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Abstract

In the present work we reconsider the evolutionary game theoretic models by

Antoci et al. (2016, 2018) describing the dynamic outcomes arising from the

interactions between patients and physicians, whose behavior is subject to clin-

ical and legal risks. In particular, Antoci et al. (2016) analyzed the case of

positive defensive medicine, while Antoci et al. (2018) dealt with the case of

negative defensive medicine. We show that, when the models admit a non-

isochronous center, it is possible to prove the existence of chaotic dynamics for

the Poincaré map associated with those systems via the method of Linked Twist

Maps (LTMs). To such aim we exploit in both frameworks, using a similar ra-

tionale, the periodic dependence on time of a model parameter influencing the

position of the center and describing some risk associated with certain med-

ical interventions, whose seasonal variation is empirically grounded. We also

recall the ecological interpretation of the same model proposed by Harvie et al.

(2007) and connected with intraspecific competition and environmental carry-

ing capacity in predator-prey settings. In this case, it is sensible to assume a

seasonal variation both for the carrying capacities and for the intrinsic growth

rates of the two populations. Although such parameters influence the shape of

the orbits, but do not affect the center position, we show that it is still possible

to prove the existence of chaotic dynamics for the associated Poincaré map via
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the LTMs technique dealing with a different geometrical configuration for orbits

in the phase plane.

Keywords: Hamiltonian system, nonisochronous center, seasonal effect,

periodic coefficients, linked twist maps, chaotic dynamics

1. Introduction

The aim of the present contribution consists in providing a topological proof

of the existence of chaotic dynamics for a planar Hamiltonian system considered

in different formulations and with different interpretations in the literature, via

the “Linked Twist Maps” (from now on, LTMs) technique. More precisely, the

model that we are going to analyze has been proposed in two evolutionary game

theoretic frameworks by Antoci et al. in [3, 4] to describe the dynamic outcomes

arising from the interactions between patients and physicians, whose behavior

is subject to clinical and legal risks. Namely, both papers deal with defensive

medicine, i.e., the deviation from good medical practice motivated by the threat

of liability claims, investigated e.g. in [24, 49, 51]. In particular, in [3] the focus

is on positive defensive medicine (see for instance [50]), according to which addi-

tional services are offered to discourage patients from filing malpractice claims,

or to convince the legal system that the standard of care was met. On the other

hand, the authors in [4] consider negative defensive medicine, that is the case

in which physicians tend to avoid a source of legal risk e.g. by adopting safer

but less effective treatments (cf. [18]). A biological interpretation of the setting

considered in [3, 4], connected with intraspecific competition and environmental

carrying capacity in predator-prey models, has been briefly suggested in [21],

where however the focus is on the celebrated growth-cycle model by Goodwin

[19, 20], describing the dynamics of the wage share of output and the employ-

ment proportion. Actually, Harvie et al. in [21] propose a system of differential

equations in which each variable has both a positive and a negative effect on its

own growth rate. We will focus just on the latter, in order to obtain again the

same formulation considered in [3, 4].
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The LTMs technique, that we are going to use in order to prove the existence of

complex dynamics in the above described frameworks, is based on the Stretch-

ing Along the Paths (henceforth, SAP) method, i.e., the topological method for

the search of fixed points and periodic points for continuous maps defined on

sets homeomorphic to the unit cube in finite dimensional Euclidean spaces that

expand the arcs along one direction, developed in the planar case in [32, 33]

and extended to the N -dimensional framework in [40]. The context of LTMs

represents a geometrical framework in which it is possible to employ the SAP

method in order to detect complex dynamics, as first shown in [35, 41]. Further

applications of the SAP method to planar LTMs contexts have been provided

e.g. in [9, 10, 36], while a biological application to a three-dimensional LTMs

context has been proposed in [45]. Usual assumptions on the twist mappings

(see e.g. [11, 42, 43]) concern, among others, their smoothness, preservation of

the Lebesgue measure and monotonicity of the angular speed with respect to the

radial coordinate, also in view of checking an hyperbolicity condition, needed in

order to ensure the existence of Smale horseshoes (cf. [14]). On the other hand,

since our approach is purely topological, we just need a twist condition on the

boundary of the two linked annuli, similar to the Poincaré-Birkhoff fixed point

theorem. Namely, by a linked twist map we mean the composition of two twist

maps, acting each on one of the two linked annuli, which, in the two-dimensional

case, cross along two (or more) planar sets homeomorphic to the unit square,

that we call topological rectangles.

In our applications of LTMs, we will consider Hamiltonian systems with a non-

isochronous center, in which the position of the center or the shape of the orbits

vary when modifying one of the model parameters. In particular, we will modify

parameters for which it is sensible to assume that they alternate in a periodic

fashion between two different values, e.g. due to a seasonal effect. In this man-

ner, we obtain two conservative systems, the original and the perturbed ones,

and for each of them we can focus on an annulus composed of energy levels. Un-

der suitable conditions on the orbits, depending on the geometric configuration

we are dealing with, the two annuli can cross in two or more generalized rect-
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angles, and in that case we call them linked annuli. In such context, the LTMs

technique consists in finding two linked annuli, whose intersection sets contain

chaotic sets for the Poincaré map obtained as composition of the Poincaré maps

associated with the original system and the perturbed one. We stress that the

nonisochronicity of the center is crucial in the just described procedure, because

it implies that the orbits composing the linked annuli are run with a different

speed, so that the Poincaré maps produce a twist effect on the annuli. The

consequent deformation produced on the generalized rectangles grows with the

passing of time. Hence, if the switching times between the regimes governed

by the original system and by the perturbed one are large enough, those gen-

eralized rectangles are transformed by the Poincaré maps into spiral-like sets,

intersecting several times the same generalized rectangles, and the stretching

along the path property required by the SAP method is fulfilled, guaranteeing

the presence of chaotic sets inside the generalized rectangles.

We will use the LTMs technique both when dealing with the evolutionary

game theoretic frameworks describing the dynamic effects of positive defensive

medicine, proposed in [3], and of negative defensive medicine, investigated in [4],

as well as when considering the context connected with intraspecific competition

and environmental carrying capacity in predator-prey models, mentioned in [21].

Although all such settings are variants of the same model, due to the dissimilar

meaning attached to the parameters in the three analyzed contexts, each time

it will be sensible to periodically perturb a different parameter, and this in turn

will generate a peculiar geometrical configuration, in which the LTMs method

has to be applied in a specific manner. Namely, in the frameworks from [3, 4] we

will exploit the periodic dependence on time of the model parameters describing

the risk associated with certain medical interventions, whose seasonal variation

is empirically grounded, considering seasonality in hypertension (see e.g. [1, 13])

and its connection with perioperative adverse events (cf. for instance [23, 27]).

Despite the common rationale for assuming a periodic variation on those two

parameters in the settings from [3, 4], we stress that modifying the former or

the latter produces a different effect on the position of the center. Moreover,
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orbits are run clockwise in the framework in [3] and counterclockwise in the

framework in [4]. Also this difference will affect the proofs of the corresponding

results about LTMs, in which we need to count the laps completed by suitable

paths around the centers. As concerns the biological setting, encompassing lo-

gistic terms which take into account intra-species interactions and the role of

environmental resources, according e.g. to [7, 31] it is sensible to assume a

seasonal variation both for the carrying capacities and for the intrinsic growth

rates of the two populations. Even if such parameters influence the shape of the

orbits, and raising the value of carrying capacities also enlarges the region in

which orbits may lie, neither carrying capacities nor intrinsic growth rates affect

the center position. Nonetheless, we show that it is still possible to prove the

existence of chaotic dynamics for the associated Poincaré map via the LTMs

technique dealing with a different geometrical configuration for orbits in the

phase plane, in agreement with the results obtained in other contexts e.g. in

[9, 37]. Regarding the nonisochronicity of the centers, it was proven in [46, 47]

that the period of the orbits increases with the energy level in the settings that

we are going to analyze. We finally stress that, like it happened e.g. in [41],

where the effect produced by a periodic harvesting on the original predator-prey

model was investigated, also our results about the existence of chaotic dynamics

are robust with respect to small perturbations, in L1 norm, in the coefficients

of the considered settings.

The remainder of the paper is organized as follows. In Section 2 we recall the

main definitions and results connected with the LTMs method. In Section 3 we

introduce the first two versions of the model that we are going to analyze, as

presented in [3, 4], respectively, and we prove that the Poincaré maps associated

with them may generate chaotic dynamics via the method of LTMs, looking at

the geometrical configurations of their orbits in the phase plane. In Section 4 we

illustrate the ecological interpretation given in [21] of the model considered in

Section 3 and we describe an alternative way of applying the LTMs technique.

In Section 5 we briefly discuss our results and conclude.
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2. Recalling the Linked Twist Maps framework

As explained in the Introduction, our theoretical starting point is given by

the Stretching Along the Paths (henceforth, SAP) method, developed in the

planar case in [32, 33] and extended to the N -dimensional framework in [40].

We shall see below that the SAP method is based on the SAP relation in (2.1).

The context of “Linked Twist Maps” (LTMs, from now on) represents a geomet-

rical framework in which it is possible to employ the SAP method in order to

detect complex dynamics, as first shown in [35, 41]. In more detail, by a linked

twist map we mean the composition of two twist maps, each acting on one of

two annuli, which, in the two-dimensional case, cross along two (or more) planar

sets homeomorphic to the unit square, that we call topological rectangles. For

the two maps, we assume that they are homeomorphisms and that, like in the

Poincaré-Birkhoff fixed point theorem, produce a twist effect on the boundary

of the two annuli, leaving the boundary invariant. However, our approach is

purely topological and for the maps we do not require neither area-preserving

properties, nor the monotonicity of the twist with respect to the radial coordi-

nate.

For brevity’s sake, in what follows we will recall just the definitions and the

results about the SAP relation that are necessary in view of our planar appli-

cations in Sections 3 and 4. Further details and more general formulations can

be found e.g. in [34, 41]. See [45] for a three-dimensional LTMs context.

A path in R
2 is a continuous map γ : [0, 1] → R

2 and we set γ := γ([0, 1]). By a

generalized rectangle we mean a set R ⊆ R
2 which is homeomorphic to the unit

square I2 := [0, 1]2, through a homeomorphism h : R2 ⊇ I2 → R ⊆ R
2. We also

set

R−
l := h([x1 = 0]) , R−

r := h([x1 = 1])

and call them the left and the right sides of R, respectively. Setting R− :=

R−
l ∪R−

r , we call the pair

R̃ := (R,R−)
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an oriented rectangle of R2.

We are now in position to recall the definition of the stretching along the paths

relation for maps between oriented rectangles.

Given Ã := (A,A−) and B̃ := (B,B−) oriented rectangles of R2, let F : A → R
2

be a function and K ⊆ A be a compact set. We say that (K, F ) stretches Ã to

B̃ along the paths, and write

(K, F ) : Ã ≎−→B̃, (2.1)

if

• F is continuous on K ;

• for every path γ : [0, 1] → A with γ(0) and γ(1) belonging to different

components of A−, there exists [t′, t′′] ⊆ [0, 1] such that γ([t′, t′′]) ⊆ K,

F (γ([t′, t′′])) ⊆ B, with F (γ(t′)) and F (γ(t′′)) belonging to different com-

ponents of B−.

In the special case in which K = A, we simply write F : Ã ≎−→B̃.

In our applications of LTMs, we will consider Hamiltonian systems with a

nonisochronous center, in which the position of the center or the shape of the

orbits vary when modifying one of the model parameters. In particular, we will

modify parameters for which it is sensible to assume that they alternate in a

periodic fashion between two different values, e.g. due to a seasonal effect. In

this manner, we obtain two conservative systems and for each of them we can

focus on an annulus composed of energy levels. Under suitable conditions on

the orbits, depending on the geometric configuration we are dealing with, the

two annuli can cross in two or more generalized rectangles, that we orientate

by suitably choosing how to name (as left and right) two among the arcs of

orbits composing their boundary. As we shall see in the next sections, the

choice depends on the relative position of the generalized rectangles and on

whether orbits are run clockwise or counterclockwise. The involved functions

are the Poincaré maps associated with the two systems, and thus they are

homeomorphisms.
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The main result that we shall use in Sections 3 and 4 reads as follows:

Theorem 2.1. Let F : R2 ⊇ DF → R
2 and G : R2 ⊇ DG → R

2 be continuous

maps defined on the sets DF and DG, respectively. Let also Ã := (A,A−) and

B̃ := (B,B−) be oriented rectangles of R2. Suppose that the following conditions

are satisfied:

(CF ) There are (at least) two disjoint compact sets H0, H1 ⊆ A∩DF such that

(Hi, F ) : Ã ≎−→B̃, for i = 0, 1 ;

(CG) B ⊆ DG and G : B̃ ≎−→Ã .

