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Abstract: Numerous studies recently showed that the inhibitory neurotransmitter, y-aminobutyric
acid (GABA), can stimulate cerebral angiogenesis and promote neurovascular coupling by activating
the ionotropic GABA receptors on cerebrovascular endothelial cells, whereas the endothelial role
of the metabotropic GABAg receptors is still unknown. Preliminary evidence showed that GABA
receptor stimulation can induce an increase in endothelial Ca?* levels, but the underlying signaling
pathway remains to be fully unraveled. In the present investigation, we found that GABA evoked
a biphasic elevation in [Ca®*]; that was initiated by inositol-1,4,5-trisphosphate- and nicotinic acid
adenine dinucleotide phosphate-dependent Ca”* release from neutral and acidic Ca®* stores, respec-
tively, and sustained by store-operated Ca>* entry. GABA 5 and GABAp receptors were both required
to trigger the endothelial Ca?* response. Unexpectedly, we found that the GABA 4 receptors signal in
a flux-independent manner via the metabotropic GABAg receptors. Likewise, the full Ca* response
to GABAg receptors requires functional GABA 5 receptors. This study, therefore, sheds novel light on
the molecular mechanisms by which GABA controls endothelial signaling at the neurovascular unit.

Keywords: hCMEC /D3 cells; GABA; GABA 5 receptors; GABAg receptors; Ca?* signaling; InsP3
receptors; two-pore channels; store-operated Ca®* entry

1. Introduction

The neurotransmitter y-aminobutyric acid (GABA) is not only crucial to maintain
a proper excitatory:inhibitory balance in neuronal networks by inhibiting glutamater-
gic pyramidal neurons [1-3], but is also instrumental to generate synchronized network
oscillations that underpin optimal cognitive functions [4,5]. GABA dampens neuronal
excitability by gating Cl™-permeable GABA receptors, thereby enabling C1~ influx down
the electrochemical gradient and hyperpolarizing the membrane potential [4]. GABAA
receptors typically consist of pentameric channels formed by the combination of three dis-
tinct subunits, according to the following stoichiometry: 2x:23:1y [3,6]. GABA-dependent
inhibition of neurotransmitter release and neuronal activity may also be mediated by
metabotropic G/, protein—coupled GABAg receptors, which are widely distributed in the
central nervous system [7,8]. GABAg receptors are composed of an obligatory heterodimer
of the GABAg; and GABAg; subunits and induce slow postsynaptic inhibitory potentials
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by stimulating G;,, protein-coupled inward-rectifying K* channels (GIRK) [7,8]. In addi-
tion, it has been documented that GABAg receptors can induce an increase in intracellular
Ca?* concentrations ([Ca%*];) in rat cortical neurons [9] and mouse cerebellar granule neu-
rons [10]. GABAg receptors trigger intracellular Ca®* signals via a signaling pathway that
utilizes heterotrimeric G;/, proteins to stimulate phospholipase C3 (PLCf{) and cleave
phosphatidylinositol 4,5-bisphosphate (PIP;) into the two intracellular second messengers
inositol-1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3, in turn, binds to InsP3
receptors (InsP3Rs), which are located on the endoplasmic reticulum (ER), and promotes
Ca?* release into the cytoplasm. The following reduction in ER Ca2* levels activates a Ca®*
entry pathway that resides on the plasma membrane, known as store-operated Ca®* entry
(SOCE), which prolongs over time the Ca%* response to GABAg receptor stimulation [9-11].

GABAergic signaling within the neurovascular unit (NVU) has also been described in
non-neuronal cells, including astrocytes [12,13] and cerebrovascular endothelial cells [14].
Cortical microvessels, as well as perivascular astrocytes, receive an extensive GABAergic
input from local GABA interneurons [15]. Moreover, it has been clearly demonstrated that,
during brain development, the pre-formed vascular network guides the tangential journey
of GABAergic neurons from the dorsal to the basal telencephalon [16]. Thus, GABAergic
neurons can establish a bidirectional communication with cerebrovascular endothelial cells
to effectively coordinate these neurovascular interactions [16,17]. Mouse brain microvascu-
lar endothelial cells are endowed with the «1, &2, «6, 1, 2, 3, v1, Y2 and y3 subunits of
GABA receptors [18], while only functional evidence has been documented in favor of
GABAg receptor expression [19]. The role played by endothelial GABA 5 receptors at the
NVU has gathered growing interest upon the discovery that they control cerebral angio-
genesis [17] and guide the radial migration of GABA interneurons [16] during embryonic
development in mice, and regulate cerebral blood flow (CBF) and prevent neurological
deficits in the adult [20]. The signaling pathways that are activated downstream of GABA 5
receptors in cerebrovascular endothelial cells are yet to be fully unraveled [21]. Prelimi-
nary evidence showed that muscimol, a selective GABA4 receptor agonist, induced an
inward Cl~ current and a transient increase in [Ca2*]; in mice cerebrovascular endothelial
cells [17]. Nevertheless, it is unclear how the inward (i.e., hyperpolarizing) current carried
by the ionotropic GABA 4 receptors could elevate the [Ca?*]; in GABA-stimulated cells. Of
note, recent studies have revealed that GABA 4 receptors may trigger a metabotropic (i.e.,
flux-independent) signaling pathway that leads to InsP3-induced Ca?* release from the
ER [22-24]. Since an increase in endothelial [Ca2*]; regulates both angiogenesis [25,26] and
CBF [27,28], deciphering the mechanisms whereby GABA induces intracellular Ca®* signals
is mandatory to understand the molecular interactions between inhibitory interneurons
and adjacent microvessels.

