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Abstract: While AI-driven automation can increase the performance and safety of systems, humans
should not be replaced in safety-critical systems but should be integrated to collaborate and mitigate
each other’s limitations. The current trend in Industry 5.0 is towards human-centric collaborative
paradigms, with an emphasis on collaborative intelligence (CI) or Hybrid Intelligent Systems. In this
survey, we search and review recent work that employs AI methods for collaborative intelligence
applications, specifically those that focus on safety and safety-critical industries. We aim to contribute
to the research landscape and industry by compiling and analyzing a range of scenarios where AI can
be used to achieve more efficient human–machine interactions, improved collaboration, coordination,
and safety. We define a domain-focused taxonomy to categorize the diverse CI solutions, based on
the type of collaborative interaction between intelligent systems and humans, the AI paradigm used
and the domain of the AI problem, while highlighting safety issues. We investigate 91 articles on CI
research published between 2014 and 2023, providing insights into the trends, gaps, and techniques
used, to guide recommendations for future research opportunities in the fast developing collaborative
intelligence field.

Keywords: collaborative intelligence; AI; safety-critical industries

1. Introduction

Industry 4.0 was characterized by the increase in automation of processes and the
adoption of artificial intelligence (AI) in a variety of industries, such as manufacturing,
the process industry, healthcare, and the transport industry. AI-driven automation has
certainly demonstrated its value by increasing productivity, reducing cost, and adding
a new layer of safety; however, the rapid and widespread adoption of these intelligent
systems without proper consideration of the ethical, societal, and safety implications has
quickly brought to light some drawbacks.

Smart automated systems contribute to the overall system performance and safety
by automating routine tasks, identifying and anticipating hazards and failure events, and
supporting operator awareness and decision-making in high-complexity troubleshoot-
ing situations; even so, the human still has the important task of monitoring possible
automation failures, carrying out manual procedures if needed, and performing decision-
making. Failure in the proper integration between them has previously led to disastrous
consequences (such as the accident of Air France flight 447 in 2009) due to operator loss
of expertise, reduced vigilance and situational awareness, complacency, reduced adapt-
ability, or information overload [1]. Particularly for safety-critical systems, such as those
in transport, nuclear, process, and infrastructure industries, it is expressly dangerous to
over-rely and overestimate the capabilities of intelligent systems. Human experts should
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not be replaced but integrated into the loop so that humans and systems can collaborate
dynamically to mitigate each other’s limitations and enhance each other’s strengths. There-
fore, the current trend in Industry 5.0 is collaboration and cooperation between humans
and intelligent systems to achieve optimal performance. This approach is not novel but,
as Sendhoff and Wersing (2020) have noted in their work ’Cooperative Intelligence—A
Humane Perspective’ [2], a ’human-centric’ view of AI-based systems that has recently
been taken to the forefront.

Despite the potential benefits of human–machine collaboration for high-stakes indus-
tries, there are specific challenges to its adoption, such as the complexity of integrating
human and machine/AI roles and feedback [3], safety issues related to low model trans-
parency and explainability, vulnerability to adversarial attacks and human bias [4], and
system safety and robustness certification [5]. Following the publication of the Ethics Guide-
lines for Trustworthy AI presented in 2020 by the High-Level Expert Group on Artificial
Intelligence [6], the new essential health and safety requirements for machinery with AI
(Machinery Regulation (EU) 2023/1230) and the EU AI Act (Regulation (EU) 2024/1689),
major concerns were raised regarding the risks of harm to the health, safety, or fundamental
rights of people in their interaction with autonomous systems/machines, particularly those
with self-evolving behavior, with close interaction with humans, or those used as a safety
component or product. Innovation and the use of state-of-the-art CI technology may be
hampered by these regulatory constraints, low digitization levels, and lack of AI expertise,
specifically for small and medium enterprises (SMEs) in industry [7].

Collaborative intelligence (CI) is a complex and interdisciplinary field, leveraging
advances in AI and machine learning (ML) to achieve higher levels of synergy between
humans and machines. As such, we aim to outline the large diversity of AI methods
and collaboration paradigms explored in the literature. We intend to assist engineers
and practitioners in the related fields of robotics, human–computer interaction (HCI),
ergonomics, AI, safety engineering, and behavioral sciences, to narrow down CI solutions
for domain-specific problems and reduce the barrier to adoption, by offering a broad
overview of potential applications of collaborative intelligence, with safety in mind.

The systematic categorization proposed next is based on the main drive for the col-
laboration, either assistance to the human or to the machine, enabling the capture of a
diversity of solutions and the discovery of how different AI methods can be employed for
the same problem. Collaborative intelligence, also known as cooperative intelligence [2], or
Hybrid Intelligent Systems [8], can be defined in different ways depending on the goals and
modes of collaboration/interaction. Akata et al. (2020) [9] has defined hybrid intelligence
as a combination of human and machine intelligence that enhances and leverages human
capabilities, and achieves goals unattainable by the human or machine alone, through
human–machine teaming. While in [2], a wider definition was presented, considering
cooperative intelligence as a state of the system required to establish a relationship between
multiple agents (human or not) and that beyond working together to achieve a common
goal, it could be leveraged just to benefit from each other and live together synergistically.
Here, we use a general interaction-based definition, where the human and the machine/al-
gorithm intelligence are interdependent and interact to achieve a goal (contrary to being
used independently for the same goal), identifying two main types of purposeful inter-
actions in human–machine collaboration: the machine assists the human, or the human
assists the machine.

In the human–machine collaboration scenario, in which the main goal is for the machine
to assist the human-in-the-loop (HIL), the objective of the intelligent system is to monitor and
support the human operator in their tasks:

• By monitoring the human and the task context and using the knowledge to detect
critical conditions, support, or adapt to the operator’s cognitive status for optimal
system performance;
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• By amplifying the operator’s physical capabilities, as in the case of exoskeletons that
can be worn by the user and enhance their physical performance, or telerobots that
allow the human to perform a variety of complex tasks using the capabilities of robots;

• By embodying human physical capabilities as in the case of cobots, that can work
alongside humans performing complementary tasks or substituting the operator in a
dynamic way.

In the type of human–machine collaboration in which the main goal is for the human-
in-the-loop to assist the machine during a learning process, a test process, or a deployment
process, the human can provide assistance:

• By annotating data to be employed by AI algorithms. This step is crucial for the
performance of supervised machine learning (ML); however, due to the effort and
cost of manual labeling of large amounts of data, more efficient learning strategies
have been developed, such as those using active learning that tries to maximize the
model’s performance while querying a human to annotate a data sample as few times
as possible.

• By the direct demonstration of tasks, as in the robot learning from a demonstration
paradigm or by direct intervention on the automated process.

• By using expert knowledge to validate and explain intelligent machine behavior
that, despite the emergence of explainable AI techniques, is still required to ensure
the outcomes and that the generated explanations match the expected behavior in a
reliable and unbiased way.

2. Related Works

Safety in industry is regulated by legal requirements and standards, in particular for
the development and deployment of systems that interact with humans. For instance, in
human–robotic collaboration applications, the new essential health and safety requirements
under the EU Machinery Regulation 2023/1230 apply and have to be considered during
the design stage and throughout the lifecycle of the robotic system. A commonly applied
standard is the harmonized standard EN ISO 12100:2010 [10], regarding risk assessment and
risk reduction principles, described by three steps: (1) the implementation of inherent safe
design measures that aim to eliminate or reduce the risk of hazards, (2) the implementation
of safeguarding and/or complementary protective measures when a hazard cannot be
eliminated or its risk is reduced at the design stage, and (3) if risks remain, the disclosure
of information for use that shall recommend safety procedures to be implemented by the
user. A more specific harmonized standard for the context human–robot collaboration is
the EN ISO 10218-2:2011 [11], including safety requirements and protective measures.

For the safety of railway systems, specifically for control software with impact on
safety, the recent EN 50716:2023 [12] provides lifecycle development processes and technical
requirements, including formal methods and the integration of ML/AI techniques.

In the case of highly automated vehicles, the complexity of the environment and
intended functionality requires safety guidance on multiple system levels. General func-
tional safety can be addressed by the requirements of EN ISO 26262:2018 [13], while SOTIF
EN ISO 21448:2022 [14] focuses on design, verification and validation guidance for the
specification of the intended functionality, which can apply to hazards caused by the lim-
itations of the implemented ML/AI in advanced driver-assistance systems. In the case
of fully autonomous vehicles, the standard UL 4600 (2023) [15] proposes an approach for
assessing and validating system safety, while for systems requiring human interaction and
supervision, other standards specific to safe and ergonomic design should be applied (such
as EN ISO 9241-210:2019 [16]).

However, with the fast development and introduction to the market of CI technology,
other current legislation and standards may require updating to deal with the emergent
challenges of new digital technologies, such as the artificial intelligence, Internet of Things
and robotics domains. To support the operationalization of compliance to new safety
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requirements, in addition to leveraging existing and emerging standards, state-of-the-art
research efforts can shed light on domain-specific solutions.

Previous surveys and literature reviews have approached some of these topics in
a more focused manner, mostly covering two main general lines of research: intelligent
human–machine interactions, namely human–robot and human–computer interactions,
and human-in-the-loop learning.

Hua et al. (2021) [17] surveyed state-of-the-art deep learning, reinforcement, imitation,
and transfer learning AI methods for robot control and adaptation to diverse complex
environments and tasks, including their application to human–robot collaboration. In
the recent work of Borboni et al. (2023) [18], the potential role of AI in the use of cobots
for industrial applications was explored, and the state-of-the-art research on AI-based
collaborative robotic applications was analyzed. Liu and Wang (2018) [19] also covered
human–robot collaboration in their review, specifically, gesture recognition used for com-
munication between human workers and robots. The work reports on the most important
technologies and algorithms of gesture recognition existing in the current research. A
model and classification scheme of gesture recognition for human–robot collaboration
is proposed, with four technical components: sensor technologies, gesture identification,
gesture tracking, and gesture classification.

Another possible effective communication channel between robots, machines, and
humans is the human gaze. Zhang et al. (2020) [20] performed a literature review of
human gaze modeling and its potential applications. Human gaze data can be used by AI
to develop the intelligent attentional selection of information, or for the AI agents to be
aware of the human cognitive and emotional state, fostering more natural communication
and interactions between them. The work reviewed human-gaze-assisted AI agents in
multiple fields, such as computer vision, natural language processing, imitation, and
reinforcement learning, as well as robotics. In a more high-level and broad mapping study
by Šumak et al. (2022) [21], state-of-the-art AI methods for intelligent human–computer
interaction using sensor data were reviewed. The mapping found that studies have mostly
focused on recognizing the emotion and stress of HCI users, followed by gestures and facial
expressions identification, using, more frequently, deep learning algorithms, including
CNNs, and from the classical machine learning algorithms, SVMs.

An alternative type of collaboration is human-in-the-loop learning, typically employ-
ing the human to deal with sparse data, lack of training data, or improve the performance
of machine learning methods with expert task knowledge. Wu et al. (2022) [22] analyzed
the literature from a data perspective, categorizing methods based on the stage at which
the human was added to the loop—in the data processing stage, model training stage, or
in the design and application of the system. From the point of view of who is in control
during learning, human-in-the-loop machine learning methods can be mainly divided
into active learning, where the system is responsible for the learning process and interacts
with the human for data annotation; interactive machine learning, where the interaction is
less structured, more frequent, and incremental; and machine teaching, where the human
expert is the responsible for the learning process by transferring knowledge [23]. From a
safety perspective, human–machine collaboration has been leveraged for safe learning and
anomaly detection by incorporating human knowledge, demonstration, supervision, or
feedback in the learning process [24]. Due to the black-box nature of AI/DL-based systems
and their weakness to adversarial attacks and out-of-distribution inputs [25], the unique
skills of humans such as pattern discrimination, high-level conceptualization, and hazard
identification can be used by the system to mitigate safety risks.