Then if the map Φ := G ◦ F is continuous and injective on the set H := (H0 ∪

H1) ∩ F
−1(B), setting

X∞ :=

∞⋂

n=−∞

Φ−n(H), (2.2)

there exists a nonempty compact set

X ⊆ X∞ ⊆ H,

on which the following properties are fulfilled:

(i) X is invariant for Φ (i.e., Φ(X) = X);

(ii) Φ↾X is semi-conjugate to the two-sided Bernoulli shift on two symbols,

i.e., there exists a continuous map π from X onto Σ2 := {0, 1}Z, endowed

with the distance

d̂(s′, s′′) :=
∑

i∈Z

|s′i − s′′i |

2|i|+1
,

for s
′ = (s′i)i∈Z and s

′′ = (s′′i )i∈Z ∈ Σ2 , such that the diagram

X X

Σ2 Σ2

✲
Φ

❄

π

❄

π

✲
σ

commutes, i.e. π ◦ Φ = σ ◦ π, where σ : Σ2 → Σ2 is the Bernoulli shift

defined as σ((si)i) := (si+1)i, ∀i ∈ Z ;
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(iii) the set of the periodic points of Φ ↾X∞
is dense in X and the preimage

π−1(s) ⊆ X of every k-periodic sequence s = (si)i∈Z ∈ Σ2 contains at

least one k-periodic point.

Furthermore, from conclusion (ii) it follows that:

(iv)

htop(Φ) ≥ htop(Φ ↾X) ≥ htop(σ) = log(2),

where htop is the topological entropy;

(v) there exists a compact invariant set Λ ⊆ X such that Φ|Λ is semi-conjugate

to the two-sided Bernoulli shift on two symbols, topologically transitive and

displays sensitive dependence on initial conditions.

Proof. The key step consists in showing that

(Hi ∩ F
−1(B),Φ) : Ã ≎−→Ã , i = 0, 1. (2.3)

See Theorem 3.1 in [35] for a verification of a more general version of this

property. The desired conclusions then follow by Lemma 3.2, Lemma 3.3 and

the discussion after Definition 1.1 in [41]. �

Recalling:

• the definition of a map inducing chaotic dynamics on two symbols in a

subset D of its domain (cf. Definition 2.2 in [30]), according to which every

two-sided sequence on two symbols - say 0 and 1 - is realized through the

iterates of the map, jumping between two disjoint compact subsets - say

K0 and K1 - of D, and periodic sequences of symbols are reproduced by

periodic orbits of the map;

• Theorem 2.3 in [30], which tells that any time the stretching relation (2.1)

is fulfilled for a continuous function with respect to two disjoint compact
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subsets of its domain and with B̃ = Ã, then that function induces chaotic

dynamics on two symbols,2

we can conclude that, when conditions (CF ) and (CG) in Theorem 2.1 are satis-

fied, the composite function G ◦ F induces chaotic dynamics on two symbols in

A, since condition (2.3) is fulfilled. On the other hand, according to Theorem

2.2 in [30], if an injective map induces chaotic dynamics on two symbols in a

set, then it possesses all the features listed in Theorem 2.1.3

Hence, we can summarize the statement of Theorem 2.1 by saying that, when

conditions (CF ) and (CG) therein are satisfied, the composite function G ◦ F

induces chaotic dynamics on two symbols in A, knowing that from this fact it

follows that all the properties described in Theorem 2.1 are fulfilled for G ◦ F,

also in regard to the existence of periodic points. We will use this reformula-

tion of Theorem 2.1 in Sections 3 and 4 when dealing with the composition of

Poincaré maps associated with different systems (cf. e.g. the statement of The-

orem 3.1). We recall that a classical approach - see [25] - to show the existence of

periodic solutions (harmonics or subharmonics) of systems of first order ODEs

with periodic coefficients, under the assumption of uniqueness of the solutions

for the Cauchy problems, is based on the search of the fixed points or periodic

points for the associated Poincaré map.

We close the present preliminary section by completing the explanation, started

just before Theorem 2.1, of what the LTMs method consists in, referring the

reader to Subsections 3.1 and 3.2 and to Section 4 for some concrete applications

of it, as well as for a few graphical illustrations of possible geometrical configu-

2Namely, as explained in [30], the SAP method allows to prove in our planar framework
the presence of chaotic dynamics for a continuous self-map of R2 when verifying the validity
of the SAP relation in (2.1) for B̃ = Ã with respect to two suitable disjoint compact subsets
of its domain.

3If the map Φ = G ◦ F were not injective, rather than X∞ in (2.2) we should introduce
X+

∞ :=
⋂

∞

n=0 Φ
−n(H) and the properties listed in Theorem 2.1 would hold true replacing

Σ2 := {0, 1}Z with Σ+
2 := {0, 1}N. This means, in particular, that we could derive a weaker

conclusion than (ii) in Theorem 2.1, establishing a semi-conjugacy between the map Φ and
the one-sided Bernoulli shift σ+((si)i) := (si+1)i, ∀i ∈ N , rather than with the two-sided
Bernoulli shift. See Theorem 2.2 in [30] for the precise statement and for a proof. More
generally, we refer the interested reader to [30, 41] for further details, as well as for a discussion
on the various notions of chaos used in the literature and on the relationships among them.
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rations related to such framework (see in particular Figures 4–7, connected with

the numerical examples). Given a Hamiltonian system with a nonisochronous

center, led by the economic or biological interpretation of the considered con-

text, we perturb it by modifying a parameter, for which it is sensible to assume

that it alternates in a periodic fashion between two different values. The LTMs

method consists in proving the presence of chaotic dynamics for the Poincaré

map obtained as composition of the Poincaré maps associated with the original

system and the perturbed one, by finding two linked annuli, each composed

by orbits of one of the two systems, to which it is possible to apply Theorem

2.1. Notice that it would not be possible to find two linked annuli composed by

orbits of the same Hamiltonian system. More precisely, the existence of chaos

is shown by applying Theorem 2.1, i.e., by checking that conditions (CF ) and

(CG) therein are satisfied when taking as F and G the Poincaré maps associated

with the two systems, and by choosing as A and B two among the generalized

rectangles in which the considered linked annuli cross.4 We stress that the non-

isochronicity of the center is crucial in the above described procedure, because

it implies that the orbits composing the linked annuli are run with a different

speed, so that the Poincaré maps produce a twist effect on the linked annuli,

although closed orbits are invariant under the action of the Poincaré maps. The

consequent deformation induced on the generalized rectangles grows with the

passing of time. Hence, if the switching times between the regimes governed by

one of the two systems are large enough, those generalized rectangles are trans-

formed by the Poincaré maps into spiral-like sets, intersecting several times the

same generalized rectangles, allowing to check the stretching relations in (CF )

and (CG), so that the presence of complex dynamics is guaranteed by Theorem

2.1.

This is the methodology that we are going to use in Section 3, dealing with

4Namely, in the frameworks analyzed in Subsections 3.1 and 3.2 the linked annuli cross in
two generalized rectangles (see Figures 4 and 5), while in Section 4 we find four generalized
rectangles as intersection sets between two linked annuli (see Figures 6 and 7). Indeed, the
precise definition of linked annuli may vary according to the geometrical configuration of the
considered framework (cf. Definitions 3.1 and 4.1).
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the evolutionary game theoretic frameworks describing the dynamic effects of

positive defensive medicine, proposed in [3], and of negative defensive medicine,

investigated in [4], as well as in Section 4, where we consider a context intro-

duced in [21] and connected with intraspecific competition and environmental

carrying capacity in predator-prey models. We stress that all the frameworks

that we will consider along the manuscript are variants of the same model. How-

ever, due to the different meaning attached to the parameters in the analyzed

contexts, each time it will be sensible to periodically perturb a different param-

eter, and this in turn will produce a peculiar geometrical configuration, in which

the LTMs method can be applied in a specific manner.

3. Two medical malpractice litigation frameworks

In the present section we introduce the settings considered in [3, 4] and we

explain how to prove the existence for each of them of chaotic dynamics via

the method of LTMs. Due to the large number of parameters involved in the

models, we will describe just the strictly needed aspects, referring the interested

reader to [3, 4] for further details.

Both works deal with defensive medicine, i.e., the deviation from good med-

ical practice motivated by the threat of liability claims, investigated e.g. in

[24, 49, 51]. In particular, Antoci et al. in [3] propose an evolutionary game

theoretic model to investigate the dynamic effects of positive defensive medicine,

in which, according for instance to [50], additional services are offered to dis-

courage patients from filing malpractice claims, or to convince the legal system

that the standard of care was met. On the other hand, still in an evolutionary

game theoretic model, the authors in [4] consider negative defensive medicine,

that is the case in which physicians tend to avoid a source of legal risk e.g. by

adopting safer but less effective treatments (cf. [18]). An important example

of this phenomenon, analyzed in [15, 16, 28], is given by the excessive number

of Cesarean sections, which can sometimes be unnecessary. We stress that an

extension of the frameworks considered in [3, 4] has been proposed in [2], where

it is assumed that physicians have the possibility of insuring against liability
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claims, so that the system becomes four-dimensional, with the additional vari-

ables being the share of the population of physicians who buy a malpractice

insurance and the cost of the insurance policy.5

In more detail, in [3] physicians are randomly paired with patients and provide

them a risky medical treatment; if an adverse event occurs, patients can choose

whether or not to suit their physician for medical malpractice, while physicians

can decide whether or not to practice defensive medicine. If physicians opt for

defensive medicine, they perform unnecessary diagnostic and therapeutic inter-

ventions, possibly harmful to patients, in order to prevent malpractice charges.

In symbols, Antoci et al. in [3] obtain the following system:




d ′ = d(1− d) (p ℓ(END − ED)− CD + CND)

ℓ ′ = ℓ(1− ℓ)p (d(ED − END) + END − CL)

(3.1)

where d(t) ∈ [0, 1] represents the share of physicians playing strategy D (prac-

tice defensive medicine) and ℓ(t) ∈ [0, 1] is the share of patients playing strategy

L (litigate in case that an adverse event occurs) at time t, and d′(t), ℓ′(t) are the

corresponding time derivatives. In this manner 1 − d(t) ∈ [0, 1] represents the

share of physicians playing strategy ND (not practice defensive medicine) and

1− ℓ(t) ∈ [0, 1] is the share of patients playing strategy NL (not litigate in case

of an adverse event) at time t. The probability that an adverse event occurs is

described by p ∈ (0, 1) and it is not affected by the choice of the physician to

practice or not defensive medicine. In the case of litigation, if the physician prac-

ticed defensive medicine, the patient wins with probability qD ∈ (0, 1), while the

physician wins with probability 1− qD; if instead the physician did not practice

defensive medicine, the patient wins with probability qND ∈ (0, 1), while the

physician wins with probability 1 − qND. It is assumed that qD < qND, i.e.,

defensive medicine decreases the probability for physicians of losing an eventual

litigation. Calling R > 0 the damage suffered by a patient in case that an ad-

5Under the assumption that the insurance company has perfect foresight about agents’
behavior and it is able to instantaneously adjust the policy premium to its equilibrium value,
the model in [2] becomes three-dimensional, as discussed in Section 5 therein.
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verse event occurs, coinciding with the compensation he/she receives from the

physician if winning the litigation, and K > 0 the sum that the patient, if losing

the litigation, pays to the physician as reparation for the legal and reputation

losses, it holds that ED = qDR−(1−qD)K and END = qNDR−(1−qND)K are

the expected settlement of the litigation when the physician practiced defensive

medicine or not, respectively, with END > ED; practicing defensive medicine

costs the physician CD, while not practicing defensive medicine costs the physi-

cian CND, with CD > CND ≥ 0; finally, CL > 0 is the cost faced by the patient

to sue the physician for medical malpractice.

As concerns [4], the system obtained therein is given by:




d ′ = d(1− d)
(
BPH − P E ℓ

)

ℓ ′ = ℓ(1− ℓ) (−qND(CL − pNDE) + ((qND − qD)CL + P E) d)

(3.2)

where d(t), ℓ(t) ∈ [0, 1] and d′(t), ℓ′(t) have a similar meaning with respect

to (3.1). However, this time playing strategy D (practice defensive medicine)

means for the physician to opt for an inferior but safer treatment, while the

physician plays strategy ND when he/she chooses to provide the superior, but

riskier, treatment to the patient. Treatments D and ND produce, in addition to

sure benefits, an uncertain harm to the patient, which can occur with exogenous

probabilities qD and qND, where 0 < qD < qND < 1; the patient, when suffering

the harm, can decide to sue the physician for medical malpractice, at a cost

CL > 0; parameters pD, pND ∈ [0, 1] describe the exogenous probabilities with

which the court will order the physician to pay compensation for having provided

the inferior, but safer, treatment or the superior, but riskier, treatment to the

patient, respectively, with 0 ≤ pND ≤ pD ≤ 1. Parameter P := pDqD−pNDqND

represents the increase (or decrease, if negative) in the ex ante probability of

being condemned for a physician providing the inferior treatmentD to a litigious

patient; E > 0 is the compensation that the patient obtains, if winning the

lawsuit, from the losing physician; BPH represents the physician’s additional

immediate benefit (or cost, if negative) of practicing defensive medicine.

Both Systems (3.1) and (3.2) are encompassed in the following general for-
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mulation 



u ′ = u(1− u)(σv − χ)

v ′ = −v(1− v)(ξu− φ)

(3.3)

with u(t), v(t) ∈ [0, 1] and σ, χ, ξ, φ ∈ R. In particular, according to [22], if

0 < χ < σ and 0 < φ < ξ all orbits are closed and periodic, surrounding

the unique internal equilibrium S =
(
φ
ξ
, χ
σ

)
, which is a center. In view of

finding a connection with the LTMs framework introduced in Section 2, in what

follows we will focus just on the latter scenario, which also describes a battle

of the sexes game with two players and two strategies, in which no one of the

two dominates the other. We stress that, due to the conditions imposed on

the sign of the parameters in [3, 4], it holds that (3.1) corresponds to (3.3)

when identifying d with u and ℓ with v, while (3.2) corresponds to (3.3) when

identifying d with v and ℓ with u. As we shall better see in Subsections 3.1 and

3.2, this difference between (3.1) and (3.2) implies that orbits are run clockwise

in the former framework and counterclockwise in the latter.

