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Summary
Background Atypical cartilaginous tumour (ACT) and high-grade chondrosarcoma (CS) of long bones are respectively
managed with active surveillance or curettage and wide resection. Our aim was to determine diagnostic performance
of X-rays radiomics-based machine learning for classification of ACT and high-grade CS of long bones.

Methods This retrospective, IRB-approved study included 150 patients with surgically treated and histology-proven
lesions at two tertiary bone sarcoma centres. At centre 1, the dataset was split into training (n = 71 ACT, n = 24
high-grade CS) and internal test (n = 19 ACT, n = 6 high-grade CS) cohorts, respectively, based on the date of
surgery. At centre 2, the dataset constituted the external test cohort (n = 12 ACT, n = 18 high-grade CS). Manual
segmentation was performed on frontal view X-rays, using MRI or CT for preliminary identification of lesion
margins. After image pre-processing, radiomic features were extracted. Dimensionality reduction included
stability, coefficient of variation, and mutual information analyses. In the training cohort, after class balancing, a
machine learning classifier (Support Vector Machine) was automatically tuned using nested 10-fold cross-
validation. Then, it was tested on both the test cohorts and compared to two musculoskeletal radiologists’
performance using McNemar’s test.

Findings Five radiomic features (3 morphology, 2 texture) passed dimensionality reduction. After tuning on the
training cohort (AUC = 0.75), the classifier had 80%, 83%, 79% and 80%, 89%, 67% accuracy, sensitivity, and
specificity in the internal (temporally independent) and external (geographically independent) test cohorts, respec-
tively, with no difference compared to the radiologists (p ≥ 0.617).

Interpretation X-rays radiomics-based machine learning accurately differentiates between ACT and high-grade CS of
long bones.
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Research in context

Evidence before this study
Previous radiomic studies focused on the classification of
atypical cartilaginous tumour and high-grade
chondrosarcoma of long bones based on CT and MRI.
Accuracy rates of up to 75% and 92% were reported using CT
and MRI radiomics, respectively, in geographically
independent test cohorts from different institutions.

Added value of this study
Therapeutic strategies for appendicular cartilaginous lesions
are entirely different and, particularly, treatment of atypical
cartilaginous tumours is progressively shifting from surgery
(curettage) to active surveillance, which involves the repeated
use of costly advanced imaging such as MRI. Thus, in this
study, we attempted to differentiate atypical cartilaginous
tumour from high-grade chondrosarcoma of long bones
using radiomics based on frontal view X-rays only. In a large
population including 150 patients from two tertiary bone

tumour centres, our radiomics-based machine learning
classifier achieved 80% accuracy in two independent test
cohorts (temporally independent and geographically
independent), overlapping two musculoskeletal radiologists
who read MRI and/or CT in addition to X-rays in all patients.
Furthermore, this approach had 83–89% sensitivity, which
makes it ideally suited for screening of high-grade
chondrosarcoma, especially considering that only X-rays
images are needed as inputs for the analysis. Thus, our
method may be helpful to identify high-grade
chondrosarcoma both at diagnosis and follow-up.

