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ABSTRACT
A convolutional neural network is trained on a large dataset of suitably randomized film profiles and corresponding elastic energy densities ρε,
computed by the finite element method. The trained model provides quantitative predictions of ρε for arbitrary profiles, surrogating its explicit
calculation, and is used for the time integration of partial differential equations describing the evolution of strained films. The close match
found between the neural network predictions and the “ground-truth” evolutions obtained by the finite element method calculation of ρε,
even after tens-of-thousands of integration time-steps, validates the approach. A substantial computational speed up without significant loss
of accuracy is demonstrated, allowing for million-steps simulations of islands growth and coarsening. The intriguing possibility of extending
the domain size is also discussed.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0221363

I. INTRODUCTION
In the last decade, machine learning (ML) techniques1–3 have

been introduced in almost any field of science, from purely theoreti-
cal to applied disciplines and engineering.4–9 Among the many uses,
these methods proved to be an effective way to speed up otherwise
computationally heavy calculations. In Condensed Matter Physics
and Materials Science, considerable effort has been dedicated both
to the acceleration of atomic-scale models10–12 and, more recently,
to the approximation of continuum models based on partial dif-
ferential equations.13–18 A few recent studies even proposed novel
strategies to bridge the gap between the two paradigms by exploiting
ML.19,20

Here we show that neural networks (NN)2 can be conveniently
exploited to accelerate continuum simulations of strained-film
growth (as encountered, e.g., in lattice-mismatched heteroepi-
taxy21), a key field in Materials Science.22,23 Indeed, a wide range
of behaviors depending on growth parameters can be observed
and exploited in various applications. In some cases, controlling

the surface roughness that may arise during the growth is the
main issue.24,25 Other applications are instead based on the forma-
tion of three-dimensional (3D) nanostructures, such as islands or
low-dimensional objects,26–29 yielding novel properties of high inter-
est. Understanding the interplay between growth parameters and
material properties is thus key and the development of reliable and
fast simulation tools to support and anticipate costly experiments
would offer great benefits. As atomistic approaches are generally
too expensive for simulating the film evolution on realistic spatial
and, most critically, temporal scales, continuum modeling becomes
fundamental.30

Since the seminal work by Mullins,31 more than 70 years
ago, researchers have been working on the development of con-
tinuum models dealing with surface dynamics,22,30 extending the
original approach to cope with strain effects,32–35 multi-component
alloys,36,37 and defects.38,39 Given a profile h at a time t, its evolution
is driven by the (local) surface chemical potential μ. While differ-
ent regimes, such as evaporation/condensation,31 have been tested,
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we will focus here on surface diffusion dynamics in two-dimensions
(2D):

∂h
∂t
=M
√

1 + h′2
∂2μ
∂s2 + f , (1)

where M is the surface mobility, ∂/∂s is the surface derivative,
h′ = ∂h/∂x, and f is a vertical deposition flux. μ comprises a surface
energy contribution, which is local, and an elastic energy contribu-
tion ρε, which is non-local and stems from different sources such as
film-substrate lattice mismatch, thermal mismatch, external stress,
and dislocations.

The evaluation of ρε requires in general the solution of
the mechanical equilibrium problem by numerical approaches.
Among these, the Finite Element Method (FEM) is particularly
well suited for generic free-boundary problems, although effi-
cient alternatives are available for more specific cases.40 While
single static calculations are not an issue for nowadays com-
putational resources, accurate FEM solutions still pose severe
limitations when time-integrating equations such as Eq. (1), as
ρε needs to be continuously updated, even for millions of itera-
tions, thus multiplying the computational burden on simulation
times. A few studies in the literature pursued this strategy by using
advanced numerical approaches with optimized time-integration
schemes41–44 or resorted to computationally-cheap semi-analytical
methods,37,45 at the price of an approximated solution for the elastic
problem.