The hCMEC/D3 cell line represents the most suitable in vitro model of human cere-
bral microvascular endothelial cells [29,30] and has been largely exploited to unveil how
cerebrovascular endothelium perceives and transduces neural activity with an increase in
[Ca?*]; [27,31]. For instance, acetylcholine [32], adenosine trisphosphate (ATP) [33,34], glu-
tamate [35], and histamine [36] bind to their specific G4-protein coupled receptors (GqPCRs)
and stimulate PLCR to trigger InsP3-dependent Ca?* release from the ER. This initial Ca%*
peak can be supported by lysosomal Ca?* mobilization through two-pore channels 1 and
2 (respectively, TPC1 and TPC2) and is maintained over time by SOCE activation [27,31].
Intriguingly, the ionotropic N-methyl-D-aspartate (NMDA) receptors (NMDARs) were
recently shown to signal an increase in [Ca?*]; in hCMEC /D3 cells in a flux-independent
mode by interacting with metabotropic glutamate receptors [37]. Herein, we adopted
an array of approaches, ranging from real-time quantitative reverse transcription PCR
(qRT-PCR) to single-cell Fura-2 imaging to investigate the mechanisms whereby GABA
elicits intracellular Ca?* signals in hCMEC/D3 cells. We found that both GABAA and
GABAg receptors are expressed and that GABA triggers a biphasic increase in [Ca?*];.
Pharmacological manipulation revealed that GABA-induced intracellular Ca®* release was
mediated by ER Ca?" mobilization through InsP;Rs and lysosomal Ca?* discharge via
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TPC1-2, whereas Ca2* entry was mediated by SOCE. However, GABA 5 receptors did not
mediate any detectable inward current, but they rather signaled in a flux-independent
manner to cause intracellular Ca?* release. Conversely, the selective stimulation of GABAg
receptors induced the expected metabotropic Ca®* signal that has been described in other
cell types. Intriguingly, we provide evidence that GABA 5 and GABAg receptors interact to
elicit a full Ca®* response to GABA in hCMEC/D3 cells. These data provide the first eluci-
dation of the signaling pathways whereby GABA can increase the [Ca?*]; in cerebrovascular
endothelial cells.

2. Materials and Methods
2.1. Cell Culture

Human cerebral microvascular endothelial cells (hCMEC/D3) were obtained from
the Institut National de la Santé et de la Recherche Médicale (INSERM, Paris, France).
hCMEC/D3 cells cultured between passage 25 and 35 were used. As described in [38], the
cells were seeded at a concentration of 27.000 cells/cm? and grown in tissue culture flasks
coated with 0.1 mg/mL rat tail collagen type 1, in the following medium: EBM-2 medium
(Lonza, Basel, Switzerland) supplemented with 5% fetal bovine serum, 1% penicillin—
streptomycin, 1.4 uM hydrocortisone, 5 ng/mL ascorbic acid, 1/100 chemically defined
lipid concentrate (Life Technologies, Milan, Italy), 10 mM HEPES and 1 ng/mL basic
fibroblast growth factor. The cells were cultured at 37 °C, 5% CO; saturated humidity.

2.2. Solutions

Physiological salt solution (PSS) had the following composition (in mM): 150 NaCl,
6 KCl, 1.5 CaCl,, 1 MgCl, 10 glucose, 10 HEPES. In Ca?*-free solution (0Ca2*), Ca%* was
substituted with 2 mM NaCl, and 0.5 mM EGTA was added. Solutions were titrated to
pH 7.4 with NaOH. The osmolality of PSS as measured with an osmometer (Wescor 5500,
Logan, UT, USA) was 300-310 mOsm/L.

2.3. [Ca®*]; Imaging

We utilized the Ca?* imaging set-up that we have described elsewhere [32]. RCMEC/D3
cells were loaded with 4 uM Fura-2 acetoxymethyl ester (Fura-2/AM; 1 mM stock in
dimethyl sulfoxide) in PSS for 30 min at 37 °C and 5% CO, saturated humidity. After
washing in PSS, the coverslip was fixed to the bottom of a Petri dish and the cells were
observed by an upright epifluorescence Axiolab microscope (Carl Zeiss, Oberkochen,
Germany), usually equipped with a Zeiss x40 Achroplan objective (water-immersion,
2.0 mm working distance, 0.9 numerical aperture). The cells were excited alternately at
340 and 380 nm, and the emitted light was detected at 510 nm. A neutral density filter
(1 or 0.3 optical density) reduced the overall intensity of the excitation light, and a second
neutral density filter (optical density = 0.3) was coupled to the 380 nm filter to approach the
intensity of the 340 nm light. A round diaphragm was used to increase the contrast. The
excitation filters were mounted on a filter wheel (Lambda 10, Sutter Instrument, Novato,
CA, USA). Custom software, working in the LINUX environment, was used to drive the
camera (Extended-ISIS Camera, Photonic Science, Millham, UK) and the filter wheel, and to
measure and plot on-line the fluorescence from 15-25 rectangular “regions of interest” (ROI)
enclosing a corresponding number of single cells. Each ROI was identified by a number.
Adjacent ROIs never superimposed. [Ca*]; was monitored by measuring, for each ROI,
the ratio of the mean fluorescence emitted at 510 nm when exciting alternatively at 340 and
380 nm [Ratio (Fa40/Fago)]. An increase in [Ca2*]; causes an increase in the ratio [39,40].
Ratio measurements were performed and plotted on-line every 3 s. The experiments were
performed at room temperature (22 °C).

