k′n(aR))
(kn(aρ))2 = 0 (2.81)

(the minus sign was taken both in and out the sum to make it a positive term sum, since
k′n(aR) < 0 ∀n and ∀a > 0).

We prove that f happens to be continuous in (0,+∞) so that we can discuss the existence
of the solution just by determining the sign of f at both ends of the interval. Employing the
positivity of both i(1)

n and kn, together with (C.48) and (C.49) we get the bounds i(1)′
n (w) < i(1)

n−1(w)
and −k′n(w) > n+1

w kn(w). These are useful to prove that the infinite sum converges ∀a > 0. Let’s
call cn(a) the general term of the series. It follows that

cn(a) < a2R
2n + 1
n + 1

i(1)
n−1(aR)
kn(aR)

(kn(aρ))2 ∼
π

2ρ
2n + 1
n + 1

(
R
ρ

)2n+1

, (2.82)

This means that cn(a) is definitely bound by a summable sequence not depending on a. Moreover
cn(a) is a sequence of continuous functions, hence f is continuous. The above asymptotic of
this upper bound is obtained using (C.33) together with (C.47).

Since cn(a)→ 0 for a→ +∞ ∀n = 0, 1, . . . , (2.82) allows to conclude that for dominated
convergence, also the sum vanishes in the limit. We can then conclude that f diverges to +∞
for a→ +∞.

Now we move to the behaviour of f towards 0. Substituting (C.44), (C.45) and (C.46) in
the definition of cn(a) we find that

c0(a) ∼
πR3

6ρ
a3 cn(a) ∼

π

2ρ
n

n + 1

(
R
ρ

)2n+1

n = 1, 2, . . . for a→ 0.
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Since the zeroth term goes to 0, we can ignore it when considering the limit and start the sum
at n = 1. Now, to get the value of f (0+) we would like to bring the limit inside the infinite
sum. To do so we employ the dominated convergence theorem and so we need to prove that
cn(a) is bounded by an a-independant summable sequence. Recalling that i(1)′

n (w) < i(1)
n−1(w) and

−k′n(w) > n+1
w kn(w), some computations involving the use of (C.47), (C.31) and (C.32) lead to

the bound

cn(a) <
π

4ρ
2n + 1
n + 1

(e2aR + 1)
(
R
ρ

)2n+1

<
π

4ρ
2n + 1
n + 1

(e2R + 1)
(
R
ρ

)2n+1

valid for small a and n = 1, 2, . . . . Being this bounding sequence summable, we can apply the
dominated convergence theorem and claim

lim
a→0+

+∞∑
n=1

cn(a) =
+∞∑
n=1

π

2ρ
n

n + 1

(
R
ρ

)2n+1

=
πR

2(ρ2 − R2)
+

π

2R
ln

(
1 −

(
R
ρ

)2)
.

This implies that

lim
a→0+

f (a) = α −
R

4π(ρ2 − R2)
−

1
4πR

ln
(
1 −

(
R
ρ

)2)
. (2.83)

We can then conclude that the solution exists only when f (0+) < 0 and so for

α <
R

4π(ρ2 − R2)
+

1
4πR

ln
(
1 −

(
R
ρ

)2)
= αc

Equation (2.83) implies that we can extend continuously f in 0. So if α = αc, a = 0 is a solution
of ΓΩ,Nα,y (ia) = 0. Following the same ideas as in the Dirichlet case, we can write

ψ0(x, y) =
1

4π |x − y|
+

R

4 |x|
∣∣∣∣y − R2

|x|2
x
∣∣∣∣ .

Since both terms are positive, there is no hope for cancellation. ψ0(x, y) ∼ |x|−1 for |x| → +∞
and then it is not square integrable in Ω. □
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Ω Boundary Condition Eigenfunction αc Is αc attained

H3 Dirichlet (2.29) − 1
8πy3

Yes

H3 Neumann (2.38) 1
8πy3

No

H3 Robin (2.44) (2.43) Not Determined

H2 Dirichlet (2.47) ln
(

2y2
2π

)
No

H2 Neumann (2.52) +∞ No

Exterior of a Disk Dirichlet (2.57) − 1
2π ln

(
R

ρ2−R2

)
No

Exterior of a Disk Neumann (2.63) +∞ No

Exterior of a Sphere Dirichlet (2.73) − R
4π(ρ2−R2) No

Exterior of a Sphere Neumann (2.80) (2.79) No

Table 2.1.: A brief recap of the specific domains studied in this chapter with different boundary condi-
tions. The equations defining the eigenfunctions and the critical values for each of those
problems are recalled.



Chapter 3.

Resonances of One Point Interactions in
H

n

3.1. Resonances of N-Points Interactions in a Domain

Let Ω ⊂ Rn, n = 2, 3 be a domain of the kind already considered, i.e. external domains or
Hn. The resolvent

(−∆Ω − z2)−1 : L2(Ω)→ L2(Ω)

acts as follows

((−∆Ω − z2)−1 f )(x) =
∫
Ω

GΩz,y(x) f (y) dy =
∫
Ω

(G0,n
z,y (x) − hΩz,y(x)) f (y) dy.

We observe that the map z→ GΩz,y(x) is holomorphic in all C, smooth in x and y. But the kernel
GΩz,y(x) does not go to zero when Im z ≤ 0. So it ceases to be an L2 kernel. Though, if we
consider some ρ ∈ C∞c (Ω), then the map

ρ(−∆Ω − z2)−1ρ : L2(Ω)→ L2(Ω) (3.1)

(ρ(−∆Ω − z2)−1ρ f )(x) =
∫
Ω

ρ(x)GΩz,y(x)ρ(y) f (y) dy, (3.2)

called truncated resolvent, is well defined ∀z ∈ C. So, if we consider the restriction (−∆Ω−z2)−1 :
L2

comp(Ω) → L2
loc(Ω), even if initially defined only for Im z > 0, it can be holomorphically

continued to C.

Now we consider the N-points interactions on Ω. We explicitly rewrite here the expression
(1.30) for the resolvent

(−∆Ωα,Y − z2)−1ψ = (−∆Ω − z2)−1ψ +

N∑
j,k

(ΓΩα,Y(z))−1
jk

(
(−∆Ω − z2)−1ψ

)
(yk)GΩz,y j

,

defined for Im z > 0. We want to extend this perturbed resolvent as well. We observe that:

71
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• The first term is simply the free resolvent, which can be holomorphically extended to the
whole C as recalled above.

• The other terms contain the composition of the free resolvent (−∆Ω − z2)−1 with the
projector onto the function GΩz,y j

. So also these factors can be extended to all C.

• The factors (ΓΩα,Y(z))−1
jk are not defined whenever the matrix ΓΩα,Y(z) is singular.

Summarizing we can state the following

Proposition 3.1.1. Let ρ ∈ C∞c (Ω). The map

z 7→ ρ(−∆Ωα,Y − z2)−1ρ : L2(Ω)→ L2(Ω)

extends as a meromorphic family of operators to z ∈ C. Its poles are the solution of

det
(
ΓΩα,Y(z)

)
= 0.

For each of this poles:

• when z , 0 and Im z ≥ 0, the value z2 is an eigenvalue;

• when Im z < 0, the corresponding z2 is called a resonance;

• if 0 is a pole, it is an eigenvalue if the corresponding solution is in L2(Ω), while instead it
is called zero energy resonance if the associated solution of −∆Ωα,y = 0 is in L2

loc(Ω) but
not in L2(Ω).

Considering the one particle center, the resonances that are not 0 energy resonances are the
solution of

ΓΩα,y(z) = 0, Im z < 0.

The previous definitions agrees with the treatment based on the black box description of
Sjöstrand and Zworski in [44] and [43]. See also the treatise [18] by Dyatlov and Zworski.

In the following sections we study the resonances when Ω = Hn, n = 2, 3 with different
boundary conditions.

3.2. Resonances for the Half-Space

3.2.1. Dirichlet Boundary Condition

Proposition 3.2.1. The resonances z2 of −∆H
3,D

α,y are determined by the values z with the
following properties:
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• ∀α ∈ R and y ∈ H3 there are exactly two values of z, with opposite real part, in every
region of the form kπ

y3
< |Re z| < (2k+1)π

2y3
with k = 1, 2, . . . .

Moreover

Im z =
1

2y3
ln

(
sin (2y3 Re z)

2y3 Re z

)
. (3.3)

• for α < − 1
8πy3

there is an additional unique z on the negative imaginary semi-axis, while

for α > − 1
8πy3

, there are two additional resonances, one for Re z ∈
(
− π

2y3
, 0

)
and one for

Re z ∈
(
0, π

2y3

)
.

• If α = 1
8πy3

ln
(
π
2 + kπ

)
for some non-negative even k, then z = π

4y3
+ kπ

2y3
− i

2y3
ln

(
π
2 + kπ

)
generates an additional resonance.

• If α = 1
8πy3

ln
(
−π2 − kπ

)
for some negative odd k, then z = π

4y3
+ kπ

2y3
− i

2y3
ln

(
−π2 − kπ

)
generates an additional resonance.

Proof. Following the idea in the previous section, the resonances are the solution of ΓH
3,D

α,y (z) = 0,
that is (2.30) with Im z < 0. We plug z = a + ib in (2.30), with the prescription b < 0. This way
we get

α +
b − ai

4π
+ e−2y3b cos (2y3a) + i sin (2y3a)

8πy3
= 0.

Equating real and imaginary part of both sides, we obtain the system in a and b−α − b
4π = e−2y3b cos (2y3a)

8πy3
a

4π = e−2y3b sin (2y3a)
8πy3

. (3.4)

We observe that if a = 0, the second equation is satisfied ∀b. The first equation of the
system is then

f (b) = α +
b

4π
+

e−2y3b

8πy3
= 0, b < 0.

Since limb→−∞ f (b) = +∞ and f is a continuous function, a solution in (−∞, 0) exists only if
f (0) < 0. This happens when α < −(8πy3)−1, otherwise there are no resonances on the negative
imaginary semi-axis. The possible solution is in fact unique because f ′(b) = (1− e−2y3b)/(4π) <
0 ∀b < 0.

Another case of interest in the study of (3.4) is when a = kπ
2y3

, for some k = ±1,±2, . . . . In
this case it is easy to see that the system does not admit any solution, because the right side of
the second equation of the system is zero, while the left one isn’t. So there are no resonances
on the lines Re z = kπ

2y3
, k = ±1,±2, . . . outside the real axis.
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Also, since we already considered the a = 0 case, we can rewrite the second equation of the
system (3.4) as

sin (2y3a)
2y3a

= e2y3b, a , 0. (3.5)

In this way we can verify by hand that no solution can exist on the upper half complex
plane, barring the ones on the real axis and on the positive imaginary semi-axis, this being a
consequence of the self-adjointness of the operator. Since the left side is always smaller than 1,
a solution is possible only if b < 0. In this form it is also easy to see that there are no solution
when π + 2kπ < 2y3 |a| < 2π + 2kπ, k = 0, 1, 2, . . . , because in that case the left side would be
negative, while the right hand side wouldn’t.

We now consider the case a = π
4y3
+ kπ

2y3
for some k ∈ Z. (3.4) is thenb = −4πα

e8παy3 = (−1)k
(
π
2 + kπ

) .

This system is overdetermined and so can have a solution only for certain values of α and y3.
Let’s distinguish the different cases:

• if k is positive odd or negative even, then no solution exists regardless of α and y3 (a
would be in one of the intervals mentioned above for which no solution exists);

• if k is non-negative even, then there is a resonance in z = π
4y3
+ kπ

2y3
− i

2y3
ln

(
π
2 + kπ

)
if

α = 1
8πy3

ln
(
π
2 + kπ

)
;

• if k is negative odd, then there is a resonance in z = π
4y3
+ kπ

2y3
− i

2y3
ln

(
−π2 − kπ

)
if

α = 1
8πy3

ln
(
−π2 − kπ

)
.

At this point, we divide side by side the equations of the system (3.4). Note that it is legit
doing so, since we already examined the cases in which one of the sides vanishes. So, dividing
the second one by the first, we get

tan (2y3a) = −
a

4πα + b
,

which, solved for b gives

b = −4πα −
a

tan (2y3a)
. (3.6)

Substituting b in the second equation of (3.4), we get the following equation in a

g(a) =
sin (2y3a)

2y3a
= e−8παy3−

2y3a
tan (2y3a) = h(a). (3.7)

The following properties about h holds:
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• h is even (as g does as well) and so we can limit ourself to consider a ≥ 0.

• lima→0 h(a) = e−8παy3−1, and ∀k = 0, 1, 2, . . .

lim
a→ π/2+kπ

2y3

h(a) = e−8παy3 , lim
a→ π−+kπ

2y3

h(a) = +∞ and lim
a→ π++kπ

2y3

h(a) = 0.

• The derivative of h is

h′(a) = −2y3e−8παy3−
2y3a

tan (2y3)
tan (2y3a) − 2y3a

(
1 + tan2 (2y3a)

)
tan2 (2y3a)

.

We claim that h′(a) ≥ 0 ∀a ≥ 0. This is a consequence of the inequality

p(t) =
tan t

1 + tan2 t
≤ t

being satisfied ∀t ≥ 0. In fact p(0) = 0 and p′(t) = 1−tan2 t
1+tan2 t ≤ 1, which implies that the

above inequality is valid ∀t ≥ 0 with the equality only valid in t = 0.

• The continuity of h and its derivative in every interval of the form
(

kπ
y3
, (2k+1)π

2y3

)
with

k = 0, 1, 2, . . . , together with h′(a) ≥ 0, implies that the h is monotone increasing in each
of those intervals.

• The second derivative h′′ is given by

h′′(a) = 4y2
3e−8παy3−

2y3a
tan (2y3)

(
cot2 (2y3a) + 2 csc2 (2y3a)

+ 4y2
3a2 csc4 (2y3a) − 8y3a cot (2y3a) csc2 (2y3a)

)
. (3.8)

It holds that h′′ > 0 when

t2 + sin2 t cos2 t + 2 sin2 t − 4t sin t cos t > 0,

with t = 2y3a. This expression is greater or equal than t2 − 2t, which is positive for t > 2.
So h′′(a) > 0 ∀a > 1/y3 in its domain. Since 1/y3 < π/y3 ≤ kπ/y3 for k = 1, 2, . . . , then
h′′ > 0 in each interval

(
kπ
y3
, (2k+1)π

2y3

)
with k = 1, 2, . . . and is convex here.

About g we recall that:

• g is continuous and smooth outside zero.

• In each interval of the form
(

kπ
y3
, (2k+1)π

2y3

)
with k = 1, 2, . . . , g is positive and has a unique

maximum Mk, which is the solution of

g′(a) =
2y3a cos (2y3a) − sin (2y3a)

2y3a2 = 0
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in a said interval. Moreover, since

g′
( π

2 + 2kπ
2y3

)
= −

2y3(
π
2 + 2kπ

)2 < 0, ∀k = 1, 2, . . . ,

each maximum point is contained in
(

kπ
y3
,
π
2+2kπ

2y3

)
, and in particular in these intervals both

sin (2y3a) and cos (2y3) are positive.

• We also have that

g′′(a) = −

(
(2y3a)2 − 2

)
sin (2y3a) + 4y2a cos (2y2a)

x3 .

Then, g is concave whevever q(a) =
(
(2y3a)2 − 2

)
sin (2y3a) + 4y2a cos (2y2a) > 0. But,

since q
(

kπ
y3

)
= 4kπ > 0 and q′(a) = 8y3

3a2 cos (2y3a), it follows that in every interval(
kπ
y3
,
π
2+2kπ

2y3

)
g is concave.

• In [0, π) g is monotone decreasing and lima→0 g(a) = 1 which is the absolute supremum
for g.

Now we claim that in each interval of the form
(

kπ
y3
, (2k+1)π

2y3

)
with k = 1, 2, . . . , (3.7) has

exactly one solution.

Let ak be the smallest solution in the k − th interval. We distinguish the two cases ak ≥ Mk

and ak < Mk. If ak ≥ Mk, the solution is unique because in
[
ak,

(2k+1)π
2y3

)
, h is increasing, while g

is decreasing. If ak < Mk, given that Mk ∈

(
kπ
y3
,
π
2+2kπ

2y3

)
, the function r(a) = h(a) − g(a) is strictly

convex in
(

kπ
y3
,Mk

)
. But this, together with lima→ kπ+

y3
r(a) = 0 implies that at there is at most

a zero for r in
(

kπ
y3
,Mk

)
. In fact, if there were two internal zeros ak < ãk, there would be two

numbers bk and b̃k such that kπ
y3
< bk < ak < b̃k < Mk and r′(bk) = r′(b̃k) = 0. This contradicts

the function r being convex (r′ is strictly increasing), hence only a solution is possible. For
each interval, this possible unique solution in fact exists. That’s because:

• h
(

kπ+
y3

)
= g

(
kπ
y3

)
= 0 and h′

(
kπ+
y3

)
= 0 < g′

(
kπ
y3

)
=

y3
kπ ;

• h
(
π−+2kπ

2y3

)
= +∞ and g

(
π−+2kπ

2y3

)
= 0.