In this work, we explore the possibility of by-passing the
explicit solution of the elastic problem using a convolutional NN
(CNN)2,46–48 model to directly predict the ρε contribution. CNNs
involve numerical operations that are much cheaper than those
required for a FEM solver and can be efficiently implemented on
multi-threaded systems and GPUs, allowing for the approximation
of complex, non-linear functions at a fraction of the computational
cost of conventional approaches. Here, we train a CNN capable of
providing a mapping of arbitrary surface profiles to their corre-
sponding ρε with the same accuracy as FEM. After validating the
model and inspecting its extrapolation performances, we exploit it
in the time integration of the thin-film evolution equations. The
substantial speed-up offered by this deep learning approach enables
the analysis of evolution regimes, which are usually expensive to
tackle.

We remark that, in principle, an even stronger computational-
time compression might be obtained by predicting the full driving
force μ or the profile sequence directly.16,17 The present choice of
focusing only on the term that causes the major computational
bottleneck, however, ensures full transferability, while retaining a
better physical insight beyond the “blind” prediction of the required
quantity. Our approach is also complementary to other ML meth-
ods devised to tackle differential equation problems. For example,
the Physics Informed NN (PINN) method developed in Ref. 14
(and recently applied to linear elasticity18) could potentially sub-
stitute FEM solvers for the mechanical equilibrium problem in the
whole domain. In this respect, the NN approach here proposed rep-
resents a data-driven alternative that does not require re-training for
new profiles and completely bypasses the solution step by directly
predicting ρε at the film surface.

II. METHODS
A. Strain calculation and dataset definition

We describe the film morphology by a 1D profile function
y = h(x), evolving according to Eq. (1). With no loss of generality for
the workflow, we refer to the prototypical case of a Ge film subject
to a purely diagonal 3.99% eigenstrain ε∗49,50 as the one produced by
the (compressive) lattice mismatch in Ge/Si(001) epitaxy.26,51

As stated, the driving force for the surface dynamics is the local
chemical potential μ(x) along the surface, defined as the variational
derivative of the free energy F with respect to the profile itself:

μ = δF
δh
= κγ + μw + ρε, (2)

where κ is the local profile curvature, which can be directly com-
puted by finite differences as −h′′/

√
1 + h′2, γ is the (isotropic)

surface energy density for the film, and μw is the film-substrate
wetting interaction term. For thick films, μw can be neglected and
γ reduces to a constant, that is, γGe = 6.0 eV/nm2, as for Ge(001). In
the thin-film case, representative of the early growth stages, instead,
γ is a function of the film thickness.52 Following Ref. 45, γ(h)
= γGe + (γSi − γGe) exp(−h/d), with the surface energy density of
the Si(001) substrate γSi = 8.7 eV/nm2 and the characteristic decay
length d = 0.27 nm.45 By this definition, we get that μw(h) = dγ/dh
= (1/d) (γGe − γSi) exp(−h/d), which provides a stabilization of the
planar film configuration below a critical thickness hc ≈ 1.4 nm.

The elastic contribution ρε(x) is defined in the framework of
linear-elasticity as

ρε(x) =
1
2

σ : (ε − ε∗), (3)

where σ and ε are the (local) stress and strain tensors evaluated
by the explicit solution of the mechanical equilibrium problem
∇ σ = 0.53 For the sake of simplicity, the Ge film is approximated as
an elastically isotropic medium with Young modulus Y = 103 GPa
and Poisson ratio ν = 0.26 and its elastic deformation state is
numerically computed by the 2D FEM implementation described in
Ref. 39. As sketched in Fig. 1, a triangular mesh is defined with
h(x) as the top boundary corresponding to the film free surface,

FIG. 1. Schematics of the FEM representation of a Perlin-noise surface profile from
the validation set reporting the corresponding strain map for the εxx component and
the elastic energy density ρε at the surface.
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where the natural, no-stress boundary condition σ ⋅ n̂ = 0 holds.
The domain is closed by a straight bottom boundary, far enough
(≈100 nm) from the surface so as to mimic a semi-infinite film, with
a zero-displacement (u⃗ = 0) boundary condition. Periodic Bound-
ary Conditions (PBCs) are imposed at the sides. An adaptive mesh,
shown in Fig. 1, has been used, with typical element sizes ranging
from ≈5 nm at the bottom boundary to 0.05 nm at the free-surface,
where strain fields change in a shorter range. This guarantees the
convergence of the FEM solution while keeping the number of
collocation points as small as possible.