2.4. Real-Time Reverse Transcription Quantitative PCR (qRT-PCR)

Total RNA was isolated from hCMEC/D3 cells (passage 33) using Trizol reagent
(Thermo Fisher Scientific, Milan, Italy) according to the manufacturer’s instructions. After



Cells 2022, 11, 3860

40f22

DNAse treatment (Turbo DNA-free™ kit, Thermo Fisher Scientific, Milan, Italy), RNA
was quantified using a BioPhotometer D30 (Eppendorf, Hamburg, Germany). For cDNA
synthesis, 100 ng RNA was reverse transcribed into 20 puL total volume using the iScriptTM
c¢DNA Synthesis Kit (Bio-Rad, Hercules, CA, USA). Real-time reverse transcription quanti-
tative PCRs with specific primers, designed on an exon—intron junction using the NCBI
Primer tool (https://www.ncbi.nlm.nih.gov/tools/primer-blast/ (accessed on 3 March
2022)) [41] (Table S1) were performed using SsoFast™ EvaGreen® Supermix (Bio-Rad) on a
CEX Connect Real-Time System (Bio-Rad) programmed as following: an initial step of 95 °C
for 30's,40cycles of 5sat 95 °C, 5s at 58 °C. A fluorescence reading was made at the end of
each extension step. The PCR mixture consisted of 10 uL SsoFast™ EvaGreen® Supermix
(Bio-Rad), 7 uL nuclease-free water, 1 uL. cDNA and 1 pL of each forward and reverse
primer. All primers were validated by melting curve analyses after each qRT-PCR run and
determination of their efficiencies with at least four different cONA concentrations. Gene ex-
pression was evaluated using the AACt method [42,43]. The genes actin beta (NM_001101)
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (M17851) were used as endoge-
nous reference for normalizing target mRNA [44]. For each sample, the 244t value was
calculated and represents the gene expression fold-change normalized to the reference gene
and relative to the internal calibrator. Data are represented as mean 4= SEM of fold-change
values. Statistical analysis was performed using log-transformed values of the raw 2~4A¢t
data. The statistical comparison of fold-changes in gene expression was analyzed with a
one-way analysis of variance (ANOVA) followed by Bonferroni’s post-hoc test.

2.5. SDS-PAGE and Immunoblotting

hCMEC/D3 cells were lysed with Lysis Buffer (50 mM Tris—-HCl, 150 mM NaCl,
1% Nonidet P-40, 1 mM EDTA, 0.25% deoxycholic acid, 0.1% SDS, pH 7.4, 1 mM PMSF,
5 pg/mL leupeptin, and 5 pg/mL aprotinin). Then, 10 ug of total cell proteins was sep-
arated by SDS-PAGE and transferred to a PVDF membrane. Membrane probing was
performed using the different antibodies diluted 1:1000 in TBS (20 mM Tris, 500 mM
NaCl, pH 7.5) containing 5% BSA and 0.1% Tween-20 in combination with the appro-
priate HRP-conjugated secondary antibodies (1:2000 in PBS plus 0.1% Tween-20). The
following antibodies were used: anti-GABA A Receptor «1, clone 3H10 (ZRB1626) from
Sigma-Aldrich (Saint Louis, MO, USA), anti-GABA B Receptor 1, clone 2D7 (ab55051)
from Abcam (Cambridge, UK). The chemiluminescence reaction was performed using
Immobilon Western (Millipore) and images were acquired by the Chemidoc XRS (Bio-Rad,
Segrate, MI, Italy).

2.6. Electrophysiological Recordings

The presence of GABA 5-receptor-mediated Cl~ currents was assessed by using a
port-a-patch planar patch-clamp system (Nanion Technologies, Munich, Germany) in the
whole-cell, voltage-clamp configuration, at room temperature (22 °C), as described in [45].
Cultured cells (2-3 days after plating) were detached with Detachin and suspended at a
cell density of 1-5 x 10° cells/mL in an external recording solution containing (in mM):
145 NaCl, 2.8 KCl, 2 MgCly, 10 CaCl,, 10 HEPES, 10 D-glucose (pH = 7.4). Suspended cells
were placed on the NPCO chip surface, and the whole cell configuration was achieved.
Internal recording solution, containing (in mM) 10 CsCl, 110 CsF, 10 NaCl, 10 HEPES,
10 EGTA (pH = 7.2, adjusted with CsOH), was deposited in recording chips, having
resistances of 3-5 M(). To test the ability of GABA, receptors to conduct inward C1~
currents, 100 uM GABA or 30 uM muscimol was added to the external solution. The
bioelectrical response to agonist stimulation was recorded in the voltage-clamp mode
at a holding potential of —70 mV, as described in [17], by using an EPC-10 patch-clamp
amplifier (HEKA, Munich, Germany). Immediately after the whole-cell configuration was
established, the cell capacitance and the series resistances (<10 M(2) were measured. During
the recordings, these two parameters were measured, and if exceeding >10% with respect
to the initial value, the experiment was discontinued [45]. Liquid junction potential and
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capacitive currents were cancelled using the automatic compensation of the EPC-10 [46].
Data were filtered at 10 kHz and sampled at 5 kHz.