To our knowledge, the current literature explorations of collaborative intelligence
and AI problems, techniques, and challenges have not taken into account the common
aspects between the previously mentioned disparate topics of work and how collaborative
interactions are at the core of the targeted technologies. With this survey, we intend to give
a general and unified overview of recent works employing AI methods for collaborative
intelligence problems, with an additional focus on safety or application to safety-critical
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industries. For these industries, safety is put on the forefront of performance; however, both
the probabilistic nature of AI and the uncertainty of human behavior make the regulatory
certification of CI methods a challenge [24]. The work of [5] provided a general overview of
potential safety issues in human–machine collaboration from the machine side, the human
side, and the interaction side, and possible countermeasures to be considered early on in the
development of human–machine teaming, lacking, however, a direct link to specific tasks
and application domains. Safety is an emergent property of the combination of components
of a system [24], and as such, the risk assessment process should involve the setting of the
operating conditions and identification of potential hazards for the individual components
according to their role in the system, highly dependent on the application domain. Our aim
is to promote the progress and implementation of collaborative intelligence in safety-critical
industries by providing a wide array of application examples, their limitations, and insight
into outstanding safety concerns. We analyze the trends and gaps in the AI problems
addressed, the interaction tasks, and techniques used in the latest collaborative intelligence
research landscape to set the directions for future research on safer human–machine col-
laboration. Furthermore, we uncover from the reviewed papers a sub-categorization of
collaborative intelligence tasks (Figure 1) and link it to the previously identified types of CI
interactions (Machine assists human-in-the-loop or human-in-the-loop assists the machine).

Figure 1. CI interaction types and task categories.
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As a wide survey of AI methods for CI solutions, we cover a broad range of tech-
niques that aim to emulate human intelligence through computer algorithms [26]. AI
techniques generally fit into three main groups: machine reasoning, machine learning,
and robotics [27]. These three groups are, however, a very coarse classification, blending
categorizations of learning style, similarity in form or function, and the AI problem it
tackles. For this review, a more comprehensive taxonomy will be used expanding on the
AI Knowledge Map developed by Corea (2019) [28]. We categorize AI solutions based on
the intelligence problem that is solved (AI problem domain) and the type of AI approach
used (AI paradigms).

Below, we summarize the standard domain categories that AI problems typically
fall into:

• Perception domain : Tasks of sensing and understanding signals from the physi-
cal world, transforming those data into valuable and relevant information for the
specific application.

• Reasoning domain: Tasks that use logic and existing knowledge to solve new problems.
• Knowledge representation domain: Tasks that try to represent knowledge in a way

that can be manipulated and understood.
• Planning domain: Tasks that try to find the best way to achieve goals within certain

spatial, temporal, or resource constraints.
• Communication domain: Tasks regarding the understanding of language and communication.
• Control domain: Tasks regarding the monitoring and regulation of a system to achieve

a desired result.

Next, we specify the categories of AI paradigms that will be employed:

• Logic-based approaches: Approaches that use logic and abstract high-level representa-
tions of knowledge to solve problems. Logic-based approaches are the foundation of
classical symbolic AI and are used for three main problems: knowledge representation,
reasoning, and model-checking and verification [29].

• Knowledge-based approaches: Approaches that use knowledge representation sys-
tems, such as large knowledge bases, to represent explicitly and declaratively known
notions, information, and rules in order to infer new implicit symbolic knowledge [30].

• Probabilistic approaches: Approaches that use probabilistic knowledge and scenar-
ios, such as Naïve Bayesian Networks, Markov Models, and Restricted Boltzmann
Machines [31].

• Machine learning approaches: Approaches that allow a machine/computer to learn
from data, i.e., data-driven methods, such as Artificial Neural Networks and Ensem-
ble Learning algorithms [32,33]. These approaches can be sub-classified based in
the degree of supervision they have during learning (unsupervised, supervised, or
semi-supervised learning) or the prior knowledge (inductive, transductive or trans-
fer learning).

• Neuro-symbolic approaches: Approaches that integrate symbolic and sub-symbolic
models at any stage of an intelligent system (model design, input, output, reasoning,
or learning stage) [34].

• Search and Optimization approaches: Approaches that allow to intelligently search
through many solutions to achieve the target objective function value while satisfying
the problem’s constraints [35]. In general, optimization methods can be divided into
either local or global algorithms.

• Embodied intelligence approaches: Approaches that allow for an agent to have higher
intelligence, such as movement, perception, interaction, and visualization abilities.
Approaches like reinforcement learning and learning (programming) from demonstra-
tion include not only the intelligent agent but also its “body” that interacts with the
world according to some constraints, and the specific environment it is situated in. A
broader definition can be taken to include simulation, where the embodied intelligence
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agent can purposefully exchange energy and information with a simulated physical
environment [36].

Section 3 contains the reviewed works organized according to the general type of
CI interaction, the sub-categorization of CI tasks found during the analysis (displayed in
Figure 1), and the AI taxonomy mentioned above. In addition, a summary of the papers
is given for each CI task sub-category. Lastly, a discussion of the most important insights
discovered through the review and analysis of the research questions is presented in
Section 4, also providing recommendations and future research opportunities for the field
of collaborative intelligence.

3. Results

To conduct the review, the following databases were searched and used as the principal
research systems: ACM digital library, ISI Web of Knowledge, Wiley Inter Science, Scopus,
and IEEE Xplore. Works published between 2006 and 2023, in conferences of class A
or journals of the first or second quartile, related to the main topics of the review were
identified: collaborative intelligence, artificial intelligence, and safety. Articles not related
to industrial applications or safety-critical industries were not included.

After the definition of the classification strategy, the papers were categorized according
to the general CI task sub-category, the AI paradigm employed, the AI problem domain
addressed, the collaborative intelligence goal achieved, and the application domain (if
mentioned). In addition, the research goals, research methodology, and results were
analyzed for each category. To guide the discovery of trends and gaps in the field, we
studied the type of CI tasks addressed and the common AI methods and techniques
employed for collaborative intelligence problems, the industries most targeted by the
research, how the safety of human–machine interactions is addressed, and identified
common future lines of research/work.

The final 91 articles retrieved from the literature are presented and described by
CI interaction type and in chronological order in Tables 1–11. From an initial analysis,
it was observed that most of the articles retrieved that fit our focused research topics
were published recently, between 2019 and 2023 (Figure 2), while no article published
between 2006 and 2014 was found that matched our search queries. The most addressed
collaborative interactions involved the machine assisting the human with human–robot
collaboration tasks in the manufacturing industry domain. The second largest portion of
the papers provided AI solutions for CI tasks independently of the application domain, not
having specified it in the paper, or mentioning only potential target applications. However,
the survey was able to retrieve research works focused on safety-critical industries, such as
automotive, maritime, aviation, nuclear, and rail industries (Figure 3).

Figure 2. Year of publication of articles using AI for CI grouped by CI interaction type.
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The distribution of the papers following the defined AI problem and the paradigm
taxonomy is depicted in Figures 4 and 5, respectfully. A tendency is clear for the type of
AI problems that are approached in collaborative intelligence research, with most of the
articles including perception, planning, and/or control problems. In terms of AI paradigms,
machine learning is the most popular technique in the retrieved papers, followed by
probabilistic approaches. It is worthy of note that a large portion of work has employed
either hybrid techniques or made use of more than one type of AI method to solve multiple
AI problems, often necessary to achieve complex CI solutions.

Figure 3. Domain of application of the papers.

Figure 4. Number of articles for each AI problem domain category.

In the selected research works, a variety of common collaborative intelligence tasks
were found (Figure 6). The identified subtypes of CI tasks in which the machine assists
the human were Cobot motion planning and task scheduling, Robot control, Design optimization,
Human/object detection and tracking, Human intention prediction and motion recognition, Hu-
man state recognition, Human mental model estimation, CI safety assessment, and Accident/error
prediction; the tasks related to humans assisting the machine were Human assistance during
learning, including the safe training of RL agents, interactive alarm flood reduction, per-
sonalized autonomous driving, language-based assistance for navigation, cobot motion
planning and coordination learning, and robot control learning, and Human assistance
during deployment, addressing worker-assisted emergency detection, worker-assisted active
learning for real-time safety assessment, and worker-assisted robot visual grounding.
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Figure 5. Number of articles for each AI paradigm category.

Figure 6. Number of articles for each CI task sub-category.

3.1. Machine Assists Human-in-the-Loop
3.1.1. Cobot Motion Planning and Task Scheduling

Robot and cobot (collaborative robots designed to share the same workspace with
human workers) motion planning and task scheduling require the system to be aware of
the human, to avoid collision, and coordinate tasks between them, without loss of speed
or efficiency. Different AI methods have been used in the literature to implement robot
motion planning tasks or human–robot task scheduling, which aim at assisting the human
and achieving optimal coordination and system performance in collaborative tasks. Within
the aim of this survey, thirteen works have been retrieved that employ AI techniques for
this type of CI task and interaction (Table 1).
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Table 1. Description of the retrieved articles that use AI for CI tasks related to cobot motion planning
and task scheduling, ordered chronologically.

CI Interaction Type Ref. CI Task AI Problem
Domain

AI Method(s) AI Paradigm Application
Domain

Machine Assists Human

Cobot motion planning
and task scheduling

[37] Robot path and task planning
and scheduling

Planning Probabilistic method for HOV and
execution time computation, RRT
for trajectory planning and flexi-
ble timeline-based task planning
and scheduling

Probabilistic, Search
and Optimization;
Logic-based

Manufacturing
industry

[38] Robot task planning and
scheduling

Control, Plan-
ning

Iterative IRL for human prefer-
ence learning

Search and Opti-
mization

Autonomous
systems

[39] Robot motion and task planning Planning, Con-
trol

Flexible timeline-based task plan-
ning model

Logic-based Manufacturing
industry

[40] Robot motion/path planning Perception,
Planning

Kalman filter for velocity estima-
tion and RRT with obstacle velocity-
based costmap for path generation

Probabilistic, Search
and Optimization

Manufacturing
industry

[41] Learn human expected robot be-
havior for generation of explica-
ble robot plans

Planning Regression models to learn the map-
ping of distance between agent’s
and humans’ expected plan to
explicability score and anytime
greedy search to progressively
search for plans with better expli-
cability scores

Machine Learn-
ing, Search and
Optimization

NS

[42] Robot motion/path planning Perception,
Planning

Probabilistic movement primitives,
GMM

Probabilistic NS

[43] Robot motion/path planning Planning, Con-
trol

Deep RL Embodied Intelli-
gence

Manufacturing
industry

[44] Learning of desired driver’s
path for semi-autonomous driv-
ing

Control task Iterative learning control Search and Opti-
mization

Automotive in-
dustry

[45] Intention-guided semi-
autonomous driving for
mobile robot teleoperation

Planning BIAS for path generation Search and Opti-
mization

NS

[46] Robot motion/path planning Planning Feedforward ANN Machine learn-
ing, Embodied
Intelligence

Manufacturing
industry

[47] Robot task planning and
scheduling

Planning, Con-
trol

Double DDPG Embodied Intelli-
gence

Manufacturing
industry

[48] Robot motion and task planning Perception,
Planning

T-RRT and MPC methods for opti-
mal tool delivery position, and tra-
jectory and GMR for human motion
prediction

Search and Opti-
mization

Manufacturing
industry

[49] Robot path planning Perception,
Planning

Artificial Potential Fields for colli-
sion avoidance

ND NS

The acronyms used have the following expansions: Artificial Neural Network (ANN), Biased Incremental Action
Sampling (BIAS), Gaussian Mixture Model (GMM), Gaussian Mixture Regression (GMR), Human Occupancy
Volume (HOV), Inverse Reinforcement Learning (IRL), Model Predictive Control (MPC), Not Defined (ND), Not
Specified (NS), Reinforcement Learning (RL), Rapidly Exploring Random Tree (RRT), Transition-based Rapidly
Exploring Random Tree (T-RRT).

The main type of tasks identified within this sub-category were cobot motion path
planning, cobot task planning and scheduling, and methods aimed at autonomous or
semi-autonomous driving path learning that can also be translated into the cobot domain.
These works contribute with innovative technology that aims to achieve one of the goals of
Industry 5.0: seamless and safe human–machine interaction and collaboration to capitalize
on the human worker’s added value and the efficiency of advanced robotic solutions. For
safe collaboration, earlier work defined Human Occupancy Volumes (HOVs) to constrain
the path search space and compute the collision probability between human and robot [37],
while more recent systems aimed at dynamic real-time collision avoidance using vision
systems or models for human motion prediction [40,42,46,48]. For autonomous/semi-
autonomous driving, of either teleoperated mobile robots [38,45] or vehicles [44], the goal
of collaboration is instead the incorporation of the driver’s intention/preference in the
generated paths, while assisting the driver with automated path generation, compliance
with safety constraints, and the monitoring of environmental obstacles.