A domain size of L = 100 nm is considered since the character-
istic length scale of morphology is expected to be of the order of a
few tens of nanometers, as the fastest growing mode has wavelength
λ ≈ 23 nm,32,33,35 given the aforementioned parameters.

The NN dataset is composed of ∼80 000 [h(x), ρε(x)] couples,
which can be found in Ref. 54, and has been split at random into
training (85%) and validation (15%) sets. Given the non-linear rela-
tionship between h and ρε, two types of profiles are considered:
(1) pure sine-waves with wavelengths λ ∈ {L/6, L/5, L/3, L/2, L} and
amplitudes in [10−3, 10] nm, representative of the Fourier compo-
nents of a generic profile; (2) arbitrary undulated morphologies set
by the kind of gradient noise known as Perlin noise55,56 with ampli-
tudes in the [5 × 10−3, 15.4] nm range. An example of the latter is
reported in Fig. 1.

B. Neural network architecture
A fully convolutional NN1,2,57 implemented within the PyTorch

framework58 has been used to map the surface profile h(x) to
the corresponding elastic energy density ρε(x). The term “Fully
Convolutional” refers to the fact that the NN comprises only convo-
lutions and element-wise functions. As a result, the input of the net-
work is not restricted in length, thus allowing for the generalization
to computational domains of arbitrary size.

This architecture incorporates translational equivariance2 by
construction, which increases NN accuracy and reduces the num-
ber of examples required in training. Other symmetries can also
be straightforwardly added by ad-hoc manipulations of the NN
parameters and structure. Mirror symmetry is enforced by mak-
ing convolution kernels reflection-invariant by construction and
through data augmentation. While in principle only one of these
strategies should be sufficient, models trained using both obtained
a lower generalization error in our tests. The mean value of h(x),
h, is also removed before passing a profile as input to the NN to
enforce the vertical shift invariance proper of the considered system.
The CNN adopted circular padding,59,60 enforcing PBCs exactly and
consistently with the FEM calculation scheme.

In terms of structure, the NN is composed of stacked, one-
dimensional convolutional layers followed by tanh activation func-
tions. Each layer contains 20 different kernels with a receptive field,
that is, the spatial extent of the convolutional filter, of 21 “pixels,”
each corresponding to a collocation point used to discretize the
[h(x), ρε(x)] pairs. A constant spacing of dx = 1 nm has been cho-
sen to ensure accurate tracking of the surface dynamics while still
allowing for large enough time-steps. A total of 5 convolution-tanh
blocks are used, with a nominal total of ≈26 000 parameters. Thanks
to reflection invariance, however, their effective number is reduced.

The NN is trained by minimizing the mean squared error loss
function ℒ:

ℒ(ϑ) = 1
NTS

NTS

∑
i=1
∣ρNN

ε (hi∣ϑ) − ρFEM
ε (hi)∣2, (4)

where ρNN
ε is the NN prediction, ρFEM

ε is its ground-truth FEM coun-
terpart, i indices a training instance within the NTS of the training
set, ∣ ⋅ ∣2 represents the L2 norm in RNx (Nx being the number of col-
location points used for the discretization of profiles), and ϑ is the
set of NN parameters. The standard PyTorch implementation of the
Adam optimizer,58,61 with a learning rate of 1 × 10−5 and a batch size
of 512, was used.

III. RESULTS AND DISCUSSION
A. Neural network training and validation

Figure 2 reports the training and validation losses. These val-
ues steadily decrease during the 6000 training epochs, without any
sign of overfitting. A comparison between the NN prediction and
the FEM ρε for the same validation Perlin-noise profile for Fig. 1 is
reported in Fig. 3(a).