2.7. Statistical Analysis of Ca®* Signals

All the data have been obtained from hCMEC/D3 cells from at least three independent
experiments. The amplitude of agonist-evoked Ca* signals was measured as the difference
between the ratio at the Ca?* peak and the mean ratio of 30 s baseline before the peak.
Pooled data are given as mean £ SEM, while the number of cells analyzed is indicated
above the corresponding histogram bars (number of responding cells/total number of
analyzed cells). Comparisons between the two groups were done using the Student’s
t-test, whereas multiple comparisons were performed using ANOVA with the Bonferroni
and Dunnett’s post-hoc test, as appropriate. The Bonferroni post-hoc test was used to
evaluate multiple comparisons between different means, while Dunnett’s post-hoc test was
used to compare each mean to a control mean. p-values less than 0.05 were considered
statistically significant.

2.8. Chemicals

Fura-2/AM was purchased from Molecular Probes (Molecular Probes Europe BV,
Leiden, The Netherlands). Nigericin, NED-19, NED-K, and GABA were obtained from
Tocris (Bristol, UK). BTP-2 was purchased from Merck Millipore (Darmstadt, Germany).
All the other chemicals were of analytical grade and obtained from Sigma Chemical Co.
(St. Louis, MO, USA).

3. Results
3.1. GABA 4 and GABAp Receptors Are Expressed in hCMEC/D3 Cells

A thorough qRT-PCR analysis was carried out to assess whether and which GABA
receptor subunits are expressed in hCMEC /D3 cells, as previously shown in mouse brain
cerebrovascular endothelial cells [17,18], by using the specific primers reported in Table S1.
The transcripts encoding for the following GABA 5 receptor subunits were expressed: «1,
a5, B1, B2, and y1 (Figure 1A). Comparison of the mean fold-change values revealed
the following mRNA expression profile: a1 > 1 > «5 = 32 = y1 (Figure 1A). GABAp;
and GABAg; subunit mRNAs were also expressed (Figure 1B), although the transcripts
encoding for the GABAg; isoform were significantly up-regulated as compared to GABAg,
(Figure 1B). Immunoblotting confirmed that both GABA, «1 and GABAg; subunits were
expressed at the protein level (Figure 1C). These data, therefore, demonstrate that GABA
receptors are expressed also in the human cerebrovascular endothelial cell line, h\CMEC/D3.

3.2. GABA Induces a Dose-Dependent Increase in [ Ca2+]i in hCMEC/D3 Cells

In order to assess whether GABA was able to increase the [CaZ*];, hCMEC /D3 cells
were loaded with the CaZ*-sensitive fluorophore, Fura-2/AM, as described in [35,37].
GABA was found to induce an elevation in [CaZ*]; already at a dose as low as 1 pM
(Figure 2A). The Ca* response was consistently observed by challenging hCMEC /D3 cells
with increasing concentrations of GABA, ranging from 1 pM to 100 pM (Figure 2A,B). At
each dose tested, the Ca?* signal comprised an initial Ca?* peak which decayed to a plateau
level that was maintained as long as the agonist was presented to the cells, as shown for the
Ca?* response to 100 uM GABA (Figure 2C). Figure 2C shows that, after a short washout,
hCMEC/D3 cells were able to promptly respond to a second application of 100 uM GABA.
The dose-response relationship did not show the typical S-shaped curve that is mediated by
membrane receptors coupled to PLC; accordingly, the amplitude of the initial Ca?* transient
was relatively constant between 1 pM and 100 nM (Figure 2B). The highest Ca?* response
was elicited by 1 uM GABA, although a robust increase in [CaZ*]; could also be observed at
higher agonist concentrations, i.e., 10 and 100 uM (Figure 2A,B). Nevertheless, 100 uM is
the concentration range that has been exploited by most of the studies investigating how
GABA induced intracellular Ca?* signals in neurons and astrocytes [9-13]. Furthermore,
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GABA concentrations at the synaptic cleft can increase up to 80 uM during neuronal
activity [47], although they can reach over-saturating levels (=3 mM) in response to tegar}l(ia
stimulation [48]. Therefore, 100 uM GABA, which reliably induces robust elevations in

[Ca*]; in hCMEC/D3 cells, was chosen to characterize the underlying signaling pathways.
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neuronal activity [47], although they can reach over-saturating levels (=<3 mM) in response
to tetanic stimulation [48]. Therefore, 100 uM GABA, which reliably induces robust eleva-
tions in [Ca*]i in hCMEC/D3 cells, was chosen to characterize the underlying signaling
pathways.
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depletion in these cells [32]. The pharmacological blockade of SOCE with Pyr6 or BTP-2
suppressed GABA-evoked extracellular Ca?* influx in most cells and significantly reduced
the amplitude of the residual Ca®* entry in the remaining ones (Figure 3D,E). In accord,
10 uM Gd**, which plugs the pore of Orail channels [55,56], fully abolished GABA-evoked
extracellular Ca®* entry (Figure 3C,D). To rule out the involvement of SMOCs in the Ca**
response to GABA, we inhibited Transient Receptor Potential Vanilloid 4 (TRPV) channels,
which are expressed in hCMEC /D3 cells and are sensitive to RN-1734 [57]. Supplementary
Figure S1 shows that pre-treatment with RN-1734 (20 uM) did not affect GABA-evoked
extracellular Ca?* influx. Conversely, hCMEC /D3 cells express only very low levels of
TRP Canonical 7 (TRPC?) channels [32], while they lack other TRPC channel isoforms that
can support agonist-dependent Ca?" influx in vascular endothelial cells, such as TR7PC;3
and TRPC6 [26,58]. Altogether, these findings indicate that SOCE supports GABA- mduce

intracellular Ca?* signals in hCMEC /D3 cells.
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3.3. GABA-Induced Intracellular Ca?* Signals Are Sustained by Extracellular Ca* Entry
through the SOCE Pathway in hCMEC/D3 Cells