It remains to consider the interval
[
0, π

2y3

)
. Here g is monotone decreasing and h is monotone

increasing, so, at most there is one solution. The solution actually exists only if lima→0(h(a) −
g(a)) < 0, which happens if and only if α > − 1

8πy3
.
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Figure 3.1.: Plot of the real part versus imaginary part of the first 100 values z with Re z > π for which
z2 is a resonance for α = 0 and y3 = 1 in the Dirichlet half-space case.

Figure 3.2.: First 10 z with Re z > π such that z2 is a resonance for α = 0 and y3 = 1 as intersections of
(3.6) (red) and (3.3) (blue) in the Dirichlet half-space case.

For each solution of (3.7), we can recover the corresponding imaginary part through the
relation b = 1

2y3
ln g(a). □
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Asymptotics of the Resonance Counting Function

Now we consider the set Σ
(
−∆H

3,D
α,y

)
of complex z such that z2 is an eigenvalue or a resonance

of −∆Ω,Dα,y . Let’s define

N
−∆
H3 ,D
α,y

(R) = #
{

z ∈ Σ
(
−∆H

3,D
α,y

) ∣∣∣∣ |z| < R
}

the counting function for the the elements of Σ
(
−∆H

3,D
α,y

)
counted with the appropriate multiplicity.

We now prove that (see [4] for an analogous result for N-point interactions in Rn)

Proposition 3.2.2. ∀α ∈ R and y ∈ H3 it holds that

lim
R→+∞

ln
(
N
−∆
H3 ,D
α,y

(R)
)

ln R
= 1.

Proof. Let a2
k be the resonance of −∆H

3,D
α,y such that ak ∈

(
kπ
y3
, (2k+1)π

2y3

)
and {ak}k=1,2,... the associated

sequence. We start by proving that

lim
k→+∞

ak =
(2k + 1/2)π

2y3
. (3.9)

We observe that, even if it can occur that a1 ∈
(

5π
4y3
, 3π

2y3

)
, it still happens that, definitely in k,

ak ∈
(

kπ
y3
, (2k+1/2)π

2y3

)
. This is true because, recalling (3.7), we have that

g
( (2k + 1/2)π

2y3

)
=

1
(2k + 1/2)π

and lim
a→ (2k+1/2)π

2y3

h(a) = e−8παy3

and so there exists a k, such that ∀k ≥ k, g < h when both evaluated at the middle point of the
k-th interval, which implies that the unique solution is in the first half of the interval. Let y be
in

(
kπ
y3
, (2k+1/2)π

2y3

)
and {yl}l=0,1,... =

{
y + 2lπ

2y3

}
l=0,1,...

. We have that

g(yl) =
sin (2y3y)
2y3y + 2lπ

and h(yl) = e−8παy3−
2y3y+2lπ
tan (2y3y) .

Both sequences goes to zero, but {h(yl)} does so faster than {g(yl)}, which implies that for
sufficiently large l, g(yl) > h(yl) and so the solution in the (k + l)-th interval must be in(
yl,

(2(k+l)+1/2)π
2y3

)
. The arbitrarity of y in

(
kπ
y3
, (2k+1/2)π

2y3

)
leads to (3.9).

So we have that ak =
(2k+1/2)π

2y3
+ o(1) for k → +∞. We use this property to estimate

N
−∆
H3 ,D
α,y

(R) as R→ +∞ excluding at most a finite quantity of resonances. Doing so is equivalent
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to find the highest k for which

a2
k +

1
4y2

3

ln2
(
sin (2y3ak)

2y3ak

)
< R2.

Substituting the asymptotic expression for k → +∞, we get(
2k +

1
2

)2

π2 + ln2
((

2k +
1
2

)
π

)
+ o(1) < 4y2

3R2.

If we set s =
(
2k + 1

2

)
π, it becomes

s2 + ln2 (s) + o(1) < 4y2
3R2.

We are concerned about large value of s, so, since the left side happens to be increasing for s
sufficiently large, the largest s satisfying the inequality will be the one satisfying

s2 + ln2 (s) + o(1) = 4y2
3R2.

We look for the asymptotic for s solving the equation, when R→ +∞. We write

s =
√

4y2
3R2 − ln2 (s) + o(1). (3.10)

We see that for large R, s > 1, so that s < 2y3R and s = O(R). This implies that ln2 (s) =
O
(
ln2(R)

)
. Now we substitute this in (3.10), obtaining

s = 2y3R

√
1 + O

(
ln2 (R)

R2

)
+ o(1) = 2y3R + o(1).

And so for k holds

k =
⌊
y3

π
R −

1
4

⌋
.

But in this way we only counted the resonances with positive real part, so to get the right
number, we have to multiply by 2, since for each resonance there is another one, symmetric
with respect to the imaginary axis. So

N
−∆
H3 ,D
α,y

(R) = 2
⌊
y3

π
R −

1
4

⌋
.
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The sought limit is then

lim
R→+∞

ln
(
N
−∆
H3 ,D
α,y

(R)
)

ln R
= lim

R→+∞

ln
(
2
⌊

y3
π

R − 1
4

⌋)
ln R

= lim
R→+∞

ln
(
2
(

y3
π

R − 1
4

)
− 2

{
y3
π

R − 1
4

})
ln R

= lim
R→+∞

ln
(

2y3
π

R
)

ln R
= lim

R→+∞

ln R
ln R
= 1.

□

3.2.2. Neumann Boundary Condition

Proposition 3.2.3. The resonances z2 of −∆H
3,N

α,y are determined by the values z with the
following properties:

• ∀α ∈ R and y ∈ H3 there are exactly two values z, with opposite real part, in every region
of the form (2k+1)π

2y3
< |Re z| < (k+1)π

y3
with k = 0, 1, . . . . Moreover

Im z =
1

2y3
ln

(
−

sin (2y3 Re z)
2y3 Re z

)
. (3.11)

• For α > 1
8πy3

there is an additional unique z on the negative imaginary semi-axis.

• If α = 1
8πy3

ln
(
π
2 + kπ

)
for some positive odd k, then z = π

4y3
+ kπ

2y3
− i

2y3
ln

(
π
2 + kπ

)
generates

an additional resonance.

• If α = 1
8πy3

ln
(
−π2 − kπ

)
for some negative even k, then z = π

4y3
+ kπ

2y3
− i

2y3
ln

(
−π2 − kπ

)
generates an additional resonance.

Proof. The resonances z2 corresponds to the solution z of (2.39) with negative imaginary part.
So, in order to study them, we plug z = a + ib with b < 0 into (2.39), obtaining

α +
b − ai

4π
− e−2y3b cos (2y3a) + i sin (2y3a)

8πy3
= 0.

By separating real and imaginary part, we get the systemα + b
4π = e−2y3b cos (2y3a)

8πy3

− a
4π = e−2y3b sin (2y3a)

8πy3

. (3.12)
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If z is purely imaginary (a = 0), then the second equation is valid ∀b. The first one is then
written as

f (b) = α +
b

4π
−

e−2y3b

8πy3
= 0.

limb→−∞ f (b) = −∞, f (0) = α − 1
8πy3

, and the continuity of f imply that a solution exist only if

α > 1
8πy3

. f ′(b) =
(
1 + e−2y3b

)
/(4π) ensures unicity.

For the same reason as in the Dirichlet case, there are no solutions for a = kπ
2y3

.

We now rewrite (3.12)’ s second equation as

sin (2y3a)
2y3a

= −e2y3b, a , 0. (3.13)

Since the left side is always less than one in absolute value, it is automatically fulfillled that
b < 0. Moreover, the negativity of the right hand side, implies that no solutions exist for
2kπ < 2y3 |a| < π + 2kπ, k = 0, 1, 2, . . . .

Next we consider a = π
4y3
+ kπ

2y3
for some k ∈ Z. In this case (3.12) becomesb = −4πα

e8παy3 = (−1)k+1
(
π
2 + kπ

) .

It follows that:

• no solution is possible for both k non-negative even and k negative odd;

• if k is positive odd, then there is a resonance in z = π
4y3
+ kπ

2y3
− i

2y3
ln

(
π
2 + kπ

)
if α =

1
8πy3

ln
(
π
2 + kπ

)
;

• if k is negative even, there is a resonance in z = π
4y3
+ kπ

2y3
− i

2y3
ln

(
−π2 − kπ

)
if α =

1
8πy3

ln
(
−π2 − kπ

)
.

In the same way as in the Dirichlet case, we find the expression (3.6) of b in terms of a. By
substituting this expression in (3.13), we get an equation for a

g(a) =
sin (2y3a)

2y3a
= −e−8παy3−

2y3a
tan (2y3a) = −h(a), (3.14)

where g and h are the same of the previous subsection ones. We use the information we know
about those functions to claim that also in this case there is a unique solution for each interval(
π+2kπ

2y3
, π+kπ

y3

)
.

• −h
(
π++2kπ

2y3

)
= g

(
π+2kπ

2y3

)
= 0, − 2y3

(2k+1)π = g′
(
π+2kπ

2y3

)
< h′

(
π+2kπ

2y3

)
= 0 and h

(
π−+kπ

y3

)
= −∞ and

g
(
π−+kπ

y3

)
= 0 so in each interval there is at least a solution;
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Figure 3.3.: Plot of the real part versus imaginary part of the first 100 values z with Re z > 3
2π such that

z2 is a resonance for α = 0 and y3 = 1 in the Neumann half-space case.

• in each of those intervals, −h is monotone decreasing and concave;

• in each of those intervals, g is negative and has a unique minimum mk and since

g′
( 3

2π + 2kπ
2y3

)
=

2y3(
3
2π + 2kπ

)2 > 0, for k = 0, 1, . . . ,

then mk ∈
(
π+2kπ

2y3
,

3
2π+2kπ

2y3

)
and here g also happens to be convex.

At this point, an analogous argument to the one used in the Dirichlet case proves unicity. Let ak

be the smallest solution in the k-th interval. If ak ≥ mk the unicity follows, because in
[
ak,

π+kπ
y3

)
−h is decreasing, while g is increasing. Otherwise, defining u(a) = g(a) + h(a), the unicity
comes from its convexity in

(
π+2kπ

2y3
, ak

]
and u

(
π++2kπ

2y3

)
= 0.

We can get the corresponding imaginary part b for each of the solution of (3.14) thanks to
the relationship b = 1

2y3
ln

(
−g(a)

)
. □

Asymptotics of the Resonance Counting Function

We now prove a property analogous to Proposition 3.2.2 for the Neumann case.

Proposition 3.2.4. ∀α ∈ R and y ∈ H3 it holds that

lim
R→+∞

ln
(
N
−∆
H3 ,N
α,y

(R)
)

ln R
= 1.
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Figure 3.4.: First 10 z with Re z > 3
2π such that z2 is a resonance for α = 0 and y3 = 1 as intersections

of (3.6) (red) and (3.11) (blue) in the Neumann half space case.

Proof. Let a2
k be the resonance of −∆H

3,N
α,y such thst in ak ∈

(
(2k+1)π

2y3
, (k+1)π

y3

)
and {ak}k=0,1,... the

associated sequence. We start by proving that

lim
k→+∞

ak =
(2k + 3/2)π

2y3
. (3.15)

We observe that, even if it can occur that a0 ∈
(

(2k+3/2)π
2y3

, (k+1)π
y3

)
, it still happens that, definitely

in k, ak ∈
(

(2k+1)π
2y3

, (2k+3/2)π
2y3

)
. This is true because, recalling (3.14), we have that

g
( (2k + 3/2)π

2y3

)
= −

1
(2k + 3/2)π

and lim
a→ (2k+3/2)π

2y3

−h(a) = −e−8παy3

and so there exists a k, such that ∀k ≥ k, g > −h when both evaluated at the middle point of the
k-th interval, which implies that the unique solution is in the first half of the interval. Let y be
in

(
(2k+1)π

2y3
, (2k+3/2)π

2y3

)
and {yl}l=0,1,... =

{
y + 2lπ

2y3

}
l=0,1,...

. We have that

g(yl) =
sin (2y3y)
2y3y + 2lπ

< 0 and − h(yl) = −e−8παy3−
2y3y+2lπ
tan (2y3y) .

Both sequences goes to zero, but {h(yl)} does so faster than {g(yl)}, which implies that for
sufficiently large l, g(yl) < h(yl) and so the solution in the (k + l)-th interval must be in(
yl,

(2(k+l)+3/2)π
2y3

)
. The arbitrarity of y in

(
(2k+1)π

2y3
, (2k+3/2)π

2y3

)
leads to (3.15).

So we have that ak =
(2k+3/2)π

2y3
+ o(1) for k → +∞. We use this property to estimate

N
−∆
H3 ,N
α,y

(R) as R→ +∞ excluding at most a finite quantity of resonances. Doing so is equivalent



84 Resonances of One Point Interactions in Hn

to find the highest k for which

a2
k +

1
4y2

3

ln2
(
−

sin (2y3ak)
2y3ak

)
< R2.

Substituting the asymptotic expression for k → +∞, we get(
2k +

3
2

)2

π2 + ln2
((

2k +
3
2

)
π

)
+ o(1) < 4y2

3R2.

Setting s =
(
2k + 3

2

)
π, we get

s2 + ln2 (s) + o(1) < 4y2
3R2.

The rest of the proof mimics almost completely the one for the Dirichlet case. □

3.2.3. Robin Boundary Condition

Recalling that the representation (2.40) holds only in the region Im z > −η, in the study of
resonances for −∆H

3,R,η
α,y , we will limit ourselves to this region.

Proposition 3.2.5. The resonances z2 of −∆H
3,R,η

α,y with corresponding z in the horizontal strip
−η < Im z ≤ 0, if existent, are a finite quantity and all correspond to z contained in the region

{ z ∈ C | −τ < Re z < τ, −η < Im z ≤ 0 }

and 0 < τ < e2y3η

2y3
+ 3η.

Proof. The resonances z2 correspond to the solution z of (2.45) with negative imaginary part.
So, (2.45), has to be solved in the horizontal strip −η < Im z ≤ 0. For convenience we substitute
w = η − iz, obtaining the new equation

α +
w − η

4π
−

e−2x0.3(w−η)

8πy3
+
η

2π
e2y3ηE1(2y3w) = 0, 0 < Re w ≤ η. (3.16)

Now we prove that all the z in this strip which generate resonances must be contained in the
rectangle Rη,τ = {w ∈ C | 0 < Re w ≤ η, −τ < Im w < τ} for some τ > 0. Let w = a + ib with
0 < a ≤ η fixed. Plugging in the previous equation we get

α +
a − η

4π
+

ib
4π
−

1
8πy3

e2y3(η−a)e−2iy3b +
η

2π
e2y3ηE1(2y3(a + ib)) = 0. (3.17)

Let’s take the limit for |b| → +∞ of the left side and consider the absolute value of the
summands
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• the first two terms are constant;

• the third’s modulus diverges to +∞;

• the fourth is constant in absolute value (the variation of b changes only its phase);

• by (C.3), the last term tends to 0 for |b| → +∞.

This means that in the limit, the left side’s modulus goes to +∞ and so the equation cannot
have solution in a sufficiently small neighborhood of infinity, or otherwise that it can’t have
solutions for |b| ≥ τ for some τ > 0 as anticipated.

We now prove that the number of resonances in Rη,τ is finite. If they are an infinite quantity
then, there must be some number of accumulation points in Rη,τ of zeros of the left side of
(3.16). We divide Rη,τ in the three regions R1 = {w ∈ C | 0 < Re w ≤ η, ε < Im w < τ},
R2 = {w ∈ C | 0 < Re w ≤ η, −τ < Im w < −ε} and R3 = {w ∈ C | 0 < Re w ≤ η, −ε <
Im w < ε}. Since the function considered is defined in R1, it can be extended in the open set
in R̃η,τ = {w ∈ C | − ε < Re w ≤ η, ε < Im w < τ}. Here the function is holomorphic and so it
having an accumulation point of zeros would imply the function being identically zero. So R1

does not contain accumulating resonances. The same is valid for R2. In R3 the function is not
holomorphic, it not being defined in 0. Then 0 can be an accumulation point of zeros. But (C.4)
implies that the last term in (3.16) is the only one diverging in absolute value and so the left
side cannot be equal to zero in a small neighbourhood of 0. So there cannot be accumulating
resonances in Rη,τ and then in this set the resonances are a finite quantity.