In order to use some results on the orbits obtained in [29], we need to check

that System (3.3) fulfills the conditions on page 778 therein. Namely, setting

f(u) = 1 − u, ψ(v) = σv − χ, g(v) = 1 − v, ϕ(u) = ξu − φ, it holds that

f, g : (0, 1) → (0,+∞) are continuous functions and that ϕ, ψ : (0, 1) → R are

C1 maps with positive derivative on (0, 1), satisfying

limu→0+ ϕ(u) = −φ < 0, limv→0+ ψ(v) = −χ < 0,

limu→1− ϕ(u) = ξ − φ > 0, limv→1− ψ(v) = σ − χ > 0

under the assumption that the system admits a center in S. Moreover, setting

A(u) =
∫ ϕ(u)
uf(u) du =

∫
ξu−φ
u(1−u) du and B(v) =

∫ ψ(v)
vg(v) dv =

∫
σv−χ
v(1−v) dv, it holds

that

lim
u→0+

A(u) = lim
u→1−

A(u) = lim
v→0+

B(v) = lim
v→1−

B(v) = +∞.

Indeed, A(u) = −φ log(u) + (φ − ξ) log(1 − u) + k1 and B(v) = −χ log(v) +

(χ− σ) log(1− v) + k2, with k1, k2 ∈ R. Hence, System (3.3) admits H(u, v) =

A(u) +B(v) as first integral having S as minimum point and, according to the
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results obtained in [29], all its solutions are periodic and describe closed orbits

contained in the open unit square. The proof of the increasing monotonicity of

the period of the orbits with the energy level for System (3.3) can be found in

[46, 47] (see (4) and the corresponding comments on page 97 in [46] and Exam-

ple 2.4.3 on page 64 in [47]). We will rely on such result in our application of

the method of the LTMs, summarized in Section 2, to System (3.3), and more

precisely to (3.1) and (3.2).

However, in order to employ the LTMs technique, even before checking the twist

condition on the boundary of the considered linked annuli as a consequence of

the nonisochronicity of the centers, we need to guarantee that linked together

annuli do exist. To such aim, since annuli are for us composed of energy levels,

we may assume that at least one of the model parameters varies in a periodic

fashion, e.g. due to a seasonal effect, so that we obtain two conservative systems,

the original and the perturbed ones, and for each of them we can consider an

annulus: under suitable conditions on the orbits, the two annuli cross in two or

more generalized rectangles, thus resulting linked together. In particular, we will

make the periodic variation assumption on parameter p in System (3.1) and on

qND in System (3.2). Namely, we recall that p ∈ (0, 1) describes the probability

that an adverse event for the patient occurs in the positive defensive medicine

framework, and it is not affected by the choice of the physician to practice or not

defensive medicine; assuming instead negative defensive medicine, qND is the

probability that a harm occurs when the physician chooses to provide the supe-

rior, but riskier, treatment to the patient. Two facts are well-known and largely

documented in the medical literature: that hypertension phenomena raise in

winter and fall in summer in countries both north and south of the equator (see

[1, 13, 17, 48]) and that hypertension increases e.g. perioperative cardiac risks,

as well as the incidence of perioperative major adverse cardiovascular and cere-

brovascular events (cf. for instance [23, 27]). In the case of positive defensive

medicine, we can suppose that the physician will opt for a surgical intervention

any time it is needed, while in the case of negative defensive medicine we can

assume that surgery coincides with the superior, but riskier, treatment (ND)
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in comparison for instance with a less effective, but safer, pharmacological ther-

apy (D). Hence, due to the seasonality in hypertension and its connection with

perioperative adverse events, we can assume that both p in (3.1) and qND in

(3.2) alternate in a periodic fashion between a low and a high value.

Despite the similar meaning of the parameters p and qND and, consequently,

despite the common rationale for assuming a periodic variation on them, we

stress that modifying the former or the latter produces a different effect on the

position of the center. Namely, as we shall see in Subsection 3.1, an increase

in parameter qND in (3.2) will generally affect the position of both components

of the center, while in Subsection 3.2 we will find that raising p in (3.1) affects

just the ordinate of the center. Moreover, as mentioned above, orbits are run

clockwise for System (3.1) and counterclockwise for System (3.2). Since in the

proofs of our results about LTMs (cf. Theorems 3.1 and 3.2) we need to in-

troduce the rotation number and count the laps completed by suitable paths

around the center, those computations turn out to be more intuitive when orbits

are run counterclockwise. For such reason, we start focusing on the framework

taken from [4] in Subsection 3.1, turning to the analysis of the setting in [3] in

Subsection 3.2.

3.1. Analysis of the framework in Antoci et al. (2018)

Recalling that P := pDqD − pNDqND, when setting ζ = BPH , η = P E =

(pDqD − pNDqND)E, ϑ = qND(CL − pNDE), κ = (qND − qD)CL + P E =

qND(CL − pNDE) + qD(pDE − CL), System (3.2) becomes





d ′ = d(1− d) (ζ − η ℓ)

ℓ ′ = ℓ(1− ℓ) (−ϑ+ κd)

(3.4)

with d(t), ℓ(t) ∈ [0, 1]. Focusing on the case 0 < ζ < η and 0 < ϑ < κ, the

center is given by S =
(
ϑ
κ
, ζ
η

)
and it is immediate to see that if qND increases,

reaching an higher value q̂ND, then ζ does not vary, while η falls and ϑ, κ raise.

Calling η̂, ϑ̂, κ̂ the new parameter values and V =
(
ϑ̂
κ̂
, ζ
η̂

)
the new equilibrium,
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it is a global center of the perturbed system





d ′ = d(1− d) (ζ − η̂ ℓ)

ℓ ′ = ℓ(1− ℓ)
(
−ϑ̂+ κ̂d

) (3.5)

as long as 0 < ζ < η̂ and 0 < ϑ̂ < κ̂. In particular, due to the increase in qND,

the ordinate of V will surely be larger than that of S, and a simple computation

shows that the abscissa of V is always larger than that of S, too. Namely, this

is the case illustrated in Figures 1–3, which should help the reader to better

understand Definition 3.1 of linked annuli and to follow the proof of Theorem

3.1.

Let us start by precisely defining what two linked annuli are in the present

framework. To such aim we notice that, by the results recalled after System

(3.3), the orbits for System (3.4) surrounding S have equation

HS(d, ℓ) = −ϑ log(d)+(ϑ−κ) log(1−d)− ζ log(ℓ)+(ζ−η) log(1− ℓ) = e (3.6)

for some e > e0, where e0 := −ϑ log(ϑ
κ
) + (ϑ − κ) log(1 − ϑ

κ
) − ζ log( ζ

η
) + (ζ −

η) log(1 − ζ
η
) is the minimum “energy” level attained by HS(d, ℓ) on the unit

square. Indeed, by the previously recalled results from [29], HS admits S as

minimum point. Setting ΓS(e) = {(d, ℓ) ∈ (0, 1)2 : HS(d, ℓ) = e}, for some

e > e0, this is a simple closed curve surrounding S. We call annulus around S

any set CS(e1, e2) = {(d, ℓ) ∈ (0, 1)2 : e1 ≤ HS(d, ℓ) ≤ e2} with e0 < e1 < e2,

so that the inner boundary of CS(e1, e2) coincides with ΓS(e1) and the outer

boundary coincides with ΓS(e2).

Similarly, the orbits for System (3.5) surrounding V have equation

HV (d, ℓ) = −ϑ̂ log(d)+(ϑ̂− κ̂) log(1−d)−ζ log(ℓ)+(ζ− η̂) log(1−ℓ) = h (3.7)

for some h > h0, where h0 := HV (V ) is the minimum “energy” level attained by

HV (d, ℓ) on the unit square. The sets ΓV (h) = {(d, ℓ) ∈ (0, 1)2 : HV (d, ℓ) = h}

are simple closed curves surrounding V for every h > h0, and we call annulus

around V any set CV (h1, h2) = {(d, ℓ) ∈ (0, 1)2 : h1 ≤ HV (d, ℓ) ≤ h2} with
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h0 < h1 < h2, whose inner boundary coincides with ΓV (h1) and whose outer

boundary coincides with ΓV (h2).

Let us consider the straight line r joining S and V and define on it the ordering

inherited from the horizontal axis, so that given P = (dP , ℓP ) and Q = (dQ, ℓQ)

belonging to r it holds that P ⊳ Q (resp. P E Q) if and only if dP < dQ (resp.

dP ≤ dQ). We are now in position to introduce the following:

Definition 3.1. Given the annulus CS(e1, e2) around S and the annulus CV (h1, h2)

around V, we say that they are linked together if

S2,− ⊳ S1,− E V2,− ⊳ V1,− E S1,+ ⊳ S2,+ E V1,+ ⊳ V2,+

where, for i ∈ {1, 2}, Si,− and Si,+ denote the intersection points6 between

ΓS(ei) and the straight line r, with Si,− ⊳ S ⊳ Si,+, and, similarly, Vi,− and

Vi,+ denote the intersection points between ΓV (hi) and r, with Vi,− ⊳ V ⊳ Vi,+.

We refer the reader to Figure 1 for a pictorial illustration of Definition 3.1. In

order not to overburden the pictures, we drew the unit square, containing all

orbits for both Systems (3.4) and (3.5), just in Figure 1 (A), but we will omit

to represent it in the next pictures.

In view of stating and proving Theorem 3.1, we have to explain how the switch

between the regimes described by Systems (3.4) and (3.5) occurs. Due to the

above recalled seasonality in hypertension and its connection with perioperative

adverse events, we can suppose that qND in (3.2) alternate in a periodic fashion

between a low and a high value. We will then assume that our dynamical

system is described by (3.4) for t ∈ [0, TS), while it is described by (3.5) for

t ∈ [TS , TS + TV ), and that the same alternation between the two regimes

6We stress that, for ei > e0 and hi > h0, i ∈ {1, 2}, the boundary sets ΓS(ei) and ΓV (hi)

intersect the straight line r in exactly two points because {(d, ℓ) ∈ (0, 1)2 : HS(d, ℓ) ≤ e} and

{(d, ℓ) ∈ (0, 1)2 : HV (d, ℓ) ≤ h}, coinciding with the lower contour sets of the convex functions

HS in (3.6) and HV in (3.7), are star-shaped for all e > e0 and for every h > h0, respectively.

We will need the star-shapedness of those lower contour sets along the proof of Theorem 3.1,

too.
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(A) (B)

Figure 1: In (A) we represent some energy level lines associated with System (3.4), in red,
surrounding S, as well as some energy level lines associated with System (3.5), in blue, sur-
rounding V. In (B), suitably choosing two level lines for each system, we obtain two linked
together annuli, according to Definition 3.1.

occurs with T -periodicity, where T = TS + TV . In other terms, we can suppose

that we are dealing with a system with periodic coefficients of the form




d ′ = d(1− d) (ζ(t)− η(t)ℓ)

ℓ ′ = ℓ(1− ℓ) (−ϑ(t) + κ(t)d)

(3.8)

where ζ(t) ≡ ζ and, for x ∈ {η, ϑ, κ}, it holds that

x(t) =





x for t ∈ [0, TS)

x̂ for t ∈ [TS , T )

(3.9)

with 0 < ζ < η̂, 0 < ϑ < κ and 0 < ϑ̂ < κ̂. Hence, the functions η(t), ϑ(t) and

κ(t) are piecewise constant and they are supposed to be extended to the whole

real line by T -periodicity.

Let us finally introduce our last needed ingredient, i.e., the Poincaré map Ψ

of System (3.8), which associates with any initial condition (d0, ℓ0) belonging

to the open unit square the position at time T of the solution ς( · , (d0, ℓ0)) =

(d( · , (d0, ℓ0)), ℓ( · , (d0, ℓ0))) to (3.8) starting at time t = 0 from (d0, ℓ0). In sym-
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bols, Ψ : (0, 1)2 → (0, 1)2, (d0, ℓ0) 7→ ς(T, (d0, ℓ0)). We remark that, along the

paper, solutions are meant in the Carathéodory sense, i.e., they are absolutely

continuous and satisfy the corresponding system for almost every t ∈ R. No-

tice that Ψ may be decomposed as Ψ = ΨV ◦ ΨS , where ΨS is the Poincaré

map associated with System (3.4) for t ∈ [0, TS ] and ΨV is the Poincaré map

associated with System (3.5) for t ∈ [0, TV ]. Moreover, since every annulus

CS(e1, e2) around S is invariant under the action of the map ΨS , being com-

posed of the invariant orbits ΓS(e), for e ∈ [e1, e2], and, similarly, since every

annulus CV (h1, h2) around V is invariant under the action of the map ΨV , it

holds that every pair of linked twist annuli is invariant under the action of the

composite map Ψ. In Theorem 3.1 we will denote by τS(e), for all e > e0, the pe-

riod of ΓS(e), i.e., the time needed by the solution ςS( · , (d0, ℓ0)) to System (3.4),

starting from any (d0, ℓ0) ∈ ΓS(e), to complete one turn around S moving along

ΓS(e), and by τV (h), for all h > h0, the period of ΓV (h), i.e., the time needed by

the solution ςV ( · , (d0, ℓ0)) to System (3.5), starting from any (d0, ℓ0) ∈ ΓV (h),

to complete one turn around V moving along ΓV (h). A straightforward analysis

of the phase portrait shows that both orbits surrounding S or V are run coun-

terclockwise. As recalled above, the increasing monotonicity of τS( · ) and of

τV ( · ) with the energy levels has been proven in [46, 47]. Hence, for any annulus

CS(e1, e2) around S it holds that τS(e1) < τS(e2), as well as for each annulus

CV (h1, h2) around V it holds that τV (h1) < τV (h2).