The endothelial Ca* response to extracellular autacoids can be shaped by extracellu-
lar Ca? entry through the plasma membrane and intracellular Ca?* mobilization from en-
dogenous organelles [26,49,50], as also demonstrated in hCMEC/D3 cells [32-36,51].
Therefore, in order to disentangle the contribution of intra- vs. extracellular Ca?* sources
to GABA-induced intracellular Ca? signals, we stimulated the cells in the absence of ex-
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pre-treatment with RN-1734 (20 uM) did not affect GABA-evoked extracellular Ca?" in-
flux. Conversely, hCMEC/D3 cells express only very low levels of TRP Canonical 7
(TRPC?) channels [32], while they lack other TRPC channel isoforms that can support ag-
onist-dependent Ca? influx in vascular endothelial cells, such as TRPC3 and TRPC6
[26,58]. Altogether, these findings indicate that SOCE supports GABA-induced intrage¥-22

Tular Ca** signals in hUMEC/D5 cells.
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Figure 3. GABA evokes intracellular Ca2* release and SOCE activation in hCMEC/D3 cells. (A), rep-
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3.4. InsP3 and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Trigger GABA-Induced
Intracellular Ca** Release in hCMEC/D3 Cells

Growing evidence indicates that neurotransmitters and neuromodulators elicit intra-
cellular Ca?* release in the hCMEC /D3 cell line that is triggered by InsP3-induced ER Ca?*
mobilization through InsP3Rs and supported by NAADP-dependent lysosomal Ca* release
via TPCs [35-37]. In accord, GABA-evoked intracellular Ca?* mobilization was suppressed
by blocking PLCf activity with the aminosteroid U73122 (10 uM) [32,35-37] (Figure 4A)
and by inhibiting InsP3Rs with the non-competitive antagonist 2-aminoethoxydiphenyl
borate (2-APB; 50 uM) [32,35-37] (Figure 4A). Furthermore, the endogenous Ca%* response
to GABA was repressed by depleting the ER Ca?* store with cyclopiazonic acid (CPA;
30 uM) (Figure 4B), which selectively affects the sarco-endoplasmic reticulum Ca?* ATPase
(SERCA) activity [32,35-37]. The statistical analysis of these experiments has been reported
in Figure 4C. Lysosomal Ca?* release via TPCs can recruit juxtaposed InsP3Rs through the
mechanism of Ca?*-induced Ca?* release, thereby triggering the Ca?* response to extra-
cellular stimuli in hCMEC /D3 cells [35-37], as well as in other endothelial cell types [59].
Figure 4D shows that GABA-induced intracellular Ca?* release was abrogated by depleting
the lysosomal Ca?* pool with nigericin (50 pM), which acts as a H* /K* antiporter and
thereby dissipates the H* gradient that maintains lysosomal Ca?* refilling [60-62]. More-
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over, the endogenous Ca?* response to GABA (100 uM) was strongly inhibited by two
specific NAADP antagonists, NED-19 (100 uM) (Figure 4E) and its chemically modified
analogue, NED-K (100 uM) (Figure 4E) [60,63]. The analysis of these results has been illus-
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Recent work showed that GABAA receptors initiate the Ca?* response to GABA in
mouse cerebrovascular endothelial cells [17]. However, GABAs receptors, which trigger
an increase in [Ca?]i in both neurons [9,10] and astrocytes [12,13], were recently found to
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3.5. GABA and GABAg Receptors Mediate GABA-Induced Intracellular Ca®* Signals in
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To further corroborate these findings, we took advantage of two different agonists of
GABAAx and GABAB receptors, i.e., respectively, muscimol [17,22] and baclofen [12,13,22].
Figure 6A shows that both muscimol (15 uM) and baclofen (100 uM) induced a biphasic
increase in [Ca?*]i that closely resembled the Ca?* response to GABA (100 uM). There was
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To further corroborate these findings, we took advantage of two different agonists of
GABA and GABAGg receptors, i.e., respectively, muscimol [17,22] and baclofen [12,13,22].
Figure 6A shows that both muscimol (15 uM) and baclofen (100 pM) induced a biphasic
Cells 2022, 11, x FOR PEER REVIEW jncrease in [Ca?*]; that closely resembled the Ca?* response to GABA (180.28%). There

was no significant difference in the percentage of responding cells (Figure 6B), while the
amplitude of the peak Ca?* response to GABA was significantly (p < 0.0001) higher as
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(15 uM) was significantly inhibited by blocking GABA 4 receptors with gabazine (10 pM)
Cells 2022, 11, x FOR PEER REVIEW (Figure 7D,E). Notably, muscimol-evoked intracellular Ca?* signalgsint BRCMEC/D3 cells
were also strongly reduced by inhibiting GABAg receptors with either saclofen (200 uM) or
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presence of gabazine, CGP-35348 or saclofen. **** indicate p <0.0001, *** indicate p <0.001, * indicates
p <0.05 (one-way ANOVA followed by the post-hoc Dunnett’s test). 13 of 22

To further confirm this hypothesis, we pretreated hCMEC/D3 cells with pertussis
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4. Discussion

Herein, we provided the first evidence that both GABA, and GABAg receptors
mediate the Ca®* response to the inhibitory neurotransmitter GABA in the widely employed
human cerebrovascular endothelial cell line, hCMEC /D3. We further show that GABA
receptors operate in a metabotropic, i.e., flux-independent, mode, to signal the downstream
increase in [Ca?*]; via the metabotropic GABAg receptors. In line with this evidence,
GABAGg receptors require functional GABA receptors to elevate the [Ca2*]; in hCMEC/D3
cells. Unravelling the molecular mechanisms involved in endothelial GABA signaling will
contribute to gather further insights into the mechanisms whereby endothelial GABAergic
signaling regulates the NVU.