Implications of all the available evidence
Multimodality imaging radiomics-based machine learning is
an objective method that may be used in clinical decision
making by accurately differentiating atypical cartilaginous
tumour from high-grade chondrosarcoma of long bones.
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Introduction
Chondrosarcomas (CSs) account for 20–30% of primary
bone tumours in adulthood.1 In most cases, they arise de
novo from the medullary cavity and are referred as pri-
mary central conventional CSs.2 Based upon histopa-
thology, conventional CSs are grouped into low to high
grades.3 In the axial skeleton, all-grade CSs exhibit an
aggressive behaviour3 and will not be discussed in the
present study. In long bones, low-grade (grade I) carti-
laginous lesions are borderline tumours, which are now
termed atypical cartilaginous tumours (ACTs) according
to 2020 edition of the World Health Organization
(WHO) classification.3 They are locally aggressive le-
sions with relatively indolent clinical behaviour and
unlikelihood to metastasize.3 Additionally, the increased
prevalence of ACTs secondary to an increase in diag-
nostic imaging over the past decades, relative to the lack
of increase in higher-grade lesions, does not support the
previous opinion that ACTs are at risk of malignant
transformation.4,5 Conversely, appendicular high-grade
CSs (grades II and III) are malignant lesions and
show high recurrence rates after surgery with metastatic
potential.3 Thus, the 2020 WHO classification well
connects to therapeutic options which are entirely
different between ACT and high-grade CS in long
bones. Particularly, surgical excision with wide margins
is the current standard of care for high-grade CS,
whereas ACT can be managed with curettage for suffi-
cient local control.6 Alternatively, some reference cen-
tres now recommend active surveillance with imaging
follow-up (watchful waiting) for asymptomatic ACTs,
aiming at preventing overtreatment and morbidity
associated with surgery.6

As clinical management is now very different, the
main challenge is to differentiate ACT from high-grade
CS in long bones. Preoperatively, biopsy suffers from
sample errors7 and discrepancies in tumour grading
even among specialized bone tumour pathologists.8

Imaging has added substantially to our ability to
differentiate between these tumours. Particularly, X-rays
are the first imaging investigation and often performed
for surgical planning. Magnetic resonance imaging
(MRI) is the method of choice for local staging.6

Computed tomography (CT) and positron emission
tomography-CT provide additional information on bone
involvement, such as matrix mineralization and cortical
destruction, and standard uptake values, respectively.6,9

However, interobserver variability in tumour grading
has been reported even among expert readers.10,11 Thus,
new imaging-based methods like radiomics may
improve our ability to better diagnose and grade carti-
laginous bone tumours more objectively.12

Radiomics includes the analysis of quantitative pa-
rameters extracted from medical images, known as
radiomic features.13–15 Radiomic features can be coupled
with machine learning to obtain classification models
for the diagnosis of interest.16–19 Machine learning has
already shown high accuracy in differentiating ACT
from high-grade CS based on CT20 and MRI21,22 radio-
mics. Our aim was to determine diagnostic performance
of X-rays radiomics-based machine learning for classi-
fication of ACT and high-grade CS of long bones.
www.thelancet.com Vol 101 March, 2024
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Methods
Ethics
Institutional Review Board approved this retrospective
study and waived the need for informed consent (Pro-
tocol name: “AI tumori MSK”, approved by the Ethics
Committees of the participating institutions IRCCS
Orthopaedic Institute Galeazzi in Milan and IRCCS
Regina Elena National Cancer Institute in Rome, Italy).
Patients included in this study granted written permis-
sion for anonymized data use for research purposes.
After matching imaging, pathological, and surgical data,
our database was completely anonymized to delete any
connections between data and patients’ identity accord-
ing to the General Data Protection Regulation for
Research Hospitals. The Checklist for Artificial Intelli-
gence in Medical Imaging23 and the Standards for
Reporting of Diagnostic Accuracy24 were followed.

Design and inclusion/exclusion criteria
This retrospective study was conducted at two tertiary
bone sarcoma centres (centre 1, IRCCS Orthopaedic
Institute Galeazzi, Milan, Italy; centre 2, IRCCS Regina
Elena National Cancer Institute, Rome, Italy). Informa-
tion was retrieved through medical records from the
orthopaedic surgery and pathology departments. Inclu-
sion criteria were: (i) ACT or primary central high-grade
CS (grade II or III) of long bones that was surgically
treated with curettage or resection and proven by post-
surgical pathology; (ii) pre-operative plain radiographs
Fig. 1: Flowchart of p

www.thelancet.com Vol 101 March, 2024
performed within three months before surgery; (iii)
MRI and/or CT available for review and aid in tumour
identification. Exclusion criteria were: (i) metacarpal,
metatarsal and phalangeal location; (ii) recurrent tu-
mours; (iii) pathological fracture; (iv) multiple enchon-
dromatosis (Ollier disease or Maffucci syndrome). A
flowchart of the patient selection process is shown in
Fig. 1.