Our result about System (3.8) reads as follows:

Theorem 3.1. For any choice of the parameters 0 < ζ < η and 0 < ϑ < κ,

defined like in System (3.4), and for any increase in the parameter qND such

that 0 < ζ < η̂ and 0 < ϑ̂ < κ̂, given the annulus CS(e1, e2) around S, for

some e0 < e1 < e2, and the annulus CV (h1, h2) around V, for some h0 <

h1 < h2, assume that they are linked together, calling A and B the connected

components of CS(e1, e2) ∩ CV (h1, h2). Then, if TS >
11 τS(e1)τS(e2)

2 (τS(e2)−τS(e1))
and TV >

9 τV (h1)τV (h2)
2 (τV (h2)−τV (h1))

, the Poincaré map Ψ = ΨV ◦ΨS of System (3.8) induces chaotic

dynamics on two symbols in A and in B, and thus all the properties listed in
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Theorem 2.1 are fulfilled for Ψ.

We can summarize the statement of Theorem 3.1 by saying that any time we

have two linked together annuli corresponding to Systems (3.4) and (3.5), then,

if the switching times between the regimes described by Systems (3.4) and (3.5)

are sufficiently large, the Poincaré map Ψ = ΨV ◦ΨS induces chaotic dynamics

on two symbols in the sets in which the two annuli cross, and thus all properties

listed in Theorem 2.1 hold for Ψ.

Proof of Theorem 3.1. Given the linked together annuli CS(e1, e2) and CV (h1, h2),

let us set CS(e1, e2) = CuS(e1, e2) ∪ CdS(e1, e2) and CV (h1, h2) = CuV (h1, h2) ∪

CdV (h1, h2), where u (resp. d) stands for “up” (resp. “down”), and indeed

CuS(e1, e2) (resp. CdS(e1, e2)) is the subset of CS(e1, e2) which lies above (resp.

below) the straight line r, joining S and V, and, analogously, CuV (h1, h2) (resp.

CdV (h1, h2)) is the subset of CV (h1, h2) which lies above (resp. below) the straight

line r. See Figure 2 for a graphical illustration.

Figure 2: Given the linked together annuli CS(e1, e2) and CV (h1, h2), we represent in yellow
the set Cu

S(e1, e2) and in light blue the set Cu
V (h1, h2), both lying above the straight line r,

joining the centers S and V, while we represent in orange the set Cd
S(e1, e2) and in dark blue

the set Cd
V (h1, h2), both lying below the straight line r. Notice that Cd

S(e1, e2) and Cd
V (h1, h2)

cross in A (colored in dark green), and that Cu
S(e1, e2) and Cu

V (h1, h2) cross in B (colored in
light green).

Let us also set A := CdS(e1, e2) ∩ CdV (h1, h2) and B := CuS(e1, e2) ∩ CuV (h1, h2).

We are going to show that, when orienting them by setting A− = A−
l ∪ A−

r
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and B− = B−
l ∪ B−

r , with A−
l := A ∩ ΓS(e1), A

−
r := A ∩ ΓS(e2), B

−
l := B ∩

ΓV (h1), B
−
r := B ∩ ΓV (h2), then conditions (CF ) and (CG) in Theorem 2.1 are

fulfilled for the oriented rectangles Ã := (A,A−) and B̃ := (B,B−) with F = ΨS

and G = ΨV . Then the Poincaré map Ψ = ΨV ◦ ΨS of System (3.8) induces

chaotic dynamics on two symbols in A and thus, since Ψ is a homeomorphism

on the open unit square, all the properties listed in Theorem 2.1 are fulfilled

for Ψ. This will conclude the verification of the first half of our result. Namely,

the proof will be complete when we will show that conditions (CF ) and (CG)

in Theorem 2.1 are fulfilled with F = ΨS and G = ΨV also when interchanging

the role of A and B, after having suitably modified their orientation, since from

this it will follow that Ψ induces chaotic dynamics on two symbols in B, too.

Checking that condition (CF ) in Theorem 2.1 is fulfilled with F = ΨS with

respect to Ã and B̃ amounts to find two disjoint compact subsets H0, H1 of A

such that (Hi,ΨS) : Ã ≎−→B̃, for i = 0, 1. To such aim, we need to consider the

image γ through ΨS of any path γ : [0, 1] → A joiningA−
l withA−

r and, recalling

that orbits for System (3.4) are run counterclockwise, count how many times it

completely crosses B, from B−
l to B−

r , when TS is large enough. In particular,

we will show that, in order for H0, H1 as above to exist, two complete crossings

have to occur between γ and B. This will allow us to determine as lower bound

on TS the constant kS := 11 τS(e1)τS(e2)
2 (τS(e2)−τS(e1))

, recalling that τS(e1) < τS(e2).

In view of counting the turns completed by the image of a path around S,

we introduce a system of generalized polar coordinates centered at S. Namely,

assuming to have performed the rototranslation of R
2 that brings the origin

to the point S and makes the horizontal axis coincide with the straight line

r, we can express the solution ςS(t , (d0, ℓ0)) = (d(t , (d0, ℓ0)), ℓ(t , (d0, ℓ0))) to

System (3.4) with initial point in (d0, ℓ0) ∈ (0, 1)2 through the radial coordinate

ρS(t, (d0, ℓ0)) = ‖ςS(t , (d0, ℓ0)) − S‖ and the angular coordinate θS(t, (d0, ℓ0))

as ςS(t , (d0, ℓ0)) = ρS(t, (d0, ℓ0)) (cos(θS(t, (d0, ℓ0))), sin(θS(t, (d0, ℓ0)))). Since

orbits for System (3.4) are run counterclockwise, we define the rotation number,

describing the normalized angular displacement of ςS(t , (d0, ℓ0)) during the time
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interval [0, t] ⊆ [0, TS ], as

rotS(t, (d0, ℓ0)) :=
θS(t, (d0, ℓ0))− θS(0, (d0, ℓ0))

2π
. (3.10)

For e > e0, as a consequence of the star-shapedness with respect to S of the

lower contour sets {(d, ℓ) ∈ (0, 1)2 : HS(d, ℓ) ≤ e}, with HS as in (3.6), and

recalling that τS(e) is the time needed by the solution ςS( · , (d0, ℓ0)) to System

(3.4), starting from any (d0, ℓ0) ∈ ΓS(e), to complete one turn around S moving

along ΓS(e), the following properties hold true for every (d0, ℓ0) ∈ ΓS(e), for all

t ∈ [0, TS ] and for each n ∈ N \ {0} :

rotS(t, (d0, ℓ0)) < n ⇐⇒ t < n τS(e)

rotS(t, (d0, ℓ0)) = n ⇐⇒ t = n τS(e)

rotS(t, (d0, ℓ0)) > n ⇐⇒ t > n τS(e)

(3.11)

so that rotS(t, (d0, ℓ0)) ∈ (n, n+ 1) ⇐⇒ t ∈ (n τS(e), (n+ 1) τS(e)).

As explained above, in order to check that condition (CF ) in Theorem 2.1 is

fulfilled with F = ΨS with respect to Ã and B̃, we have to find two disjoint

compact subsets H0, H1 of A such that (Hi,ΨS) : Ã ≎−→B̃, for i = 0, 1. Let then

γ : [0, 1] → A, λ 7→ γ(λ), be any path such that γ(0) ∈ A−
l and γ(1) ∈ A−

r . For

every λ ∈ [0, 1], we consider the position ΨS(γ(λ)) at time TS of the solution

ςS(t , γ(λ)) to System (3.4) starting at t = 0 from γ(λ) ∈ A, as well as the

angular coordinate θS(TS , γ(λ)) associated with it. Notice that the function

λ 7→ θS(TS , γ(λ)) is continuous due to the continuity of γ and by the continuous

dependence of the solutions from the initial data. Since A−
l ⊂ ΓS(e1) and A−

r ⊂

ΓS(e2), recalling that τS(e1) < τS(e2), we claim that if TS > 11 τS(e1)τS(e2)
2 (τS(e2)−τS(e1))

then7 θS(TS , γ(0)) − θS(TS , γ(1)) > 5π. If this is the case, there exists n∗ ∈ N

such that [2n∗π, 2n∗π + π] and [2(n∗ + 1)π, 2(n∗ + 1)π + π] are contained in

7We stress that the proof of the properties regarding the system centered at S is valid

also when TS =
11 τS(e1)τS(e2)

2 (τS(e2)−τS(e1))
and, similarly, the verification of the features concerning

the system centered at V works even when TV =
9 τV (h1)τV (h2)

2 (τV (h2)−τV (h1))
. However, the strict

inequalities make our result robust with respect to small perturbations in the coefficients of
System (3.8), as better explained below.
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the interval {θS(TS , γ(λ)) : λ ∈ [0, 1]}. Hence, by Bolzano theorem, there exist

two disjoint maximal intervals [λ′0, λ
′′
0 ], [λ

′
1, λ

′′
1 ] of [0, 1] such that for i ∈ {0, 1}

it holds that {θS(TS , γ(λ)) : λ ∈ [λ′i, λ
′′
i ]} ⊆ [2(n∗ + i)π, 2(n∗ + i)π + π], with

θS(TS , γ(λ
′
i)) = 2(n∗ + i)π and θS(TS , γ(λ

′′
i )) = 2(n∗ + i)π+π. We can then set

Hi := {(d0, ℓ0) ∈ A : θS(TS , (d0, ℓ0)) ∈ [2(n∗+ i)π, 2(n∗+ i)π+π]} for i ∈ {0, 1}

in order to have the stretching relation

(Hi,ΨS) : Ã ≎−→B̃ (3.12)

satisfied. Namely, for i ∈ {0, 1}, Hi is a compact set containing {γ(λ) : λ ∈

[λ′i, λ
′′
i ]}. Moreover, we have proved that, for i ∈ {0, 1} and λ ∈ [λ′i, λ

′′
i ],

it holds that γ(λ) ∈ Hi, ΨS(γ(λ)) ∈ CuS(e1, e2) and HS(ΨS(γ(λ
′
i))) ≤ h1,

HS(ΨS(γ(λ
′′
i ))) ≥ h2. Then, there exists [λ

∗
i , λ

∗∗
i ] ⊆ [λ′i, λ

′′
i ] such that ΨS(γ(λ)) ∈

B for every λ ∈ [λ∗i , λ
∗∗
i ], andHS(ΨS(γ(λ

∗
i ))) = h1, HS(ΨS(γ(λ

∗∗
i ))) = h2. Since

B−
l := B ∩ ΓV (h1), B

−
r := B ∩ ΓV (h2), this means that ΨS(γ(λ

∗
i )) ∈ B−

l and

ΨS(γ(λ
∗∗
i )) ∈ B−

r , concluding the verification of (3.12). See Figure 3 (A).

We then have to check our claim that TS >
11 τS(e1)τS(e2)

2 (τS(e2)−τS(e1))
implies that

θS(TS , γ(0)) − θS(TS , γ(1)) > 5π, where γ : [0, 1] → A is any path such that

γ(0) ∈ A−
l := A ∩ ΓS(e1) and γ(1) ∈ A−

r := A ∩ ΓS(e2). Since rotS(t, γ(0)) ≥

⌊t/τS(e1)⌋ and rotS(t, γ(1)) ≤ ⌈t/τS(e2)⌉ for every t > 0, it follows that

rotS(t, γ(0))− rotS(t, γ(1)) ≥ ⌊t/τS(e1)⌋ − ⌈t/τS(e2)⌉ > t
τS(e2)− τS(e1)

τS(e1) τS(e2)
− 2

(3.13)

for every t > 0. As a consequence, for TS >
11 τS(e1)τS(e2)

2 (τS(e2)−τS(e1))
it holds that

rotS(TS , γ(0))− rotS(TS , γ(1)) > TS
τS(e2)− τS(e1)

τS(e1) τS(e2)
− 2 >

11

2
− 2 =

7

2
> 3.

Hence, θS(TS , γ(0)) − θS(TS , γ(1)) > 6π + θS(0, γ(0)) − θS(0, γ(1)). Since γ ⊂

A := CdS(e1, e2)∩CdV (h1, h2), we have that θS(0, γ(0)), θS(0, γ(1)) ∈ [−π, 0], and

thus θS(0, γ(0)) − θS(0, γ(1)) > −π, from which it follows that θS(TS , γ(0)) −

θS(TS , γ(1)) > 5π, as desired.