Now we give an upper bound for τ. Considering the first equality in (C.2), we can write

E1(2y3(a + ib)) = e−2y3(a+ib)
∫ +∞

0

e−t

t + (2y3(a + ib))
dt

= e−2y3a
(
cos (2y3b) − i sin (2y3b)

)
(I1 − 2iy3bI2)

= e−2y3a
(
cos (2y3b)I1 − 2y3b sin (2y3b)I2

− i
(
sin (2y3b)I1 + 2y3b cos (2y3b)I2

))
,

where

I1 =

∫ +∞

0
e−t t + 2y3a

(t + 2y3a)2 + 4y2
3b2

dtand I2 =

∫ +∞

0

e−t

(t + 2y3a)2 + 4y2
3b2

dt.

Plugging this expression in (3.17) and separating real and imaginary part we get the systemα + a−η
4π −

1
8πy3

e2y3(η−a) cos (2y3b) + η

2πe2y3(η−a)
(
cos (2y3b)I1 − 2y3b sin (2y3b)I2

)
= 0

b
4π +

1
8πy3

e2y3(η−a) sin (2y3b) = η

2πe2y3(η−a)
(
sin (2y3b)I1 + 2y3b cos (2y3b)I2

) .

(3.18)
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Now we consider the second equation and get an upper bound for the absolute value of the
right end side. First we consider I1

I1 =

∫ +∞

0
e−t t + 2y3a

(t + 2y3a)2 + 4y2
3b2

dt =
∫ +∞

0
e−t f (t) dt ≤ max

0≤t<+∞
f (t).

But

f ′(t) =
4y2

3b2 − (t + 2y3a)2(
(t + 2y3a)2 + 4y2

3b2
)2 ,

which is positive in −2y3(|b| + a) ≤ t ≤ 2y3(|b| − a). Since we are looking for an upper bound
on τ, we are considering a region in which |b| > a, so the sought maximum is f

(
2y3(|b| − a)

)
=

(4y3 |b|)−1 ≥ I1. In the same way

I2 =

∫ +∞

0

e−t

(t + 2y3a)2 + 4y2
3b2

dt =
∫ +∞

0
e−tg(t) dt ≤ g(0) =

1
4y2

3(a2 + b2)
,

because g is decreasing on the whole [0,+∞). So the bound follows∣∣∣∣∣ η2πe2y3η
(
sin (2y3b)I1 + 2y3b cos (2y3b)I2

)∣∣∣∣∣ ≤ η

2π
e2y3η(I1 + 2y3 |b| I2)

≤
η

2π
e2y3η

( 1
4y3 |b|

+
|b|

2y3(a2 + b2)

)
≤

3
8πy3

ηe2y3η
1
|b|
.

We also consider a lower bound for the absolute value of the right side of the same equation∣∣∣∣∣ b
4π
+

1
8πy3

e2y3(η−a) sin (2y3b)
∣∣∣∣∣ ≥ |b|4π

−
1

8πy3
e2y3(η−a) |sin (2y3b)| .

Here the absolute value on the right side is omitted, because for |b| large enough the expression
will be positive. Moreover∣∣∣∣∣ b

4π
+

1
8πy3

e2y3(η−a) sin (2y3b)
∣∣∣∣∣ ≥ |b|4π

−
e2y3η

8πy3
.

Now we take the inequality

|b|
4π
−

e2y3η

8πy3
>

3
8πy3

ηe2y3η
1
|b|
.



Resonances of One Point Interactions in Hn 87

The set of solutions of this inequality cannot contain any solution of the second equation in
(3.18) and it is equivalent to 2y3 |b|2 − e2y3η |b| − 3ηe2y3η > 0. The set of solution is

|b| >
e2y3η +

√
e4y3η + 24y3ηe2y3η

4y3

and so

τ <
e2y3η +

√
e4y3η + 24y3ηe2y3η

4y3
=

e2y3η + e2y3η
√

1 + 24y3ηe−2y3η

4y3
.

By the identity
√

1 + t < 1 + t/2, we have

τ <
e2y3η + e2y3η

(
1 + 12y3ηe−2y3η

)
4y3

=
e2y3η

2y3
+ 3η.

□

3.3. Resonances for the Half-Plane

3.3.1. Dirichlet Boundary Condition

We study the resonances in a horizontal strip below the real axis.

Proposition 3.3.1. If α , ln (2y2)/(2π) all the resonances z2 of −∆H
2,D

α,y with z in the strip
−χ < Im z < 0 (if existent) have actually z contained in the smaller strip −χ < Im z < −ε for
some ε > 0. Moreover there exist a τ > 0 such that all these resonances z2 correspond to z such
that |Re z| < τ with

τ < 2eπe2y2χ+ 1
2

√
π

y2ε
−2πα−γ

.

Proof. The resonances are given by those z2 such that z is a solution of (2.48) with negative
imaginary part. We start by looking for possible resonances on the negative imaginary semiaxis.
To do so we substitute z = −ia with a > 0 in (2.48). It becomes

α +
ln −a

2 + γ

2π
+

i
4

H(1)
0 (−2iy2a) = 0.

It holds that

ln w =

ln w − iπ if Arg w > 0
ln w + iπ if Arg w ≤ 0

.
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Employing this, (C.18) with ν = 0, together with (C.27), the previous equation is written as

α +
ln a

2 + iπ + γ + K0(2y2a)
2π

−
i
2

I0(2y2a) = 0.

The equation can have a solution only if I0(2y2a) = 1, which happens only for a = 0 and so no
resonance can exist on the negative imaginary semiaxis.

Now we study the resonances generated by z in the strip −χ ≤ Im z < 0. First we look at
possible resonances close to the real axis. Since there are no real z solving (2.48) and the left
side of (2.48) is continuous outside 0, for each point of the real axis excepted zero, there is a
neighborhood in which there are no solutions of (2.48). This means that for each non-zero real,
there is a neighbourhood in which there are no z corresponding to resonances. To determine if
this also holds for zero, we study (2.48) near the origin by substituting (C.11) in it. It becomes

2πα + ln
z
2i
+ γ +

iπ
2
− ln (y2z) − γ + O(z2 ln z) = 0.

Given that

ln
z
2i
=

ln z
2 +

3
2πi if Arg z ≤ −π2

ln z
2 −

iπ
2 if Arg z > −π2

, (3.19)

we obtain the two expressions2πα − ln (2y2) + 2iπ + O(z2 ln z) = 0 Arg z ≤ −π2
2πα − ln (2y2) + O(z2 ln z) = 0 Arg z > −π2

.

In the first case, independently on the values of α and y2, the expression tends to a quantity
different from zero (the limit of the imaginary part is 2π). In the second one, instead for
α = 1

2π ln (2y2), the expression tends to zero and the possibility of accumulating zeros can’t be
excluded. Finally we also exclude the possibility of resonances accumulating closer and closer
the real axis when |Re z| → +∞. To verify this, we take the limit z → ±∞ in (2.48). It turns
out that, by using (C.14), (C.15) and (C.16), the left hand side of (2.48) does not tend to zero
and so the equation is not "asymptotically solved". So we can claim that for α , 1

2π ln (2y2), for
ε > 0 small enough there are no z corresponding to resonances in the strip −ε < Im z < 0.

So we can limit our study to the strip −χ < Im z < −ε. Recalling (C.9), we can rewrite
(2.48) as

α +
ln z

2i + γ

2π
+

i
4

J0(2y2z) −
1
4

Y0(2y2z) = 0. (3.20)

The lower complex half-plane is contained in −π ≤ Arg z ≤ π
2 . Hence both (C.28) anf (C.29)

hold and we can plug them into (3.20) obtaining

2πα + ln
z
2i
+ γ = −iπJ0(2y2z) − K0(2iy2z). (3.21)
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We look for an upper bound of the modulus of the right hand side. The bound

|K0(2iy2z)| ≤
∫ +∞

0
e−2y2 |Im z| cosh t dt

is a consequence of (C.30). But, recalling that cosh t ≥ t2
2 , we have

|K0(2iy2z)| ≤
∫ +∞

0
e−y2 |Im z|t2 dt =

1
2

√
π

y2 |Im z|
≤

1
2

√
π

y2ε
.

Using this in conjunction with (C.7), the bound

|−iπJ0(2y2z) − K0(2iy2z)| ≤ πe2y2χ +
1
2

√
π

y2ε

is then immediate. A lower bound for the modulus of the right end of (3.21) is instead given by∣∣∣∣∣2πα + ln
z
2i
+ γ

∣∣∣∣∣ ≥ ∣∣∣∣∣2πα + ln
∣∣∣∣∣ z2

∣∣∣∣∣ + γ∣∣∣∣∣ ≥
∣∣∣∣∣∣2πα + 1

2
ln

((
Re z)2 + ε2

4

)
+ γ

∣∣∣∣∣∣ .
The set of solution of the inequality∣∣∣∣∣∣2πα + 1

2
ln

((
Re z)2 + ε2

4

)
+ γ

∣∣∣∣∣∣ > e2y2χ +
1
2

√
π

y2ε

in Re z cannot contain any resonance. This set is given by(
Re z

)2
> 4e2πe2y2χ+

√
π

y2ε
−4πα−2γ

− ε2 ∨
(
Re z

)2
< 4e−2πe2y2χ−

√
π

y2ε
−4πα−2γ

− ε2.

By the arbitrarity of ε and the fact that Ae−Bε−1/2
with A, B > 0 vanishes faster than ε2, we have

that the second inequality is never verified for ε small enough. So we have proved that exists
some τ > 0 such that all the resonances in the strip −χ < Im z < 0 satisfy |Re z| < τ and it holds

τ <

√
4e2πe2y2χ+

√
π

y2ε
−4πα−2γ

− ε2 < 2eπe2y2χ+ 1
2

√
π

y2ε
−2πα−γ

.

□

3.3.2. Neumann Boundary Condition

Proposition 3.3.2. All the resonances z2 of −∆H
2,N

α,y with z in the strip −χ < Im z < 0 (if existent)
have z actually contained in the smaller strip −χ < Im z < −ε for some ε > 0. Moreover there
exist a τ > 0 such that all these resonances z2 correspond to z such that |Re z| < τ with

τ < 2eπe2y2χ+ 1
2

√
π

y2ε
−2πα−γ
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Proof. We start by examining the simples case of resonances on the negative imaginary semi-
axis. To do so we set z = −ia with a > 0 in ΓH,Nα,y (z) = 0, obtaining

α +
ln −a

2 + γ

2π
−

i
4

H(1)
0 (−2iy2a) = 0.

Using the same properties of Bessel function as in the Dirichlet case, this equation is equivalent
to

α +
ln a

2 + iπ + γ − K0(2y2a)
2π

+
i
2

I0(2y2a) = 0.

Taking the imaginary part of the equation, we see that it can be verified only if I0(2y2a) = −1.
This equation has no real solutions and so there are no resonances on the negative imaginary
semi-axis.

There are no real solution of ΓH,Nα,y (z) = 0 outside zero. We also prove that there exists a
neighbourhood of zero in which there are no solution of that equation. Substituting (C.11) into
ΓH,Nα,y (z) = 0, leads to

2πα + ln
z
2i
+ 2γ −

iπ
2
+ ln (y2z) + O(z2 ln z) = 0,

which, combined with (3.19) implies2 ln z + 2πα + 2γ + ln ( y2
2 ) + iπ + O(z2 ln z) = 0 Arg z ≤ −π2

2 ln z + 2πα + 2γ + ln ( y2
2 ) − iπ + O(z2 ln z) = 0 Arg z > −π2

.

In both cases, for z → 0, the first term’s absolute value diverges to +∞, while all the other
terms stay finite. This means that the absolute value of both the expressions diverges in the
limit and therefore there is a small neighbourhood of zero where the equation has no solutions.
In the same way as in the Dirichlet case one also prove that there are no solution of ΓH,Nα,y (z) = 0
accumulating to the real axis when |Re z| → +∞. All these facts together mean that all z that
generate resonances must obey Im z < −ε for some small ε > 0.

Then we are interested in fixing χ > 0 and studying the resonances in the region −χ <
Im z < −ε. Since the equation in this case differs from (3.21) only by an opposite side in the
left end side, we have that the same precise steps as the one for the Dirichlet case bring us to
claim that all solutions in the strip must obey |Re z| < τ with the same upper bound for τ. □

3.4. Why Resonances?

After having established the definition of resonances and studied them for −∆H
n

α,y, one can
ask what is their purpose.
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Resonances play a role in the description of oscillations and decay of waves propagating in
non-compact domains. For example in [18] (pp. 39-45 and 110-111) an asymptotic expansion
of the solution of the wave equation for large times is constructed. It is also important that the
initial data is compactly supported, so that the slow decay at infinity of the resonance functions
is not a concern This expansion is proved when the wave is scattered on a L∞comp(Rn) potential.
Here we prove a similar result for a point interaction on the half-space.

First we give a bound for the resolvent in a region with finite resonances.

Theorem 3.4.1. Let α ∈ R and y = (y1, y2, y3) ∈ H3. For any ρ ∈ C∞0 (H3) there exist constants
A,C and T depending on ρ such that∥∥∥∥ρ(−∆H

3,D
α,y − z2)−1ρ

∥∥∥∥
L2(H3)→H j(H3)

≤ C |z| j−1 eT (Im z)− , j = 0, 1, 2, (3.22)

((x)− = max { −x, 0 }) for

Im z ≥ −A − δ ln (1 + |z|), |z| > C0, δ <
1

2y3

and z not being such that z2 is a resonance. In particular, there are only finitely many z in the
region

{ z ∈ C | Im z ≥ −A − δ ln (1 + |z|) } , (3.23)

for any A > 0 that correspond to resonances z2.

Proof. We start by proving that there are a finite number of resonances in the region (3.23). As
shown in the upcoming section, all resonances are on the curve (3.3). This means that the curve

Im z =
1

2y3
ln

(
1

2y3 |Re z|

)
,

equivalent to

|Re z| =
1

2y3
e−2y3 Im z (3.24)

is above all resonances. The equation of the curve which delimits the region (3.23) can be
written in explicit form as follows

|Re z| =

√(
e−

Im z+A
δ − 1

)2

−
(
Im z

)2
. (3.25)

Both curves are symmetric with respect to the imaginary axis, so we limit ourself to Re z > 0.
If it happens that for Im z large enough, curve (3.25) is above curve (3.24), then for Im z large
enough all resonances are below (3.25) and hence only a finite quantity of them is in the region
described by (3.23). This scenario happens for 1

δ
> 2y3 regardless of the value of A.
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In order to prove (3.22) we use (1.34) and write∥∥∥∥ρ(−∆H
3,D

α,y − z2)−1ρ
∥∥∥∥

L2(H3)→H j(H3)
≤

∥∥∥∥ρ(−∆H
3,D − z2)−1ρ

∥∥∥∥
L2(H3)→H j(H3)

+
∣∣∣∣ΓH3,D
α,y (z)

∣∣∣∣−1 ∥∥∥∥ρGH
3,D

z,y (−∆H
3,D − z2)−1ρ

∥∥∥∥
L2(H3)→H j(H3)

. (3.26)

We recall the following bound for the free truncated resolvent ([18] Theorem 3.1)∥∥∥ρ(−∆ − z2)−1ρ
∥∥∥

L2(H3)→H j(H3)
≤ C(1 + |z|) j−1eL(Im z)− , j = 0, 1,

where L > diam (supp (ρ)) and that is also valid if we replace −∆ with −∆H
3,D. We also observe

that if |z| < C0, then 1 + |z| < C0+1
C0
|z|. So there exists C (we don’t change the constants name in

bounds) such that∥∥∥ρ(−∆ − z2)−1ρ
∥∥∥

L2(H3)→H j(H3)
≤ C |z| j−1 eL(Im z)− , j = 0, 1, 2.

This directly bounds the first term in (3.26). It does the same for the second one if we observe

that GH
3,D

z,y is in L2
loc(H

3) and that outside of resonances
∣∣∣∣ΓH3,D
α,y (z)

∣∣∣∣−1
is bounded. Hence (3.22)

follows. □

The following theorem describe this resonance expansion of the solution of the wave
equation.

Theorem 3.4.2. Let α ∈ R, y = (y1, y2, y3) ∈ H3 and R(z) =
(
−∆H

3,D
α,y − z2

)−1
. Suppose w(t, x) is

the solution of 
(
∂2

∂t2 − ∆
H3,D
α,y

)
w(t, x) = 0

w(0, x) = w0(x) ∈ H1
comp(H3)

∂w
∂t (0, x) = w1(x) ∈ L2

comp(H3)

. (3.27)

Let
{

z2
j

}
be the set of resonances of ∆H

3,D
α,y and λ the possible negative eigenvalue of ∆H

3,D
α,y (see

Proposition 2.2.1 for the condition for it to appear).