Datasets
One-hundred-fifty patients were consecutively included
overall. At centre 1, 120 patients were included and split
into training cohort and internal test cohort (temporally
independent) based on temporal criteria, namely sur-
gery performed in 2011–2020 and 2021–2022, respec-
tively. Thus, the training and internal test cohorts
consisted of 95 (n = 71 ACT; n = 24 high-grade CS) and
25 (n = 19 ACT; n = 6 high-grade CS) patients, respec-
tively. At centre 2, 30 patients (n = 12 ACT; n = 18 high-
grade CS) were included and constituted the external
test cohort (geographically independent). The training
and internal/external test cohorts were employed for
model tuning and independent testing on unseen data,
respectively. Patient demographics and data regarding
tumour location are reported in Table 1. All radiographs
were obtained using digital radiography systems (Ysio,
Siemens Healthcare, Erlangen, Germany at centre 1 and
Clisis Evolution, General Medical Merate S.P.A.,
Seriate, Italy at centre 2). The median image size (pixel x
atient selection.
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Training (centre 1) Internal test (centre 1) External test (centre 2)

Age 51 (45–62) years 57 (48–62) years 58 (45–68) years

Sex Men: n = 37
Women: n = 58

Men: n = 13
Women: n = 12

Men: n = 15
Women: n = 15

Location Femur: n = 44
Fibula: n = 9
Humerus: n = 34
Radius: n = 1
Tibia: n = 7

Femur: n = 10
Fibula: n = 2
Humerus: n = 10
Tibia: n = 3

Femur: n = 15
Fibula: n = 7
Humerus: n = 3
Tibia: n = 5

Grading ACT: n = 71
Grade II CS: n = 14
Grade III CS: n = 10

ACT: n = 19
Grade II CS: n = 4
Grade III CS: n = 2

ACT: n = 12
Grade II CS: n = 12
Grade III CS: n = 6

Age is presented as median and interquartile (1st–3rd) range.

Table 1: Demographics and clinical data for each cohort of patients, which were collected retrospectively through medical records at the participating
institutions.
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pixel) was 2135 × 2508 at centre 1 and 3520 × 3520 at
centre 2. The automated exposure control system
determined the exposure kVp and mAs.

Radiomics-based machine learning analysis
Radiomics-based machine learning analysis was per-
formed according to the International Biomarker Stan-
dardization Initiative guidelines.25 The Trace4Research©

radiomic/AI platform (DeepTrace Technologies, www.
deeptracetech.com/files/TechnicalSheet__TRACE4.pdf)
was used. In detail, our radiomic workflow included
different steps as follows.

1. Segmentation. A last-year radiology resident (K.N.)
performed manual segmentation by drawing an
oval-shaped region of interest (ROI) including the
lesion on pre-operative frontal view X-rays (Fig. 2).
MRI and/or CT (based on availability) were used for
identification of lesion margins in all patients before
X-rays image segmentation. The reader knew the
study would deal with cartilaginous bone tumours
but was blinded to post-surgical pathology and
grading.

2. Pre-processing. Image pre-processing consisted of
resampling to isotropic pixel and intensity dis-
cretization. In detail, pixels were resampled to
isotropic spacing using a down-sampling scheme by
considering an image slice thickness of 1 mm. In-
tensity discretization was obtained using a fixed
number of 64 bins.

3. Feature extraction. Radiomic features were extracted
from the segmented ROI, including morphology,
intensity-based statistics, intensity histogram, and
texture (Gray-Level Co-occurrence Matrix, Gray-
Level Run Length Matrix, Gray-Level Size Zone
Matrix, Neighbourhood Gray Tone Difference Ma-
trix, Neighbouring Gray Level Dependence Matrix)
features.