Let us now turn to the proof that condition (CG) in Theorem 2.1 is fulfilled

with G = ΨV with respect to B̃ and Ã, i.e., that ΨV : B̃ ≎−→Ã. To such aim,
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we need to consider the image through ΨV of any path σ : [0, 1] → B join-

ing B−
l with B−

r and check that it completely crosses A, from A−
l to A−

r , at

least once when TV > 9 τV (h1)τV (h2)
2 (τV (h2)−τV (h1))

, recalling that orbits for System (3.5)

are run counterclockwise and that τV (h1) < τV (h2). Also in this case we in-

troduce a system of generalized polar coordinates, but centered at V. Namely,

assuming to have performed the rototranslation of R2 that brings the origin to

the point V and that makes the horizontal axis coincide with the straight line

r, we can express the solution ςV (t , (d0, ℓ0)) = (d(t , (d0, ℓ0)), ℓ(t , (d0, ℓ0))) to

System (3.5) with initial point in (d0, ℓ0) ∈ (0, 1)2 through the radial coordinate

ρV (t, (d0, ℓ0)) = ‖ςV (t , (d0, ℓ0))− V ‖ and the angular coordinate θV (t, (d0, ℓ0))

as ςV (t , (d0, ℓ0)) = ρV (t, (d0, ℓ0)) (cos(θV (t, (d0, ℓ0))), sin(θV (t, (d0, ℓ0)))). Since

orbits for System (3.5) are still run counterclockwise, we can define the rotation

number as

rotV (t, (d0, ℓ0)) :=
θV (t, (d0, ℓ0))− θV (0, (d0, ℓ0))

2π
, (3.14)

describing the normalized angular displacement during the time interval [0, t] ⊆

[0, TV ] of ςV (t , (d0, ℓ0)).

Let then σ : [0, 1] → B be any path such that σ(0) ∈ B−
l and σ(1) ∈ B−

r . We are

going to show that if TV > 9 τV (h1)τV (h2)
2 (τV (h2)−τV (h1))

then θV (TV , σ(0))−θV (TV , σ(1)) >

3π. Since B−
l := B ∩ ΓV (h1), B

−
r := B ∩ ΓV (h2), it holds that rotV (t, σ(0)) ≥

⌊t/τV (h1)⌋ and rotV (t, σ(1)) ≤ ⌈t/τV (h2)⌉ for every t > 0, and thus rotV (t, σ(0))−

rotV (t, σ(1)) > t τV (h2)−τV (h1)
τV (h1) τV (h2)

− 2, similar to (3.13). Hence, for

TV > 9 τV (h1)τV (h2)
2 (τV (h2)−τV (h1))

it holds that

rotV (TV , σ(0))− rotV (TV , σ(1)) > TV
τV (h2)− τV (h1)

τV (h1) τV (h2)
− 2 >

9

2
− 2 =

5

2
> 2.

Recalling that B := CuS(e1, e2) ∩ CuV (h1, h2), since σ ⊂ B, we have that

θV (TV , σ(0)) − θV (TV , σ(1)) > 4π + θV (0, σ(0)) − θV (0, σ(1)) > 4π − π = 3π,

as needed, because θV (0, σ(0)), θV (0, σ(1)) ∈ [0, π], and thus θV (0, σ(0)) −

θV (0, σ(1)) > −π.

Then, there exists n∗∗ ∈ N such that [(2n∗∗+1)π, (2n∗∗+2)π] ⊂ {θV (TV , σ(λ)) :

λ ∈ [0, 1]} and, consequently, there exists [λ′, λ′′] ⊆ [0, 1] such that
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{θV (TV , σ(λ)) : λ ∈ [λ′, λ′′]} ⊆ [(2n∗∗ + 1)π, (2n∗∗ + 2)π], with θV (TV , σ(λ
′)) =

(2n∗∗ +1)π and θV (TV , σ(λ
′′)) = (2n∗∗ +2)π. Thus, ΨV (σ(λ)) ∈ CdV (h1, h2) for

every λ ∈ [λ′, λ′′] and HV (ΨV (σ(λ
′))) ≤ e1, HV (ΨV (σ(λ

′′))) ≥ e2. Then, there

exists [λ∗, λ∗∗] ⊆ [λ′, λ′′] such that ΨV (σ(λ)) ∈ A for every λ ∈ [λ∗, λ∗∗], and it

holds that HV (ΨV (σ(λ
∗))) = e1, HV (ΨV (σ(λ

∗∗))) = e2, so that the stretching

relation ΨV : B̃ ≎−→Ã is verified. See Figure 3 (B).

Since we have checked that conditions (CF ) and (CG) in Theorem 2.1 are ful-

filled for the oriented rectangles Ã := (A,A−) and B̃ := (B,B−) with F = ΨS

and G = ΨV , it follows that Ψ = ΨV ◦ ΨS induces chaotic dynamics on two

symbols in A. Given that Ψ is a homeomorphism on the open unit square, it

is injective on the set H := (H0 ∪ H1) ∩ ΨS
−1(B), and thus all the properties

listed in Theorem 2.1 are fulfilled for Ψ.

In order to verify that Ψ induces chaotic dynamics on two symbols in B, too,

we orientate A by setting A−
l := A ∩ ΓV (h1), A

−
r := A ∩ ΓV (h2), B

−
l :=

B∩ΓS(e1), B
−
r := B∩ΓS(e2), and we should show that the image through ΨS of

any path joining in B the sides B−
l and B−

r crosses A, from A−
l to A−

r , at least

twice when TS >
11 τS(e1)τS(e2)

2 (τS(e2)−τS(e1))
, and then check that the image through ΨV of

any path in A joining A−
l with A−

r crosses B, from B−
l to B−

r , at least once when

TV > 9 τV (h1)τV (h2)
2 (τV (h2)−τV (h1))

. Namely, this amounts to show that (Ki,ΨS) : B̃ ≎−→Ã

for suitable compact disjoint subsets Ki of B, for i ∈ {0, 1}, as well as that

ΨV : Ã ≎−→B̃. Due to the similarity with the above proved properties, we leave

the details in the verification of new conditions (CF ) and (CG) in Theorem 2.1

to the reader. Then, by Theorem 2.1 it holds that Ψ induces chaotic dynamics

on two symbols in B, too, as desired.

The proof is complete. �

As it is clear from the proof of Theorem 3.1, the chaotic dynamics on two

symbols are the result of the twist property for the rotation number, produced by

the different speeds with which the inner and the outer boundaries of two linked

together annuli are run. Namely, for large enough time-intervals this suffices to

make the image of paths through the Poincaré maps related to Systems (3.4)

and (3.5) turn in a spiral-like fashion inside the annuli and cross a suitably
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(A) (B)

Figure 3: In (A) we provide a qualitative representation of what happens when the stretching
relation in (3.12) is fulfilled. Namely, for any path γ (in purple) joining A−

l
to A−

r in A, there
exist two compact subsets H0 and H1 (in lilac) of A such that the restriction (represented in
brown) of γ to each of them is transformed by ΨS into a path (represented in brown) joining
B−

l
to B−

r in B. In (B) we provide a qualitative representation of the effect produced on each

of those two paths by the stretching relation ΨV : B̃ ≎−→Ã. In this case the Poincaré map ΨV

transforms those paths into paths (hazel colored) joining A−

l
to A−

r in A.

high number of times the intersection sets between the linked annuli, where

the invariant chaotic sets are located. See Figure 3 for a qualitative graphical

representation of our framework, as well as Figures 4 and 5 in [35] for a similar

scenario, in which the spiral effect is clearly illustrated. Indeed, if the switching

times TS and TV were still larger, it could be proven that the Poincaré map

Ψ = ΨV ◦ ΨS associated with System (3.8) induces chaotic dynamics on m

symbols, where m is any number greater or equal to 2, implying the existence

of a semi-conjugacy between Ψ and Σm := {0, 1, . . . ,m−1}Z and, consequently,

implying the estimate htop(Ψ) ≥ log(m) for the topological entropy. See Lemma

3.1 and Theorem 1.2 in [41] for further details.

We also stress that Theorem 3.1 is robust with respect to small perturbations

in the coefficients of System (3.8), in L1 norm. Namely, if TS and TV satisfy the

conditions described in its statement, then, recalling the definition of System

(3.8) and of its coefficients in (3.9), there exists a positive constant ε such that
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the same conclusions of Theorem 3.1 hold true for the system





d ′ = d(1− d)
(
ζ̃(t)− η̃(t)ℓ

)

ℓ ′ = ℓ(1− ℓ)
(
−ϑ̃(t) + κ̃(t)d

)

with ζ̃, η̃, ϑ̃, κ̃ : R → R that are T -periodic functions, as long as

∫ T

0

∣∣ ζ̃(t)− ζ
∣∣ dt < ε,

∫ T

0

∣∣ η̃(t)− η(t)
∣∣ dt < ε,

∫ T

0

∣∣ ϑ̃(t)− ϑ(t)
∣∣ dt < ε,

∫ T

0

∣∣ κ̃(t)− κ(t)
∣∣ dt < ε.

All the above remarks apply, with the suitable modifications, to the frameworks

discussed in Subsection 3.2 and in Section 4, too.

We conclude the present investigation concerning the model proposed in [4] by

illustrating a numerical example, in which Theorem 3.1 can be used to show the

existence of chaotic dynamics.

Example 3.1. Taking pD = 0.9, pND = 0.1, qD = 0.1, qND = 0.2 < q̂ND =

0.3, BPH = 6, E = 140, CL = 90, we obtain System (3.4) with ζ = BPH =

6, η = (pDqD−pNDqND)E = 9.8, ϑ = qND(CL−pNDE) = 15.2, κ = qND(CL−

pNDE)+qD(pDE−CL) = 18.8, as well as System (3.5) with ζ = BPH = 6, η̂ =

(pDqD − pND q̂ND)E = 8.4, ϑ̂ = q̂ND(CL − pNDE) = 22.8, κ̂ = q̂ND(CL −

pNDE) + qD(pDE −CL) = 26.4. Hence, the former system has a center in S =(
ϑ
κ
, ζ
η

)
= (0.809, 0.612), while the latter system has a center in V =

(
ϑ̂
κ̂
, ζ
η̂

)
=

(0.864, 0.714).

As shown in Figure 4, two linked together annuli CS(e1, e2) and CV (h1, h2) can

be obtained 8 for e1 = 16.9, e2 = 18.5, h1 = 16.9, h2 = 18.4, intersecting in the

8We remark that, with respect to Figures 1–3, Figure 4 is drawn for a different (more sen-

sible, from an interpretative viewpoint) parameter configuration. However, in Figure 4 orbits

are more squeezed, especially for System (3.5), so that the sets specified in the previous pic-

tures would have been more difficult to highlight in the present context. Namely, Figures 1–3

just illustrate Definition 3.1 and Theorem 3.1, but we do not assign to them any interpretative

value.
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two disjoint generalized rectangles denoted by A and B. In this case, software-

assisted computations show that τS(e1) ≈ 3.2 < τS(e2) ≈ 3.8 and τV (h1) ≈ 3 <

τV (h2) ≈ 3.3. Hence, Theorem 3.1 guarantees the existence of chaotic dynamics

for the Poincaré map Ψ = ΨV ◦ΨS associated with System (3.8) provided that

TS > 11 τS(e1)τS(e2)
2 (τS(e2)−τS(e1))

≈ 111.467 and TV > 9 τV (h1)τV (h2)
2 (τV (h2)−τV (h1))

≈ 148.500. Thus,

considering T = TS + TV = 365, i.e., a period of one year, and assuming for

instance that TS = TV , i.e., that across the year the hot and the cold days are

equally distributed, in which, according e.g. to [1, 13], hypertension phenomena

fall and raise, respectively, then it is possible to apply Theorem 3.1 to conclude

that Ψ induces chaotic dynamics on two symbols in A and B.

Figure 4: The two linked together annuli CS(e1, e2) (whose boundary is colored in red) and
CV (h1, h2) (whose boundary is colored in blue) considered in Example 3.1, together with the
corresponding phase portrait.

3.2. Analysis of the framework in Antoci et al. (2016)

Recalling that ED = qDR − (1 − qD)K and END = qNDR − (1 − qND)K,

when setting λ = END − ED, µ = CD − CND, ν = END − CL, System (3.1)

becomes 



d ′ = d(1− d) (pλℓ− µ)

ℓ ′ = ℓ(1− ℓ)p (ν − λd)

(3.15)
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with d(t), ℓ(t) ∈ [0, 1]. Focusing on the case 0 < µ < pλ and 0 < ν < λ, the

center is given by S =
(
ν
λ
, µ
pλ

)
and thus if p increases, reaching an higher value

p̂, calling V =
(
ν
λ
, µ
p̂λ

)
the new equilibrium, it is a global center of the perturbed

system 



d ′ = d(1− d) (p̂λℓ− µ)

ℓ ′ = ℓ(1− ℓ)p̂ (ν − λd)

(3.16)

as long as 0 < µ < p̂λ and 0 < ν < λ. In particular, due to the raise in p, the

abscissa of V coincides with that of S, while the ordinate of V is smaller than

that of S.

In what follows, we describe just the main steps that allow to state and prove

a result analogous to Theorem 3.1, focusing on the differences with Subsection

3.1. In order to simplify the comparison between Subsections 3.1 and 3.2, we

will maintain the notation introduced therein to denote similar objects.