Then, for any A > 0,

• if α , − 1
8πy3

w(t, x) =
∑

{ Im z j>−A }∪{ i
√
|λ| }

e−iz jt f j(x) + EA(t),

where the sum is finite and

f j(x) = −Resz=z j

(
iR(z)w1 + zR(z)w0

)
; (3.28)
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• if α = − 1
8πy3

w(t, x) =
∑

{ Im z j>−A }

e−iz jt f j(x) + f0,0(x) + t f0,1(x) + EA(t),

where the sum is finite, f j are still defined as in (3.28) and

f0,0(x) + t f0,1(x) = −Resz=0

(
iR(z)w1 + zR(z)w0

)
.

moreover, for any compact, connected set K such that supp (w j) ⊂ K, j = 0, 1, there exist
constants CK,A and TK,A such that

∥EA(t)∥H2(K) ≤ CK,Ae−tA(∥w0∥H1(H3) + ∥w1∥L2(H3)), t ≥ TK,A.

Proof. We start by considering the case w0 = 0 and supp (w1) ⊂ K.

By the functional calculus, the propagator of (3.27) can be written as

U(t) =
∫ +∞

0

sin tz
z

dEz +
sin tλ
λ

(
·,GH

3,D
√
λ,y

)
GH

3,D
√
λ,y
. (3.29)

If zero is an eigenvalue, the last term is replaced by

t
(
·,GH

3,D
0,y

)
GH

3,D
0,y .

Since for z near λ , 0, R(z) = (λ2 − z2)−1
(
·,GH

3,D
√
λ,y

)
GH

3,D
√
λ,y
+ Q(z), where Q(z) is holomorphic

near λ and Resz=λ (λ2 − z2) = −(2λ)−1, we have

sin tλ
λ

(
·,GH

3,D
√
λ,y

)
GH

3,D
√
λ,y
= −Resz=λ (iR(z)e−izt) − Resz=−λ (iR(−z)e−izt) = Πλ + Π−λ. (3.30)

If λ = 0, instead

t
(
·,GH

3,D
0,y

)
GH

3,D
0,y = −t Resz=0 (iR(z)). (3.31)

In the following, the term for λ , 0 will be reported whenever it is not needed to distinguish
the two cases.

By Stone’s formula for the spectral measure dEz in terms of R(z), we have

dEz =
1
πi

(R(z) − R(−z))z dz.
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Hence

w(t, x) −
sin tλ
λ

(
·,GH

3,D
√
λ,y

)
GH

3,D
√
λ,y
=

1
πi

∫ +∞

0
sin tz(R(z) − R(−z))w1(x) dz

=
1

2π
lim
ε→0+

∫
R\(−ε,ε)

e−itz(R(z) − R(−z))w1(x) dz

=
1

2π

∫
Σε0

e−itz(R(z) − R(−z))w1(x) dz

+
1

2π
lim
ε→0+

∫
σε

e−itz(R(z) − R(−z))w1(x) dz,

where ε0 is such that there are no non-zero poles of R(z) in D(0, ε0), Σε0 is the union of
R \ (−ε0, ε0) with the semicircle in the upper complex half-plane of radius ε0 and centered at
zero oriented counterclockwise. σε instead is the semicircle in the upper complex half-plane of
radius ε, centered at zero and oriented clockwise.

To prove that the integrand decays fast enough for the integral on Σε0 to be convergebt we
observe that, by the definition of R(z), follows that(

R(z) − R(−z)
)(
−∆H

3,D
α,y

)
= (R(z) − R(−z))

(
−∆H

3,D
α,y − z2 + z2

)
= z2

(
R(z) − R(−z)

)
.

From this we can conclude that for ρ ∈ C∞0 (H3) equal to one on supp (w1),

ρ
(
R(z) − R(−z)

)(
1 − ∆H

3,D
α,y

)
ρw1 = ρ

(
R(z) − R(−z)

)
w1 + ρ

(
R(z) − R(−z)

)(
−∆H

3,D
α,y

)
w1

= (1 + z2)ρ
(
R(z) − R(−z)

)
w1

and so

ρ
(
R(z) − R(−z)

)
w1 = ρ

(
R(z) − R(−z)

)
(1 + z2)−1

(
1 − ∆H

3,D
α,y

)
ρw1. (3.32)

This, together with (3.22) shows that the integral converges in L2
loc(H

3).

The resolvent is holomorphic in a neighborhhod of the origin and hence the integral over
σε converges to 0 as ε→ 0+, unless zero is an eigenvalue for −∆H

3,D
α,y . In that case, we study the

expression R(z) − R(−z) near zero. We recall that 0 is an eigenvalue if and only if α = − 1
8πy3

. In
this case

R(z) − R(−z) =
eiz|x−y|

4π |x − y|
eiz|x′−y|

4π |x′ − y|

(
ΓH

3,D
α,y (z)

)−1
−

e−iz|x−y|

4π |x − y|
e−iz|x′−y|

4π |x′ − y|

(
ΓH

3,D
α,y (−z)

)−1
.

Some computations show that

Resz=0

(
R(z) − R(−z)

)
=

i
πy3 |x − y| |x′ − y|

(
y3

3
−
|x − y| + |x′ − y|

2

)
,
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which means that

1
2π

lim
ε→0+

∫
σε

e−itz(R(z) − R(−z))w1(x) dz =
w1(x)

2πy3 |x − y| |x′ − y|

(
y3

3
−
|x − y| + |x′ − y|

2

)
= Π0w1(x).

Let ρ ∈ C∞0 (H3) satisfy ρ = 1 on K. We choose R large enough so that all the resonances z2

with Im z > −A − δ ln (1 + |Re z|) are contained in the ball |z| ≤ R. We deform the contour of
integration in the integral over Σε0 using the following contours:

ωR =
{

s − i
(
A + ε + δ ln (1 + |s|)

) ∣∣∣∣ s ∈ [−R,R]
}

(3.33)

γ±R = { ±R − is | 0 ≤ s ≤ A + ε + δ ln (1 + R) } , γR = γ
+
R ∪ γ

−
R (3.34)

γ∞R = (−∞,R) ∪ (R,+∞). (3.35)

ε is chosen in such a way that ωR does not cross resonances. We also define

ΩA = { z | Im z ≥ −A − ε − δ ln (1 + |Re z|) } \ { 0 }

and define

ΠA(t) = i
∑

z j∈ΩA

Resz=z j

(
ρR(z)ρe−izt

)
.

By combining (3.29), (3.30) (or (3.31) when zero is an eigenvalue) and the residue theorem,
we can write that

ρU(t)ρ = Π0ρ + ΠA(t) + EωR(t) + EγR(t) + Eγ∞R
(t) + Πλ + Π−λ, (3.36)

where

Eγ(t) =
1

2π

∫
γ

e−itzρ
(
R(z) − R(−z)

)
ρw1 dz.

We note that Π−λ cancels out with the term in ΠA containing the residue at z = −λ.

Now we prove that the integrals in (3.36) are negligible in the limit R → +∞ for t large
enough. Using (3.32), we bound

∥∥∥Eγ∞R
(t)w1

∥∥∥
H1(H3)

≤ C

∥∥∥∥∥∥
∫ +∞

R
e−itzρ

(
R(z) − R(−z)

)
ρw1 dz

∥∥∥∥∥∥
H1(H3)

≤ C

∥∥∥∥∥∥
∫ +∞

R
ρ
(
R(z) − R(−z)

)
(1 + z2)−1

(
1 − ∆H

3,D
α,y

)
w1 dz

∥∥∥∥∥∥
H1(H3)

≤ C
∫ +∞

0
(1 + z2)−1 ∥w1∥H2(H3) = C arctan

( 1
R

)
∥w1∥H2(H3) ≤

C
R
∥w1∥H2(H3) .
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While, for the integral over γR, it holds that

∥∥∥EγR(t)w1

∥∥∥
H1(H3)

= C

∥∥∥∥∥∥
∫ A+ε+δ ln (1+R)

0
e−it(R−is)ρ

(
R(R − is) − R(−R + is)

)
ρw1(−i) ds

∥∥∥∥∥∥
≤ C

∫ A+ε+δ ln (1+R)

0
|s − it| e−(t−T )s ∥w1∥H2(H3) ds

≤ Ce
−(t−T )

(
A+ε+δ ln (1+R)

)
∥w1∥H2(H3) ≤ C(1 + R)−(t−T )δ ∥w1∥H2(H3) ,

where we used (3.22). For t > T , this bound vanish for R→ +∞.

We now show that for t ≫ 1,∥∥∥EωR(t)w1

∥∥∥
H2(H3)

≤ Ce−tA ∥w1∥L2(H3) . (3.37)

In order to do so, we use (3.22) with j = 2, the fact that on ωR |z| ≥ A + ε and the assumption
that there exist a compact set containing ωR in which there are no poles of R(z). We obtain

∥∥∥EωR(t)w1

∥∥∥
H2(H3)

≤ C
∫ +∞

−∞

e
−it

(
s−i(A+ε+δ ln (1+|s|))

)(
1 + |s|

)
eTδ ln (1+|s|) ∥w1∥L2(H3) ds

≤ Ce−tA
∫ +∞

−∞

e−δ(t−T ) ln (1+|s|)
(
1 + |s|

)
∥w1∥L2(H3) ds

≤ Ce−tA
∫ +∞

−∞

(
1 + |s|

)−δ(t−T )+1
∥w1∥L2(H3) ds.

This last integral is finite if −δ(t − T ) + 1 ≤ −2, which is equivalent to t ≥ T + 3/δ and in this
case (3.37) is valid.

Since C∞0 (K) ⊂ H2(K) is dense in L2(K), the bounds expressed in term of the H2 norm are
still valid if it is replaced by ∥w1∥L2(H3) for w1 ∈ L2

comp(H3) and hence the theorem is proven for
w0 = 0.

The proof for arbitrary w0 ∈ H1
comp(H3) and w1 = 0 follows the same steps, with the

replacement sin tz/z −→ cos tz in the formula for w(t, x). □

The same idea of an expansion in term of resonances can be carried out for the Schrödinger
operators of the form H = −∆ + V , where V is such that H is self-adjoint (we include, even
if not rigorously phrased, the case of V being a "point interaction potential"). By the spectral
decomposition, one has that

H =
∫
σ(H)

λ dE(λ)

and also

H− =
∫
σ(H)∩(−∞,0]

λ dE(λ) H+ =
∫
σ(H)∩(0,+∞)

λ dE(λ).
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If we further assume that σ(H)∩ (−∞, 0] consists of only a finite number of eigenvalues z2
n < 0

with corresponding eigenfunctions ψn ∈ L2(R3), by the spectral calculus we can claim that, for
any f ∈ C∞0 (R)

f (H−) =
∑

n

f (z2
n)(·, ψn)ψn.

Can a similar decomposition be carried out for f (H+)? This is possible for particular choices
of f . For example, let f (λ) = e−itλ2

, with λ2, t ∈ R+. By functional calculus, it follows that

e−itH+(x, x′) = −
1

2πi

∫ +∞

0
e−itz2

(H − z2)−1(x, x′)2z dz. (3.38)

The following theorem (see [1] for analogous result in R3) states that an expansion for e−itH+ is
possible and it is made in term of resonances.

Theorem 3.4.3. Let H = −∆H
3,D

α,y with α , − 1
8πy3

or H = −∆H
3,N

α,y with α , 1
8πy3

. Then there exists
some t0(x, x′, α, y) such that for t > t0 the following expansion holds

e−itH+(x, x′) =
∑

n

2zne−itz2
n Resz=zn

((
ΓH

3

α,y(z)
)−1

)
GH

3

zn,y(x)GH
3

zn,y(x′)

+ (2πit)−
3
2 e

i
2t |x−x′ |2 −

1
2π

∫ +∞

0

(
R̂
(
e−i π4 s

)
− R̂

(
−e−i π4 s

))
e−ts ds, (3.39)

with R̂(z) = (H − z2)−1 − (−∆ − z2)−1. The sum in (3.39) is taken over all zn lying in the region
−π4 < Arg k < 0 such that z2

n is a resonance.

Proof. We give the proof for −∆H
3,D

α,y . The Neumann case is proven similarly. By the definition
of R̂, (3.38) can be rewritten as

e−itH+(x, x′) = −
1

2πi

∫ +∞

0
e−itz2

R̂(z)(x, x′)2z dz −
1

2πi

∫ +∞

0
e−itz2

GH
3,D

z,y (x, x′)2z dz.

It holds that

1
2πi

∫ +∞

0
e−itz2

GH
3,D

z,y (x, x′)2z dz = (2πit)−
3
2 ei|x−x′ |22t.

Instead, because of the parity of R̂(z), we can rewrite the other integral as

−
1

2πi

∫ +∞

0
e−itz2(

R̂(z) − R̂(−z)
)
(x, x′)2z dz.
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Using the residue theorem, this integral can be written as

1
2πi

∫
CR

e−itz2(
R̂(z) − R̂(−z)

)
(x, x′)2z dz +

1
2πi

∫
γR

e−itz2(
R̂(z) − R̂(−z)

)
(x, x′)2z dz

+
∑

n

2zne−itz2
n Resz=zn

(
R̂(z) − R̂(−z)

)
(x, x′), (3.40)

where CR is the arc of circumference of radius R going clockwise from z = R to z = Re−iπ/4,
γR is the segment going from z = Re−iπ/4 towards the origin and the sum is over the zn in the
region delimited by CR, γR and the real positive semiaxis.

We prove that the integral over CR vanishes for R→ +∞. We prove this just for the term
with R̂(z). Analogous observations prove the same for R̂(−z). By Proposition 3.2.1, there are
infinite resonances zn and |zn| → +∞ for n→ +∞. This means that, in order to study the limit
R→ +∞, we have to distinguish the cases

• R , |zn|, ∀n ∈ N;

• R = |zn|, for some n ∈ N.

In the former case, the integral is given by∫
CR

e−itz2
(
α −

iz
4π
+

e2izy3

8πy3

)−1 eiz|x−y|

4π |x − y|
eiz|x′−y|

4π |x′ − y|
2z dz. (3.41)

We substitute z = Reiθ and estimate the absolute value of the integrand∣∣∣∣∣∣e−itR2e2iθ
(
α −

iReiθ

4π
+

e2iReiθy3

8πy3

)−1 eiReiθ |x−y|

4π |x − y|
eiReiθ |x′−y|

4π |x′ − y|
2ieiθR2

∣∣∣∣∣∣ = |I| .
The second factor is bounded, because the path does not cross any resonance, hence it holds
that

|I| ≤ C(x, x′, y)R2eR sin θ(2tR cos θ−|x−y|−|x′−y|).

Since we are in the complex lower half-plane, sin θ < 0. So if the other factor in the exponent
is positive, then in the limit the integral vanishes. By recalling that −π4 < θ < 0, we have that

2tR cos θ − |x − y| − |x′ − y| >
√

2Rt − |x − y| − |x′ − y| ,

which is positive for t >
√

2
2R

(
|x − y| + |x′ − y|

)
and hence the integral vanishes in the limit.

In the other case, the path of integration has to be modified because the previous path would
pass across the pole zn. So, the integral (3.41) has to be replaced by the following sum of
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integrals of the same function

−
1

2πi

∫
C1

R

. . . dz −
1

2πi

∫
Cε

. . . dz −
1

2πi

∫
C2

R

. . . dz,

where Cε is the semicircle of radius ε centered at zn, C1
R is the arc of circle of radius R centered

at the origin starting at Re−i π4 and ending when intersecting Cε, and C2
R is the arc of circle of

radius R centered at the origin between the point R and the intersection with Cε. The path is
run clockwise. The integrals on C1

R and C2
R are proven to vanish in the limit n→ +∞ for t large

enough in the same way as in the first case. We consider the remaining integral, it holds that

−
1

2πi

∫
Cε

. . . dz = −
1
2

Resz=zn

(
e−itz2

(
α −

iz
4π
+

e2izy3

8πy3

)−1 eiz|x−y|

4π |x − y|
eiz|x′−y|

4π |x′ − y|
2z

)
.

In order to find the residue, we study the divergent factor

(
ΓH

3,D
α,y (z)

)−1
=

(
α −

iz
4π
+

e2izy3

8πy3

)−1

.