4. Feature dimensionality reduction. Dimensionality
reduction included stability, coefficient of variation,
and mutual information analyses. Stability analysis
with respect to different segmentations was per-
formed by statistically comparing features obtained
through data augmentation strategies. These stra-
tegies included randomly manipulating the seg-
mentations and rotating the original images and
segmentations. Intraclass correlation coefficient
(ICC) was used for stability assessment, and fea-
tures were considered stable if ICC was 0.8 or
higher. For each stable feature, coefficient of varia-
tion was computed, and features with coefficient of
variation below 0.1 were removed. Finally, a mutual
information analysis was performed on the
remaining features. In detail, the mutual informa-
tion between features and associated class labels
was estimated, and features with mutual informa-
tion below 0.28 were removed. The coefficient of
variation (0.1) and mutual information (0.28)
thresholds were selected semi-automatically. In
detail, thresholds were recursively lowered from
default starting values of 0.1 and 0.5, respectively, to
retain a minimum number of features (at least five
features).

5. Machine learning analysis. A supervised machine
learning model (3 ensembles of 100 support vector
machines combined with principal components
analysis and fisher discriminant ratio with majority-
vote rule) was automatically tuned and validated
using nested 10-fold cross-validation on the training
cohort. Feature normalization (range = 0–1) was
applied to the training data during cross-validation.
In detail, the normalization parameters (minimum
and maximum) were extracted from the training
folds and used to normalize the validation and
testing folds for each fold of cross-validation.
Feature normalization was then applied to the in-
dependent (internal and external) test cohorts,
accordingly. Given the unbalanced nature of the
training cohort, the adaptive synthetic sampling
method (ADASYN)26 was used to balance the dataset
www.thelancet.com Vol 101 March, 2024
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Fig. 2: Manual segmentation. An oval-shaped region of interest including the lesion (yellow oval) was drawn on X-rays (a). Coronal T1-weighted (b)
and sagittal T2-weighted (c) MRI sequences were used for preliminary identification of lesion borders before X-rays image segmentation.

Articles
by creating new instances from the minority class in
the training cohort, thus increasing the number of
high-grade CS to n = 71. Hence, the performance of
the machine learning model was evaluated on the
independent internal and external test cohorts.

Qualitative image assessment
Two musculoskeletal radiologists with 4 (S.G.) and 14
(V.A.) years of work experience in tertiary bone sarcoma
centres read the imaging studies from the internal and
external test cohorts, respectively, blinded to any infor-
mation regarding pathology and radiomics-based ma-
chine learning analysis. All available imaging studies
(X-rays in all cases and CT and/or MRI based on avail-
ability) were used for qualitative assessment. The
following parameters were assessed to differentiate
high-grade CS from ACT and give the final impression:
intralesional osteolytic areas without matrix minerali-
zation suggestive of mucoid components, expansion of
the medullary canal with cortical thinning and/or
remodelling, cortical breakthrough, periosteal reaction,
reactive oedema in adjacent bone or soft-tissues (evalu-
ated on MRI), and soft-tissue extension.27

Statistical analysis
Statistical analysis was performed using Trace4R-
esearch© radiomic/AI platform (DeepTrace Technolo-
gies, www.deeptracetech.com/files/TechnicalSheet__
TRACE4.pdf). Chi-square and Mann–Whitney U tests
were performed to evaluate sex and age differences be-
tween the two centres, respectively. Mann–Whitney U
test was also performed to verify feature significance in
differentiating ACT from high-grade CS. To account for
multiple comparisons, p-values were adjusted using the
Bonferroni-Holm method. Sensitivity, specificity,
www.thelancet.com Vol 101 March, 2024
accuracy, receiving operating characteristic (ROC) curve
and area under the curve (AUC) were calculated. In the
internal and external test cohorts, machine learning
performance was compared to qualitative image
assessment using McNemar’s test. A two-sided p-value
<0.05 indicated statistical significance. Radiomics
Quality Score was assessed to estimate the methodo-
logical rigor of our study, as suggested by Lambin et al.28