Dynamic and flexible task planning and scheduling methods can leverage the available
resources (robots and operators) in the optimal way, by dynamically allocating tasks in a
specific sequence, constrained by their skills, temporal and synchronization limitations,
and execution time uncertainty [37,39]. More recent works have addressed some of the
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gaps in previous methods, namely, the inability to change the assembly plans according to
changes in the environment [47] that may be required in manufacturing SMEs with shared
resources between assemblies, and the weak awareness of humans’ mental model and their
expected robot behavior, a key ability for trust and reduction in safety risks [41]. Factors
such as robot visibility and the comfort of the human’s interaction position can also reduce
the distance between the robot’s and the humans’ expected plan of the same task [48].

Different types of AI paradigms and methods have been applied to solve the complex
tasks of robot motion planning and task scheduling, falling mostly under Search and
Optimization paradigms for Control and Planning AI problems. We highlight the classical
Rapidly Exploring Random Tree (RRT) method for cobot motion planning [37,40,48]. The
RRT algorithm is a path search algorithm that performs the efficient sampling of high-
dimensional spaces with algebraic constraints (due to obstacles) and differential constraints
(constraints on the system configuration variables that derive from inaccessible paths for
the system) by incrementally biasing the search tree towards the unexplored state space. It
can be applied using different kinds of sensor data to provide information about human
occupancy and collision risk, and it can be combined with a task scheduling framework to
deal with temporal uncertainty caused by changes in the robot trajectory. More modern
strategies can employ neural networks for situations that require speed and reliability,
and switch to a more accurate and safe baseline deterministic algorithm, using a simplex
architecture for the safety assurance of the path planning system [46]. In the case of
highly dynamical and cluttered environments, with strict real-time control requirements
for collision avoidance, ref. [49] proposed the traditional path-planning algorithm Artificial
Potential Fields connected to a digital twin of the current environment. The algorithm does
not require optimization and allows real-time reaction to environment changes by defining
attractive forces towards a goal and repulsive forces from obstacles. The digital twin
provides both location, orientation and distance information but can also communicate
task-specific interaction parameters. Future work still requires nonetheless a method to
update the digital twin for the detection of dynamic obstacles. For vehicle path generation
instead, in considering the driver’s preferences, iterative learning strategies were proposed
as an alternative for the data-hungry Deep Reinforcement Learning strategies, to enable
learning through repeated cooperation with the human driver [44,45].

Timeline-based task planners were the most commonly used methods for task plan-
ning and scheduling problems [37,39], modeling the human (state variable with uncon-
trollable values) and the robot behavior (state variable with partially controllable values)
as multi-valued state variables to be controlled over time, based on causal, temporal, and
synchronization legal constraints that dictate transitions between values and the duration
of the value. The evolution of a multi-valued state variable over time is called the timeline
of that state variable. A digital twin-based framework can also be developed to account for
the target industrial environment, the optimization of assembly processes, and adaptation
to environmental changes, employing reinforcement learning methods, such as the Double
Deep Deterministic Policy Gradients (D-DDPGs) [47]. When the state space, or action space,
has high dimensionality and is very complex (such as in the case of a digital twin of an
industrial cell), deep neural networks can be used to either represent the system states, or
to approximate the optimal Q function, the optimal policy function, or the model (state
transition function) in an efficient way. The network can be trained by minimizing the
difference between the expected reward and the real reward received by the environment.
The combination of reinforcement learning and deep learning is called Deep RL, and has
shown recently a lot of progress, even if with limited applicability to real-world problems so
far due to the amount of data required to train the models and safety concerns, particularly
for model-free RL, where the agent learns by trial and error.

Despite the fast development of motion planning and tasks scheduling technology,
previous research has highlighted the important role of human autonomy in supporting
the well-being of workers. A balance must be found between worker autonomy in task
allocation and process control, and the use of these technologies to reduce the mental
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demand on the workers [50]. Assistance systems should be supportive but not overly
complex, avoiding fully autonomous decision-making [51]. From another perspective,
intelligent systems can detect human decision-making bias, and select the most effective
way to explain and persuade the worker to take the most beneficial action [5].

In cobot applications, where the operator and the robot share the same workspace,
worker physical safety is also paramount. The safety measures taken by the proposed
solutions commonly fall under two categories: dynamic path replanning or decrease in
robot speed to avoid collisions. Both usually rely on probabilistic approaches to find
the optimal balance between safety and efficiency. Human motion intention prediction
can confer to the robot the adaptation and proactive planning ability to better assist the
human operator; however, mutual understanding is required for effective interactions
(value alignment) [5]. An explainability metric can be computed or trained to assess the
generated cobot motion plans, promoting the situational awareness and trust of the worker.

In driver-assistance systems, safety is addressed by performing collision monitoring
and generating safe paths. With RL-based solutions, there is the risk during the learning
phase that the robot performs dangerous actions while interacting with the human and the
environment. As such, the use of a digital twin to conduct the learning is recommended [47],
supplemented with a method for robot action safety/risk evaluation.

3.1.2. Robot Control Programming

Robot control is an essential problem when humans collaborate with cobots or work
with other types of robots, such as in teleoperation. Particularly in manufacturing tasks,
cobots are required to perform dynamic complex tasks while maintaining performance, and
ensuring the safety of the human collaborators. AI can be used for autonomous control, to
manage the movement and behavior of robotic manipulators, providing safety solutions for
automatic collision avoidance, path adaptation, and speed adaptation control, according to
detected obstacles or predicted human motion. The AI is subsequently assisting the human
collaborating with the robot in the same workspace. Six works have been retrieved that
applied primarily ANNs, embodied intelligence, and fuzzy control techniques for this type
of CI task and interaction (Table 2).

Table 2. Description of the retrieved articles that use AI for CI tasks related to robot control program-
ming, ordered chronologically.

CI Interaction
Type

Ref. CI Task AI Problem
Domain

AI Method(s) AI Paradigm Application
Domain

Machine Assists Human

Robot control
programming

[52] Robot hybrid force and po-
sition control

Control Adaptive ANN Machine learning NS

[53] Robot impedance control Control ANN and fuzzy impedance
controller

Machine Learning,
Logic-based

Industrial en-
vironment

[54] Robot motion control and
adaptation

Control DDPG and ANN Embodied Intel-
ligence, Machine
learning

Manufacturing
industry

[55] Shared control arbitration
strategy for teleoperation

Control DDPG with decision point re-
ward term

Embodied Intelli-
gence

NS

[56] Robot speed control and
adaptation

Perception,
Control

Multi-modal sensor fusion al-
gorithm and CNN for human
tracking and fuzzy inference
system for robot speed control

Machine learning,
Logic-based

Manufacturing
industry (avi-
ation)

[57] Shared control method for
cooperative driving

Control Approximate dynamic pro-
gramming with neural net-
works

Machine Learning,
Optimization

Automotive
industry

The acronyms used have the following expansions: Artificial Neural Network (ANN), Convolutional Neural
Network (CNN), Deep Deterministic Policy Gradient (DDPG), and Not Specified (NS).

The selected papers categorized under robot control addressed CI tasks such as the
learning of force and position control [52], impedance control [53], robot motion and speed
adaptation for safety [54,56], shared-control strategies between the operator’s inputs and
the autonomous system’s inputs for teleoperation [55] and driving [57]. Specifically, the
solutions were developed for manufacturing picking, lifting and assembly collaborative
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tasks, for which the effective control of cooperation and conflict between machines/robots
and human operators is critical for safety.

Hybrid force and position control is required in collaborative scenarios where the
robot can be in contact with humans, and both position and force trajectories need to be
tracked, or alternatively an impedance controller can be used for compliant robot behavior
when contact with a human is expected [53], such as for exoskeletons, assisted lifting for
heavy industrial tasks, or learning from demonstration that requires direct manipulation of
the robot. Low tracking error, stable control, the handling of uncertainties in the robot’s
dynamic model, and the optimization of human comfort are design requirements for safe
human–robot interactions [52]. Robot speed scaling can be further applied according to
the estimated risk and hazard level of collision. As previously mentioned, for cooperative
driving tasks, the aim is to reduce the driver’s workload, ensure safety, and improve
the commands’ efficiency compared to direct driving/teleoperation, requiring intelligent
control solutions [55,57].

Among the selected articles, the majority of contributions were categorized within the
machine learning, logic-based and embodied intelligence paradigms for control problems.
For effective and adaptive intelligent control, we highlight the use of neural network-based
or fuzzy controllers. Neural networks can estimate complex dynamic models of a robot and
adapt to changing environments, while fuzzy controllers allow to account for the subjective
or imprecise target variables, such as the human effort in a task or speed scaling based on a
collision risk assessment.

Ref. [53] developed a cooperative impedance fuzzy-controller to optimize human–
robot cooperation in heavy load lifting tasks, by mapping the interaction force, the deriva-
tive of the interaction force, and the end-effector velocity to a fuzzy impedance assistance
level, followed by the use of a feedforward neural network to select the best assistance
level that minimizes human effort/physical stress and maintains trajectory smoothness. A
fuzzy control strategy can also be applied for robot speed control to ensure the safety of
human–robot interactions in manufacturing work cells, while minimizing robot stops [56].
A fuzzy-based control strategy was developed to monitor the time derivative of the distance
between the operator and robot, the velocities, and the temperature of the closest point
to the robot (to distinguish between human and non-human surfaces), and to output a
velocity scaling factor based on five rules, mapping the inputs to three fuzzy sets of risk
level (high, medium, and low). Alternatively, the motion of the robot can be adapted when
a human is too close, changing its path but not the velocity [54]. For this control problem, a
reinforcement learning method can be trained offline in a simulated environment to learn
when the collision risk is too high and how to change the robot’s motion to the target point
by adding a collision cost to the RL model’s reward function.

An RL reward function can also be designed to reward the allocation of control
authority to a human when the robot has multiple paths/goal options, allowing one to
limit the search space, and ensuring assistance to the user’s intended goal by exploiting the
already existing information on points of disagreement between sub-policies (when the
agent cannot predict the user’s goal). Ref. [55] proposed such an RL framework for learning
a shared control arbitration strategy for teleoperation applications, where the agent policy
is modeled as a mixture model over each sub-policy towards a goal, therefore allowing
for the identification of the decision points (multiple goal options) by the modality of the
mixture distribution. The results in a simulated environment showed that the learned
control strategy for blending robot and user control was safer and more effective compared
to direct teleoperation by biased and noisy users.

For safe human–robot collaboration, several controller solutions were proposed for
adaptation of the robot behavior according to the dynamic risk of hazards to the human
workers. The collision risk can be estimated from input human and robot position and
velocity data, while the workers’ physical stress/effort can be retrieved from the interaction
force with a cobot or from electromyography sensor signals (electric activity of muscles)
for mobile monitoring [53]. This mapping between the task data and risk level can be
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implemented by simple neural networks or simple safety rules. In addition to the pre-
ventative measures, collision detection and mitigation solutions can reduce the hazard to
human operators, if the collision avoidance methods fail. Impedance control and human
recognition by the detection of the collision surface’s temperature can be employed together
to limit the robot’s collision force when necessary [56].

Shared control strategies can improve the safety and efficiency of control, while still
respecting the operator’s intent. However, the lack of explanation or transparency of the
system’s autonomous actions can affect the situational awareness of the human, and cause
overtrust or distrust towards the machine [5]. More research is needed to determine the
best way to communicate control takeover and control actions, and how the communication
method affects the subsequent human behavior. Ref. [58] reviewed several methods for
communication between the robotic system and human operator in shared control scenarios,
mostly focused on feedback modalities for communicating environmental information
or assistive cues that indicate the desired operator action, relayed through the master
manipulator. Still, visual, haptic, or tactile modalities can also be employed to communicate
the robotic system’s intent to the human in the least sensory-taxing way.

In some of the reviewed works, the learning and testing of safety-critical interactions
and functionalities were also conducted in simulated environments, before implementation in
real collaborative tasks, such as the testing of position and force tracking for a collaborative
cell [52], and the offline training of a Deep RL model and a hazard estimator with a simple
humanoid model built from the recorded skeleton data of human motion [54]. A common
safety requirement that is overlooked is the assessment of the quality and representativeness
of the training data, followed by a thorough validation of the required performance levels
and robustness in all operational conditions [5]. Typically, the focus of the papers is on the
technological implementation, using the tasks as a way to evaluate the proposed solution,
instead of validating it in the expected operational context, environment, and user type.