Using the definition of zn we have that

(
ΓH

3,D
α,y (z)

)
= α −

i
4π

(z − zn) −
izn

4π
+

e2iy3(z−zn)

8πy3
e2iy3zn

=
e2iy3zn

8πy3

(
e2iy3(z−zn) − 1

)
−

i
4π

(z − zn)

=
e2iy3zn

8πy3

+∞∑
k=1

2kikyk
3

k!
(z − zn)k −

i
4π

(z − zn)

=
i

4π

(
e2iy3zn − 1

)
(z − zn) + O((z − zn)2).

This means that

Resz=zn

((
ΓH

3,D
α,y (z)

)−1
)
= lim

z→zn

z − zn

α − iz
4π +

e2iy3zn

8πy3

=
4πi

1 − e2iy3zn
.

The denominator would vanish only if zn =
kπ
y3

for some k ∈ Z. In order for this value to be a
resonance, it has to solve

ik
4y3
= α +

1
8πy3

,

but the the left side is purely imaginary, while the right one is real. So the equation holds only
if both sides vanish, which happens if and only if zn = 0 and α = − 1

8πy3
. Hence, if we state
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zn = rneiθn , we have∣∣∣∣∣∣− 1
2πi

∫
Cε

. . . dz

∣∣∣∣∣∣ =
∣∣∣∣∣∣e−itz2

n
4πi

e2iy3zn − 1
eizn |x−y|

4π |x − y|
eizn |x′−y|

4π |x′ − y|
zn

∣∣∣∣∣∣
≤ C′(x, x′, y)ern sin θn(2trn cos θn−|x−y|−|x′−y|).

Also in this case

2trn cos θn − |x − y| − |x′ − y| ≥
√

2trn − |x − y| − |x′ − y| ,

with the last expression being positive for t >
√

2
2rn

(
|x − y| + |x′ − y|

)
. So, in the limit n → +∞

also the integral on Cε vanishes for t large enough.

Going back to (3.40), we consider the sum in it. First we observe that R̂(−z) has no poles in
the region considered, because all its poles are in the upper complex plane. The expression of
(−∆H

3,D
α,y − z2)−1 and the fact that for R→ +∞ the region in exam becomes −π4 < arg z < 0 let us

recollect the expression present in (3.39).

The integral over γR can be expressed, with the substitution z = e−iπ/4√s, as follows

1
2πi

∫ +∞

0
e−ts

(
R̂
(
e−i π4
√

s
)
− R̂

(
−e−i π4

√
s
))

(x, x′)2e−i π4
√

se−i π4
ds

2
√

s
,

which returns the missing term. □

3.5. Semiclassical Asymptotics for Resonances for the
Half-Space

In general, as also the previous treatment shows, it is difficult to obtain explicit information
on all resonances. In order to understand some properties of them, one can study their
asymptotic behaviour on certain regimes. An example of these regimes is the high energy limit.
To fix ideas we limit ourself to the one point interaction. This limit consist in studying the
distribution of the poles of (

−∆Ωα,y − z2
)−1
, for |z| → +∞.

The high energy limit is an example of semiclassical limit. This is obtained rescaling z dividing
it by a reference constant h > 0 (who mimics Planck’s constant) and passing to the limit h→ 0.

This way, the energy
(

z
h

)2
goes to infinite, implying that the energies of the phenomena in exam

are way higher than the reference energy h. In this case the resolvent is then(
−∆Ωα,y −

( z
h

)2)−1

= h2
(
−h2∆Ωα,y − z2

)−1
, for h→ 0.
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In applications, typically, the potential which describes the interaction (here the point interac-
tion) is usually assumed to be energy dependent and hence dependent on h in this setting. A
common choice for the interaction is of the form h−β with β > 0 (see for example [17] and [23]).
We consider both positive and negative sign of the point charge. So the operator considered is
−h2∆Ω

±h−β,y and its resonances are the poles in the complex lower half-plane of

(
−∆Ω
±h−β,y −

( z
h

)2)−1

= h2
(
−h2∆Ω

±h−β,y − z2
)−1
, for h→ 0.

Below we will study the asymptotics of these resonances for Ω = H3 with both Dirichlet and
Neumann boundary conditions. The approach is borrowed from the work [17] on the half-line
by Datchew and Malawo. There the case of the half-line with a delta interaction at a point
and Dirichlet boundary conditions at the origin is treated. This is called Winter’s model in the
literature (see [42] for a recent analysis and reference)

3.5.1. Dirichlet Boundary Condition

We start by studying the semiclassical resonance asymptotics for −h2∆H
3,D
±h−β,y. The definition

of the operator, combined with (2.30) implies that the equation for the resonances is

±h−β −
iz

4πh
+

e2iy3
z
h

8πy3
= 0, (3.42)

which can be rewritten as

−e±8πy3h−β =

(
−2iy3

z
h
± 8πy3h−β

)
e−2iy3

z
h±8πy3h−β . (3.43)

Setting −w± = −e±8πy3h−β and x = −2iy3
z
h ± 8πy3h−β, previous equation becomes −w = xex. The

main difference in the two cases is that in the first w → +∞ as h → 0+, while in the second
w→ 0.

The solutions on the complex plane of −w = xex are given by x = Wk(−w), where W is the
Lambert W function (see Appendix C.1) and k varies over Z. Many facts about the Lambert W
function are reported in [14]. Specifically we use that Wk(w) can be expanded in a convergent
series (note that this expansion is valid for both w approaching zero and infinity)

Wk(−w) = ln (−w) + 2πik − ln
(
ln (−w) + 2πik

)
+ Rk

= ln (w) + (2k + 1)iπ − ln
(
ln (w) + (2k + 1)iπ

)
+ Rk,

where

Rk =

+∞∑
j=0

+∞∑
m=1

c j,m

lnm
(
ln (w) + (2k + 1)iπ

)
(
ln (w) + (2k + 1)iπ

) j+m (3.44)
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and

c j,m =
(−1) j

m!

[
j + m
j + 1

]
.

Here
[

p
q

]
are the Stirling numbers, which are the number of ways to arrange p objects in q

cycles. The following Lemma holds.

Lemma 3.5.1. The series (3.44) is absolutely convergent for w large (or small) enough and
k ∈ Z. More precisely we have the tail estimate∣∣∣∣∣∣∣∣Rk −

ln
(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

∣∣∣∣∣∣∣∣ ≤
∑

j≥0,m≥1,( j,m),(0,1)

∣∣∣∣∣∣∣∣∣c j,m

lnm
(
ln (w) + (2k + 1)iπ

)
(
ln (w) + (2k + 1)iπ

) j+m

∣∣∣∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣∣∣
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

∣∣∣∣∣∣∣∣
2

(3.45)

and ∣∣∣∣∣∣∣∣
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

∣∣∣∣∣∣∣∣ ≤ 1
2
. (3.46)

Proof. We prove the Lemma for both w big and small and distinguish when different obser-
vations have to be made. (3.46) is fulfilled for w sufficiently large (or small), because the
denominator goes to infinity faster than the numerator. To prove (3.45) we write∣∣∣∣∣∣∣∣Rk −

ln
(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

∣∣∣∣∣∣∣∣ ≤
∑

j≥0,m≥1,( j,m),(0,1)

∣∣∣∣∣∣∣∣∣c j,m

lnm
(
ln (w) + (2k + 1)iπ

)
(
ln (w) + (2k + 1)iπ

) j+m

∣∣∣∣∣∣∣∣∣
=

+∞∑
m=2

∣∣∣∣∣∣∣∣c0,m

lnm
(
ln (w) + (2k + 1)iπ

)
(
ln (w) + (2k + 1)iπ

)m

∣∣∣∣∣∣∣∣ +
+∞∑
m=1

+∞∑
j=1

∣∣∣∣∣∣∣∣∣c j,m

lnm
(
ln (w) + (2k + 1)iπ

)
(
ln (w) + (2k + 1)iπ

) j+m

∣∣∣∣∣∣∣∣∣ = S 1 + S 2.

(3.47)

We recall that
[

m
1

]
= (m − 1)!, and so c0,m = 1/m. So

S 1 ≤
1
2

+∞∑
m=2

∣∣∣∣∣∣∣∣
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

∣∣∣∣∣∣∣∣
m

=
1
2

+∞∑
m=2

qm =
q2

2(1 − q)
≤

∣∣∣∣∣∣∣∣
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

∣∣∣∣∣∣∣∣
2

,
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where the last inequality is valid because q ≤ 1/2 for w large (or small) enough. We consider
the other sum

S 2 =
1

|ln (w) + (2k + 1)iπ|

+∞∑
m=1

∣∣∣∣∣∣∣∣
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

∣∣∣∣∣∣∣∣
m
+∞∑
j=1

∣∣∣c j,m

∣∣∣
|ln (w) + (2k + 1)iπ| j−1 . (3.48)

Since the double sum is absolutely convergent for large or small w, then it must hold that∣∣∣∣∣∣∣∣
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

∣∣∣∣∣∣∣∣
m
+∞∑
j=1

∣∣∣c j,m

∣∣∣
|ln (w) + (2k + 1)iπ| j−1 → 0 for m→ +∞.

Moreover, for large w, the first multiplicative term is decreasing in w (it is positive and goes to
0) and each term in the sum is decreasing as well. Since all terms are positive, we can conclude
that the expression above is decreasing for large w. This means that there is N such that, setting
w = N, ∀m ≥ 1 we have∣∣∣∣∣∣∣∣

ln
(
ln (N) + (2k + 1)iπ

)
ln (N) + (2k + 1)iπ

∣∣∣∣∣∣∣∣
m
+∞∑
j=1

∣∣∣c j,m

∣∣∣
|ln (N) + (2k + 1)iπ| j−1 ≤ N.

In the same way we have that, for small w, the first multiplicative term is increasing in w (it
is positive and tends to 0 for w → 0) and each term in the sum is increasing and positive as
well. So the whole expression is increasing for small w and that means that ther is N such that
if w = 1

N , ∀m ≥ 1∣∣∣∣∣∣∣∣
ln

(
− ln (N) + (2k + 1)iπ

)
− ln (N) + (2k + 1)iπ

∣∣∣∣∣∣∣∣
m
+∞∑
j=1

∣∣∣c j,m

∣∣∣
|− ln (N) + (2k + 1)iπ| j−1 ≤ N

holds. To consider together both cases, we can just put sgn
(
ln (w)

)
in front of ln (N). Then, for

|w| ≥ N large (or |w| ≤ 1
N respectively), it holds that

+∞∑
j=1

∣∣∣c j,m

∣∣∣
|ln (w) + (2k + 1)iπ| j−1 ≤

+∞∑
j=1

∣∣∣c j,m

∣∣∣∣∣∣∣sgn
(
ln (w)

)
ln (N) + (2k + 1)iπ

∣∣∣∣ j−1

≤ N

∣∣∣∣∣∣∣∣
sgn

(
ln (w)

)
ln (N) + (2k + 1)iπ

ln
(
sgn

(
ln (w)

)
ln (N) + (2k + 1)iπ

)
∣∣∣∣∣∣∣∣
m

.
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Substituting this in (3.48), we get

S 2 ≤
N

|ln (w) + (2k + 1)iπ|

+∞∑
m=1

∣∣∣∣∣∣∣∣
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

·
sgn

(
ln (w)

)
ln (N) + (2k + 1)iπ

ln
(
sgn

(
ln (w)

)
ln (N) + (2k + 1)iπ

)
∣∣∣∣∣∣∣∣
m

= 2N

∣∣∣∣ln (
ln (w) + (2k + 1)iπ

)∣∣∣∣
|ln (w) + (2k + 1)iπ|2

∣∣∣∣∣∣∣∣
sgn

(
ln (w)

)
ln (N) + (2k + 1)iπ

ln
(
sgn

(
ln (w)

)
ln (N) + (2k + 1)iπ

)
∣∣∣∣∣∣∣∣ 1
2

+∞∑
m=0

pm,

where

p =

∣∣∣∣∣∣∣∣
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

·
sgn

(
ln (w)

)
ln (N) + (2k + 1)iπ

ln
(
sgn

(
ln (w)

)
ln (N) + (2k + 1)iπ

)
∣∣∣∣∣∣∣∣

=


s(w)
s(N) w large
s(w)

s
(

1
N

) w small .

Since s is decreasing for large w, p < 1. But it also holds that limw→+∞ s(w) = 0, so for large
w, p < 1

2 . For small w instead s is increasing and limw→0 s(w) = 0, which means that for
sufficiently small w, p < 1

2 . But,

1
2

+∞∑
m=0

pm =
1

2(1 − p)
< 1,

for p < 1
2 . This implies

S 2 ≤
2N

∣∣∣∣sgn
(
ln (w)

)
ln (N) + (2k + 1)iπ

)∣∣∣∣∣∣∣∣ln (
sgn

(
ln (w)

)
ln (N) + (2k + 1)iπ

)∣∣∣∣ ·
∣∣∣∣ln (

ln (w) + (2k + 1)iπ
)∣∣∣∣

|ln (w) + (2k + 1)iπ|2
.

Given that
∣∣∣∣ln (

ln (w) + (2k + 1)iπ
)∣∣∣∣→ +∞ for both w→ +∞ and w→ 0, we have that

2N
∣∣∣∣sgn

(
ln (w)

)
ln (N) + (2k + 1)iπ

)∣∣∣∣∣∣∣∣ln (
sgn

(
ln (w)

)
ln (N) + (2k + 1)iπ

)∣∣∣∣ ≤
∣∣∣∣ln (

ln (w) + (2k + 1)iπ
)∣∣∣∣ ,

for w large (respectively small) enough. So,

S 2 ≤

∣∣∣∣∣∣∣∣
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

∣∣∣∣∣∣∣∣
2

and the thesis follows. □



Resonances of One Point Interactions in Hn 105

So we can write the resonances z±k in terms of the Lambert W function. For −h2∆H
3,D

h−β,y they
are given by

z+k =
ih

2x0,3

(
Wk(−w) − 8πy3h−β

)
=

ih
2x0,3

(
ln (w) + (2k + 1)iπ − ln

(
ln (w) + (2k + 1)iπ

)
− 8πx0,3h−β + Rk

)
=

ih
2x0,3

(
(2k + 1)iπ − ln

(
ln (w) + (2k + 1)iπ

)
+ Rk

)
,

(3.49)

where k varies over Z and w = e8πy3h−β . Instead, for −h2∆H
3,D
−h−β,y

z−k =
ih

2x0,3

(
Wk(−w) + 8πy3h−β

)
=

ih
2x0,3

(
ln (w) + (2k + 1)iπ − ln

(
ln (w) + (2k + 1)iπ

)
+ 8πx0,3h−β + Rk

)
=

ih
2x0,3

(
(2k + 1)iπ − ln

(
ln (w) + (2k + 1)iπ

)
+ Rk

) (3.50)

(here w = e−8πy3h−β).

Now we show that under some assumptions over zk, k is roughly of size h−1.

Lemma 3.5.2. Let ε ∈ (0, 1) ve given. Then, for k such that zk is given by (3.49) or (3.50) and

ε ≤ |zk| ≤ 1/ε, (3.51)

we have

ε

2
≤
|k| πh

y3
≤

2
ε
. (3.52)

Proof. Using (3.46) and the inverse triangular inequality we have that∣∣∣∣∣∣∣∣Rk −
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

∣∣∣∣∣∣∣∣ ≥
∣∣∣∣∣|Rk| −

1
2

∣∣∣∣∣ .
Combining this with (3.45) and (3.46) we get∣∣∣∣∣|Rk| −

1
2

∣∣∣∣∣ ≤ 1
2
,
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equivalent to |Rk| ≤ 1. We now prove the first inequality in (3.52). For the sake of contradiction
we suppose that |k|πh

y3
< ε

2 . Combining the first inequality of (3.51), |Rk| ≤ 1 and (3.49), we get

ε ≤ |zk| ≤
|k| πh

y3
+

h
2x0,3

∣∣∣∣ln (
ln (w) + (2k + 1)iπ

)∣∣∣∣ + π + 1
2y3

h.

Then, using |k|πh
y3

< ε
2 , we have

ε <
h
y3

∣∣∣∣ln (
ln (w) + (2k + 1)iπ

)∣∣∣∣ + π + 1
y3

h.

Since the second term in the right side goes to zero faster than the first, it must hold that, for h
small enough

ε

2
<

h
y3

∣∣∣∣ln (
ln (w) + (2k + 1)iπ

)∣∣∣∣ ,
which implies

e
εy3
2h ≤ |ln (w) + (2k + 1)iπ| ≤ 8πy3h−β + 2 |k| π + π ≤ 8πy3h−β + εy3h−1

and this is absurd for h small enough.

To prove the second inequality (3.52) we suppose for the sake of contradiction that |k|πh
y3

> 2
ε
.