An additional proof of the reliability of the trained NN model
is given in Figs. 3(b)–3(d), where we compare the NN prediction
against the FEM solution for three profiles, qualitatively different
from those present in the dataset (additional examples can be found
in Ref. 54). The accurate reproduction provided by the NN asserts
its generalization capabilities, as the NN was never exposed to such
functional forms during training. Noticeably, the main discrepancies
are present at the singular points corresponding to the sharp angles
of the profile in panel (d), clearly indicating that faceted profiles
exceed the extrapolation limits of the trained model.

For a more quantitative evaluation of the NN accuracy, we
introduce the normalized Root Mean Squared Error (RMSE):

σρ =
1

ρFEM
max − ρFEM

min

¿
ÁÁÁÀ

Nx

∑
j

(ρNN(xj) − ρFEM(xj))
2

Nx
, (5)

where j runs on collocation points. We identify a value of σρ = 0.02,
that is, a 2% relative RMSE, as a reasonable threshold below which
the NN predictions can be considered to accurately reproduce the

FIG. 2. Log-scale plot of the training and validation losses of Eq. (4) for the NN
trained on FEM data.
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FIG. 3. Comparison between the NN-predicted (red circles) elastic energy density ρε and the corresponding FEM calculations (solid black line) for different profiles h(x): (a)
Perlin noise sample from the validation set; (b) asymmetric island; (c) two Gaussian islands superimposed on a flat profile; (d) a triangular island.

FEM calculations. Indeed, profiles reported in Figs. 3(a)–3(c) all
return below-threshold σρ errors, while the case (d) cannot be con-
sidered in one-to-one correspondence with FEM calculations due to
the failures in predicting ρε spikes. In the present work, as we focus
on isotropic systems, such faceted morphologies do not pose critical
issues. A suitable extension of the training set, however, should be
considered for future extensions tackling more realistic cases with
surface anisotropy.

B. Validation of time evolutions based on the NN
approximation of ρε

The NN-predicted elastic energy densities can be fruitfully
exploited for the numerical integration of the surface evolution
dynamics stated in Eq. (1) at a reduced computational cost. In par-
ticular, an ≈4 orders of magnitude speed-up with respect to FEM is
found. An explicit-Euler scheme is implemented, with a fixed time-
step δt. Given the present purpose of demonstrating the stability
of the NN approach during time integration, we report the simu-
lation time t by the number of time-steps. The absolute timescale
can be recovered by multiplying the reported numbers by Mδt, here
set to 5 × 10−3 in all simulations. Since a typical evolution sequence
occurs over hundreds of thousands of time-steps, one-to-one com-
parisons with the ground-truth provided by iterating the explicit
FEM calculation of ρε over time are possible only for small systems
and limited time intervals. The NN approximation capabilities have
been further confirmed in a quantitative study limited to small-slope
profiles for which semi-analytical expressions of the strain field are
available.62

As a first example, we consider the simplest case of annealing
( f = 0) of a thick film with isotropic surface energy density γ, such
that μ = κγ + ρε (κ being the profile curvature). In this case, any
perturbation of the film exceeding a certain critical wavelength is
expected to grow exponentially according to the well-known ATG-
instability model.32–35

Figure 4(a) reports representative stages of the growth of a sinu-
soidal perturbation, setting an unstable wavelength of 25 nm that
was on purpose excluded from the training set, so as to return a
fair test on the NN predictive capabilities. A semi-log plot of the
peak-to-valley profile height Δh as a function of time is also reported
in panel (b). The linear behavior confirms the exponential growth
regime predicted by the analytic ATG theory. In this specific case, a
one-to-one comparison with the FEM evolution is provided. Notice,
however, that the number of FEM evaluations required for tracking
the dynamics is approximately equal to the size of the whole dataset
used to train the NN, making it inconvenient to extensively repeat
a similar analysis. A substantial overlap is obtained over the tens of
thousands of integration steps of the simulation. Local discrepan-
cies around the minima and maxima are recognizable only in the
last evolution stages, when non-linear contributions induce the for-
mation of cusp-points in between the peaks, leading to numerical
divergence. To quantify the discrepancy between the NN predicted
profiles and the true ones obtained by means of FEM, we resort to
the normalized RMSE σh, defined as in Eq. (5) but now evaluated
for the height profiles hNN(x, t) and hFEM(x, t). In panel (c), the
σh error is reported as a function of time. As it can be observed,
σh progressively increases, up to reaching the threshold value at the
end of the reported simulation time, that is, close to the divergence
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FIG. 4. Analysis of ATG-like dynamics by surface diffusion. (a) Evolution of a sinu-
soidal profile with λ = 25 nm and amplitude 0.01 nm as obtained by time integration
using NN (circles) and FEM (solid line) evaluations of ρε. (b) Evolution over time of
the profile amplitude Δh in log-scale. (c) Prediction error for both the profile (solid
line, σh) and the elastic energy density (red diamonds, σρ).