3.1.3. Design Optimization

Several requirements and their trade-offs need to be considered when determining
the best design parameters for a particular application or task, i.e., design optimization.
This can be challenging when the design space is large and high-dimensional, requiring
the use of efficient algorithms to explore and evaluate a representative subset of designs.
Additionally, it is commonly difficult to incorporate subjective factors into the optimization
process, such as human preference or expert knowledge [59]. Only two works were re-
trieved applying an AI method for design optimization (Table 3) (regarding the AI problem
domain classification in the aforementioned taxonomy, the defined categories fall short for
tasks such as design optimization that can involve the challenges of multiple domains).

Table 3. Description of the retrieved articles that use AI for CI tasks related to design optimization,
ordered chronologically.

CI Interac-
tion Type

Ref. CI Task AI Problem
Domain

AI Method(s) AI Paradigm Application
Domain

Machine Assists Human

Design
optimization

[60] Design optimization for wear-
able robot

ND Bayesian optimization Search and Opti-
mization

NS

[61] Software design optimization ND Hybrid evolutionary and lo-
cal search algorithm H-EDA

Search and Opti-
mization

Rail industry

The acronyms used have the following expansions: Hybrid of the Estimation of Distribution Algorithm and an
Iterated Local Search Algorithm (H-EDA), Not Defined (ND), Not Specified (NS), and reinforcement learning (RL).

Customization is another key goal of Industry 5.0. The results retrieved from our
search categorized under Design Optimization CI tasks highlight this trend, addressing
approaches that can help optimize the design of wearable robots, collaborative robots,
human–machine interfaces and interaction devices, and software to the individual user
preferences, characteristics, and requirements.
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Ref. [60] proposed a human-in-the-loop design optimization approach for wearable
robots (we do not consider this a situation where the human assists the machine, as it is not
the expertise of the human that is used to optimize the design of the robot but force and
kinematic data collected from specific movements), to minimize human metabolic energy
during physical movement (computed using a musculoskeletal model of the human and
the human–robot coupling). The approach demonstrated that it could reduce the total
metabolic cost of walking by 24.91% using an ankle exoskeleton compared to an unassisted
condition, while reducing the design time and cost of wearable robots. A similar work
explored previously from [53] proposed to optimize a collaborative robot’s impedance
control parameters for assisted lifting tasks but using instead real-time feedback from the
human’s physiology. Both options can be employed for design optimization, depending
on the design parameter of interest. Alternatively, design optimization can also be applied
to software solutions. Ref. [61] proposed a safety software design method for safety-critical
systems using Boolean algebra and optimization techniques to find an optimized software
design that considers system performance, availability requirements, and safety rules. The
proposed solution can facilitate the human-based design activity of safety-critical systems
and can be adapted to other applications, domains, and standards.

Both articles reviewed fall under the Search and Optimization paradigm category,
specifically using Bayesian optimization and a Hybrid evolutionary and local search al-
gorithm. Bayesian optimization, commonly used in ML to optimize hyperparameters,
effectively optimizes objective functions by building a surrogate model of the objective,
quantifying the uncertainty by Gaussian process regression, and using the surrogate to
define an acquisition function to choose samples to evaluate the real objective function.
Using a case study on the design of an ankle exoskeleton [60], the optimization approach
demonstrated the ability to optimize the spring stiffness design parameter, reducing the to-
tal metabolic cost of walking by 24.91% compared to an unassisted condition. The software
design optimization solution was implemented and tested instead on a simplified railway
case study, evaluating several optimization techniques based on the number of safety rules
violated, the availability of the solution (in terms of the availability of green traffic lights
for trains), and performance (evaluated in terms of the network traffic flow capacity). The
multi-optimization results showed that all methods achieve a safe design quickly, but the
best performing method is H-EDA, a hybrid of an Estimation of Distribution Algorithm
(EDA—an evolutionary algorithm that samples new solutions at each iteration from a
probability distribution) and an Iterated Local Search algorithm (ILS—an extension of a
local search algorithm that iteratively searches for local minima). The hybrid algorithm
uses the high-performing and problem-agnostic EDA algorithm as the main method and
then applies the fast ILS to the best solution.

At the stage of system and design optimization, risk assessment and risk mitigation
measures should be taken. Different methods can be used, such as task-oriented methods,
automated formal verification or simulation techniques [62] that need to account for human
error and unsafe human behavior. Human-centered design can promote performance
optimization under safety constraints instead of considering safety measures as being
limiting to performance [62]. Recent work has demonstrated the benefit of including
cognitive ergonomics [63] and robot–human interaction quality metrics [64] for the design
of CI systems.

3.1.4. Human/Object Detection and Tracking

Human or, more generally, object detection and tracking is a common task carried out
by computer vision. From the retrieved papers, three employed intelligent vision systems
to assist the human in collaborative tasks, while autonomously ensuring appropriate
safety levels (eliminating the need of human supervision for safety monitoring). A fourth
paper performed human tracking but with the goal of the real-time estimation of task
advancement for task coordination between humans and robots (Table 4).
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Table 4. Description of the retrieved articles that use AI for CI tasks related to human/object detection
and tracking, ordered chronologically.

CI Interac-
tion Type

Ref. CI Task AI Problem
Domain

AI Method(s) AI Paradigm Application Do-
main

Machine Assists Human

Human/object
detection and
tracking

[65] Object tracking Perception GPLVM as generative prior
and object flow classifier

Probabilistic Ma-
chine Learning

Manufacturing in-
dustry

[66] Human task tracking Perception Dynamic time warping-based
algorithm

Search and Opti-
mization

Manufacturing in-
dustry

[67] Human detection Perception 4 CNN models (3 use transfer
learning)

Machine learning Industrial environ-
ment

[56] Human tracking Perception,
Control

Multi-modal sensor fusion al-
gorithm and CNN for human
tracking and fuzzy inference
system for robot speed control

Machine learning,
Logic-based

Manufacturing in-
dustry (aviation)

The acronyms used have the following expansions: Convolutional Neural Network (CNN), Gaussian Process
Latent Variable Model (GPLVM).

Within complex industrial environments, perception is an essential ability for quality
assurance, the detection of production deviations, and the improvement of productivity
and safety in human–robot collaboration activities. Ref. [65] proposed a robust and
universal object tracking and displacement estimation approach for industrial environments
that can be applied to human workers or other obstacles of interest, aiming to tackle
the common challenges of object tracking, such as unpredictable human motion, low
discriminant information between targets and background, occlusions of target objects,
and frequent change in the background or the targets’ appearances (workers with casual
clothing or Personal Protective Equipment (PPE)). Some of the proposed past works have
limited applicability [65,67], due to the use of a single camera and simple classification
labels, not allowing one to distinguish between blind spots or overlap situations from real
collisions. The work of [56] proposed a solution to these issues by developing a multi-modal
perception system, with two depth sensors to avoid occlusions and a thermal camera to
reduce false positives.

Tracking can also be employed for task advancement monitoring in real-time [66]
by tracking human motion and comparing the ongoing tracked movements with a task
reference demonstration, providing an estimate of the task duration. These types of
solutions are developed to deal with the variability inherent in human task execution,
between subjects and within the execution by the same subject, which can be a challenge
for collaboration and coordination tasks.

For these perception problems, a variety of AI paradigms and approaches were pro-
posed, including Convolutional Neural Network (CNN)-based methods and transfer learn-
ing. Ref. [65] merged more traditional methods, such as object flow-based tracking and
a particle filter tracker (a probabilistic approach for system state estimation from par-
tial/noisy observations), to estimate the tracking target object’s displacement and direction
of movement from sequences of images, ignoring other movements in the scene. The object
flow was tracked with a binary margin-based classifier, trained with positive and negative
samples of object displacement. Additionally, a Gaussian Process Latent Variable Model
(GPLVM; the GPLVM is a model that uses Gaussian processes to capture the latent struc-
ture of high-dimensional data in an unsupervised way and map it to a low-dimensional
generative representation model of appearance) was used as a generative probabilistic
prior to tracking the appearance changes of the human and consequently increasing the
robustness of the approach. Refs. [56,67] both employed CNNs instead for the task of
human detection in human–robot interaction scenarios. CNNs are particularly suited for
image- and video-based classification tasks, and transfer learning can be employed with
pre-trained networks to decrease training time, improve human–robot collision detection
performance, and to take advantage of the human motion knowledge already existent in
large open datasets [67].
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For multi-modal detection and human tracking, ref. [56] proposed a technique to
fuse the modalities (depth and thermal image information) into a single image that can
be processed by the CNN. Human tracking was performed by first segmenting the static
environment from the dynamic entities to be tracked, generating point-cloud clusters. Then,
a sensor fusion algorithm called the RGB Mapping Approach (RGB-MA) was used to
merge the multi-modal image information into a single image, mapping it into the RGB
channels. Subsequently, a pre-trained YOLOv3 CNN was re-trained with a dataset of fused
images to draw a bounding box around the area where the human was detected. The
performance of the method was compared to a standard pre-trained RGB-CNN (for human
detection on RGB images) and single-modality CNNs. The pre-trained RGB-CNN could
not provide reliable detection results, confusing humans with other objects with similar
shapes. Compared to the single-modality CNNs, the results showed that the multi-modal
method could better distinguish humans from non-human objects due to the combination
of temperature and spatial information, achieving the lowest percentage of false positives
(2.4% versus 36.87% with only depth information and 64.35% with only temperature
information), which the authors claimed can help to reduce unnecessary robot stops.

Human motion tracking for task advancement monitoring brings different challenges.
The method proposed to deal with this is a modified version of the Dynamic Time Warping
algorithm that allows one to align signals in time, measure their similarity, and deal with
occlusions or human movements not relevant to the task [66]. The template of the task
is learned online from previous executions not requiring offline training. The average
execution speed can be computed from the estimated task advancement and used to
estimate the remaining task duration. The method was tested in three realistic assembly
operations. Compared to the elapsed time-based algorithm, which measures activity
advancement through the elapsed time and past executions of the task, the proposed
method achieved lower task time estimation errors. Future work to detect task execution
errors and operational variants can greatly improve the robustness of the method.

Despite the benefits of some of the proposed strategies to human safety in industrial
environments, security and privacy issues are being raised, as these systems should be
resilient to cyberattacks and should keep sensitive and personal worker data safe from
unauthorized access [68].

3.1.5. Human Intention Prediction and Motion Recognition

The type of CI task that was more frequently addressed by the retrieved research work
was human intention prediction and/or human motion recognition, specifically for human–
robot collaboration applications, in which the human is regarded as an uncontrollable
autonomous agent. These two tasks have been addressed separately in some works, but
as they are connected and commonly are tackled together (e.g., prediction of human
motion intention), this section includes papers on both tasks. Twenty-five works have been
retrieved that proposed AI solutions for this type of CI task and interaction (Table 5).

Within the two categories of human intention prediction and motion recognition, we
highlight the variety of CI tasks that were addressed by the selected works. The amount
of research focused on the investigation and development of solutions for these CI tasks
corroborate the current lack of human-aware systems with the ability to understand the
human co-worker’s intentions and task objectives. Motion intention prediction and goal
inference from motion are common challenges in HRC scenarios that can not only support
safe collaboration from collision avoidance techniques and human–robot contact intention
detection but can also be employed by cognitive systems for worker workload alleviation
automation and assistance. In the automotive domain, human intent prediction is per-
formed by Advanced Driver Assistance Systems (ADASs), automatic collision avoidance,
and cooperative control systems. Similar tasks, such as gesture and motion recognition, are
developed for HRC safety and human–robot teleoperation/instruction.
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Table 5. Description of the retrieved articles that use AI for CI tasks related to human intention
prediction and motion recognition, ordered chronologically.