The orbits for System (3.15) surrounding S have equation

HS(d, ℓ) = −pν log(d) + p(ν − λ) log(1− d)− µ log(ℓ) + (µ− pλ) log(1− ℓ) = e

(3.17)

for some e > e0, where e0 := −pν log( ν
λ
)+p(ν−λ) log(1− ν

λ
)−µ log( µ

pλ
)+(µ−

pλ) log(1 − µ
pλ

) is the minimum energy level attained by HS(d, ℓ) on the unit

square. The orbits for System (3.16) surrounding V have equation

HV (d, ℓ) = −p̂ν log(d) + p̂(ν − λ) log(1− d)− µ log(ℓ) + (µ− p̂λ) log(1− ℓ) = h

(3.18)

for some h > h0, where h0 := HV (V ) is the minimum energy level attained by

HV (d, ℓ) on the unit square.

In the present framework, the straight line r joining S and V is vertical, its

equation being d = ν
λ
. In order for Definition 3.1 of linked together annuli to

be still valid without the need of any change when considering annuli composed

of level lines of HS in (3.17) and of HV in (3.18), we define the ordering “⊳”

as a reversed comparison between the ordinate coordinates, so that given P =

(dP , ℓP ) and Q = (dQ, ℓQ) belonging to r, we have that dP = dQ and it holds
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that P ⊳ Q (resp. P E Q) if and only if ℓP > ℓQ (resp. ℓP ≥ ℓQ). See Figure

5 for a graphical illustration of the new geometrical configuration.

(A) (B)

Figure 5: In (A) we represent some energy level lines associated with System (3.15), in red,
surrounding S, as well as some energy level lines associated with System (3.16), in blue,
surrounding V. All of them are run clockwise. In (B), suitably choosing two level lines for
each system, we obtain two linked together annuli, according to Definition 3.1. Calling them
CS(e1, e2) and CV (h1, h2), we represent in yellow the set Cu

S(e1, e2) and in light blue the set
Cu
V (h1, h2), both lying on the left of the vertical line r, joining the centers S and V, while we

represent in orange the set Cd
S(e1, e2) and in dark blue the set Cd

V (h1, h2), both lying on the

right of r. Notice that Cd
S(e1, e2) and Cd

V (h1, h2) cross in A (colored in dark green), and that
Cu
S(e1, e2) and Cu

V (h1, h2) cross in B (colored in light green).

Similar to Subsection 3.1, due to the seasonal variation in hypertension and

the connection of the latter with perioperative adverse events, we can assume

that p in (3.1) alternate in a periodic fashion between a low and a high value,

so that the dynamics are governed by (3.15) for t ∈ [0, TS), and by (3.16) for

t ∈ [TS , TS+TV ).We suppose that the same alternation between the two regimes

occurs with T -periodicity, where T = TS + TV , i.e., we can assume that we are

dealing with a system with periodic coefficients of the form





d ′ = d(1− d) (p(t)λ(t)ℓ− µ(t))

ℓ ′ = ℓ(1− ℓ)p(t) (ν(t)− λ(t)d)

(3.19)
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where x(t) ≡ x, for x ∈ {λ, µ, ν}, and for p(t) it holds that

p(t) =





p for t ∈ [0, TS)

p̂ for t ∈ [TS , T )

(3.20)

with 0 < µ < pλ and 0 < ν < λ. The function p(t) is piecewise constant and it

is supposed to be extended to the whole real line by T -periodicity.

In regard to the Poincaré map Ψ of System (3.19), it may be decomposed as Ψ =

ΨV ◦ΨS , where ΨS is the Poincaré map associated with System (3.15) for t ∈

[0, TS ] and ΨV is the Poincaré map associated with System (3.16) for t ∈ [0, TV ].

Like for the framework analyzed in Subsection 3.1, the increasing monotonicity

of the period of the orbits surrounding S and V, denoted respectively by τS(e)

and τV (h), with the energy levels e > e0 and h > h0, has been proven in

[46, 47]. On the other hand, the analysis of the phase portrait shows that orbits

surrounding S and V are both run clockwise this time. Since such dissimilarity

with respect to the model proposed in [4] will urge us to modify, with respect to

Theorem 3.1, some details in the proof of our result on the existence of chaotic

dynamics for System (3.19) (compare in particular the definitions of rotation

number in (3.10) and (3.14) with those in (3.21) and (3.22), as well the estimates

following from them), we present its statement in a precise manner, together

with the main steps in its proof:

Theorem 3.2. For any choice of the parameters 0 < µ < pλ and 0 < ν < λ,

defined like in System (3.15), and for any increase in the parameter p, given the

annulus CS(e1, e2) around S, for some e0 < e1 < e2, and the annulus CV (h1, h2)

around V, for some h0 < h1 < h2, assume that they are linked together, calling

A and B the connected components of CS(e1, e2) ∩ CV (h1, h2). Then, if TS >

11 τS(e1)τS(e2)
2 (τS(e2)−τS(e1))

and TV > 9 τV (h1)τV (h2)
2 (τV (h2)−τV (h1))

, the Poincaré map Ψ = ΨV ◦ ΨS of

System (3.19) induces chaotic dynamics on two symbols in A and B, and thus

all the properties listed in Theorem 2.1 are fulfilled for Ψ.

Proof. Given the linked together annuli CS(e1, e2) and CV (h1, h2), let us set

CS(e1, e2) = CuS(e1, e2) ∪ CdS(e1, e2) and CV (h1, h2) = CuV (h1, h2) ∪ CdV (h1, h2),
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where CuS(e1, e2) (resp. CdS(e1, e2)) is the subset of CS(e1, e2) which lies on the

left (resp. on the right) of the vertical line r, joining S and V, and, anal-

ogously, CuV (h1, h2) (resp. CdV (h1, h2)) is the subset of CV (h1, h2) which lies

on the left (resp. on the right) of the vertical line r. See Figure 5 (B) for

a graphical illustration.9 Let us also set A := CdS(e1, e2) ∩ CdV (h1, h2) and

B := CuS(e1, e2) ∩ CuV (h1, h2). We are going to show that, when orienting them

by setting A− = A−
l ∪A−

r and B− = B−
l ∪ B−

r , with A−
l := A∩ ΓS(e1), A

−
r :=

A∩ ΓS(e2), B
−
l := B ∩ ΓV (h1), B

−
r := B ∩ ΓV (h2), then there exist two disjoint

compact subsets H0, H1 of A such that (Hi,ΨS) : Ã ≎−→B̃, for i = 0, 1, and

that ΨV : B̃ ≎−→Ã. If this is true, the Poincaré map Ψ = ΨV ◦ ΨS of System

(3.19) induces chaotic dynamics on two symbols in A and thus, since Ψ is a

homeomorphism on the open unit square, all the properties listed in Theorem

2.1 are fulfilled for Ψ.

In order to check the former stretching relation, we introduce a system of gener-

alized polar coordinates centered at S, as explained in the proof of Theorem 3.1,

assuming to have performed the rototranslation of R2 that brings the origin to

the point S and makes the horizontal axis coincide with the vertical line r. Since

orbits for System (3.15) are run clockwise, in order to count positive the turns

around S in the clockwise sense, we define the rotation number, describing the

normalized angular displacement during the time interval [0, t] ⊆ [0, TS ] of the

solution ςS(t , (d0, ℓ0)) to System (3.15) with initial point in (d0, ℓ0) ∈ (0, 1)2, as

RotS(t, (d0, ℓ0)) :=
θS(0, (d0, ℓ0))− θS(t, (d0, ℓ0))

2π
. (3.21)

For e > e0, as a consequence of the star-shapedness with respect to S of the

lower contour sets {(d, ℓ) ∈ (0, 1)2 : HS(d, ℓ) ≤ e}, with HS as in (3.17), con-

ditions in (3.11) are satisfied by RotS , too. Let us now consider a generic

9We stress that in this case the specifications u and d, staying respectively for “up” and
“down”, are meant with respect to the horizontal axis, before performing the rototranslation
of R2 that brings the origin to the point S and makes the horizontal axis coincide with the
vertical line r. As we shall see below, we need that rototranslation in order to introduce a
system of generalized polar coordinates centered at S, in view of defining the rotation number
in (3.21). We will then perform the same operation with respect to V, as well.
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path γ : [0, 1] → A with γ(0) ∈ A−
l , γ(1) ∈ A−

r . Similar to (3.13) and the

subsequent lines, it is easy to check that TS > 11 τS(e1)τS(e2)
2 (τS(e2)−τS(e1))

implies that

θS(TS , γ(1)) − θS(TS , γ(0)) > 5π. As a consequence, there exists n∗ ∈ N \ {0}

such that [−2(n∗+1)π,−2(n∗+1)π+π] and [−2n∗π,−2n∗π+π] are contained in

the interval {θS(TS , γ(λ)) : λ ∈ [0, 1]}. Hence, by Bolzano theorem, there exist

two disjoint maximal intervals [λ′0, λ
′′
0 ], [λ

′
1, λ

′′
1 ] of [0, 1] such that for i ∈ {0, 1}

it holds that {θS(TS , γ(λ)) : λ ∈ [λ′i, λ
′′
i ]} ⊆ [−2(n∗ + i)π,−2(n∗ + i)π + π],

with θS(TS , γ(λ
′
i)) = −2(n∗ + i)π and θS(TS , γ(λ

′′
i )) = −2(n∗ + i)π + π. It is

easy to check that we can then set Hi := {(d0, ℓ0) ∈ A : θS(TS , (d0, ℓ0)) ∈

[−2(n∗ + i)π,−2(n∗ + i)π + π]} for i ∈ {0, 1} in order to have the stretching

relation (Hi,ΨS) : Ã ≎−→B̃ satisfied.

To prove that ΨV : B̃ ≎−→Ã, we introduce a system of generalized polar coordi-

nates, now centered at V, defining in particular the rotation number as

RotV (t, (d0, ℓ0)) :=
θV (0, (d0, ℓ0))− θV (t, (d0, ℓ0))

2π
, (3.22)

since orbits for System (3.16) are run clockwise, too. Let σ : [0, 1] → B

be any path such that σ(0) ∈ B−
l and σ(1) ∈ B−

r . Then, similar to what

proven for RotS , we have RotV (t, σ(0)) − RotV (t, σ(1)) > t τV (h2)−τV (h1)
τV (h1) τV (h2)

−

2, and therefore if TV > 9 τV (h1)τV (h2)
2 (τV (h2)−τV (h1))

it follows that RotV (TV , σ(0)) −

RotV (TV , σ(1)) > 2, from which θV (TV , σ(1)) − θV (TV , σ(0)) > 3π, because

σ ⊂ B := CuS(e1, e2) ∩ CuV (h1, h2), and thus θV (0, σ(0)), θV (0, σ(1)) ∈ [0, π], im-

plying that θV (0, σ(1))− θV (0, σ(0)) > −π.

Hence, there exists n∗∗ ∈ N \ {0} such that [−2n∗∗π + π,−2n∗∗π + 2π] ⊂

{θV (TV , σ(λ)) : λ ∈ [0, 1]} and, consequently, there exists [λ′, λ′′] ⊆ [0, 1]

such that {θV (TV , σ(λ)) : λ ∈ [λ′, λ′′]} ⊆ [−2n∗∗π + π,−2n∗∗π + 2π], with

θV (TV , σ(λ
′)) = −2n∗∗π + π and θV (TV , σ(λ

′′)) = −2n∗∗π + 2π. This easily

allows to verify the stretching relation ΨV : B̃ ≎−→Ã.

Having proved that conditions (CF ) and (CG) in Theorem 2.1 are fulfilled for

the oriented rectangles Ã := (A,A−) and B̃ := (B,B−) with F = ΨS and

G = ΨV , it follows that Ψ = ΨV ◦ΨS induces chaotic dynamics on two symbols

in A. Since Ψ is a homeomorphism on the open unit square, it is injective on
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the set H := (H0∪H1)∩ΨS
−1(B), and thus all the properties listed in Theorem

2.1 are fulfilled for Ψ.

In order to check that Ψ induces chaotic dynamics on two symbols in B, too,

we orientate A by setting A−
l := A ∩ ΓV (h1), A

−
r := A ∩ ΓV (h2), B

−
l :=

B ∩ ΓS(e1), B
−
r := B ∩ ΓS(e2), and we should show that (Ki,ΨS) : B̃ ≎−→Ã

for suitable compact disjoint subsets Ki of B, for i ∈ {0, 1}, as well as that

ΨV : Ã ≎−→B̃. The verification of the details is omitted. Then, by Theorem 2.1

it holds that Ψ induces chaotic dynamics on two symbols in B, as desired, and

the proof is complete. �

We now provide a numerical example about the model proposed in [3], in

which the existence of chaotic dynamics can be shown by using Theorem 3.2.

Example 3.2. Taking p = 0.1 < p̂ = 0.2, qD = 0.4, qND = 0.6, R = 130, K =

70, CD = 18, CND = 15, CL = 30, we obtain ED = qDR − (1 − qD)K =

10, END = qNDR− (1− qND)K = 50, and consequently Systems (3.15), (3.16)

with λ = END −ED = 40, µ = CD −CND = 3, ν = END −CL = 20. Since 0 <

µ < pλ and 0 < ν < λ, System (3.15) has a center in S =
(
ν
λ
, µ
pλ

)
= (0.5, 0.75),

while System (3.16) has a center in V =
(
ν
λ
, µ
p̂λ

)
= (0.5, 0.375). This is the

framework represented in Figure 5.