By |Rk| ≤ 1, (3.49) and triangular inequality we have that

|zk| ≥
|k| πh

y3
−

h
2x0,3

|ln |ln (w) + (2k + 1)iπ|| −
h

2y3

∣∣∣∣Arg
(
ln (w) + (2k + 1)iπ

)∣∣∣∣ − π + 1
2y3

h.

This, combined with the second inequality of (3.51), implies

|k| πh
y3
−

h
2x0,3

|ln |ln (w) + (2k + 1)iπ|| ≤
1
ε
+

h
2y3

∣∣∣∣Arg
(
ln (w) + (2k + 1)iπ

)∣∣∣∣ + π + 1
2y3

h

≤
3
2ε
,

last inequality being valid for h small eoungh. So it holds that

2 |k| π −
3y3

εh
≤ |ln |ln (w) + (2k + 1)iπ|| ,

hence

e2|k|π− 3y3
εh − 2 |k| π ≤ |ln (w)| + π.
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But, since the function f (x) = ex−a − x is increasing in (a,+∞) and 2 |k| π > 4y3
εh we have

f
(

4y3
εh

)
< f

(
2 |k| π

)
≤ ln (w) + π and so

e
y3
εh ≤ 8πy3h−β +

4y3

εh
+ π,

which is a contradiction for h small enough. □

We now establish asymptotic behaviour for resonances apart from the ones near zero and
near infinity. We distinguish between 0 < β < 1 and β > 1. This different treatment is needed
because different values of β changes the relative dominance between ln (y) and |2k + 1| π in
(3.49). We start with the case β ∈ (0, 1).

Proposition 3.5.1. Let β ∈ (0, 1) and ε ∈ (0, 1) be given. Then there is h0 > 0 such that, when
h ∈ (0, h0], all solutions of (3.42) satisfying

ε ≤ |z| ≤
1
ε
,

obey

0 ≤ − Im z −
h

2y3
ln

(
2y3h−1 |Re z|

)
≤

72π2

y3
ε−2h3−2β.

Proof. Since β ∈ (0, 1), then the first inequality in (3.52) implies

|(2k + 1)iπ| ≥ 2 |k| π − π ≥ εy3h−1 − π > |ln (w)| = 8πy3h−β, (3.53)

for h small enough, so that it is more convenient to rewrite

ln
(
ln (w) + (2k + 1)iπ

)
= ln

(
(2k + 1)iπ

)
+ ln

(
1 +

ln (w)
(2k + 1)iπ

)
and

z±k =
ih

2y3

(
(2k + 1)iπ − ln

(
(2k + 1)iπ

)
+ R′k

)
, where R′k = Rk − ln

(
1 +

ln (w)
(2k + 1)iπ

)
.

Using |Rk| ≤ 1 and (3.53), we get∣∣∣R′k∣∣∣ ≤ |Rk| +

∣∣∣∣∣ln ∣∣∣∣∣1 + ln (w)
(2k + 1)iπ

∣∣∣∣∣∣∣∣∣∣ + ∣∣∣∣∣Arg
(
1 +

ln (w)
(2k + 1)iπ

)∣∣∣∣∣ ≤ 1 + ln 2 +
π

2
≤ 4. (3.54)

Hence, by taking the real and imaginary part of z±k we getRe z±k = −
(2k+1)πh

2y3
+ h

2y3
Arg

(
(2k + 1)iπ

)
− h

2y3
Im R′k

Im z±k = −
h

2y3
ln |(2k + 1)π| + h

2y3
Re R′k

. (3.55)
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We now separate real and imaginary part of (3.42)
e−2

x0,3
h Im z±k cos

(
2 y3

h Re z±k
)
= −2 x0,3

h Im z±k ∓ 8πy3h−β

e−2
x0,3

h Im z±k sin
(
2 y3

h Re z±k
)
= 2 x0,3

h Re z±k
.

Squaring the equations and adding them side by side we have

e−4
x0,3

h Im z±k =
4y2

3

h2

((
Im z±k

)2
+

(
Re z±k

)2
)
± 32πy2

3h−β−1 Im z±k + 64π2y2
3h−2β

or equivalently

−4
x0,3

h
Im z±k = 2 ln

(
2y3h−1

∣∣∣Re z±k
∣∣∣) + ln (1 + t),

where

t =
4y2

3

(
Im z±k

)2
± 32πy2

3h1−β Im z±k + 64π2y2
3h2−2β

4y2
3

(
Re z±k

)2 .

We recall that 0 ≤ ln (1 + t) ≤ t to get

0 ≤ −4
x0,3

h
Im z±k − 2 ln

(
2y3h−1

∣∣∣Re z±k
∣∣∣) ≤ t. (3.56)

From (3.55) we have, using (3.52), (3.54) and Arg
(
(2k + 1)iπ

)
= π/2, that, for sufficiently

small h

|Re zk| ≥
|2k + 1| πh

2y3
−

∣∣∣∣∣ h
2y3

Im R′k −
h

2y3
Arg

(
(2k + 1)iπ

)∣∣∣∣∣
≥
|k| πh

y3
−
πh
2y3
−

h
2y3

∣∣∣Im R′k
∣∣∣ − h

2y3

∣∣∣∣Arg
(
(2k + 1)iπ

)∣∣∣∣
≥
ε

2
−
πh
2y3
−

2h
y3
−
πh
4y3
≥
ε

3

and ∣∣∣Im z±k
∣∣∣ ≤ h

2y3
ln

(
2 |k| π + π

)
+

h
2y3

∣∣∣Re R′k
∣∣∣

=
h

2y3
ln

(
2 |k| π

)
+

h
2y3

ln
(
1 +

1
2 |k| π

)
+

h
2y3

∣∣∣Re R′k
∣∣∣

≤
h

2y3
ln

(4y3

εh

)
+

ln 2 + 2
y3

h ≤
h
y3

ln
(4y3

εh

)
.
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For z+k this, together with Im z+k < 0, implies

t ≤
4h2 ln2

(
4y3
εh

)
+ 64π2y2

3h2−2β

4y2
3

(
Re z+k

)2 ≤
32π2h2−2β(

Re z+k
)2 ≤ 288π2ε−2h2−2β,

while for z−k

t ≤
4h2 ln2

(
4y3
εh

)
+ 32πx0,3h2−β ln

(
4y3
εh

)
+ 64π2y2

3h2−2β

4y2
3

(
Re z−k

)2 ≤
32π2h2−2β(

Re z−k
)2 ≤ 288π2ε−2h2−2β,

Plugging this inequality into (3.56) gives the desired inequality. □

A different behaviour happens for β > 1

Proposition 3.5.2. Let β > 1 and ε ∈ (0, 1) be given. Then there is h0 > 0 such that, when
h ∈ (0, h0], all solutions to (3.42)+ satisfying

ε ≤ |z| ≤
1
ε

obey ∣∣∣∣∣∣∣∣Im z +
2y3 ln

(
8πy3h−β

)
h(2k + 1)2π2

(
Re z

)2

∣∣∣∣∣∣∣∣ ≤ 1 + 96ε−4

4πy2
3

hβ+1 ln
(
8πy3h−β

)
+
ε−2h2β−1

2π2y3
,

which, using (3.52), implies

Im z +
ε2

32y3
h ln

(
8πy3h−β

)(
Re z

)2
≤

1 + 96ε−4

4πy2
3

hβ+1 ln
(
8πy3h−β

)
+
ε−2h2β−1

2π2y3
(3.57)

Im z +
8
ε2y3

h ln
(
8πy3h−β

)(
Re z

)2
≥ −

1 + 96ε−4

4πy2
3

hβ+1 ln
(
8πy3h−β

)
−
ε−2h2β−1

2π2y3
. (3.58)

Proof. Since β > 1, by the second inequality in (3.52), we have

|2k + 1| π ≤ 2 |k| π + π ≤ 4y3ε
−1h−1 + π < 8πy3h−β = ln (w),

for h small enough. Recalling (3.49), we write

zk =
ih

2y3

(
(2k + 1)iπ − ln

(
8πy3h−β

)
− ln

(
1 +

i(2k + 1)
8y3

hβ
)
+ Rk

)
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and so we can ensure that the third term is small for h small. Separating both the real and
imaginary part gives

Re zk =
h

2y3

(
− (2k + 1)π + Arg

(
1 + i(2k+1)

8y3
hβ

)
− Im Rk

)
Im zk =

h
2y3

(
− ln

(
8πy3h−β

)
− ln

∣∣∣∣1 + i(2k+1)
8y3

hβ
∣∣∣∣ + Re Rk

) . (3.59)

We observe that

ln
∣∣∣∣∣1 + i(2k + 1)

8y3
hβ

∣∣∣∣∣ = 1
2

ln
(
1 +

(2k + 1)2

64y2
3

h2β
)
=

1
2

ln (1 + t),

with t = (2k+1)2

64y2
3

h2β. Considering the imaginary part in (3.59), we get∣∣∣∣∣Im zk +
h

2y3
ln

(
8πy3h−β

)∣∣∣∣∣ = h
2y3

∣∣∣∣∣Re Rk − ln
∣∣∣∣∣1 + i(2k + 1)

8y3
hβ

∣∣∣∣∣∣∣∣∣∣ . (3.60)

To deal with Rk, we recall that w = 8πy3h−β and consider∣∣∣∣∣∣∣∣
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

∣∣∣∣∣∣∣∣ ≤
∣∣∣ln |ln (w) + (2k + 1)iπ| + iπ2

∣∣∣
|8πy3h−β + (2k + 1)iπ|

=
ln

(
h−β

)
h−β

∣∣∣ln |ln (w) + (2k + 1)iπ| + iπ2
∣∣∣

ln
(
h−β

)
|8πy3 + (2k + 1)iπhβ|

,

but∣∣∣ln |ln (w) + (2k + 1)iπ| + iπ2
∣∣∣

ln
(
h−β

)
|8πy3 + (2k + 1)iπhβ|

≤
1

hβ ln (h−β)

(∣∣∣∣∣ ln |ln (w) + (2k + 1)iπ|
ln (w) + (2k + 1)π

∣∣∣∣∣ + π
2

|ln (w) + (2k + 1)π|

)
.

Since

lim
h→0+

1
hβ ln (h−β)

∣∣∣∣∣ ln |ln (w) + (2k + 1)iπ|
ln (w) + (2k + 1)π

∣∣∣∣∣ = 1
8πy3

and

lim
h→0+

1
hβ ln (h−β)

π
2

|ln (w) + (2k + 1)π|
= 0,

then ∣∣∣ln |ln (w) + (2k + 1)iπ| + iπ2
∣∣∣

ln
(
h−β

)
|8πy3 + (2k + 1)iπhβ|

≤
1

8πy3
,
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for h small enough and finally this means that∣∣∣∣∣∣∣∣
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

∣∣∣∣∣∣∣∣ ≤
hβ ln

(
h−β

)
4πy3

. (3.61)

By (3.45), we can also write∣∣∣∣∣∣∣∣Rk −
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

∣∣∣∣∣∣∣∣ ≤
h2β ln2

(
h−β

)
8π2y2

3

. (3.62)

Turning back to (3.60), we now have

∣∣∣∣∣Im zk +
h

2y3
ln

(
8πy3h−β

)∣∣∣∣∣ ≤ h
2y3

∣∣∣∣∣∣∣∣Re Rk − Re
( ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

)∣∣∣∣∣∣∣∣
+

h
2y3

∣∣∣∣∣∣∣∣Re
( ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

)
− ln

∣∣∣∣∣1 + i(2k + 1)
8y3

hβ
∣∣∣∣∣
∣∣∣∣∣∣∣∣ ≤

h2β+1 ln2
(
h−β

)
16π2y3

3

+ |A| . (3.63)

We now find a bound for |A|. After some manipulations we can write

A =

(
ln
(

8πy3h−β
)
+ 1

2 ln (1+t)

)
hβ+1

16πy2
3
+

(2k+1)h2β+1

128πy3
3

Arg

(
8πy3h−β+(2k+1)iπ

)
1+t − h

4y3
ln (1 + t).

By triangle inequality and t > 0 follows that

|A| ≤
hβ+1

16πy2
3

ln
(
8πy3h−β

)
+
|2k + 1| h2β+1

128πy3
3

∣∣∣∣∣Arg
(
8πy3h−β + (2k + 1)iπ

)∣∣∣∣∣
+

h
4y3

ln (1 + t) +
hβ+1

32πy2
3

ln (1 + t). (3.64)

This expression can be also bounded using
∣∣∣∣∣Arg

(
8πy3h−β + (2k + 1)iπ

)∣∣∣∣∣ ≤ π
2 , ln (1 + t) ≤ t, the

expression for t, (2k + 1)2 ≤ 2(4k2 + 1) and the second inequality in (3.52) as

|A| ≤
hβ+1

16πy2
3

ln
(
8πy3h−β

)
+

h3β+1

1024πx4
0,3

+
ε−2h3β−1

64π3y2
3

+
3h2β+1

256y3
3

+
ε−1h2β

64πy2
3

+
ε−2h2β−1

8π2y3
.

For β > 1, the dominant term for small h are the first and last term. More specifically the first is
dominant for β ≥ 2 and the other for 1 < β < 2. What said implies that for h small enough

|A| ≤
hβ+1

8πy2
3

ln
(
8πy3h−β

)
+
ε−2h2β−1

4π2y3
,
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which implies

∣∣∣∣∣Im zk +
h

2y3
ln

(
8πy3h−β

)∣∣∣∣∣ ≤ h2β+1 ln2
(
h−β

)
16π2y3

3

+
hβ+1

8πy2
3

ln
(
8πy3h−β

)
+
ε−2h2β−1

4π2y3

≤
hβ+1

4πy2
3

ln
(
2πy3h−β

)
+
ε−2h2β−1

2π2y3
,

for h sufficiently small.

Now we look at the real part of (3.59)∣∣∣∣∣Re zk +
(2k + 1)πh

2y3

∣∣∣∣∣ = h
2y3

∣∣∣∣∣Arg
(
1 +

i(2k + 1)
8y3

hβ
)
− Im Rk

∣∣∣∣∣
≤

h
2y3

∣∣∣∣∣Arg
(
1 +

i(2k + 1)
8y3

hβ
)∣∣∣∣∣ + h

2y3

∣∣∣∣∣∣∣∣
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

− Rk

∣∣∣∣∣∣∣∣
+

h
2y3

∣∣∣∣∣∣∣∣
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

∣∣∣∣∣∣∣∣ . (3.65)

Using that
∣∣∣Arg (1 + is)

∣∣∣ ≤ 2 |s| for small s, the second inequality in (3.52), (3.61) and (3.62)
we get the bound

∣∣∣∣∣Re zk +
(2k + 1)πh

2y3

∣∣∣∣∣ ≤ ε−1hβ

2πy3
+

hβ+1

8y2
3

+
h2β+1 ln2

(
h−β

)
16π2y3

3

+
hβ+1 ln

(
h−β

)
8πy2

3

≤
ε−1hβ

πy3
, (3.66)

last inequality being valid for h small enough.

This new inequality can be used to bound the following quantity

B =

∣∣∣∣∣∣ 2y3

h(2k + 1)2π2 ln
(
8πy3h−β

)(
Re zk

)2

−
h

2y3
ln

(
8πy3h−β

)∣∣∣∣∣∣ .
By factorizing, (3.66) and by the second inequalities in (3.52) and (3.51) respectively

B ≤
2y3

h(2k + 1)2π2 ln
(
8πy3h−β

)(
|zk| +

|2k + 1| πh
2y3

) ∣∣∣∣∣Re zk +
(2k + 1)πh

2y3

∣∣∣∣∣
≤

6ε−2

(2k + 1)2π3 hβ−1 ln
(
8πy3h−β

)
.

Now we observe that (2k + 1)2 ≥ k2 ∀k ∈ Z, k , 0 (which is escluded by (3.51)). Using this
fact, together with the reciprocal of the first inequality of (3.52), we have

B ≤
24ε−4

πy2
3

hβ+1 ln
(
8πy3h−β

)
.
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Finally we can find the bound∣∣∣∣∣∣∣∣Im zk +
2y3 ln

(
8πy3h−β

)
h(2k + 1)2π2

(
Re zk

)2
∣∣∣∣∣∣∣∣ ≤

∣∣∣∣∣Im zk +
h

2y3
ln

(
8πy3h−β

)∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
2y3 ln

(
8πy3h−β

)
h(2k + 1)2π2

(
Re zk

)2

−
h

2y3
ln

(
8πy3h−β

)∣∣∣∣∣∣∣∣ ≤
≤

1 + 96ε−4

4πy2
3

hβ+1 ln
(
8πy3h−β

)
+
ε−2h2β−1

2π2y3
. (3.67)

To get (3.57) and (3.58) we use respectively that ∀k ∈ Z, k , 0, (2k + 1)2 ≤ 16k2 and that
(2k + 1)2 ≥ k2, together with (3.52). □

Now we consider β > 1 for (3.42)−.