4.1. The Expression Profile of GABA 4 and GABAp Receptors in hCMEC/D3 Cells

The GABAergic innervation of intracortical microvessels by local GABA interneu-
rons, rather than basal forebrain GABAergic terminals, has long been identified [15,65,66].
Subsequently, autoradiography with use of the GABA 4 receptor agonist, muscimol, demon-
strated specific binding sites in cerebral arterioles [67]. More recently, a thorough RT-PCR
characterization showed that mouse brain cerebrovascular endothelial cells express the «1,
a2, a6, 1, B2, B3, v1, y2 and y3 subunits of GABA 5 receptors [18]. A similar pattern of ex-
pression has been also detected in mouse embryonic forebrain endothelial cells [17]. In the
present investigation, we found that hCMEC/D3 cells express the following GABA 4 recep-
tor subunits: a1 (also confirmed by immunoblotting), «5, 31, 32, and y1. Therefore, human
cerebrovascular endothelial cells possess all the three distinct GABA 5 receptor subunits
that can arrange into a pentameric ion channel with the likely stoichiometry 2«:23:1y [3,6].
Based upon their expression levels, GABA receptors in hCMEC/D3 cells are predicted to
incorporate the o1, 31, and y1 subunits. Surprisingly, human cerebrovascular endothelial
cells do not present the GABA 5 receptor 33 subunit, which is a crucial component of mouse
GABA receptors [17,20,21]. The expression of the GABAg receptor has hitherto been sug-
gested only by an early study reporting on baclofen-induced nitric oxide (NO) release
and collagen constriction in mouse cortical microvascular endothelial cells [19]. Herein,
we provided the first evidence that both GABAg; and GABAg,; subunits are expressed in
hCMEC/D3 cells with GABAg; showing enriched expression. Thus, a functional GABAp
receptor heterodimer can be assembled in human cerebrovascular endothelium.

4.2. GABA Induces Intracellular Ca?* Signals in RCMEC/D3 Cells

GABA is emerging as a crucial mediator of neuro-to-vascular communication at the
NVU [68]; mouse cerebrovascular endothelial cells express ionotropic GABA A receptors
that perceive GABA released during neuronal activity from inhibitory interneurons and
trigger a signaling pathway that finely controls cerebral angiogenesis [17] and CBF [20].
It has been suggested that GABA activates GABA  receptors to evoke intracellular Ca®*
signals [17,20], which could, in turn, drive endothelial cell proliferation and angiogene-
sis [25,26,69] and recruit endothelial nitric oxide synthase (eNOS) to produce NO, i.e., the
most important vaso-relaxing mediator in the brain [27,28,31,68]. Nevertheless, GABA o
receptors are ionotropic receptors that are permeable to Cl~ and, therefore, are not expected
to directly raise the [Ca*]; during GABAergic signaling [6]. The metabotropic GABAg
receptors have recently been shown to cause a transient increase in [Ca%*]; in HAECs, but
it is still unknown whether they are able to regulate the [CaZ*]; also in cerebrovascular
endothelial cells. We found that GABA evoked a biphasic Ca?* response over a wide
concentration range in hCMEC/D3 cells. The Ca?* response to GABA was already de-
tectable as concentrations as low as 1 pM and achieved the peak at 1 uM. The amplitude of
the initial Ca®* peak progressively decreased with further increases in agonist concentra-
tion. This dose-response relationship is quite different from the sigmoidal curve that has
been described for GABA-evoked intracellular Ca?* signals in neurons and astrocytes [70],
in which the Ca?* response is exclusively mediated by the metabotropic GABAg recep-
tors [9-13,70]. The evidence, which is further illustrated below, that the endothelial Ca%*
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response to GABA is triggered by both GABA 5 and GABAg receptors could explain the
peculiar profile of the dose-response relationship obtained in hCMEC/D3 cells. These
preliminary observations confirmed that intracellular Ca?* signaling could be instrumental
for GABA to control endothelial cell functions [17,20]. A novel GABA biosensor based
upon a dual-enzyme immobilization approach recently showed that, during neuronal
activity, GABA concentration may transiently raise up to ~80 uM in the cortex [47]. Ca®*
imaging recordings showed that 100 uM GABA elicits a robust biphasic elevation in [Ca?*];
in hCMEC/D3 cells, and this concentration was used to unveil the underlying signaling
pathways. Notably, GABA-induced intracellular Ca?* waves have been observed in many
cell types that do not belong to the NVU, including HAECs [64], human aortic smooth
muscle cells [71], mouse embryonic stem cells [72], and the human breast cancer cell line,
MCEF7 [24].