In particular, as shown in Figure 5 (B), two linked together annuli CS(e1, e2) and

CV (h1, h2) can be obtained for e1 = 5.4, e2 = 8.3, h1 = 12.1, h2 = 16.2, inter-

secting in the two disjoint generalized rectangles denoted by A and B. Software-

assisted computations show that τS(e1) ≈ 7.8 < τS(e2) ≈ 11.3 and τV (h1) ≈

3.6 < τV (h2) ≈ 4.5. Hence, Theorem 3.2 guarantees the existence of chaotic

dynamics for the Poincaré map Ψ = ΨV ◦ ΨS associated with System (3.19)

provided that TS > 11 τS(e1)τS(e2)
2 (τS(e2)−τS(e1))

≈ 138.5 and TV > 9 τV (h1)τV (h2)
2 (τV (h2)−τV (h1))

≈ 81.

Thus, considering a period of one year, and assuming that the hot and the cold

days are equally distributed across the year, together with their opposite effect

on hypertension phenomena (see e.g. [1, 13]), so that TS = TV = 365
2 , it is then

possible to apply Theorem 3.2 to conclude that Ψ induces chaotic dynamics on

two symbols in A and B.
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4. A biological framework with intraspecific competition

We finally present an ecological interpretation of the model in (3.3), con-

nected with intraspecific competition and environmental carrying capacity in

predator-prey models. Its precise formulation is given by





x ′ = rx x
(
1− x

Kx

)
(α− βy)

y ′ = ry y
(
1− y

Ky

)
(−γ + δx)

(4.1)

with x(t), y(t) > 0 describing the size of the prey and of the predator popula-

tions, respectively, and α, β, γ, δ, rx, ry, Kx, Ky positive constants. In partic-

ular, if 0 < α < β and 0 < γ < δ all orbits are closed and periodic, surrounding

the unique internal equilibrium S =
(
γ
δ
, α
β

)
, which is a center. With respect to

the classical Lotka-Volterra model (cf. for instance [41]), the formulation in (4.1)

encompasses the logistic terms rx

(
1− x

Kx

)
and ry

(
1− y

Ky

)
, which take into

account intra-species interaction and the role of environmental resources. More

precisely, the parameters rx and ry are called the intrinsic (or inherent) growth

rate for the two populations, while the parameters Kx and Ky are called envi-

ronmental carrying capacity for the two species, as they describe the maximum

population size that the resources of the environment can carry over a period

of time (see [6] for further ecological details). Such biological interpretation of

the model has been briefly suggested in [21], where however the focus is on the

celebrated growth-cycle model by Goodwin [19, 20], describing the dynamics of

the wage share of output and the employment proportion. Actually, Harvie et

al. in [21] propose a system of differential equations in which each variable has

both a positive and a negative effect on its own growth rate, while in (4.1) we

focus just on the latter, in agreement with the models analyzed in Section 3.10

10Still for the sake of conformity with the previous section, where the state variables d(t)
and ℓ(t) could vary just in [0, 1], being population shares, in Examples 4.1 and 4.2 we will
confine ourselves to carrying capacities not exceeding unity, although x(t) and y(t) in (4.1)
can assume any positive value. In this manner those examples could be interpreted also in
economic terms, concerning the wage share of output and the employment proportion, in line
with [21]. Of course, it would be easy to modify Examples 4.1 and 4.2 in order to allow x(t)
and y(t) to exceed unity.
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In the existing literature, in view of taking into account the changes over time of

the habitat conditions and of the available resources (see e.g. [5] for an empirical

study concerning salmonids), some authors have introduced periodic variations

in carrying capacities and in intrinsic growth rates in related settings. Namely,

in [26] the focus in on the effect of a periodic variation in the value of the car-

rying capacity for a species described by the logistic equation, while in [31] a

numerical investigation of the effect of a periodic variation in the values of the

intrinsic growth rate and of the carrying capacity for a species described by the

logistic equation with a time delay is performed. Moreover, a periodic variation

in the carrying capacity has been considered in [8, 12] for the Beverton-Holt

equation, related to the logistic equation, as well as in [7], where also the intrin-

sic growth rate is assumed to vary in a periodic fashion in a quantum calculus

version of the classical Beverton-Holt equation. In the same perspective, we can

assume that rx and ry, as well as Kx and Ky, periodically alternate between

two different values, e.g. due to a seasonal effect. This allows us to enter the

setting of Linked Twist Maps and to apply Theorem 2.1 to prove the existence

of chaotic dynamics induced by the related Poincaré map, although neither the

intrinsic growth rates nor the carrying capacities of the two populations affect

the center position. Namely, as shown in different contexts e.g. in [9, 37], a ge-

ometrical configuration connected with LTMs may be obtained even when the

center position is not affected by a variation of a certain parameter, as long as

the latter suitably influences the shape of the orbits. We show two such frame-

works in Figures 6 and 7. The former is related to Example 4.1, where we focus

on a variation of the intrinsic growth rates, while the latter illustrates Example

4.2, where we will deal with periodic oscillations in the two populations carrying

capacities. For clarity’s sake, differently from [7, 31], we will consider the vari-

ation in the intrinsic growth rates separately from the variation in the carrying

capacities, in order to better understand the effect produced by each parameter

on the orbits shape. We notice that raising the value of the intrinsic growth rate

(cf. Figure 6) or of the carrying capacity (see Figure 7) for population i ∈ {x, y}

stretches orbits along the direction of the coordinate i-axis. On the other hand,

38



increasing carrying capacities enlarges the region in which orbits may lie, while

increasing intrinsic growth rates does not. This difference is not very apparent

in the framework considered in Example 4.2, where we will confine ourselves to

carrying capacities close to unity, that is the value considered in Example 4.1,

as explained in Footnote 10.

Turning to more technical aspects, since orbits of System (4.1) are run counter-

clockwise, the proof of Theorem 4.1, concerning the framework with a periodic

variation in intrinsic growth rates, will look similar to that of Theorem 3.1, and

thus it will be omitted for brevity’s sake. For the framework with a periodic

variation in carrying capacities, we will not even report the statement of our

result about the existence of chaotic dynamics, limiting ourselves to some com-

ments concerning it. However, since the center position is not influenced by

a change in intrinsic growth rates or in carrying capacities, but the shape of

the orbits is, notation and, most importantly, the definition of linked together

annuli need to be modified accordingly and also the statement of Theorem 4.1

will be affected by those changes, together with the numerical Examples 4.1 and

4.2. We refer the reader to Subsection 3.1 for the remaining unchanged points.

Focusing at first on a variation in intrinsic growth rates in (4.1), let us assume

that they alternate between certain values for the two populations, denoted by

r
(1)
x and r

(1)
y , for t ∈ [0, T (1)), and different values, denoted by r

(2)
x and r

(2)
y , for

t ∈ [T (1), T (1) + T (2)).11 Supposing that the same alternation between the two

regimes occurs with T -periodicity, where T = T (1) + T (2), we can assume that

11We stress that, in such manner, we are supposing that the switches between the different
values of the intrinsic growth rates occur at the same time for both populations x and y.

This is also the case that we will consider in Example 4.1, in which we assume that periodic
simultaneous exchanges between the intrinsic growth rate values of the two populations occur.
However, more general frameworks in which the switches between the different values of the
intrinsic growth rates are not simultaneous for the two populations could be easily analyzed
as well, considering four dynamical regimes, rather than two. The same remark applies to the
framework describing a periodic variation in the value of carrying capacities and to Example
4.2.
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we are dealing with a system with periodic coefficients of the form





x ′ = rx(t)x
(
1− x

Kx(t)

)
(α(t)− β(t)y)

y ′ = ry(t) y
(
1− y

Ky(t)

)
(−γ(t) + δ(t)x)

(4.2)

where c(t) ≡ c, for c ∈ {Kx,Ky, α, β, γ, δ}, and for ri(t), with i ∈ {x, y}, it holds

that

ri(t) =





r
(1)
i for t ∈ [0, T (1))

r
(2)
i for t ∈ [T (1), T )

(4.3)

with 0 < α < β and 0 < γ < δ. The functions ri(t), with i ∈ {x, y}, are

piecewise constant and they are supposed to be extended to the whole real line

by T -periodicity.

As observed above, the center coincides with S =
(
γ
δ
, α
β

)
both when the intrinsic

growth rates assume values r
(1)
x and r

(1)
y , and thus we are in the regime whose

dynamics are governed by the system that we will call (1), as well as when they

assume values r
(2)
x and r

(2)
y , and thus we are in the regime whose dynamics are

governed by the system that we will call (2). In the former case, the orbits have

equation

H(1)(x, y) = 1

r
(1)
y

(−α log(y) + (α− βKy) log(Ky − y))+

1

r
(1)
x

(−γ log(x) + (γ − δKx) log(Kx − x)) = e

for some e > e
(1)
0 , while, in the latter case, the orbits have equation

H(2)(x, y) = 1

r
(2)
y

(−α log(y) + (α− βKy) log(Ky − y))+

1

r
(2)
x

(−γ log(x) + (γ − δKx) log(Kx − x)) = h

for some h > h
(2)
0 , where e

(1)
0 and h

(2)
0 are the minimum energy levels attained

by H(1)(x, y) and H(2)(x, y) on the the open rectangle (0,Kx)× (0,Ky), respec-

tively, i.e., e
(1)
0 = H(1)(S) and h

(2)
0 = H(2)(S).

The sets Γ(1)(e) = {(x, y) ∈ (0,Kx) × (0,Ky) : H(1)(x, y) = e}, for e > e
(1)
0 ,

and Γ(2)(h) = {(x, y) ∈ (0,Kx) × (0,Ky) : H(2)(x, y) = h}, for h > h
(2)
0 , are

simple closed curves surrounding S. We call annulus around S for System (1)
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any set C(1)(e1, e2) = {(x, y) ∈ (0,Kx) × (0,Ky) : e1 ≤ H(1)(x, y) ≤ e2} with

e
(1)
0 < e1 < e2, whose inner boundary coincides with Γ(1)(e1) and whose outer

boundary coincides with Γ(1)(e2). Similarly, we call annulus around S for Sys-

tem (2) any set C(2)(h1, h2) = {(x, y) ∈ (0,Kx)×(0,Ky) : h1 ≤ H(2)(x, y) ≤ h2}

with h
(2)
0 < h1 < h2, whose inner boundary coincides with Γ(2)(h1) and whose

outer boundary coincides with Γ(2)(h2).

In the present framework, when considering annuli composed of level lines of

H(1) and H(2), the definition of linked together annuli can be easily given by

looking at the intersection points between the annuli and the horizontal line

ℓ passing through S, having equation y = α
β
. The ordering “⊳” in this case

simply consists in a comparison between the x-coordinates,12 so that, given

P = (xP , yP ) and Q = (xQ, yQ) belonging to ℓ, we have that yP = yQ and it

holds that P ⊳ Q (resp. P E Q) if and only if xP < xQ (resp. xP ≤ xQ).

In particular, assume that, like in Example 4.1, it holds that r
(1)
x > r

(2)
x and

r
(1)
y < r

(2)
y , so that orbits are compressed along the x-direction and stretched

along the y-direction passing from System (1) to System (2). Then, taking in-

spiration from Figure 6, we introduce the definition of linked together annuli

for the considered setting as follows:13

Definition 4.1. Given the annuli C(1)(e1, e2) and C(2)(h1, h2) around S, we say

that they are linked together if

S
(1)
2,− ⊳ S

(1)
1,− E S

(2)
2,− ⊳ S

(2)
1,− ⊳ S

(2)
1,+ ⊳ S

(2)
2,+ E S

(1)
1,+ ⊳ S

(1)
2,+

where, for i ∈ {1, 2}, S
(1)
i,− and S

(1)
i,+ denote the intersection points14 between

12We stress that a comparison between the vertical coordinates, as described in Subsection
3.2, would work as well. However, the consideration of the horizontal line ℓ is useful also in
view of introducing the system of generalized polar coordinates centered at S, that we need
in the proof of Theorem 4.1, here omitted due to its similarity with the proof of Theorem 3.1.

13Definition 4.1 can be easily modified when r
(1)
x < r

(2)
x and r

(1)
y > r

(2)
y , so that orbits

are stretched along the x-direction and compressed along the y-direction passing from System

(1) to System (2). In the other cases (i.e., r
(1)
x < r

(2)
x and r

(1)
y < r

(2)
y , or r

(1)
x > r

(2)
x and

r
(1)
y > r

(2)
y ) it is sometimes possible to find linked together annuli, according to the considered

parameter configurations. For brevity’s sake, we will not deepen such point, focusing in what

follows just on the case r
(1)
x > r

(2)
x and r

(1)
y < r

(2)
y , also in view of Example 4.1.

14Notice that, for ei > e
(1)
0 and hi > h

(2)
0 , i ∈ {1, 2}, the boundary sets Γ(1)(ei) and
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Γ(1)(ei) and the straight line ℓ, with S
(1)
i,− ⊳ S ⊳ S

(1)
i,+ , and, similarly, S

(2)
i,− and

S
(2)
i,+ denote the intersection points between Γ(2)(hi) and ℓ, with S

(2)
i,− ⊳ S ⊳

S
(2)
i,+ .