Proposition 3.5.3. Let β > 1 and ε ∈ (0, 1) be given. Then there is h0 > 0 such that, when
h ∈ (0, h0], all solutions to (3.42)− satisfying

ε ≤ |z| ≤
1
ε

(3.68)

obey ∣∣∣∣∣∣∣∣Im z +
y3 ln

(
8πy3h−β

)
2k2π2h

(
Re z

)2
∣∣∣∣∣∣∣∣ ≤ 1 + 24ε−4

4πy2
3

hβ+1 ln
(
8πy3h−β

)
+
ε−2h2β−1

2π2y3
,

which, using (3.52), implies

Im z +
ε2

8y3
h ln

(
8πy3h−β

)(
Re z

)2
≤

1 + 24ε−4

4πy2
3

hβ+1 ln
(
8πy3h−β

)
+
ε−2h2β−1

2π2y3
(3.69)

Im z +
2
ε2y3

h ln
(
8πy3h−β

)(
Re z

)2
≥ −

1 + 24ε−4

4πy2
3

hβ+1 ln
(
8πy3h−β

)
−
ε−2h2β−1

2π2y3
. (3.70)

Proof. Since β > 1, by the second inequality in (3.52), we have

|2k + 1| π ≤ 2 |k| π + π ≤ 4y3ε
−1h−1 + π < 8πy3h−β = |ln (w)| ,

for h small enough. Recalling (3.50), we write

zk =
ih

2y3

(
2iπk − ln

(
8πy3h−β

)
− ln

(
1 −

i(2k + 1)
8y3

hβ
)
+ Rk

)
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and so we can ensure that the third term is small for h small. Separating both the real and
imaginary part gives

Re zk =
h

2y3

(
− 2kπ + Arg

(
1 − i(2k+1)

8y3
hβ

)
− Im Rk

)
Im zk =

h
2y3

(
− ln

(
8πy3h−β

)
− ln

∣∣∣∣1 − i(2k+1)
8y3

hβ
∣∣∣∣ + Re Rk

) . (3.71)

We observe that

ln
∣∣∣∣∣1 − i(2k + 1)

8y3
hβ

∣∣∣∣∣ = 1
2

ln
(
1 +

(2k + 1)2

64y2
3

h2β
)
=

1
2

ln (1 + t),

with t = (2k+1)2

64y2
3

h2β.

(3.61) and (3.62) are true and can be proved as done in Proposition 3.5.2. So, by (3.71)

∣∣∣∣∣Im zk +
h

2y3
ln

(
8πy3h−β

)∣∣∣∣∣ ≤ h
2y3

∣∣∣∣∣∣∣∣Re Rk − Re
( ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

)∣∣∣∣∣∣∣∣
+

h
2y3

∣∣∣∣∣∣∣∣Re
( ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

)
− ln

∣∣∣∣∣1 − i(2k + 1)
8y3

hβ
∣∣∣∣∣
∣∣∣∣∣∣∣∣ ≤

h2β+1 ln2
(
h−β

)
16π2y3

3

+ |A| , (3.72)

where

A =
−

(
ln
(

8πy3h−β
)
+ 1

2 ln (1+t)

)
hβ+1

16πy2
3
+

(2k+1)h2β+1

128πy3
3

Arg

(
−8πy3h−β+(2k+1)iπ

)
1+t − h

4y3
ln (1 + t).

By triangle inequality and t > 0 follows that

|A| ≤
hβ+1

16πy2
3

ln
(
8πy3h−β

)
+
|2k + 1| h2β+1

128πy3
3

∣∣∣∣∣Arg
(
−8πy3h−β + (2k + 1)iπ

)∣∣∣∣∣
+

h
4y3

ln (1 + t) +
hβ+1

32πy2
3

ln (1 + t). (3.73)

This expression can be also bounded using
∣∣∣∣∣Arg

(
8πy3h−β + (2k + 1)iπ

)∣∣∣∣∣ ≤ π, ln (1 + t) ≤ t, the

expression for t, (2k + 1)2 ≤ 2(4k2 + 1) and the second inequality in (3.52) as

|A| ≤
hβ+1

16πy2
3

ln
(
8πy3h−β

)
+
ε−2h3β−1

64π3y2
3

+
h3β+1

1024πy4
3

+
ε−1h2β

32πy2
3

+
h2β+1

64y3
3

+
ε−2h2β−1

8π2y3
.
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For β > 1, the dominant term for small h are the first and last term. More specifically the first is
dominant for β ≥ 2 and the other for 1 < β < 2. What said implies that for h small enough

|A| ≤
hβ+1

8πy2
3

ln
(
8πy3h−β

)
+
ε−2h2β−1

4π2y3
,

which implies

∣∣∣∣∣Im zk +
h

2y3
ln

(
8πy3h−β

)∣∣∣∣∣ ≤ h2β+1 ln2
(
h−β

)
16π2y3

3

+
hβ+1

8πy2
3

ln
(
8πy3h−β

)
+
ε−2h2β−1

4π2y3

≤
hβ+1

4πy2
3

ln
(
8πy3h−β

)
+
ε−2h2β−1

2π2y3
,

for h sufficiently small.

Now we look at the real part of (3.71)∣∣∣∣∣Re zk +
kπh
y3

∣∣∣∣∣ = h
2y3

∣∣∣∣∣Arg
(
1 −

i(2k + 1)
8y3

hβ
)
− Im Rk

∣∣∣∣∣
≤

h
2y3

∣∣∣∣∣Arg
(
1 −

i(2k + 1)
8y3

hβ
)∣∣∣∣∣ + h

2y3

∣∣∣∣∣∣∣∣
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

− Rk

∣∣∣∣∣∣∣∣
+

h
2y3

∣∣∣∣∣∣∣∣
ln

(
ln (w) + (2k + 1)iπ

)
ln (w) + (2k + 1)iπ

∣∣∣∣∣∣∣∣ . (3.74)

Using that
∣∣∣Arg (1 + is)

∣∣∣ ≤ 2 |s| for small s, the second inequality in (3.52), (3.61) and (3.62)
we get the bound

∣∣∣∣∣Re zk +
kπh
y3

∣∣∣∣∣ ≤ ε−1hβ

2πy3
+

hβ+1

8y2
3

+
h2β+1 ln2

(
h−β

)
16π2y3

3

+
hβ+1 ln

(
h−β

)
8πy2

3

≤
ε−1hβ

πy3
, (3.75)

last inequality being valid for h small enough.

This new inequality can be used to bound the following quantity

B =

∣∣∣∣∣∣ y3

2k2π2h
ln

(
8πy3h−β

)(
Re zk

)2

−
h

2y3
ln

(
8πy3h−β

)∣∣∣∣∣∣ .
By factorizing, (3.75) and by the second inequalities in (3.52) and (3.68) respectively

B ≤
y3

2k2π2h
ln

(
8πy3h−β

)(
|zk| +

|k| πh
y3

) ∣∣∣∣∣Re zk +
kπh
y3

∣∣∣∣∣
≤

6ε−4

πy2
3

hβ+1 ln
(
8πy3h−β

)
.
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Finally we can find the desired bound∣∣∣∣∣∣∣∣Im zk +
y3 ln

(
8πy3h−β

)
2k2π2h

(
Re zk

)2
∣∣∣∣∣∣∣∣ ≤

∣∣∣∣∣Im zk +
h

2y3
ln

(
8πy3h−β

)∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
2y3 ln

(
8πy3h−β

)
h(2k + 1)2π2

(
Re zk

)2

−
h

2y3
ln

(
8πy3h−β

)∣∣∣∣∣∣∣∣ ≤
≤

1 + 24ε−4

4πy2
3

hβ+1 ln
(
8πy3h−β

)
+
ε−2h2β−1

2π2y3
. (3.76)

□

3.5.2. Neumann Boundary Condition

By the definition of −h2∆H
3,N
±h−β,y and (2.39) it follows that the resonances are the solution of

±h−β −
iz

4πh
−

e2iy3
z
h

8πy3
= 0, (3.77)

which can be rewritten as w± = x±ex± , where x± = ±8πy3h−β − 2iy3
z
h and w± = e±8πy3h−β . So the

solutions are still expressed in terms of the Lambert W function, with the only difference of it
having a positive argument this time. The above mentioned expansion is still valid (one has
only to substitute 2k + 1 with 2k, reason being the change in sign of w)

Wk(y) = ln (w) + 2ikπ − ln
(
ln (w) + 2ikπ

)
+ Rk (3.78)

Rk =

+∞∑
j=0

+∞∑
m=1

c j,m

lnm
(
ln (w) + 2ikπ

)
(
ln (w) + 2ikπ

) j+m . (3.79)

The expression for the resonances z±k in term of the Lambert W function is

z±k =
ih

2x0,3

(
2ikπ − ln

(
ln (y±) + 2ikπ

)
+ Rk

)
. (3.80)

We state corresponding properties of the one of Dirichle boundary condition without an
explicit proof. The proof of this facts are just slight modifications of the ones in the previous
subsection.



Resonances of One Point Interactions in Hn 117

Lemma 3.5.3. The series (3.79) is absolutely convergent for w large (or small) enough and
k ∈ Z. More precisely we have the tail estimate∣∣∣∣∣∣∣∣Rk −

ln
(
ln (w) + 2ikπ

)
ln (w) + 2ikπ

∣∣∣∣∣∣∣∣ ≤
∑

j≥0,m≥1,( j,m),(0,1)

∣∣∣∣∣∣∣∣∣c j,m

lnm
(
ln (w) + 2ikπ

)
(
ln (w) + 2ikπ

) j+m

∣∣∣∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣∣∣
ln

(
ln (w) + 2ikπ

)
ln (w) + 2ikπ

∣∣∣∣∣∣∣∣
2

(3.81)

and ∣∣∣∣∣∣∣∣
ln

(
ln (w) + 2ikπ

)
ln (w) + 2ikπ

∣∣∣∣∣∣∣∣ ≤ 1
2
. (3.82)

Lemma 3.5.4. Let ε ∈ (0, 1) ve given. Then, for k such that zk is given by (3.80) and

ε ≤ |zk| ≤ 1/ε, (3.83)

we have

ε

2
≤
|k| πh

y3
≤

2
ε
. (3.84)

Proposition 3.5.4. Let β ∈ (0, 1) and ε ∈ (0, 1) be given. Then there is h0 > 0 such that, when
h ∈ (0, h0], all solutions of (3.77) satisfying

ε ≤ |z| ≤
1
ε
,

obey

0 ≤ − Im z −
h

2y3
ln

(
2y3h−1 |Re z|

)
≤

72π2

y3
ε−2h3−2β.

Proposition 3.5.5. Let β > 1 and ε ∈ (0, 1) be given. Then there is h0 > 0 such that, when
h ∈ (0, h0], all solutions to (3.77)+ satisfying

ε ≤ |z| ≤
1
ε

obey ∣∣∣∣∣∣Im zk +
2y3

hk2π2 ln
(
8πy3h−β

)(
Re zk

)2
∣∣∣∣∣∣ ≤ 1 + 96ε−4

4πy2
3

hβ+1 ln
(
8πy3h−β

)
+
ε−2h2β−1

4π2y3
,
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which, using (3.84), implies

Im z +
ε2

2y3
h ln

(
8πy3h−β

)(
Re z

)2
≤

1 + 96ε−4

4πy2
3

hβ+1 ln
(
8πy3h−β

)
+
ε−2h2β−1

4π2y3
(3.85)

Im z +
8
ε2y3

h ln
(
8πy3h−β

)(
Re z

)2
≥ −

1 + 96ε−4

4πy2
3

hβ+1 ln
(
8πy3h−β

)
−
ε−2h2β−1

4π2y3
. (3.86)

Proposition 3.5.6. Let β > 1 and ε ∈ (0, 1) be given. Then there is h0 > 0 such that, when
h ∈ (0, h0], all solutions to (3.77)− satisfying

ε ≤ |z| ≤
1
ε

(3.87)

obey ∣∣∣∣∣∣∣∣Im zk +
2y3 ln

(
8πy3h−β

)
(2k − 1)2π2h

(
Re zk

)2
∣∣∣∣∣∣∣∣ ≤ 1 + 96ε−4

4πy2
3

hβ+1 ln
(
8πy3h−β

)
+
ε−2h2β−1

4π2y3
,

which, using (3.84), implies

Im z +
ε2

32y3
h ln

(
8πy3h−β

)(
Re z

)2
≤

1 + 24ε−4

4πy2
3

hβ+1 ln
(
8πy3h−β

)
+
ε−2h2β−1

4π2y3
(3.88)

Im z +
8
ε2y3

h ln
(
8πy3h−β

)(
Re z

)2
≥ −

1 + 24ε−4

4πy2
3

hβ+1 ln
(
8πy3h−β

)
−
ε−2h2β−1

4π2y3
. (3.89)



Appendix A.

Harmonic Functions

A.1. Green’s Functions for the Helmholtz Operator

Here z ∈ C with Im z ≥ 0

A.1.1. Green’s Functions in the whole Rn

The plane

Let y ∈ R2. The Green’s function G0,2
z,y for the operator (−∆ − z2) : H2(R2)→ L2(R2) is the

solution of the equation

(−∆ − z2)G0,2
z,y = δ(· − y),

namely

G0,2
z,y (x) =

i
4

H(1)
0

(
z |x − y|

)
(A.1)

(H(1)
0 is the Hankel function of the first kind of order 0).

We also recall that the Green’s function G0,2
0,y for the Laplace operator −∆ : H2(R2)→ L2(R2)

is the solution of the equation

−∆G0,2
0,y = δ(· − y),

namely

G0,2
0,y(x) = −

1
2π

ln |x − y|. (A.2)
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The space

Let y ∈ R3. The Green’s function G0,3
z,y for the operator (−∆ − z2) : H2(R3)→ L2(R3) is the

solution of the equation

(−∆ − z2)G0,3
z,y = δ(· − y),

namely

G0,3
z,y (x) =

eiz|x−y|

4π |x − y|
. (A.3)

We also recall that the Green’s function G0,3
0,y for the operator ∆ : H2(R3) → L2(R3) is the

solution of the equation

−∆G0,3
0,y = δ(· − y),

namely

G0,3
0,y(x) =

1
4π |x − y|

. (A.4)

A.1.2. Domain with Dirichlet Boundary Conditions

Let Ω be a domain in Rn with n = 2 or n = 3 and y ∈ Ω. The Green’s function GΩ,Dz,y for the
operator (−∆Ω,D − z2) : H2(Ω)→ L2(Ω) can be expressed as

GΩ,Dz,y (x) = G0,n
z,y (x) − hΩ,Dz,y (x),

where, G0,n
z,y are defined in (A.1) and (A.3), and hΩ,Dz,y is the solution of the boundary value

problem (−∆ − z2)hΩ,Dz,y = 0 inΩ
hΩ,Dz,y = G0,n

z,y in ∂Ω
. (A.5)

A.1.3. Domain with Neumann Boundary Conditions

Let Ω be a domain in Rn with n = 2 or n = 3, y ∈ Ω and ν the unit outward normal on ∂Ω.
The Green’s function GΩ,Nz,y for the operator (−∆Ω,N − z2) : H2(Ω)→ L2(Ω) can be expressed as

GΩ,Nz,y (x) = G0,n
z,y (x) − hΩ,Nz,y (x),
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where, G0,n
z,y are defined in (A.1) and (A.3), and hΩ,Nz,y is the solution of the boundary value

problem (−∆ − z2)hΩ,Nz,y = 0 inΩ
∂
∂ν

hΩ,Nz,y =
∂
∂ν

G0,n
z,y in ∂Ω

. (A.6)

A.1.4. Domain with Robin Boundary Conditions

Let Ω be a domain in Rn with n = 2 or n = 3, y ∈ Ω, ν the unit outward normal on ∂Ω and η
a positive constant. The Green’s function GΩ,R,ηz,y for the operator (−∆Ω,R,η−z2) : H2(Ω)→ L2(Ω)
can be expressed as

GΩ,R,ηz,y (x) = G0,n
z,y (x) − hΩ,R,ηz,y (x),

where, G0,n
z,y are defined in (A.1) and (A.3), and hΩ,R,ηz,y is the solution of the boundary value

problem (−∆ − z2)hΩ,R,ηz,y = 0 inΩ
ηhΩ,R,ηz,y + ∂

∂ν
hΩ,R,ηz,y = ηG0,n

z,y +
∂
∂ν

G0,n
z,y , in ∂Ω

.