Role of funding source
This research was supported by the Investigator Grant
awarded by Fondazione AIRC per la Ricerca sul Cancro
for the project “RADIOmics-based machine-learning
classification of BOne and Soft Tissue Tumors (RA-
DIO-BOSTT)” (L.M.S.). The funding source provided
financial support without any influence on the study
design; on the collection, analysis, and interpretation of
data; and on the writing of the report. The first and last
authors had the final responsibility for the decision to
submit the paper for publication.
Results
There was no significant difference in terms of age
(p = 0.263 [Mann–Whitney U test]) and sex (p = 0.410
[Chi-square test]) between centre 1 and centre 2. A total
of 121 radiomic features were extracted from each
lesion. The rate of stable features was 89% (n = 108).
Removing low coefficient of variation (n = 17) and low
mutual information (n = 86) features yielded a dataset of
5 features (3 morphology and 2 texture features), which
passed dimensionality reduction (p < 0.005 [Mann–
Whitney U test]). The selected features are reported in
Table 2. Their distribution is shown in violin and box
plots in Fig. 3.
5
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Feature family Feature nomenclature Median [95% CI] in high-grade CS class Median [95% CI] in ACT class

Neighbourhood Grey Tone Difference Matrix Busyness 3.17 [2.09–4.25] 0.98 [0.75–1.21]

Morphology Area 3021.56 [1221.87–4821.25] 960.58 [795.56–1125.6]

Morphology Perimeter To Area Ratio 7.25e-02 [4.90e-02–9.59e-02] 0.13 [0.12–0.14]

Neighbourhood Grey Tone Difference Matrix Strength 0.25 [0.11–0.39] 0.93 [0.74–1.13]

Morphology Perimeter 221.13 [162.32–279.94] 120.6 [109.7–131.49]

ACT, atypical cartilaginous tumour; CI, confidence interval; CS, chondrosarcoma. All features were significant (uncorrected and corrected p-value <0.005 [Mann–Whitney U
test]) in differentiating ACT from high-grade CS. For the definition of each feature, refer to International Biomarker Standardization Initiative official documentation.25

Table 2: Selected radiomic features reported in descending order according to their statistical significance and relevance.
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After tuning on the training cohort (mean
AUC = 0.75 [95% confidence interval: 0.70–0.80], shown
in ROC curve in Fig. 4), the machine learning classifier
had 80% accuracy, 83% sensitivity and 79% specificity
in the internal test cohort (temporally independent). It
had 80% accuracy, 89% sensitivity and 67% specificity
in the external test cohort (geographically independent).
The AUC was 0.93 and 0.90 in the internal and external
test cohorts, respectively, as shown in ROC curves in
Fig. 5. Machine learning performance in the internal
and external test cohorts is described in Table 3. Fig. 6
shows different cases of ACT and high-grade CS from
the internal test cohort, which were correctly identified
or misdiagnosed by the machine learning classifier. The
radiologists had 88% (22/25 correctly classified lesions)
and 80% (24/30 correctly classified lesions) accuracy in
the internal and external test cohorts, respectively, with
no statistical difference compared to machine learning
(p = 0.683 and p = 0.617 [McNemar’s test], respectively).
Our radiomics quality score was 44% (Supplementary
Table).
Fig. 3: Violin and box plots of the selected radiomic features, which passed
ACT classes are reported in red and green, respectively.
Discussion
In this study, our main finding was that machine
learning had 80% accuracy in differentiating ACT from
high-grade CS of long bones based on radiomic features
extracted from frontal view X-rays in both the internal
(temporally independent) and external (geographically
independent) test cohorts from two different centres,
respectively. Machine learning performance did not
differ compared to musculoskeletal radiologists working
in tertiary bone sarcoma centres (p ≥ 0.617 [McNemar’s
test]), who used MRI and/or CT in addition to X-rays for
qualitative image assessment.