CI Interaction
Type

Ref. CI Task AI Problem
Domain

AI Method(s) AI Paradigm Application
Domain

Machine Assists Human

Human
intention
prediction and
motion
recognition

[69] Intention prediction Perception 3 standard classifiers: SVM,
RF, and LR

Machine learning Automotive in-
dustry

[70] Gesture recognition Perception HMM Probabilistic Manufacturing
industry

[71] Motion goal inference Perception Bayesian Inference of human
goal

Probabilistic NS

[72] Motion recognition Perception CNNs with transfer learning Machine learning Manufacturing
industry

[73] Human activity intention
prediction

Perception Higher-order Markov chains Probabilistic Manufacturing
industry

[74] Intention prediction Perception HMM and Probabilistic Dy-
namic Time Warping

Probabilistic Automotive in-
dustry

[75] Gesture recognition Perception ANNs Machine learning Manufacturing
industry

[76] Motion intention prediction Perception HMM Probabilistic Manufacturing
industry

[77] Motion intention prediction Perception PDMP Probabilistic NS
[78] Motion intention prediction Perception Gaussian processes Machine learning Industrial envi-

ronment
[79] Human behavior prediction Perception,

Control
3 standard classifiers (SVM,
DT, LR)

Machine Learning,
Probabilistic

Automotive in-
dustry

[42] Motion intention prediction Perception,
Planning

Probabilistic movement
primitives, GMM

Probabilistic NS

[80] Intention prediction Perception,
Planning

CNN Machine learning Aviation
industry

[81] Action intention recognition Perception 3D-CNN for HAR and 1D-
CNN for contact detection

Machine learning Manufacturing
industry

[82] Action intention prediction Perception,
Planning

RF and XGB (Ensemble learn-
ing methods)

Machine learning Aviation
industry

[83] Motion intention prediction Perception LSTM-RNN Machine learning Industrial envi-
ronment

[84] Motion intention prediction Perception LSTM-RNN Machine learning Manufacturing
industry

[85] Human behavior prediction
and preference adaptation

Perception,
Optimiza-
tion

Hierarchical RL Embodied Intelli-
gence

Automotive in-
dustry

[86] Motion recognition Perception Transfer learning with CNN Machine Learning Manufacturing
industry

[87] Action recognition Perception Transfer learning with ST-
GCN

Machine learning Manufacturing
industry (avia-
tion)

[88] Intention recognition Perception LSTM-RNN Machine Learning NS
[89] Intent recognition Perception,

Control
CCA and OTWV to classify
EEG signals and laser obsta-
cle detection system

Embodied Intelli-
gence

Automotive in-
dustry

[90] Action recognition Perception LSTMs Machine Learning NS
[91] Error recognition Perception SVM to classify EEG signals Machine Learning Manufacturing

industry
[92] Intent recognition Perception DRNN Machine Learning Manufacturing

industry

The acronyms used have the following expansions: Artificial Neural Network (ANN), Canonical Correlation
Analysis method (CCA), Convolutional Neural Network (CNN), Decision Tree (DT), Deep Residual Neural
Network (DRNN), Gaussian Mixture Model (GMM), Electroencephalography (EEG), Hidden Markov Model
(HMM), Human Action Recognition (HAR), Logistic Regression (LR), Long Short-Term Memory Recurrent
Neural Network (LSTM-RNN), Not Specified (NS), Overlap Time Windows Voting method (OTWV), Probabilistic
Dynamic Movement Primitive (PDMP), Random Forest (RF), Spatial–Temporal Graph Convolutional Networks
(ST-GCNs), Support Vector Machines (SVMs), XGBoost-Extreme Gradient Boosting (XGB).

In human–robot collaboration applications, human motion recognition is performed
using CNN models combined with transfer learning [72,86,87] for improved recognition
performance. Another option is the use of skeleton data, where the relationships between
the joints provide information about the worker’s motion/activity. Ref. [90] trained an
LSTM model with spatiotemporal human-skeleton data for activity recognition, achieving
91.4% accuracy on a dataset.

To increase human–robot collaboration efficiency, a number of works focused on
predicting the human motion intention. The most commonly used models for this task were
LSTM-RNN networks, when using physiological signals’ patterns (e.g., EEG, myography,
and eye-tracking) [83,84,88], Multivariate Gaussian Distribution-based ML models [78],
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and Markov Chain-based methods for modeling human intention based on sequences of
human activities or postures [73,76]. Human motion intention recognition may be context-
dependent, as similar motion may correspond to different tasks. To better differentiate
between similar situations, ref. [72] proposed an extra tool identification step after motion
recognition, implemented by another deep neural network, to better understand the task
context. The results from training and testing with motion images of 90 human subjects
showed that the model was able to achieve a human motion classification accuracy of 96.6%,
and was able to identify the tools that the human was holding. For HRC scenarios that
require physical human–robot contact, vision and tactile perception data can be combined
for interaction safety monitoring. Ref. [81] proposed the use of two deep CNNs to combine
the modalities, achieving the highest mean accuracy by the visual recognition system of
99.7%, while for the contact detection system, the highest mean accuracy was 99%, being
also able to detect the type of contact (intentional or incidental).

Human gestures are also useful for more intuitive and efficient robot control and
instruction, providing a more ergonomic interaction modality, compared to traditional
teleoperation systems and controllers. Ref. [75] developed a gesture-based human–robot
interaction framework that allows the worker to give instructions to a collaborative robot
for tools and parts’ delivery, or for holding objects. The human’s upper body gestures
were captured through wearable inertial measurement units, and with an unsupervised
sliding window technique, the data were segmented into static and dynamic sections.
Then, multiple feedforward ANNs were used to classify the different types of dynamic
and static gestures. Additionally, a parameterization robotic task manager algorithm was
implemented to translate the recognized gestures into robot commands, and provide visual
or speech feedback to communicate to the human worker: the gesture options available
to select, if the gesture was recognized, and what gesture was identified. The proposed
solution was evaluated in a manufacturing assembly task, demonstrating that it is effective
in recognizing in real-time 12 different types of gestures in a subject-independent manner,
achieving accuracies between 90% and 100%.

A trend we identified in the reviewed body of work related to safe HRC systems
was the use of human physiological signals for motion intention recognition, employing
deep Long Short-Term Memory (LSTM)–Recurrent Neural Network (RNN) networks for
dynamic time-series processing. Brain waves monitored with mobile EEG systems [84],
body movement data collected with force myography bands [83], and human gaze data
from eye-tracking and VR headsets have been shown to be able to detect the worker’s
intentions from 54 milliseconds up to 2 seconds before the action, providing the robot with
time to take initiative. EEG has also been employed to detect interaction errors/conflicts
between the worker’s intention and the robot’s actions, which can be employed to improve
the system’s response to errors [91]. The evoked error-related potentials in the brain, due
to either a robot error in the user intention detection, or violation of the user’s preference
during autonomous behavior, were used by an SVM model to correctly distinguish the
type of error above the chance level.

On another hand, the worker’s interactions can be classified indirectly from the robot
sensor data, and the operational context can be classified from the interaction duration, as
well as if the interaction was soft or hard, with what part of the robot it took place (tool or
link), and if it was a planned interaction or accidental. To achieve the soft object/hard object
interaction classification from robot torque measurements, ref. [92] employed a widely
used neural network, the ResNet, achieving 98% accuracy on the test dataset.

The semi-autonomous and autonomous driving field in particular has brought to
the AI community several advancements stemming from the complex research problems
it needs to tackle, namely, perception, probabilistic modeling, human–machine interac-
tion, and multi-agent decision-making [93]. For these applications, ML methods, such
as SVMs [69,79], Ensemble Classifiers [69,82], and HMMs [74] are the most commonly
used AI methods for the driver’s intention and behavior prediction, achieving prediction
accuracies above 90%, while only one selected work used a Hierarchical Reinforcement
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Learning approach for learning the driver’s preferences and adapted an advanced driver
assistance system feature to it [85]. Probabilistic methods can further be incorporated to
account for the uncertainty inherent to human behavior. An example is the work of [79] that
improved the prediction accuracy of standard classifiers by including the worst possible
scenario safety information derived from Hamilton–Jacobi (HJ) reachability. The drivers’
behavior was predicted with a probability between 0.75 and 1. Another alternative is the
direct observation of user gaze behavior and the probabilistic modeling of the eye data for
driver intention prediction. Ref. [74] modeled the observed eye-gaze/eye-fixation data
temporal patterns with Probabilistic Dynamic Time Warping (DTW) distributions, and
the underlying human intention as the latent states of a Hidden Markov model (HMM)
to predict the driver’s maneuver intention. The novel extension of the DTW method to
be probabilistic and using it to capture the similarities between the observation patterns
corresponding to different intentions allowed the framework to anticipate in real-time
the drivers’ intentions approximately three seconds before the maneuver, with more than
90% accuracy. Reaching good robustness and generalization to new human subjects is a
common issue with systems that aim to model human behavior. The work of [85] was
able to capture the driver’s preferences and variability with a Hierarchical Reinforcement
Learning model, for an adaptive and fairness-aware personalized ADAS. The method in-
volves using three interacting RL agents to learn to adapt to intra-, inter-and multi-human
state variability, applying Q-learning-based algorithms. The framework was evaluated in a
simulated environment and the results for simulated human subjects with different driving
behaviors showed that the performance of a time-to-crash alarm was adapted iteratively to
different subject behaviors.

Taking into account a similar type of task and automation goal but applied to the
aviation and air control domain, ref. [80] used a CNN for the prediction of controller ac-
tions/strategy to develop a personalized workload alleviation automation solution. The
method processed the visual features of air traffic scenarios (represented by a velocity
obstacle diagram that provides all the necessary information for informed conflict reso-
lution) and achieved significantly better results with the personalized models compared
to general models (non-individualized). Also, ref. [82] aimed at reducing the controllers’
mental workload by predicting and automating some tasks. Here, ensemble ML methods,
namely, Random Forest and XGBoost-Extreme Gradient Boosting, were used to predict
the workers’ actions using the aircraft’s trajectory features. The models for altitude, speed,
and course change prediction all achieved accuracies over 80%, with the highest of 99% for
vertical maneuvers.

Within this category of CI systems, the safety measures implemented are mainly
focused on the assistance of human workers by reducing the workload and by safety
monitoring (as in the case of autonomous collision avoidance). In the case of direct human–
robot contact, such as in collaborative tasks and learning from demonstration scenarios, the
recognition of accidental or intentional interaction may be applied for hazard mitigation. A
third contact intention category has not been considered in the reviewed works, but it may
also have safety and security implications: intentional interaction with a robot can be further
categorized as assistive (positive intention) or obstructive (negative intention), depending
on the intention of the worker to assist with the current task or hinder it. To resolve this
intention conflict, methods similar to the ones used for shared-control arbitration may be
appropriate (see the related works reviewed in Section 3.1.2).

3.1.6. Human State Recognition

Research works addressing the task of human state recognition vary in the target state
to be identified, depending on the final application domain. For human–robot collaboration,
the human physical state might be of higher importance when the goal is to reduce physical
human effort. In less physical safety-critical applications, such as driving or piloting or
for operators of control rooms or air traffic controllers, the mental, cognitive and affective
states of the user tend to have greater importance and impact on human error. Ten works
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have been retrieved that proposed AI solutions for this type of CI task and interaction
(Table 6).

Table 6. Description of the retrieved articles that use AI for CI tasks related to human state recognition,
ordered chronologically.

CI Interac-
tion Type

Ref. CI Task AI Problem
Domain

AI Method(s) AI Paradigm Application Do-
main

Machine Assists Human

Human state
recognition

[94] Human state recognition Perception DBSCAN Machine learning Automotive
industry

[95] Human drowsiness recogni-
tion

Perception Modified hierarchical PSO-H-
ELM

Search and Opti-
mization, Machine
learning

Automotive
industry

[96] Human impedance estima-
tion for exoskeletons

Perception RF Machine learning NS

[97] Human performance predic-
tion

Perception SVM with bootstrap aggrega-
tion

Machine learning Nuclear industry

[98] Human emotion recogni-
tion

Perception Transfer learning using deep
CNN

Machine Learning Manufacturing
industry

[99] Human mental workload
and performance prediction

Perception Multiple linear regression Machine Learning Aviation industry

[100] Human attention state
recognition

Perception Multiple linear regression
DCNN and PCA for feature
fusion, and selection kNN and
SVM for classification

Machine Learning Automotive
industry

[101] Human emotion recogni-
tion

Perception Hybrid model with DNNs and
SVMs

Machine Learning Automotive
industry

[102] Human mental workload
recognition

Perception CNNs for feature extraction,
LSTM for classification

Machine Learning Industrial Envi-
ronment

[103] Human behavior and char-
acteristics estimation and
adaptation

Perception A-POMDP model for be-
haviour prediction, ABPS for
robot policy adaptation

Probabilistic Industrial Envi-
ronment

The acronyms used have the following expansions: Adaptive Bayesian Policy Selection (ABPS), Anticipatory
Partially Observable Markov Decision Process (A-POMDP), Convolutional Neural Network (CNN), Deep Convo-
lutional Neural Network (DCNN), Deep Neural Network (DNN), Density-Based Spatial Clustering of Applications
with Noise (DBSCAN), Extreme Learning Machine Algorithm with Particle Swarm Optimization (PSO-H-ELM),
K-Nearest Neighbor (kNN), Long Short-term Memory model (LSTM), Not Specified (NS), Principal Component
Analysis (PCA), Random Forests (RF), Support Vector Machines (SVM).