A.2. Maximum Principles

Theorem A.2.1 ([19]). Let Ω ⊂ Rn be an open bounded set. Assume u ∈ C2(Ω) ∩ C(Ω) and
c ≥ 0.

(i) If

(−∆ + c)u ≤ 0 in Ω,

then

max
Ω

u ≤ max
∂Ω

u+,

where u+ = max { u, 0 };

(ii) Likewise, if

(−∆ + c)u ≥ 0 in Ω,

then

max
Ω

u ≥ −max
∂Ω

u−,
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where u− = −min { u, 0 }.

Theorem A.2.2 (Maximum Principle for the Dirichlet Problem, [13]). Let Ω be an open subset
of Rn. Assume that

f ∈ L2(Ω) and u ∈ H1(Ω) ∩C(Ω)

satisfy ∫
Ω

∇u · ∇φ +
∫
Ω

uφ =
∫
Ω

fφ ∀φ ∈ H1
0(Ω).

Then for all x ∈ Ω

min
{

inf
∂Ω

u, inf
Ω

f
}
≤ u(x) ≤ max

{
sup
∂Ω

u, sup
Ω

f
}
.

Definition A.2.1 (Lyapunov Function for the Laplacian). A positive function φ ∈ C2(Rn) such
that lim|x|→+∞ φ(x) = +∞ and ∆φ − λ0φ ≤ 0 for some λ0 > 0 is called a Lyapunov function for
the Laplacian.

Proposition A.2.1 ([22]). Let Ω be an open set in Rn with C2 boundary. Let φ be a Lyapunov
function for the Laplacian and in addition suppose that ∂φ

∂n ≥ 0 on ∂Ω, where n is the outward
unit normal vector to ∂Ω. Let u ∈ Cb(Ω) ∩ H2(Ω ∩ BR) for all R > 0, such that −∆u ∈ Cb(Ω)
and −∆u(x) + λu(x) ≤ 0 x ∈ Ω

∂u
∂n (x) ≤ 0 x ∈ ∂Ω

,

for some λ ≥ λ0. Then u ≤ 0.



Appendix B.

Self-Adjoint Extensions of Symmetric
Operators

B.1. Kreı̆n’s Formula

Let Ȧ be a densely defined, closed symmetric operator in H with deficiency indices (N,N),
N ∈ N. Let B and C two self-adjoint extensions of Ȧ and denote by Å the maximal coomon
part of B and C. Let (M,M), 0 < M ≤ N be the deficiency indices of Å and {φ1(w), . . . , φM(w)}
span the corresponding deficiency sbspace of Å

Å∗φm(w) = wφm(w), φm(w) ∈ D(Å∗), m = 1, . . . ,M, w ∈ C \ R (B.1)

and {φ1(w), . . . , φM(w)} linearly independent. Then, the following theorem holds.

Theorem B.1.1 (Kreı̆n’s Formula, [2]). Let B,C, Å and Ȧ as above. Then

(B − w)−1 − (C − w)−1 =

M∑
m,n=1

λmn(w)(φn(w), ·)φm(w). w ∈ ρ(B) ∩ ρ(C),

where the matrix λ(w) is nonsingular for w ∈ ρ(B) ∩ ρ(C) and λmn(w) and φm(w), m, n =
1, . . . ,M, may be chosen to be analytic in w ∈ ρ(B) ∩ ρ(C). In fact, φm(w) may be defined as

φm(w) = φm(w0) + (w − w0)(C − w)−1φm(w0), m = 1, . . . ,M, w ∈ ρ(C),

where φm(w0), m = 1, . . . ,M, w0 ∈ C \ R, are linear independent solutions of (B.1) for w = w0

and the matrix λ(w) satisfies

[λ(w)]−1
mn = [λ(w′)]−1

mn − (w − w′)(φn(w), w,w′ ∈ ρ(B) ∩ ρ(C).

We observe that if Ȧ = Å, then in the previous theorem M is replaced by N.
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B.2. Von Neumann Decomposition Formula

Theorem B.2.1 ([40]). Let A be a densely defined, closed symmetric operator in H with
deficiency indices (N,N) and

A∗φm(±i) = ±iφm(±i), φm(±i) ∈ D(A∗), m = 1, . . . ,N.

Then A admits self-adjoint extensions. Their domains are made of functions of the form

ψ = φ0 +

N∑
j=1

(
amφm(−i) + bmφm(i)

)
,

with φ0 ∈ D(Ȧ). Moreover

A∗ψ = Ȧφ0 + i
N∑

j=1

(
−amφm(−i) + bmφm(i)

)
.

B.3. Boundary Value Spaces

Definition B.3.1 (Boundary Value Space, [25]). Let A be a densely defined, closed symmetric
operator in H with equal, finite or infinite, deficiency indices. A triple (V , Γ1, Γ2), where V is
a Hilbert space and Γi : D(A∗)→ V i = 1, 2 are bounded linear operators, is called a boundary
value space of the operator A if

(ψ, A∗φ)H − (A∗ψ, φ)H = (Γ1ψ,Γ2φ)V − (Γ2ψ,Γ1φ)V , ∀ψ, φ ∈ D(A∗) (B.2)
the map (Γ1,Γ2) : D(A∗)→ V ⊕ V is surjective. (B.3)

Theorem B.3.1 ([25]). For any symmetric operator with deficiency indices (N,N) (N ≤ +∞)
there exists a boundary value space (V ,Γ1,Γ2) with dim V = N.

Now let n ∈ N and B,C be complex n×n matrices. Define E =
(
B C

)
, where E is the n× 2n

matrix obtained by horizontal juxtaposition of B and C. Let W =
{

E =
(
B C

) ∣∣∣∣ BC∗ = CB∗,Ran E = n
}

The following proposition holds.

Theorem B.3.2 ([11]). Let A be a densely defined, closed symmetric operator in H with
equal deficiency (N,N), N < +∞ and let (V ,Γ1,Γ2) be its boundary value space. There is a
bijective correspondence between the self-adjoint extensions of A and the set W defined above.
A self-adjoint extension AB,C, corresponding to

(
B C

)
∈ W, is given by the restriction of A∗ to

those elements ψ ∈ D(A∗) satisfying the boundary conditions

BΓ1ψ = CΓ2ψ.
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B.4. Quadratic Forms

Theorem B.4.1 ([28]). Let q(·, ·) be a densely defined, symmetric, closed quadratic form
bounded from below in H . There exists a self-adjoint and bounded from below operator Q
such that

(i) D(Q) ⊂ D(q) and

q(u, v) = (Qu, v),

for every u ∈ D(Q) and v ∈ D(q).

(ii) D(Q) is a core of q.

(iii) If u ∈ D(q), w ∈H and

q(u, v) = (w, v)

holds for every v belonging to a core of q, then u ∈ D(Q) and Qu = w. Q and q have the
same lower bound.
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Appendix C.

Special Functions

Unless otherwise stated, the results within this appendix are taken from [38].

C.1. Lambert W Function

The Lambert W function is defined to be the function satisfying

W(w)eW(w) = w.

It is a multivalued function with countable many branches. Fig. C.1 shows some of the branches
ranges. The principal branch is denoted with W0 and is separated from the branches W1 and
W−1 by the curve γ0 = { −b cot b + ib,−π < b < π }. W1 and W−1 are separated by the half-line
(−∞,−1]. The curves separating the other branches are given by

γ±k = { −b cot b + ib, 2kπ < ±b < (2k + 1)π } for k = 1, 2, . . .

C.2. Exponential Integral

Let w , 0, then the exponential integral E1(w) is defined by

E1(w) =
∫ ∞

w

e−u

u
du, (C.1)

where the path of integration does not cross the negative real axis or pass through the origin. If
Re w > 0, then also the following identities hold

E1(w) = e−w
∫ ∞

0

e−u

u + w
du = e−w

∫ +∞

0

e−wu

u + 1
du. (C.2)
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Figure C.1.: The ranges of some branches of W(w), separated by the curves γk. The figure is taken
from [14]

E1 has the following properties:

• for |w| → +∞ it holds that

E1(w) =
e−w

w
+ O

(e−w

w2

)
; (C.3)

• for w→ 0 it holds that

E1(w) = −γ − ln w + O(w); (C.4)

• for x > 0 the two following inequalities are verified

exE1(x) >
1
2

ln
(
1 +

2
x

)
xexE1(x) >

x
x + 1

. (C.5)
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C.3. Bessel and Related Functions

C.3.1. Bessel Functions

Let ν ∈ C. Consider the differential equation

w2 d2 f
dw2 + w

d f
dw
+ (w2 − ν2) f = 0. (C.6)

The two linearly independent solutions of this equations are named Jν(w) and Yν(w). These
functions are respectively called Bessel functions of the first and second kind of order ν. It
holds that, for n ∈ Z,

|Jn(w)| ≤ e|Im w| (C.7)
J−n(w) = (−1)nJn(w). (C.8)

C.3.2. Hankel Functions

The Hankel function of the first kind of order ν is defined as

H(1)
ν (w) = Jν(w) + iYν(w), (C.9)

while the Hankel function of the second kind of order ν is defined as

H(2)
ν (w) = Jν(w) − iYν(w). (C.10)

It holds that

• for small w

H(1)
0 (w) = 1 +

2i
π

(
ln

w
2
+ γ

)
+ O(w2 ln w); (C.11)

• the Hankel function of the first kind has the following parity property with respect to
order

H(1)
−n (w) = (−1)nH(1)

n (w); (C.12)

• if u, v,w ∈ Rn with w = u − v, |v| < |u| and let α be the angle between u and v, then

H(1)
0

(
|w|

)
=

+∞∑
n=−∞

H(1)
n

(
|u|

)
Jn

(
|v|

)
cos (nα); (C.13)
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• Hankel functions have the following behaviour for large argument

H(1)
n (w) ∼

√
2
πw

e
i
(

z−ν π2−
π
4

)
for |w| → +∞ and − π + δ ≤ Arg z ≤ 2π − δ

(C.14)

H(2)
n (w) ∼

√
2
πw

e
−i
(

z−ν π2−
π
4

)
for |w| → +∞ and − 2π + δ ≤ Arg z ≤ π − δ;

(C.15)

• the Hankel function of the first kind has the following parity property with respect to
argument

H(1)
n (−w) = (−1)n+1H(2)

n (w). (C.16)

C.3.3. Modified Bessel Functions

We define the modified Bessel functions as follows

Iν(w) = e∓νiπ/2Jν
(
e±iπ/2w

)
, −π ≤ ±Arg w ≤

π

2
(C.17)

Kν(w) =
π

2
ieνiπ/2H(1)

ν

(
eiπ/2w

)
, −π ≤ Arg w ≤

π

2
, (C.18)

where Iν and Kν denote respectively the modified Bessel function of the first and of the second
kind of order ν. We recall some properties of these functions:

• For n non-negative integer the following power series representations hold

In(w) =
(w

2

)n
+∞∑
k=0

(
w2

4

)k

k!(k + n)!
(C.19)

and

Kn(w) =
1
2

(w
2

)−n
n−1∑
k=0

(n − k − 1)!
k!

(
−

w2

4

)k

+ (−1)n+1 ln
w
2

In(w)

+ (−1)n 1
2

(w
2

)n
+∞∑
k=0

(
ψ(k + 1) + ψ(n + k + 1)

)(
w2

4

)k

k!(n + k)!
, (C.20)
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where ψ is the digamma function. Using the definition of the ψ, for n = 0, last equation
can be written as

K0(w) = −
(
ln

w
2
+ γ

)
I0(w) +

+∞∑
k=1

Ak
w2k

(2k!)2k , (C.21)

where Ak =
∑k

l=1
1
k . From last equation it follows (recalling that ψ(1) = −γ, with γ being

the Euler constant)

K0(w) = − ln
w
2
− γ + O(w2 ln w) for w→ 0. (C.22)

• From (C.19) and (C.20) it follows that

In(w) ∼
1
n!

(
w
2

)n

and Kn(w) ∼
(n − 1)!

2

(
w
2

)−n

for w→ 0 n = 1, 2, . . . . (C.23)

• Their derivatives satisfy

I′n(w) = In−1(w) −
n
w

In(w) n = 1, 2, . . . (C.24)

K′n(w) = −Kn−1(w) −
n
w

Kn(w) n = 1, 2, . . . (C.25)

and I′0(w) = I1(w) and K′0(w) = −K1(w).

• For x positive real, In(x) and Kn(x) are positive real. In particular I0(x) ≥ 1 ∀x ≥ 0 and
I0(0) = 1.

• The following cross-product identity

Iν(w)Kν+1(w) + Iν+1(w)Kν(w) =
1
w
. (C.26)

• The connection formulas

K0(−w) = K0(w) − iπI0(w) (C.27)

J0(w) = I0(iw), −π ≤ Arg w ≤
π

2
(C.28)

Y0(w) = −iI0(iw) −
2
π

K0(iw), −π ≤ Arg w ≤
π

2
. (C.29)

• The integral representation

Kν(w) =
∫ +∞

0
e−w cosh t cosh (νt) dt,

∣∣∣Arg w
∣∣∣ < π

2
. (C.30)
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• The inequality (see [48])

In(w) <
cosh w

n!

(
w
2

)n

n = 1, 2 . . . . (C.31)

• The inequality (see [24])

2n−1(n − 1)!e−w < wnKn(w) < 2n−1(n − 1)! n = 1, 2 . . . . (C.32)

• The following asymptotics

Iν(w) ∼
1
√

2πw

(
ew
2ν

)ν
Kν ∼

√
π

2ν

(
ew
2ν

)−ν
for ν→ +∞ (C.33)

In(w) ∼
ew

√
2πw

Kn(w) ∼
√

π

2w
e−w |w| → +∞. (C.34)

C.3.4. Spherical Bessel Functions

We define the spherical Bessel functions of non-negative order n as

jn(w) =
√

π

2w
Jn+ 1

2
(w) (C.35)

yn(w) =
√

π

2w
Yn+ 1

2
(w), (C.36)

where jn and yn denote respectively the spherical Bessel function of the first and of the second
kind of order ν. It holds that, for n non-negative integer, if u, v,w ∈ Rn with w = u − v and let α
be the angle between u and v, then

cos |w|
|w|

= −

+∞∑
n=0

(2n + 1)Pn(cosα) j(1)
n

(
|v|

)
yn

(
|u|

)
, |v| < |u| (C.37)

sin |w|
|w|

=

+∞∑
n=0

(2n + 1)Pn(cosα) j(1)
n

(
|v|

)
jn

(
|u|

)
, (C.38)

where Pn denotes the n-th Legendre polynomial.

C.3.5. Spherical Hankel functions

The Spherical Hankel function of the first kind of order n is defined as

h(1)
n (w) = jn(w) + iyn(w). (C.39)
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C.3.6. Modified Spherical Bessel Functions

We define the modified spherical Bessel functions as follows

i(1)
n (w) = i−n jn(iw) (C.40)

kn(w) = −
π

2
inh(1)

n (iw). (C.41)

These functions have the following properties:

• for n non-negative integer the following power series representations hold

i(1)
n (w) = wn

+∞∑
k=0

2−kz2k

k!(2n + 2k + 1)!!
(C.42)

kn(w) =
π

2wn+1

n∑
k=0

(2n − 2k − 1)!!(−1)k2−kw2k

k!

+ (−1)n+1π

2
wn

+∞∑
k=0

2−kw2k

k!(2n + 2k + 1)!!
+ (−1)n π

2wn+1

+∞∑
k=n+1

2−kw2k

k!(2k − 2n − 1)!!
;

(C.43)

• they and their derivatives have this asymptotic behaviour towards 0

i(1)
n (w) ∼

wn

(2n + 1)!!
and kn(w) ∼

π(2n − 1)!!
2wn+1 (C.44)

i(1)′
0 (w) =

w
3
+ o(w) i(1)′

n (w) =
n

(2n + 1)!!
wn−1 + o(wn−1) for n = 1, 2, . . . (C.45)

k′n(w) = −
π

2
(n + 1)(2n − 1)!! w−n−2 + o(w−n−2) for n = 0, 1, . . . ; (C.46)

• they are linked to the modified Bessel functions I and K, through

i(1)
n (w) =

√
π

2w
In+ 1

2
(w) and kn(w) =

√
π

2w
Kn+ 1

2
(w); (C.47)

• their derivatives satisfy

i(1)′
n (w) = i(1)

n−1(w) −
n + 1

w
i(1)
n (w) for n = 1, 2, . . . (C.48)

k′n(w) = −kn−1(w) −
n + 1

w
kn(w) for n = 1, 2, . . . . (C.49)
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