Our results are clinically relevant as therapeutic
strategies for ACT and high-grade CS are now entirely
different in long bones. Particularly, wide resection with
negative margins remains the therapy of choice for
high-grade CS.6 On the other hand, the treatment of
ACT has been changing remarkably over time. Intrale-
sional curettage has been standard of care for several
years in tertiary sarcoma centres.6 Nowadays, however,
treatment is shifting from surgery to active surveillance
dimensionality reduction. Violin and box plots of high-grade CS and

www.thelancet.com Vol 101 March, 2024
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Fig. 4: ROC curve for the machine learning model consisting of 3 ensembles of support vector machine classifiers from the testing folds of cross
validation.

Articles
based on new insights on the natural course of ACTs,
with low rates of tumour growth and no reported
transformation into high-grade CS at follow-up.29–33

Thus, the difference in therapeutic strategies between
enchondroma and ACT is progressively disappearing.
Fig. 5: ROC curves showing the machine learning classifier performances i
independent) test cohorts from centre 1 and centre 2, respectively.

www.thelancet.com Vol 101 March, 2024
MRI is recommended for ACT follow-up in centres
where a conservative strategy is favoured over
surgery,29–32 with some institutions also performing dy-
namic contrast-enhanced MRI sequences to improve
accuracy.12 Nonetheless, the strategies for active
n the internal (temporally independent) and external (geographically

7
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Internal test cohort (centre 1) External test cohort (centre 2)

Correctly classified high-grade CS (true positive) n = 5 n = 16

Correctly classified ACT (true negative) n = 15 n = 8

ACT misdiagnosed as high-grade CS (false positive) n = 4 n = 4

High-grade CS misdiagnosed as ACT (false negative) n = 1 n = 2

Accuracy 80% 80%

Sensitivity 83% 89%

Specificity 79% 67%

AUC 0.93 0.90

Table 3: Performance of the machine learning classifier evaluated on the internal (temporally independent) and external (geographically independent)
test cohorts.
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surveillance are still debated, including frequency,
duration and employed imaging methods. Based on our
preliminary findings, X-rays combined with radiomics-
based machine learning may potentially be helpful to
prevent overutilization of costly advanced imaging such
as MRI for active surveillance of ACTs.

Radiomic studies to date have focused on the clas-
sification of ACT and high-grade CS based on CT20 and
MRI,21,22,34 using radiomics-based nomograms34 or ma-
chine learning approaches.20–22 Particularly, in a recent
study, Gitto et al.22 focused on the differentiation of ACT
and grade II CS of long bones using T1-weighted MRI
radiomics-based machine learning. This approach
Fig. 6: X-rays images show two different cases of ACT of the proximal fem
were correctly identified by the machine learning classifier. No aggressive
through and extra-osseous extension are indicative of high-grade lesion in t
the mid-femoral diaphysis (c) and high-grade CS (grade II) of the proximal
ACT by the classifier. In the ACT of the mid-femoral diaphysis (c), mild expan
high-grade CS of the fibula (d), expansion of the medullary canal with corti
but was demonstrated on MRI (not shown) in the latter case. Arrows poi
showed 92% accuracy in the external test cohort, with no
difference compared to an experienced bone tumour
radiologist.22 Previously, the same authors’ group per-
formed a similar analysis using CT radiomics-based
machine learning.20 In the latter study, machine
learning achieved 75% accuracy in differentiating ACT
from high-grade CS of long bones in the external test
cohort, overlapping an expert radiologist.20 In these
previous studies, a two-centre population ranging from
120 to 158 patients was split into training and external
test cohorts for machine learning model tuning and
independent testing, respectively, based on geographical
criteria.20,22 In the current study including 150 patients
ur (a) and high-grade CS (grade II) of the proximal humerus (b), which
features are noted in the proximal femur (a), whereas cortical break-
he humerus (b). X-rays images also show two different cases of ACT of
fibula (d), which were respectively misdiagnosed as high-grade CS and
sion of the medullary canal with no cortical destruction is noted. In the
cal thinning is observed. Cortical destruction is not well seen on X-rays
nt at the lesion in all images.