[see also the curve at t = 8 × 104 in Fig. 4(a)]. This increment is not
due to a failure in the NN prediction of ρε as made evident by the
constant, below-threshold σρ error, evaluated at representative evo-
lution stages. It is instead the result of small-error accumulation
in time integration, exacerbated by the exponential nature of the
process considered.

A more appropriate description of the film growth dynamics,
which also heals the divergent behavior of the ATG model allowing
for the study of island formation and coarsening, can be achieved
by introducing the substrate–film wetting interaction, as discussed
in Sec. II A. Since the ML approach only applies to the elastic con-
tribution, the same NN model can be used despite this modification.
In Fig. 5, we report an example of a simulation of island growth,
including the wetting energy term and a small deposition flux of
f/M = 2 × 10−5, such to follow quasi-equilibrium conditions. Here
and in the following figures, a 5× scaling is applied to the height axis
for the sake of readability. As we want to provide a one-to-one com-
parison with the full FEM solution, at least for part of the dynamics,

we directly set the initial profile thickness above the critical value
hc, with an arbitrary modulation by random Fourier components
with λ ∈ [15, 100] nm to trigger unstable modes. As expected, in
the early stages of the reported evolution, the corrugation ampli-
fies similarly to the ATG model while, in the latest stages, that is,
after 1 × 106 steps, stable islands grow and coarsen, resembling
Stranski–Krastanov30 behavior. The corresponding true evolution
by FEM was carried on for the first 40 000 integration steps (still
corresponding to half of the FEM evaluations required for gener-
ating the dataset). Again, close correspondence between the NN and
FEM evolutions is achieved, as made evident by the overlap of pro-
files at both 20 000 and 40 000 steps in Fig. 5. Correspondingly, the
σh error remains well below the threshold over the whole tested
interval, certifying the accuracy of the NN approach. While the one-
to-one comparison with FEM simulations cannot be extended to
the last stage at 1 × 106 steps, it must be noted that, in contrast
to the divergent behavior of the ATG case, the dynamics of island
growth is quenched by the wetting interactions so that the error
accumulation is expected to have a lesser impact on the long-time
stages, preserving the reliability of the predicted profiles. As an indi-
rect confirmation, in Fig. 5, we also compare the NN prediction
of ρε with its FEM counterpart for the three reported evolution
stages. Evidently, the NN provides accurate evaluations of ρε, with
low σρ error over the whole time interval, even after 1 × 106 steps.

C. Growth simulations and generalization to large
domains and long times

After having demonstrated the reliability of NN evolutions for
islanding dynamics, we can use the trained model to produce more
realistic simulations of island growth, starting from the bare sub-
strate and depositing Ge for several nms. In particular, in Fig. 6, we
report the evolution sequence for three different f/M ratios (for full
animations, see supplementary material). In these cases, a random-
Fourier-components-noise of amplitude 10−2 nm is reset at every
step as long as the profile remains flat, so to trigger any unstable
mode. As expected, for high f values [Fig. 6(a)], the film grows
flat since the time scale of the instability is much slower than the
one of deposition. By raising the deposition flux (b), the corruga-
tion formation becomes concurrent with growth, yielding a final
morphology with several island-like features. Finally, in the more
thermodynamic, low-flux condition (c), the unstable modes develop
faster than deposition and coarsen into a single island. Due to the
constant supply of material by deposition, the morphology of the
final island continuously adapts toward the minimum of energy,
thus resulting in a sequence of quasi-equilibrium configurations. We
remark that this last simulation required 30 × 106 integration steps,
giving impressive proof of the stability of the proposed method.
Also, it exceeds the training set size by two orders of magnitude, thus
single-handedly justifying the computational effort of the dataset
building.