Human state recognition has been proposed by the works selected for four main
applications: for driver state recognition, namely, drowsiness, attention and affective state,
for mental workload recognition in aviation, for human performance prediction in control
rooms, and for physical and affective state recognition in HRC scenarios. These tasks can
be classified as perception tasks directed towards the awareness of the workers’ internal
state, from physiological or behavioral indicators of state. Different ML techniques can
be leveraged for state classification, regression, or clustering tasks, from ensemble SVMs
or random forest models, to deep learning models and unsupervised clustering. Several
methods achieved high recognition accuracies (over 90%), indicating the potential of having
human-state aware adaptive systems in the near future. The work of [103] took the first
steps to accomplish complete human adaptation, including worker behavior prediction
and adaptation on a short-term, and long-term policy adaptation to operator characteristics,
such as expertise.

Four papers have proposed AI solutions for driver state detection, including (a) density-
based spatial clustering of applications with noise (DBSCAN) for unsupervised clustering
of the physiological data of drivers (electrocardiography and respiration signals) into clus-
ters of driver behavior event, noise or normal behavior [94]; (b) Modified Hierarchical
Extreme Learning Machine algorithm with Particle Swarm Optimization (PSO-H-ELM) for
driver drowsiness detection from EEG data [95]; (c) a hybrid model for the fusion of deep
learning-based and handcrafted image features, and classification of distracted driving
with K-Nearest Neighbor and SVMs [100]; and (d) another hybrid model combining an
SVM classifier with deep neural networks for the detection of drivers’ emotions using
video [101]. An average recall rate of 75% was achieved for driver abnormal event de-
tection with real-world driving data; a mean accuracy of 83.67% was achieved for driver
drowsiness detection with driving data collected from a simulator; the best accuracy of
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95.9% was achieved for the detection of distracted driving using 500 features selected from
a dataset with 10 classes; and the highest accuracy in facial emotion recognition was 98.64%
for a dataset with six emotion classes. We highlight the use of Particle Swarm Optimization
for the selection of optimal neural network hyperparameters, and the combination of the
classical SVM classifiers with hand-crafted and deep-learning-based features for optimal
recognition performance.

On the human–robot collaboration domain, ref. [98] aimed at recognizing human
emotion for improved assistance and safety of the human partner. A standard web camera
was used to monitor human emotion in real-time, and a transfer learning approach was
used with a Deep CNN for improved classification accuracy. The highest cross-validation
accuracy value reached was 97.82%. State recognition applications employing image or
video data benefit from the large vision datasets available online; however, the limited
practical robustness due to sensor constraints (worker pose variation or occlusion to the
camera view), the biased and indirect state information that can be derived from behavioral
cues (as opposed to physiological information, which cannot be controlled by the human
and are directly affected by internal and external stimuli), and worker privacy laws are
outstanding challenges.

In the control room application domain, ref. [97] aimed at predicting human per-
formance using multi-source physiological data fusion. SVMs integrated with bootstrap
aggregation were applied to fuse multi-modal physiological data (eye-tracking data, skin
conductance response, and respiratory function) and learn to predict operator performance.
The bootstrap aggregation was used to train an ensemble of 100 models with randomly
selected samples, achieving accuracies between 75% and 83% on an independent dataset,
outperforming the individual models.

A multi-modal physiological approach was also adopted by [99,102]. Ref. [99] em-
ployed EEG, eye activity, and heart rate variability (HRV) to assess the mental workload
effects of changing task load in tracking and collision prediction tasks. With a dataset of
24 participants using multiple regression, 54.3% of the variance in the tracking task perfor-
mance values could be explained by the model. For the collision prediction task, 61.7% of
the variance in the results was explained by the model. With EEG, photoplethysmogram
(PPG), and electrodermal activity (EDA) modalities instead, and using 2D and 1D CNNs for
feature extraction and an LSTM model for binary workload level classification, an accuracy
of 86% was achieved [102].

The work of [96] was focused on recognizing a physical human state, performing
online estimation of human arm impedance/stiffness from surface electromyography and
stretch sensor data, for the improvement and tuning of the exoskeletons’ strength ampli-
fication controller. Using a random forest regression model, the estimation performance
was evaluated offline with a validation dataset and online (no ground truth) by monitoring
the controllers’ stability while the arm stiffness was changing. The estimator achieved
an online R factor of 0.993, outperforming the state-of-the-art results and improving the
strength amplification bandwidth when compared to a robust controller that needs to have
a conservative bound of human stiffness.

Human–machine communication and interaction performance can be impaired by
the cognitive biases and expectations underlying the human subjective experience, further
impacted by time pressure, fatigue, and stress [5]. The potential of human state recognition
solutions for CI is clear; however, several challenges remain for industrial implementa-
tion, particularly for safety-critical systems. The human state and performance are task
dependent and subject dependent, as workers can respond differently to different stimuli
and task requirements, depending on their skills and initial state. This additional context
is commonly disregarded by machine learning models and may be required for better
generalization across domains. Moreover, for pervasive, continuous, and long-term state
monitoring, the temporal dynamicity of most states and data distribution evolution should
be taken into account [104].
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3.1.7. Human Mental Model Estimation

A different type of human-related estimation was studied in the works of Tabrez
et al. (2019) [105] and Blum et al. (2022) [106] (Table 7). Estimating the human mental
model, meaning a human’s mental representation of how a system works, provides insights
into how operators perceive and interact with a system, supporting the development of
improved user-centric designs, better communication in collaborative tasks, modeling of
the decision-making process, detection of cognitive biases, prediction of human behavior
and performance, and detection of potentially dangerous situations stemming from human-
system model disparities.

Table 7. Description of the retrieved articles that use AI for CI tasks related to human mental model
estimation, ordered chronologically.

CI Interac-
tion Type

Ref. CI Task AI Problem
Domain

AI Method(s) AI Paradigm Application
Domain

Machine Assists Human

Human
mental model
estimation

[105] Infer Human’s behavior re-
ward function for human–
robot joint tasks

Perception HMMs Probabilistic NS

[106] Modelling of Pilot’s mental
models for behaviour antici-
pation

Knowledge
represen-
tation,
Reasoning,
Perception

HCA for behaviour pat-
tern identification and ACT-
R cognitive architecture for
cognitive modelling

Logic-based, Ma-
chine Learning

Aviation
industry

The acronyms used have the following expansions: Adaptive Control of Thought-Rational (ACT-R), Agglomera-
tive Hierarchical Cluster Analysis (HCA), Hidden Markov Model (HMM), Not Specified (NS).

Ref. [105] addressed this concept, with a similar idea, in part, to the work of Kulkarni et
al. (2019) [41] (in Section 3.1.1), for the development of a Reward Augmentation and Repair
through Explanation (RARE) framework, aimed at improving human–robot collaboration
by detecting model disparities between the robot and the human, identifying the source of
the disparities, and providing explanation-based feedback to the human for the repair of
the policy. Using a HMM to model the human mental model of the reward function, the
viability and effectiveness of the method were tested with a joint-execution collaborative
game with a robot, leading to more successful games and a more positive user experience
than the control condition.

Ref. [106] used a cognitive computational modeling approach to simulate pilots’
mental models and anticipate their behavior in human–AI teams. They first employed
the unsupervised machine learning method Agglomerative Hierarchical Cluster Analy-
sis (HCA) to learn and identify individual behavior patterns in situation models from
complex and unstructured empirical data, also helping to identify individual differences
in mental representations. The data used for the clustering analysis were based on the
quantitative response times, log data, and visual focus measured with eye-tracking, from
a flight simulator study with 13 participants. The cognitive architecture Adaptive Con-
trol of Thought-Rational (ACT-R) was then used to simulate situation models, based on
data collected from pilot interviews. The models were implemented to mentally simulate
different possible outcomes of action decisions and the timing of a pilot. Model tracing,
which monitors the pilot’s interactions with the system, allows for a comparison of simu-
lated normative behavior and the pilot’s individual differences, learned from sub-symbolic
activation of the symbolic models’ structures. The individually simulating model (ISM)
performed significantly better (37% increase in accuracy in anticipating a first pilot action
and about 13% for a second action) than the normative model (NM) in anticipating the
pilot’s behavior in an engine fire event. The group means for the anticipated reaction
time showed a significantly smaller deviation with the ISM compared to the NM. It was
demonstrated how the combination of ACT-R and machine learning can improve pilot
assistance by selecting sub-models and learning from experience.
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Safety measures should take into account how the workers mental model evolves over
long-term interactions and how the created explanations for policy repair should adapt to
the worker’s confidence on their mental model.

3.1.8. Ci Safety Assessment

This section includes a variety of papers that can be included under CI for safety
assessment, as they propose AI methods specifically developed to monitor or assess the
behavior of a system, essential to guarantee safety in safety-critical applications. Eleven
works have been retrieved that proposed AI solutions for this type of CI task and interaction
(Table 8).

Table 8. Description of the retrieved articles that use AI for CI tasks related to safety assessment,
ordered chronologically.

CI Interac-
tion Type

Ref. CI Task AI Problem
Domain

AI Method(s) AI Paradigm Application
Domain

Machine Assists Human

CI safety
assessment

[107] Robot–human cooperation su-
pervisor learning

Control task L* learning algorithm for su-
pervisor synthesis

Probabilistic,
Logic-based

Manufacturing
industry ex-
ample

[108] Monitoring system for HRC
workspaces

Perception Faster R-CNN ResNet 101
Coco for object detection,
ANN for safety state assess-
ment and CNN for speech
recognition

Machine learning Manufacturing
industry

[109] Human motion prediction un-
certainty estimation for HRC

Reasoning,
Perception,
Planning

Bayesian framework for hu-
man motion prediction uncer-
tainty reasoning

Probabilistic NS

[110] Inference of model confidence
of worker’s movement predic-
tion

Reasoning,
Perception,
Planning

Bayesian framework for hu-
man motion prediction uncer-
tainty reasoning

Probabilistic NS

[111] Driver assistance by a
situation-aware advanced
driver assistance system

Control POMDP to model the driver
and vehicle state and learning
L* learning based algorithm
to iteratively learn the super-
visor

Probabilistic,
Logic-based

Automotive
industry

[112] Optimization of human–robot
dynamic safety zones and
robot stop trajectories

Planning,
Control

Constrained non-linear opti-
mization

Optimization Manufacturing
industry

[113] Software architecture for
human–AI teaming in smart
manufacturing

Perception,
Reasoning,
Control,
Commu-
nication,
Knowledge
representa-
tion

Knowledge graphs and rela-
tional machine learning

Knowledge-based,
Machine Learning

Manufacturing
industry

[114] Explainable Multi-Agent Path
Finding

Planning XG-CBS Search and Opti-
mization

NS

[115] Invariant mining and valida-
tion for model checking

Perception,
Knowledge
representa-
tion

RL Machine Learning Rail industry

[116] Framework for Situational as-
sessment, resource optimiza-
tion and decision-making for
anxiety mitigation

Perception,
Reasoning

Mixed-integer programming
and Gurobi optimizer

Logic-based, Opti-
mization

Industrial en-
vironment

[117] Operator risk perception pre-
diction

Perception HSMM Probabilistic Manufacturing
industry

The acronyms used have the following expansions: Artificial Neural Network (ANN), Convolutional Neural
Network (CNN), Explanation-Guided Conflict-Based Search (XG-CBS), Hidden Semi-Markov Model (HSMM),
Human Robot Collaboration (HRC), Not Specified (NS), Partially Observable Markov Decision Process (POMDP),
Region-based CNN (R-CNN).

Four general CI tasks were identified in the selected works focused on implementing
safety functionalities: control tasks for safety and task requirement compliance, perception
tasks for safety monitoring, model checking, and model prediction uncertainty reasoning.

Ref. [108] proposed a complete safety monitoring system for human–robot collab-
oration workspaces, using neural networks. Four neural networks were used for each
component of the system: an object detector using the Faster RCNN ResNet 101 Coco model,
safety distance assessors using ANNs, and a speech recognizer for communication between
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humans and robots using a CNN. The object detector reached test set accuracies above 95%,
the two ANNs used for human–robot safety distance assessment reached accuracies above
98%, and the CNN used as a speech recognizer in a preliminary test reached 93% accuracy
in the classification of simple answers. In addition, for smart manufacturing applications,
knowledge graphs can be leveraged to represent the expert knowledge associated with the
product, manufacturing process, and operational data, augmented by knowledge derived
from relational machine learning [113].