www.thelancet.com Vol 101 March, 2024
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with ACT and appendicular high-grade CS from two
tertiary bone sarcoma centres, we performed our
radiomic analysis using frontal view X-rays and tested
our machine learning classifier on two independent test
cohorts, namely the temporally-independent internal
and geographically-independent external test cohorts.
Our machine learning classifier achieved 80% accuracy
in both test cohorts, overlapping two musculoskeletal
radiologists who read MRI and/or CT in addition to X-
rays in all patients. Furthermore, this approach had
83–89% sensitivity, which makes it ideally suited for
screening of high-grade CS, especially considering that
only X-rays images are needed as inputs for the analysis.

Some limitations of this study need to be addressed.
First, this study was retrospective. Although prospective
design provides the highest level of evidence supporting
the clinical validity and usefulness of radiomics,28 a
relatively large number of patients with an uncommon
disease and imaging data already available could be
included retrospectively in our study. Second, only pa-
tients with cartilaginous bone tumours were included,
and our method could not be applied to X-rays images
showing different bone lesions or none. However, our
study was intentionally focused on grading of lesions,
which were already classified as cartilaginous tumours
using routinely available tools, such as MRI. Addition-
ally, this method could provide complementary infor-
mation to different machine learning approaches for
identification and classification of bone lesions on X-
rays, which were mainly based on deep learning algo-
rithms and achieved encouraging results in previous
studies.35–41 Third, compared to high-grade CS, ACT
were over-represented in centre 1 and under-
represented in centre 2, resulting in unbalanced
classes. However, in centre 1, this reflected the true
prevalence of these lesions in clinical practice, and class
balancing was performed to artificially oversample the
minority class in the training cohort.26 In centre 2,
where a selection bias related to the unavailability of X-
rays images in one third of the identified patients
occurred, the unbalance was relatively small (40% ACT
and 60% high-grade CS) and acceptable for a machine
learning analysis.42 Fourth, only frontal view X-rays
images were included in our radiomics-based machine
learning analysis, and lateral views were not evaluated.
Although our intention was to keep our model as simple
as possible by focusing on a single image, lateral view X-
rays deserve further investigation. Fifth, segmentation
was performed manually following the preliminary
identification of lesion margins on MRI and/or CT.
Although radiomic feature stability was assessed as a
dimensionality reduction method in our analysis,
interobserver variability could ideally be reduced using
deep learning-based automated segmentation,43,44 which
is a promising technique and will be employed in future
studies. Finally, our radiomics quality score was 44%.
This was in line with average values described in a
www.thelancet.com Vol 101 March, 2024
recent systematic review focusing on radiomics quality
score applications45 and higher compared to median
radiomics quality scores reported in another systematic
review addressing the quality of radiomic studies on
bone chondrosarcoma.46 Nonetheless, further improve-
ments in methodological quality can still be obtained.

In conclusion, radiomics-based machine learning is
an objective method, using frontal view X-rays images
only, that may be used in the management of cartilagi-
nous bone lesions by accurately differentiating between
ACT and high-grade CS of long bones. As active sur-
veillance of ACTs is an increasingly favoured option
over surgery, our method may be helpful to identify
high-grade CS both at diagnosis and follow-up. Our
large population of study and the good performance
obtained using independent data from two different
centres ensure the generalizability of our results. Future
prospective investigations will verify the transferability
of our findings into clinical practice.
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