Studying the equilibrium morphology of heteroepitaxial islands
is relevant for assessing the long-time limits of simulations and pro-
vides further proof of the NN capability of returning meaningful
outputs. This task can be conveniently treated as a free energy min-
imization problem constrained to the assigned amount of material.
Since μ = δF/δh, a steepest-descent scheme can be exploited, prof-
iting from the cheap estimation of the elastic term ρε provided by
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FIG. 5. Ge film growth simulation using the NN approximation of ρε. Representative evolution stages are reported along with the corresponding ρε profiles as computed by
both NN (red circles) and FEM (black solid line). For the two stages after 20 000 and 40 000 integration steps, the NN predicted profiles are superimposed on the “true” ones
(dotted lines) obtained by using the FEM evaluation of ρε. Here, f/M = 2 × 10−5, yielding a deposition of 0.1 nm of material at the last stage.

the NN model. As initial conditions, we consider flat profiles with a
Gaussian dimple to trigger the reshaping. Different film thicknesses
h0 are then considered to inspect the change in the equilibrium mor-
phology as a function of the amount of material. The minimization

FIG. 6. Simulations of Ge film growth using the NN approximation of ρε for three
different deposition rates. Parameters are the same as in Fig. 5 but the simula-
tion starts at zero film thickness and lasts until 3 nm of materials are deposited.
Profiles are reported for every 0.5 nm of deposition but for the one dashed, which
corresponds to a thickness of 1.75 nm.

FIG. 7. Optimization of island profiles using the NN approximation of ρε. (a) Equi-
librium morphologies calculated for different amounts of Ge obtained by steepest-
descent minimization starting from a flat profile of different thickness h0, modulated
by a small Gaussian (black line corresponds to h0 = 2.5 nm). The largest profile
for h0 = 2.5 nm is superimposed with the growth stage of Fig. 6(c) with the same
amount of material. (b) Comparison between the NN (circles) and FEM (solid line)
elastic energy densities for the profiles in (a). σρ values are also reported.
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procedure is halted when the maximum deviation of μ(x) from
its mean value is lower than 10−4 eV/nm3. As shown in Fig. 7(a),
for small enough h0, due to the stabilization effect of the wetting
contribution, the equilibrium configuration is the flat film. Vice
versa, when considering thicker initial profiles, an island morphol-
ogy yields the minimum energy. The largest island in the plot is also
shown to overlap with the one obtained for the same amount of
material from the surface diffusion evolution of Fig. 6(c), thus giving
further proof of consistency of the NN predictions. To confirm that
the computed profiles have a quantitative foundation, it is sufficient
to verify the match of the NN evaluation of the elastic contribution
ρε with the corresponding FEM solution, as the other terms in μ are
identical by construction. In Fig. 7(b), we show such a comparison
for the profiles of panel (a). In all cases, one-to-one correspondence

can be observed, and the σρ values are well below the 0.02 threshold.
Once again, we remark that performing the same optimization via
FEM would be a computationally demanding task, given the number
of iterations required (≳ 10 000).