More specific supervisor models can be developed, such as the work of [107] that
proposed the use of a L * learning algorithm [118] to ensure safety requirements and task
completion in systems with uncertainties, such as human–robot collaboration. Here, the
robot is modeled by Markov Decision Processes, the human by Partially Observable Markov
Decision Processes (to account for their unknown/hidden intents), and the supervisor
controller of the robot by a Deterministic Finite Automata. Probabilistic Computation
Tree Logic (PCTL) is used to interpret the logic specifications of the system, and then
a deterministic supervisor that satisfies the PCTL specifications can be learned by a L*
learning algorithm, through queries and counterexamples. An example was given of a
supervisor synthesized for a collaborative assembly task. The supervised assistance of
the robot was able to help the human complete a task with fewer steps and a higher
probability of reaching the final state. The method was extended in the work of Wu et
al. (2021) [111] to formally demonstrate the convergence, soundness, and completeness of
the method, and it was applied to another human–robot collaboration scenario: a driver
and a semi-autonomous driver assistance system used to prevent steering off lanes. To
prevent possible collisions between human and collaborative robots, ref. [112] developed a
supervisor controller that focuses on optimizing stop trajectories. The method consists of
the online scaling of dynamic safety bounding volumes enclosing the robot and human.
The size of the zones is optimized by minimizing the time of potential stop trajectories,
considering the robot dynamics, its torque constraints, and its speed with respect to the
human. The optimization problem in this paper is solved using a open-source tool for
non-linear optimization. Novel fluency metrics were proposed to evaluate and compare the
approach to other existing methods that select a smooth stop trajectory among n tentative
stop times, or that implement a static safety zone. The proposed method led to smaller
safety zones and lower total task time.

Alternatively, ref. [115] proposed visualizations to assist engineers of railway signaling
systems in model checking, by aiding in invariant mining. Reinforcement learning was
employed in a first step, through simulation, to maximize the unique state observations
of a Markov Decision Process and generate a dataset for invariant mining. The proposed
visualizations aimed to increase the readability of the suggested invariants, which can be
used to constrain the model checking to those states that are reachable.

The previous works proposed AI assistive solutions for improved human safety; how-
ever, a significant issue lies in the oversight of the quality and accuracy of the AI solutions,
often excluded from risk assessments. Techniques can be developed to estimate the confi-
dence/uncertainty on their outputs and communicate it to the human stakeholders. For
human–robot collaboration, the preliminary work of [109] and the more recent one of [110]
used a Bayesian framework for human motion prediction uncertainty reasoning, updating
a Bayesian belief over the model’s prediction confidence, modeled as a hidden state of an
HMM, every time the human moved in a way that was assigned low probability by the
model. Uncertainty quantification can also benefit the transparency of the algorithms [5].

Another option for robot oversight is the method of [114], an algorithm called Explanation-
Guided CBS (XG-CBS) developed to balance planning time and explainability in safety-
critical applications involving AI and humans. The XG-CBS algorithm modifies the Conflict-
Based Search (CBS) method for Multi-Agent Path Finding (MAPF) by adding explainability
constraints, resulting in a set of non-colliding paths that admit a short-enough explanation
that can be visualized as a sequence of images for each time segment where the agent tra-
jectories are disjoint. The results show that the approach is effective in balancing planning
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time and explainability for the human supervisor. However, it may not always find the
optimal solution and may require more planning time for larger environments.

We observed that more recent work displays a higher level of complexity [116,117],
considering the several components of a HRC system that impact safety, requiring mod-
ules for situational assessment, resource optimization (e.g., dynamic task allocation), and
decision-making for long-term risk mitigation. Notably, both works consider the worker’s
perception of risk as an important indicator for the application of mitigation measures.

3.1.9. Accident/Error Prediction

Accident/error prediction is an essential CI task, in which the AI predictive power
can be used to prevent human-related critical situations in real-time. From the collection of
retrieved papers, two applied accident and error prediction for driving applications, and
the other two for operators in safety-critical industries (Table 9).

Table 9. Description of the retrieved articles that used AI for CI tasks related to accident/error
prediction, ordered chronologically.

CI Interac-
tion Type

Ref. CI Task AI Problem
Domain

AI Method(s) AI Paradigm Application
Domain

Machine Assists Human

Accident/error
prediction

[119] Risk and accident predic-
tion for a human-in-the-loop
decision-support system

Perception Bayesian network Probabilistic Maritime indus-
try

[120] Adaptive forward collision
prediction and warning for an
ADAS

Perception RL Embodied Intelli-
gence

Automotive in-
dustry

[121] Detection of operator error
precursors for accident event
prevention

Perception Deep seq2seq neural net-
work with attention mech-
anism

Machine learning Nuclear and
aviation indus-
try

[122] Prediction of driver’s speed
tracking errors for an ASA

Perception NAR-NN Machine Learning Automotive in-
dustry

The acronyms used have the following expansions: Advanced Driver Assistance System (ADAS), Advisory Speed
Assistance System (ASA), Non-linear Autoregressive Neural Network (NAR-NN), Reinforcement Learning (RL).

The human aspect of accidents is still an outstanding problem that CI solutions
can help with. Human assistance systems were proposed in the collection of selected
articles, employing a variety of features that account for human factors or adapt to human
preferences and behavior.

Elmalaki et al. (2018) [120] used Reinforcement Learning for adaptive forward collision
prediction and warning, taking into account the driver’s context, meaning the human state
(specifically attentive or distracted state based on audio streams collected by the driver’s
phone) and preferences across drivers and time. The proposed driver-in-the-loop context-
aware ADAS system led to an increase of 94.28% in the safety of the driver and a 20.97%
improvement in the driving experience. A similar work [122] predicted the driver’s speed
tracking errors instead, using a Non-linear Autoregressive (NAR) Neural Network trained
with data from N clusters of different types of drivers (different driving behavior). The
developed Advisory Speed Assistance System (ASA) led to a reduction of 53% in speed
error variance in simulated driving and a reduction of 20.00% of speed error variance in
real vehicle experiments.

Other data such as statistical information about past accidents, or synthetic data
emulating common human-system interactions can be used for the early detection and
prevention of accident sequences. In the work of [119], a Bayesian network was applied for
risk and accident prediction in ship navigation. The approach was developed to reliably
predict accidents based on past data and statistical information about accident probabilities.
A Bayesian network was used to model and reason about these data to provide future risk
predictions. In [121], operator error precursors were detected for accident prevention in
industrial human–machine systems. A common natural language processing deep-learning
model, the seq2seq encoder–decoder model, was used to process visual control panel states
from synthetic HMI data to detect operator error precursors. The evaluation of the model
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in an out-of-sample dataset reached relaxed accuracies above 80%, and 10% difference from
the actual HMI state sequences for the majority of the test cases.

3.2. Human-in-the-Loop Assists Machine

In this section, we summarize research works employing human-in-the-loop frame-
works to assist the machine. After analyzing the collection of papers, a classification scheme
based on the stages of an AI model lifecycle was used to group them: works where the
human provides assistance during the learning process, or during the deployment process
of the system. During the learning stage, the AI model is developed and trained in a
training environment, and it is typically not integrated into the current system. In the
deployment stage, the AI solution is moved to a production environment and integrated in
the system that will be employed by the user.

3.2.1. Human Assistance During Learning

Most works involving human-in-the-loop assistance to the machine/intelligent system
apply it during the learning process (Table 10), also called human-in-the-loop learning.
Human feedback, particularly through demonstrations, can improve the efficiency of
the learning process in terms of the number of samples required, compared to classical
reinforcement learning, and be safer due to the interventions and corrective actions that the
humans can provide in real-time [123].

Safe Training of RL Agents

RL-based systems that are designed to interact with humans can perform potentially
dangerous actions during training. In particular, for model-free agents that can only learn
with trial and error, having human intervention is the only way to avoid catastrophes
when the agent has not learned yet. In [124], an RL agent was trained with a human
preventing catastrophic actions of different types and complexity. In the scheme, not only
was the unsafe action blocked but the human supervisor instead sent a safe action to the
environment and returned to the agent a penalty for choosing the unsafe action. A CNN was
then trained with state–action pairs and a corresponding binary label of whether the action
was blocked or not, to learn to imitate the human’s intervention decisions (perception of
human policy) since human oversight for the total training time of an agent can be infeasible
or very costly. Compared to a baseline RL approach with large negative rewards applied
to catastrophic actions (which can suffer catastrophic forgetting), the human oversight RL
approach performed much better at reducing catastrophes. The scheme is agnostic to the
type of RL method, so it can be applied to different types of RL and to multiple agents.

Personalized Autonomous Driving

A human observer in the loop can also be beneficial for the optimization of reward
models towards personalized assistance, such as for personalized autonomous driving
behavior. The Progressive Optimized Reward Function (PORF) learning model proposed
by [125] can be integrated into a Deep RL framework. A hybrid DNN model structure com-
posed of a CNN followed by a conv-LSTM receives as input vehicle front-view sequential
images labeled based on the vehicle driving behavior evaluation (the reward). The DNN is
trained in two stages: in the pre-training stage, the network is trained with images labeled
by a formula that represents the safety of the vehicle–road relationship using data from a
virtual environment, and in the progressive optimization stage, the network is trained and
optimized continuously with data from human evaluations of the vehicle driving behavior
in a real environment. The PORF model showed an upward trend in cumulative reward
with increased sampling and training, demonstrating the potential for human–machine
collaboration in autonomous driving; however, the model’s confidence should be measured
before using the framework in new environments.
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Table 10. Description of the retrieved articles that use AI for CI tasks where the human assists during
the learning phase of intelligent systems, ordered chronologically.

CI Interac-
tion Type

Ref. CI Task AI Prob-
lem Do-
main

AI Method(s) AI Paradigm Application Do-
main

Human Assists Machine

Human
assistance
during
learning

[126] Learning from demonstration
reactive and proactive robot
controllers

Planning,
Perception

Learning from demonstra-
tion with robot and human
behaviour encoded in an
ADHSMM

Probabilistic NS

[127] Evaluation–feedback loop
for interactive and iterative
model generation

Reasoning Bayesian network Probabilistic Industrial envi-
ronment

[128] Learning robot trajectory from
demonstration

Planning Learning from demonstra-
tion with robot motion is en-
coded in a HSMM

Probabilistic,
Embodied Intelli-
gence

NS

[124] Human intervention for safe
reinforcement learning

Perception HIRL with CNN as human
imitator

Machine Learning NS

[129] Robot learning from demon-
strations and subgoals

Planning,
Perception

Human interactive IRL Machine Learning NS

[130] Human motion and coordina-
tion learning

Perception,
Planning

Deep RL Machine Learning,
Embodied Intelli-
gence

NS

[131] Interaction imitation learning
of a robot policy

Perception Imitation learning—
extended DAGGER al-
gorithm

Machine Learning Automotive in-
dustry

[132] Language-based assistance
for mobile agent vision-based
navigation

Perception
Commu-
nication,
Planning

Imitation learning Machine Learning,
Embodied Intelli-
gence

NS

[133] Learning and modeling of a
dynamic system properties
from demonstrations

Perception,
Planning

VAR-POMDP model
learned from human
demonstrations using the
Bayesian non-parametric
learning method

Probabilistic Automotive in-
dustry example

[134] Robot motion learning from
demonstrations

Planning GMR Probabilistic,
Embodied Intelli-
gence

Manufacturing
industry

[135] Learning from demonstra-
tions for shared control strat-
egy

Perception Deep DDPG and online
learning from demonstra-
tion

Machine Learning,
Embodied Intelli-
gence

Industrial envi-
ronment

[125] Progressive learning of per-
sonalized autonomous driv-
ing

Perception PORF learning model us-
ing a DNN integrated into
a DDPG framework

Machine Learning,
Embodied Intelli-
gence

Automotive in-
dustry

[136] Learning variable impedance
control human policy and re-
ward

Perception IRL from expert demonstra-
tions

Embodied Intel-
ligence, Machine
Learning

NS

The acronyms used have the following expansions: Adaptive Duration Hidden Semi-Markov Model (ADHSMM),
Convolutional Neural Network (CNN), Dataset Aggregation algorithm (DAGGER), Deep Deterministic Policy
Gradient (DDPG), Deep Neural Network (DNN), Gaussian Mixture Regression (GMR), Hidden Semi-Markov
Model (HSMM), Human Intervention Reinforcement Learning (HIRL), Human Robot Collaboration (HRC),
Inverse Reinforcement Learning (IRL), Not Specified (NS), Progressive Optimized Reward Function (PORF),
Reinforcement Learning (RL), Vector Autoregressive POMDP (VAR-POMDP).