Under the maintained assumptions, looking also at Figure 6, we deduce that,

when an annulus composed of level lines of H(1) is linked with an annulus com-

posed of level lines of H(2), then those two annuli cross in four pairwise disjoint

generalized rectangles, differently from the frameworks considered in Section 3,

where only two intersections occurred. In particular, each generalized rectangle

contains a chaotic set, when the switching times between Systems (1) and (2)

are large enough. Namely, in such eventuality, the presence of complex dynam-

ics may be proved by applying Theorem 2.1 to any pair composed by two of

those generalized rectangles, when dealing with the Poincaré maps associated

with Systems (1) and (2). Indeed, the Poincaré map Ψ of System (4.2) can

be decomposed as Ψ = Ψ(2) ◦Ψ(1), where Ψ(1) is the Poincaré map associated

with System (1) for t ∈ [0, T (1)] and Ψ(2) is the Poincaré map associated with

System (2) for t ∈ [0, T (2)]. Similar to the settings analyzed in Section 3, the

increasing monotonicity for both systems of the orbit period, denoted respec-

tively by τ (1)(e) and τ (2)(h), with the energy levels e > e
(1)
0 and h > h

(2)
0 , has

been proven in [46, 47].

We are now in position to state our result about System (4.2) with ri(t) defined

as in (4.3) for i ∈ {x, y}.

Theorem 4.1. For any choice of the positive parameters α, β, γ, δ, Kx, Ky,

with 0 < α < β and 0 < γ < δ, let C(1)(e1, e2) be an annulus around S,

for some e
(1)
0 < e1 < e2, obtained when the intrinsic growth rates for the two

populations assume values r
(1)
x and r

(1)
y , respectively, and let C(2)(h1, h2) be an

annulus around S, for some h
(2)
0 < h1 < h2, obtained when the intrinsic growth

Γ(2)(hi) intersect the straight line ℓ in exactly two points because {(x, y) ∈ (0,Kx)× (0,Ky) :

H(1)(x, y) ≤ e} and {(x, y) ∈ (0,Kx) × (0,Ky) : H(2)(x, y) ≤ h} are star-shaped for all

e > e
(1)
0 and for every h > h

(2)
0 , respectively.
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rates assume values r
(2)
x and r

(2)
y . Assume that r

(1)
x > r

(2)
x , r

(1)
y < r

(2)
y and that

C(1)(e1, e2) and C(2)(h1, h2) are linked together, calling Rj , j ∈ {1, 2, 3, 4}, the

connected components of C(1)(e1, e2)∩C
(2)(h1, h2). Then, if T

(1) > 9 τ (1)(e1)τ
(1)(e2)

2 (τ (1)(e2)−τ (1)(e1))

and T (2) > 7 τ (2)(h1)τ
(2)(h2)

2 (τ (2)(h2)−τ (2)(h1))
, the Poincaré map Ψ = Ψ(2) ◦ Ψ(1) of System

(4.2), with ri(t) defined as in (4.3) for i ∈ {x, y}, induces chaotic dynamics on

two symbols in every Rj , j ∈ {1, 2, 3, 4}, and thus all the properties listed in

Theorem 2.1 are fulfilled for Ψ.

The proof is omitted because of its resemblance to that of Theorem 3.1. We

just stress that the smaller constants in the lower bounds of T (1) and T (2) in the

statement of Theorem 4.1 with respect to those for TS and TV in Theorem 3.1

are due to the fact that it is here possible to be more precise with the estimates

concerning the angular coordinate, since, after having introduced a system of

generalized polar coordinates centered at S, it holds that each generalized rect-

angle Rj , j ∈ {1, 2, 3, 4}, is contained in a single quadrant, rather than in a

half-plane. For further details, see Section 4 in [9], where the authors deal with

a similar geometrical configuration. As observed above, the number of chaotic

sets increases with respect to the frameworks considered in Subsections 3.1 and

3.2, due to the larger number of intersection sets between two linked together

annuli. Let us illustrate the just described framework in the next example.

Example 4.1. Taking α = 16 < β = 32, γ = 24 < δ = 30, Kx = Ky = 1,

System (4.1) has a center in S =
(
γ
δ
, α
β

)
= (0.8, 0.5), both with rx = r

(1)
x =

2, ry = r
(1)
y = 0.5, and with rx = r

(2)
x = 0.5, ry = r

(2)
y = 2. Dealing then

with System (4.2) with ri(t) defined as in (4.3) for i ∈ {x, y}, since it holds

that r
(1)
x > r

(2)
x and r

(1)
y < r

(2)
y , the intrinsic growth rate of population x is

larger in the time interval [0, T (1)), while the intrinsic growth rate of population

y is larger for t ∈ [T (1), T ). Moreover, in the considered case, a comparison

between the sizes x of preys and y of predators shows that the intrinsic growth

rate of population x is larger than the one of population y in the former time

period, since r
(1)
x > r

(1)
y , and the situation is reversed in the latter time period,

since r
(2)
x < r

(2)
y . As shown in Figure 6, in the analyzed framework two linked
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together annuli C(1)(e1, e2) and C(2)(h1, h2) can be obtained for e1 = 53, e2 =

56.9, h1 = 43, h2 = 44.4, intersecting in the four pairwise disjoint generalized

rectangles denoted by Rj , j ∈ {1, 2, 3, 4}. Software-assisted computations show

that τ (1)(e1) ≈ 1.055 < τ (1)(e2) ≈ 1.195 and τ (2)(h1) ≈ 1.06 < τ (2)(h2) ≈

1.095. Hence, Theorem 4.1 guarantees the existence of chaotic dynamics for the

Poincaré map Ψ = Ψ(2) ◦ Ψ(1) associated with System (4.2) with ri(t) defined

as in (4.3) for i ∈ {x, y} provided that T (1) > 9 τ (1)(e1)τ
(1)(e2)

2 (τ (1)(e2)−τ (1)(e1))
≈ 40.52 and

T (2) > 7 τ (2)(h1)τ
(2)(h2)

2 (τ (2)(h2)−τ (2)(h1))
≈ 116.07. Thus, considering a period of one year,

and assuming, to a first approximation, that T (1) = T (2) = 365
2 , so that the

length of the time interval in which preys have an higher intrinsic growth rate

coincides with the length of the time interval in which predators have an higher

intrinsic growth rate, it is possible to apply Theorem 4.1 to conclude that Ψ

induces chaotic dynamics on two symbols in every Rj , j ∈ {1, 2, 3, 4}.

Figure 6: The two linked together annuli C(1)(e1, e2) (whose boundary is colored in red) and
C(2)(h1, h2) (whose boundary is colored in blue) considered in Example 4.1, together with the
corresponding generalized rectangles Rj , j ∈ {1, 2, 3, 4}.

Analogous considerations to those made above hold true when we deal with

a variation in carrying capacities in (4.1), assuming that they alternate in a

periodic fashion between certain values, denoted by K
(I)
x and K

(I)
y , for t ∈

[0, T (I)), and other values, denoted by K
(II)
x and K

(II)
y , for t ∈ [T (I), T (I) +
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T (II)). Supposing that the same alternation between the two regimes occurs with

T -periodicity, where T = T (I) + T (II), we can assume that we are dealing with

System (4.2) with periodic coefficients, where c(t) ≡ c for c ∈ {rx, ry, α, β, γ, δ}

and for Ki(t), with i ∈ {x, y}, it holds that

Ki(t) =





K
(I)
i for t ∈ [0, T (I))

K
(II)
i for t ∈ [T (I), T )

(4.4)

with 0 < α < β and 0 < γ < δ. The piecewise constant functions Ki(t),

with i ∈ {x, y}, are supposed to be extended to the whole real line by T -

periodicity. The center coincides with S =
(
γ
δ
, α
β

)
both when the carrying

capacities assume values K
(I)
x and K

(I)
y , and thus we are in the regime whose

dynamics are governed by the system that we will call (I), as well as when they

assume values K
(II)
x and K

(II)
y , and thus we are in the regime whose dynamics

are governed by the system that we will call (II). In the former case, the orbits

have equation

H(I)(x, y) = 1
ry

(
−α log(y) + (α− βK

(I)
y ) log(K

(I)
y − y)

)
+

1
rx

(
−γ log(x) + (γ − δK

(I)
x ) log(K

(I)
x − x)

)
= e

for some e > e
(I)
0 = H(I)(S), while, in the latter case, the orbits have equation

H(II)(x, y) = 1
ry

(
−α log(y) + (α− βK

(II)
y ) log(K

(II)
y − y)

)
+

1
rx

(
−γ log(x) + (γ − δK

(II)
x ) log(K

(II)
x − x)

)
= h

for some h > h
(II)
0 = H(II)(S).

Definition 4.1 of linked together annuli and the subsequent comments are valid

for the present context, too, when adapting notation, by replacing (1) with (I)

and (2) with (II). Moreover, a result analogous to Theorem 4.1 still hold true

when considering variations in carrying capacities. We omit to report its precise

statement, focusing instead on a numerical example in which it can be applied

to show the existence of chaotic dynamics for the Poincaré map Ψ = Ψ(II) ◦Ψ(I)

associated with System (4.2) with Ki(t) defined as in (4.4) for i ∈ {x, y}, where
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Ψ(I) is the Poincaré map associated with System (I) for t ∈ [0, T (I)] and Ψ(II)

is the Poincaré map associated with System (II) for t ∈ [0, T (II)].

Example 4.2. Taking α = 64 < β = 128, γ = 96 < δ = 112, rx = ry = 1,

System (4.1) has a center in S =
(
γ
δ
, α
β

)
= (0.86, 0.5), both with Kx = K

(I)
x =

0.99, Ky = K
(I)
y = 0.9, and with Kx = K

(II)
x = 0.9, Ky = K

(II)
y = 0.99. Sim-

ilar to Example 4.1, dealing with System (4.2) with Ki(t) defined as in (4.4)

for i ∈ {x, y}, since it holds that K
(I)
x > K

(II)
x and K

(I)
y < K

(II)
y , the car-

rying capacity for population x is larger in the time interval [0, T (I)), while

the carrying capacity for population y is larger for t ∈ [T (I), T ). Moreover, a

comparison between the sizes x of preys and y of predators shows that the envi-

ronment can carry a larger size of preys rather than of predators in the former

time period, since K
(I)
x > K

(I)
y , and the situation is reversed in the latter time

period, since K
(II)
x < K

(II)
y . As shown in Figure 7, in the analyzed frame-

work two linked together annuli C(I)(e1, e2) and C(II)(h1, h2) can be obtained for

e1 = 145.3, e2 = 146.7, h1 = 129.4, h2 = 131.1, intersecting in the four pairwise

disjoint generalized rectangles denoted by Rj , j ∈ {1, 2, 3, 4}. Software-assisted

computations for the orbit periods show that τ (I)(e1) ≈ 0.355 < τ (I)(e2) ≈ 0.360

and τ (II)(h1) ≈ 0.635 < τ (II)(h2) ≈ 0.650.15 Hence, a result analogous to

Theorem 4.1 guarantees the existence of chaotic dynamics for the Poincaré

map Ψ = Ψ(II) ◦ Ψ(I) associated with System (4.2) with Ki(t) defined as in

(4.4) for i ∈ {x, y} provided that T (I) > 9 τ (I)(e1)τ
(I)(e2)

2 (τ (I)(e2)−τ (I)(e1))
≈ 115.02 and

T (II) > 7 τ (II)(h1)τ
(II)(h2)

2 (τ (II)(h2)−τ (II)(h1))
≈ 96.31. Thus, considering a period of one year,

and assuming e.g. that T (I) = T (II) = 365
2 , it is then possible to apply such

result to conclude that Ψ induces chaotic dynamics on two symbols in every

Rj , j ∈ {1, 2, 3, 4}.

15Also in this setting, the increasing monotonicity of the period of the orbits with the energy

level follows from the results in [46, 47].
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Figure 7: The two linked together annuli C(I)(e1, e2) (whose boundary is colored in red) and
C(II)(h1, h2) (whose boundary is colored in blue) considered in Example 4.2, together with
the corresponding generalized rectangles Rj , j ∈ {1, 2, 3, 4}.

5. Conclusion

In the present work, led by various possible interpretations of the same

Hamiltonian system proposed in the literature, we have shown how to apply the

Linked Twist Maps (LTMs) method to prove the existence of chaotic dynamics

for the associated Poincaré map, perturbing each time a specific parameter in a

periodic fashion and obtaining different geometrical configurations in the phase

plane, when considering both the orbits of the original system and those of the

perturbed one. Namely, we can try to use the LTMs technique whenever we

have a conservative system with a nonisochronous center and it is sensible to

assume a periodic variation for one or more model parameters, both influenc-

ing the center or not, e.g. due to a seasonal effect. We just stress that, if the

position of the center is not affected by the change in the considered parameter

value, it is necessary to check that the shape of the orbits changes in a way that

allows to detect at least two linked annuli.

Although in the present contribution we have proposed planar applications

of the LTMs technique, such method can be employed in (at least) three-

dimensional frameworks, too, when dealing with linked together cylindrical sets.
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In this regard, see [45] for a 3D non-Hamiltonian example concerning a predator-

prey model in a periodically varying environment. We are going to investigate

a three-dimensional continuous-time model in a future work, taking inspiration

e.g. from the 3D game theoretic context considered in [2] (cf. Footnote 5). In re-

lation to economic settings, we recall that the SAP method, on which the LTMs

technique is based, has been recently used to prove the existence of chaotic dy-

namics for some discrete-time triopoly game models in [38, 39], while in [30]

the SAP technique had been applied to one- and two-dimensional discrete-time

economic models, concerning overlapping generations and duopoly frameworks.
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