One of the key advantages offered by the fully convolutional
architecture is that it is not restricted to the input size used in train-
ing. In Fig. 8, we take profit of this for inspecting the coarsening
dynamics of islands formed on a 1-μm-long, that is, 10 times larger
than the training examples, Ge film surface (see the video in the
supplementary material). Even larger dimensions have been tested,
up to 1 mm, but are not shown here for graphical reasons and can
be found in Ref. 54. Given the large domain and the number of
iterations, up to 7 × 106 steps, comparisons with explicit FEM cal-
culations of ρε are only possible at a few representative stages. The

FIG. 8. Ge film annealing simulation using the NN approximation of ρε. Representative evolution stages are reported along with the corresponding ρε profiles as obtained by
both NN (circles) and FEM (solid line). The same parameters in Fig. 5 are considered with a null deposition flux. Notice that the heights of the reported profiles are scaled-up
by a factor of 2 with respect to previous figures.
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NN approach returns remarkable accuracy, with below-threshold
σρ values at all stages. It must be however pointed out that these
generalization capabilities are limited to configurations in which
the profile is composed of features separated by distances compara-
ble to the training set periodicity. Indeed, configurations exceeding
such constraints are not expected to be reproduced using a dataset
with a fixed size, as the trained model lacks any knowledge of the
intrinsically long-range effects of the elastic field. A more detailed
investigation of this effect is discussed in Ref. 62.

IV. CONCLUSIONS
The present study demonstrates how a Convolutional Neu-

ral Network can be fruitfully applied to learn one of the main
driving forces of strained film growth, that is, the surface elastic
energy density. A speed-up of ∼4 orders of magnitude is found with
respect to using the same FEM code exploited for the training, while
retaining the same level of accuracy, with typical discrepancies of
∼1% or less. Notably, such a gain is entirely ascribed to the cal-
culation of ρε irrespective of the adopted time-integration scheme.
Here, the basic forward-Euler method has been implemented to
ensure a fair comparison. However, the proposed approach could be
profitably integrated into semi-implicit schemes, for example, lever-
aging automatic differentiation techniques, even when this would
be non-trivial with conventional methods. This promises to push
even further the spatial and temporal scales accessible to numeric
investigation.

As the computational cost of a NN comes from its architec-
ture and not from the number of examples in training, future efforts
on building bigger FEM datasets (e.g., including faceted morpholo-
gies) promise to push the accuracy of the method even further while
keeping evaluation computational costs low. Clearly, one major
limitation of the current work is the simplifying assumption of
2D modeling. Besides the obviously larger computational effort,
generalization to 3D description should be straightforward, and it
is here left for future work.

While the present study focused on the prediction of the elas-
tic energy density for simulating the growth of thin, strained Ge
films, applications are not limited to it. The same approach could
be applied to predict other quantities, for example, the displace-
ment and stress/strain fields or other surface properties. Another
interesting perspective concerns the possibility of tackling different
heteroepitaxial systems. Due to the non-linear dependence of ρε on
elastic constants, in principle, a new dataset and model should be
set for each new material. The only exception would be when con-
sidering a variation in the eigenstrain only, which is a reasonable
approximation to describe SiGe/Si alloys. In this case, thanks to the
quadratic dependence of ρε on ε∗ a simple rescaling is sufficient.
Nonetheless, the current model could still be used as a starting point
in a transfer-learning procedure. This is expected to reduce the num-
ber of examples required for the training when considering systems
affine to Ge/Si. A more challenging possibility would be to condition
the NN output on Y and ν explicitly and build an ad-hoc dataset
exploring different elastic constant combinations, so as to build a
comprehensive NN model for the ρε of generic heteroepitaxial films.

Finally, the same paradigm presented here could also be used
for tackling more complex physical effects (e.g., including surface
and elastic anisotropy or plastic relaxation by dislocations) or could

even be transferred to other dynamical problems, thus broadening
the class of simulations that could be accelerated.

SUPPLEMENTARY MATERIAL

Videos of the complete profile evolution for the growth sim-
ulations in Fig. 6 are provided in the supplementary material
as Video_Growth_High_Rate.avi for the fastest deposition rate of
panel (a), Video_Growth_Intermediate_Rate.avi for the interme-
diate one of panel (b), and Video_Growth_Low_Rate.avi for the
slowest one of panel (c). The video of the complete annealing simu-
lation in Fig. 8 is also made available in the supplementary material
as Video_Annealing_L1000.avi.
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