4.3. The Complex Mechanisms of GABA-Induced Intracellular Ca®* Signals in RCMEC/D3 Cells:
InsP3Rs, TPCs and SOCE

Previous studies showed that, in neurons and astrocytes, the CaZ* response to GABA
was initiated by GABAg receptors and comprised a rapid Ca®* transient that is shaped
by ER Ca?" release through InsP3Rs followed by SOCE [9-13]. The PLCp signaling
pathway has been invoked also as molecular driver of GABA-induced intracellular Ca?*
signals outside the NVU [24,64,71,72]. A recent series of studies demonstrated that, in
hCMEC/D3 cells, the Ca%* response to neurotransmitters and neuromodulators, such as
acetylcholine [32], ATP [33,34], glutamate [35,37], histamine [36] and arachidonic acid [57],
is triggered by InsP3-evoked Ca?* release from the ER and maintained over time by SOCE.
In addition, NAADP-induced lysosomal Ca?* discharge via TPCs can support InsPs3-
dependent ER Ca?" release [59,61], thereby adding a further layer of complexity to the
molecular mechanisms that pattern endothelial Ca?* signals. Conversely, \(CMEC /D3 cells
lack ryanodine receptors [32], which may amplify InsP3-induced ER Ca?* release through
the Ca?*-induced Ca?*-release (CICR) mechanism in other endothelial cell types [73].

4.3.1. InsP3Rs and TPCs

Herein, pharmacological manipulation of extracellular Ca?* concentration confirmed
that also the Ca?* response to GABA was dependent upon intra- and extracellular Ca?*
sources. In the absence of external Ca?*, GABA evoked a smaller and transient elevation
in [Ca2*];, as previously reported in cortical neurons [9] and astrocytes [13], as well as in
HAECs [64] and human aortic smooth muscle cells [71]. The GABA-evoked intracellular
Ca?* release in hCMEC /D3 cells was strongly impaired by blocking PLCB activity with
U73122, by inhibiting InsP3Rs with 2-APB, and by depleting ER Ca?* content with CPA.
As previously shown for acetylcholine [32], glutamate [35], ATP [33], and histamine [36],
these findings convincingly indicate that InsP3-induced ER Ca?* mobilization initiates the
Ca?* response to GABA in hCMEC/D3 cells. NAADP-evoked lysosomal Ca?* discharge
via TPCs is emerging as a crucial mechanism shaping endothelial Ca?* signaling in periph-
eral vasculature [59-61,74-77]. Likewise, GABA-induced intracellular Ca%* release was
disrupted by pharmacologically emptying the lysosomal Ca?* store with nigericin and
by inhibiting TPCs with either NED-19 or NED-K. These results lend further support to
the emerging notion that TPCs finely tune the Ca* response to extracellular stimulation
not only in cerebrovascular endothelial cells [32,35-37,57], but also in neurons and astro-
cytes [78-80]. It has been suggested that lysosomal Ca?* release through TPCs could trigger
cytosolic CICR responses from the ER through InsP3Rs at juxtaposed ER-lysosome contact
sites [61-63,81]. An alternative, but not mutually exclusive, mechanism whereby the lyso-
somal Ca?* store could contribute to InsP3-driven Ca?* signals is by refilling the ER with
Ca?* [82]. On the other hand, InsP3-induced Ca?* release could induce the Ca2+—dependent
production of NAADP [83] or favor lysosomal Ca®* loading [84], which could activate
TPC2 even in the absence of its ligand [85]. Although elucidating the Ca?*-dependent
cross-talk between the ER and lysosomal Ca?* stores in hCMEC/D3 cells is far beyond the
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scope of the present investigation, there is no doubt that both InsP3Rs and TPCs contribute
to GABA-evoked intracellular Ca®* release.

4.3.2. SOCE

SOCE represents the Ca?* entry pathway that mediates extracellular Ca?* entry evoked
by chemical cues in endothelial cells across the whole peripheral vasculature [25,86,87].
Likewise, also in hCMEC /D3 cells, SOCE sustains extracellular Ca2* influx in response
to acetylcholine [32], glutamate [35], and histamine [36]. In addition, SOCE can also
be activated downstream of NMDARs, which signal in a flux-independent manner by
recruiting the PLCf signaling pathway [37]. Herein, we found that the re-addition of
external CaZ* after GABA-dependent depletion of the ER CaZ* stores, and in the absence
of the agonist, evoked robust extracellular Ca?* influx. Under these conditions, GABA is
no longer bound to its membrane receptors and, therefore, it is unlikely to stimulate the
production of intracellular second messengers, such as arachidonic acid [57], which are
able to gate Ca?*-permeable channels on the plasma membrane [32,35,38]. In agreement
with these observations, blocking SOCE with either Pyr6 or BTP-2 significantly reduced or
abolished GABA-evoked extracellular CaZ* influx, whereas low micromolar doses of Gd3*
suppressed it. The different extents of SOCE inhibition between the pyrazole derivatives,
Pyr6 and BTP-2, and the trivalent cation, Gd3*, could be due to their distinct mechanisms
of action. In accord, while Gd** directly plugs the channel pore of Orail protein, Pyr6
and BTP-2 are likely to interfere with Orail recruitment by STIM1 [55,88,89]. Of note, the
pharmacological blockade of TRPV4 channels, which are also expressed in hCMEC/D3
cells [57], with RN-1734 did not affect GABA-evoked CaZ* entry. This finding, therefore,
extends the repertoire of neurotransmitters that impinge on SOCE to generate long-lasting
Ca?* signals within the NVU and raises the question as to whether SOCE is recruited by
GABA also in HAECs [64], human aortic smooth muscle cells [71], mouse embryonic stem
cells [72], and MCEF-7 breast cancer cells [24].

4.4. GABA 5 and GABAg Receptors Mediate GABA-Induced Intracellular Ca®* Signals in
hCMEC/D3 Cells

Although the metabotropic GABAg receptors are known to induce intracellular Ca2*
signals both within [9-11] and outside [24,64,71,72] the NVU, the increase in the [CaZ*];
whereby GABA regulates multiple endothelium-dependent functions in brain microvessels
is mediated by the ionotropic GABA 4 receptors [17,20]. GABA receptor activation by the
selective agonist muscimol elicits an inward CI™ current in mouse cerebrovascular endothe-
lial cells, thereby elevating the [Ca®*]; [17]. A potential explanation for this finding is that
GABA-induced hyperpolarization enhances the driving-force sustaining the constitutive
influx of Ca?* occurring in these cells [90]. If this hypothesis holds true, muscimol should
not increase the [CaZ*]; in the absence of extracellular Ca2*.

Preliminary experiments revealed that both GABA and GABAg receptors mediate
the Ca?* response to GABA. In accord, GABA-evoked intracellular Ca?* signals were
significantly reduced by inhibiting both the ionotropic GABA 4 receptors with gabazine and
the metabotropic GABAg receptors with saclofen or CGP35348. Moreover, muscimol and
baclofen, which, respectively, activate GABA 4 and GABAg receptors, also elicited a biphasic
Ca?* response in hCMEC /D3 cells. The following pieces of evidence support the notion
that the ionotropic GABA 4 receptor may signal the increase in [Ca®*]; in a flux-independent
(i.e., metabotropic) mode. First, whole-cell patch-clamp recordings showed that neither
GABA nor muscimol evoked a sizeable membrane current in hCMEC/D3 cells. Second, the
Ca?* response to muscimol was sensitive to gabazine. Third, muscimol induced a robust
Ca?* signal also under 0Ca?* conditions, which demonstrates that GABA 5 receptors are
able to mobilize the endogenous Ca?* pool and thereby can operate in a metabotropic
manner [91,92]. Intriguingly, a recent investigation revealed that, in hCMEC/D3 cells,
the ionotropic NMDARs do not mediate detectable non-selective cation currents, but
signal increases in [Ca®*]; in a flux-independent manner by interacting with mGluR1 and
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mGIuRS5 [37]. In agreement with our observations, a body of studies has recently showed
that also GABA 4 receptors present metabotropic activity and can induce InsP3-dependent
ER Ca2* release in MCE-7 breast cancer cells [24] and rat cortical neurons [23]. Furthermore,
it has been demonstrated that GABA 5 receptors may transactivate the G; /, protein coupled
GABAG receptors in a PTX-dependent manner and promote InsP3-dependent ER Ca?*
release in mice ciliated oviductal cells [22]. Intriguingly, also in these cells, GABA 5 receptor
stimulation with muscimol did not activate any inward Cl- current [22]. Likewise, we
found that the Ca®* response to direct GABA, receptor stimulation with muscimol was
hampered by blocking GABAg receptor signaling with either saclofen, CGP35348 or PTx.
Unlike the oviduct [22], however, the Ca®* response to baclofen was in turn inhibited by
blocking GABA 4 receptors with gabazine, as well as by preventing G;/,, protein activation
with PTx.

These findings shed light upon an unusual mode of GABAergic signaling in the cere-
brovascular endothelium. The Ca?* response to GABA, which underpins GABA-induced
cerebral angiogenesis [17] and the GABA-induced local increase in CBF [20], requires
the functional interaction between GABAA and GABAg receptors. GABA, receptors
can engage metabolic signaling via GABAg receptors, and GABAp receptors fail to gen-
erate a full Ca%* signal if GABA, receptors are inhibited. In line with these findings,
GABA, and GABAg; receptors have been shown to physically interact in mice ciliated
oviductal cells [22] and in rat brain lysates [93], and to co-localize at multiple synaptic and
extra-synaptic sites in the brain [94]. Future work will seek to understand the molecular
underpinnings of the functional interaction between GABA and GABAg receptors in
hCMEC/D3 cells. The preliminary evidence that muscimol and baclofen do not exert an
additive effect (described in Figure 6C), however, strongly suggests that the PLCf3 signaling
pathway is engaged by only one GABA receptor isoform, which is likely to be GABAg [7,8].
This model is supported by the evidence that PTx also attenuates muscimol-evoked intra-
cellular Ca?* signals. Since the Ca?* response to the mixture of muscimol and baclofen is
lower as compared to GABA alone, we hypothesize that the two GABA receptor isoforms
must somehow be “synchronized” to interact and elicit the full Ca?* response and that this
requires the presence of the physiological agonist.

5. Conclusions

Herein, we unveiled the complex signaling pathway whereby the inhibitory neuro-
transmitter GABA can induce an increase in [Ca?*]; in human cerebrovascular endothelial
cells. The Ca?* response to GABA is triggered by InsPz-induced ER Ca?* release and
NAADP-dependent lysosomal Ca?* mobilization, whereas it is mainly maintained by
SOCE (Figure 9). Both GABA 5 and GABAg receptors support GABA-evoked intracellular
Ca?* signals (Figure 9). The ionotropic GABA4 receptors signal in a flux-independent
manner via the metabotropic GABAg receptors. Likewise, the full Ca?* response to GABAg
receptor stimulation requires functional GABA receptors. Endothelial Ca* signals finely
tune a myriad of vascular functions, including those regulated by GABA, such as angio-
genesis and CBF control via NO release. Therefore, this study sheds novel light on the
molecular mechanisms by which GABA controls endothelial signaling at the NVU.
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