Human-in-the-loop frameworks can also be employed for the iterative optimization
of other AI models.

Interactive Alarm Flood Reduction

In [127], human assistance was used for an interactive alarm flood reduction task in a
control room scenario by providing inputs in an evaluation–feedback loop of a probabilistic
graphical model. In an alarm flood situation (defined as more than 10 errors per minute),
data from error messages and warnings (alarm log) are employed as input for a probabilistic
graphical model (Bayesian network), having used first a Max-Min Hill-Climbing algorithm
to learn the structure of the graph. The generated graphical causal model is then presented
to the operators via an adaptive and responsive user interface, where the users can give
feedback to the system by reporting a correct or incorrect inference of the root cause, or by
directly editing the generated model. Both the feedback and the changes to the model are
used in the next iteration of the model generation.
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Language-Based Assistance for Navigation

In the case of a vision-based navigation scenario, in which a human can request an
agent to navigate and find a target object indoors, using just high-level language end-goals,
the agent can query the human advisor for language sub-goals when it is lost and cannot
make progress [132]. To implement such a methodology, it is required to learn a navigation
and help policy to constrain the number of help requests that can be made to the advisor
and learn at what points it is more effective to make the help requests for the overall
progress in the task.

Cobot Motion Planning and Coordination Learning

A particular set of works focused on cobot motion planning and coordination learning
tasks, where the human can be of great assistance to the machine by interacting with it
and providing feedback on the expected collaborative robot behavior. Three works were
retrieved that proposed human-in-the-loop assistance solutions in the form of demonstra-
tions for cobot motion learning, and two others proposed more general frameworks to
model and learn HRC processes through demonstrations.

Ref. [128] used learning from demonstrations (LfD) to perform robot motion synthe-
sis with obstacle avoidance, using probabilistic task representations to estimate human
occupancy in a long-term scale and a Hidden Semi-Markov Model (HSMM) to encode
the demonstrated motions. An additional short-term prediction of human motion was
added to account for sudden movements. The method was evaluated on reproducing
air-drawing motions of letters near a moving human arm, with formal safety verification
and replanning with a failsafe trajectory to avoid collision, resulting in no safety stops
observed for all letters. The trajectories of the robot motion that were replanned to avoid
collision still maintained the curvature and shape of the letters since the new trajectory was
sampled from the probabilistic encoding of the movement. As the method does not need
optimization or real-time collision checking, it computes in deterministic time; however,
its validity and effectiveness are dependent on the human model used. A probabilis-
tic extension of the method can be used to generate dynamic robot behavior, where the
temporal dynamics are adapted by interactions with the user. The Adaptive Duration
Hidden Semi-Markov Model [126] allows the robot to not only react to the user but to
also behave proactively according to the encoded temporal coherence of the task. The
authors of the method tracked the robot’s positions and the human collaborator’s hand
positions during the demonstrations, with three different human motion velocities. The
results of a collaborative handover and transportation task showed that the duration of
the robot trajectory is strongly correlated with the human hand motion in the interac-
tion part of the task. Proactive behavior was also observed, where the robot carried out
the task when the user was unsure of how to perform it, in order to show its intention
and how to proceed. Alternatively, dynamic time warping can be employed to process
demonstrations with varying operation speeds and align their timelines. Ref. [134] used
the method to teach a robotic arm assembly motion from human demonstrations. The
proposed multi-dimensional dynamic time warping (SMMD-STW) method was able to
segment and align multiple repetitions of teaching data with varying operation speeds, and
a Mixture Gaussian regression (GMR) model was subsequently used to obtain an optimal
reference trajectory and expected force field. The method was evaluated with an assembly
task, showing lower force feedback compared to the teaching data due to the optimization
and smoothing of the GMR model, and the admittance control applied by the controlling
system. The method was evaluated with an assembly task, showing lower force feedback
compared to the teaching data due to optimization and smoothing by the GMR model, and
the admittance control applied by the controlling system.

Other models have been applied for learning HRC processes and coordination with
human collaborators from demonstrations, namely, a Vector Autoregressive Partially Ob-
servable Markov Decision Process (VAR-POMDP) model [133], an extension of the POMDP
method capable of modeling the dynamic system properties through the correlation be-
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tween observations, and Deep Reinforcement Learning using a Deep Q-network model to
approximate the optimal Q-function and learn the optimal policy [130].

Robot Control Learning

In the following four papers, robot control was learned from demonstrations and
interventions, through the learning of expert policies and rewards.

In [131], the policy for an automated driving system was learned using an Interaction
Imitation Learning method, a probabilistic variant of the DAGGER algorithm [137], to
maximize sampling from a novice policy during learning (instead of the human expert),
while constraining the probability of failure by a learned safety threshold. The Human-
Gated DAGGER variant was proposed to give the human expert exclusive control of
whether he/she or the novice should be in control at each moment. The novice policy
was trained with an interactively augmented training dataset with labels collected from
the expert during recovery control of the system. The risk metric was approximated by
modeling the novice as an ensemble of neural networks and using the covariance matrix of
the ensemble outputs to compute the policy confidence over the state space. The threshold
to this risk metric at which control should be given back to the expert in unsafe situations
was learned by computing the mean of the novice doubt at the time of human intervention
(restricted to when the policy has already been trained with a lot of data and resembles the
final fully trained policy). The method was evaluated in a simulated and real-work driving
task. The results showed that the policies trained with HG-DAGGER method outperformed
the ones trained with DAGGER and behavioral cloning. The performance, measured by
road departure and collision rates, was better and learned faster and in a stabler way with
HG-DAGGER. Moreover, the performance metrics were better when initializing the novice
policy inside of the estimated safe and permissible set of states, based on the learned safety
doubt threshold.

The goal of minimizing expert effort during human-in-the-loop learning was also ad-
dressed by [135] . The authors aimed at learning a shared control strategy for teleoperation
in an online fashion from demonstrations and with reinforcement learning. The approach
predicts the success probability in selecting one of the robot controllers and requesting
human teleoperation if necessary. A multi-armed bandit (MAB) algorithm was employed
to choose the best controller to use. MAB estimates the reward distribution for each arm
from multiple trials, while minimizing the time cost imposed for requesting the human
for demonstrations or for needing the human for failure recovery. The controller’s poli-
cies were learned from demonstrations and continuously improved using online learning.
The Deep Deterministic Policy Gradients algorithm was used for off-policy, model-free
reinforcement learning of the robot policy. LfD was integrated into the DDPG framework
with behavior cloning and a Q-filter. Demonstration of episodes by the controllers was
added to a demonstration replay buffer. An additional behavior cloning loss term was
then applied only to the samples of this buffer. The Q-filter ensured that the loss was not
applied when the learned policy was significantly better than the demonstrated policy.
The method was tested with two simulated tasks (block pushing and simulated naviga-
tion) and a real-world navigation task, using three controllers: a human teleoperator Ch, a
pre-programmed baseline controller Cb, and a control policy learned online as described
above Cl . The empirical results from the comparison with other approaches showed that
the method led to a reduction in the total human cost. The results also showed that a better
policy was learned using demonstrations from different sources, indicating a potential
future application in learning from multiple dissimilar controllers.

Two works employed instead Inverse Reinforcement Learning (IRL). IRL can be more
robust to changes in the tasks compared to Deep RL and learning from LfD, due to the diffi-
culty of designing a suitable reward function. Moreover, it was also proposed to deal with
the current problems of learning from expert demonstrations, namely, data sparsity that
does not allow to efficiently learn complex sequential tasks, the cost of human interaction,
and the reduced efficiency of learning from full demonstrations when the agent might just
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be struggling to learn a specific part of the task. Ref. [136] used demonstrations and IRL to
learn variable impedance control and reward functions for contact-rich manipulation tasks.
The paper investigated the best action space for the reward function: whether rewards are
defined for the force or impedance gain. Specifically, adversarial Inverse Reinforcement
Learning was used to learn the impedance gain-based expert policy and reward function
(the reward function was learned with the discriminator and the variable impedance policy
was the generator), which was tested in a simulated and a real industrial robot experiment,
achieving better transfer performance than the baselines. In [129], complex robot tasks were
learned using a Human-in-the-loop Inverse Reinforcement Learning (HI-IRL) framework.
The approach was more efficient than traditional IRL methods, and involved structured
learning from failure experiences, from critical sub-goal information provided by an expert
and partial demonstrations of sub-tasks that the agent struggled to learn. Experiments
were performed in a grid world and car parking environment, showing that the method is
more efficient, requiring fewer demonstrations than the baseline models to learn a task.

Using human feedback, demonstrations are commonly performed assuming they
come from an expert and the information provided is optimal. The effectiveness of human-
in-the-loop learning is, however, impacted by human cognitive bias, subjective preferences,
and the quality of the human input which depends on the interaction/feedback modality
used [23]. Humans can be considered non-stable, non-linear, and complex agents, affected
by fatigue and other organizational and personal factors; therefore, the quality of human
input should take this into account [5].

3.2.2. Human Assistance During Deployment

Only two research works were retrieved employing human-in-the-loop assistance
during deployment (Table 11). In these works, the humans’ capabilities are used by the
AI algorithm during deployment to achieve better performance than the one that could be
achieved without it. This type of collaborative intelligence can be likewise important to
ensure the systems are functioning properly in production environments, according to the
safety requirements, and respecting social and ethical guidelines.

Table 11. Description of the retrieved articles that used AI for CI tasks, where the human assists
during the deployment phase of intelligent systems, ordered chronologically.

CI Interac-
tion Type

Ref. CI Task AI Problem
Domain

AI Method(s) AI Paradigm Application
Domain

Human Assists Machine

Human
assistance
during
deployment

[138] Hands free detection
of emergency by the
worker

Perception DT classifier Machine Learn-
ing

Manufacturing
industry

[139] Gaze-assisted visual
grounding for human–
robot instruction

Communication Faster R-CNN,
Transformer-based
text encoder, Text
classifier

Machine Learn-
ing

Manufacturing
industry

[140] Active real-time safety
assessment

Perception Online active learning Machine Learn-
ing

Maritime in-
dustry

The acronyms used have the following expansions: Decision Tree (DT), Region-based Convolutional Neural
Network (R-CNN).

Systems may also be designed to exploit human capabilities and assistance under
normal operating conditions, beyond the learning phase. The following works explored
three distinct solutions.

In [138], hands-free detection of emergencies in HRC scenarios was achieved by utiliz-
ing the workers’ sensing abilities, where humans indirectly assist in emergency prediction
by using data from a mobile Electroencephalogram (EEG) sensor as input. EEG can be
used for the fast detection of brain activity changes that occur when an operator senses a
potential emergency, and enters an alert or stressed state. A Decision Tree (DT) classifier
was proposed to both classify the emergency state and offer a visualization of the inferred
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classification rules. The feasibility of detecting emergencies using mobile EEG data was
confirmed with a reliable window of 250 ms, but further experiments are needed to ensure
the high level of robustness and speed that is required for safety compliance.

In the work of [139], a different type of implicit assistance was given during the
deployment of a robotic agent for human–robot communication. The gaze of the human
was used to assist the robotic agent with visual grounding (locating the most relevant
object in an image based on a natural language query) in carrying out human instructions
for pick and place tasks. The approach used a Faster R-CNN model [141] for object
detection, a transformer-based text encoder model for text description embedding, and a
text classification model for scoring candidate locations in regard to the text descriptions.
Gaze-tracking was performed using the Microsoft Hololens2 head-mounted system, which
provides a world coordinate of the point the eye is looking at. The gaze centroid was then
used to select the detected object with a higher confidence score and closer to the gaze
point. The gaze input improved the target localization accuracy from 26% to 65% in the
test dataset.

Safety-critical applications in complex, non-stationary environments, such as deep-sea
manned submersibles, require real-time safety assessment. To deal with concept-drift and
class imbalances, ref. [140] proposed an online active learning approach that incrementally
updates the safety assessment model. A novel use of the broad learning system under active
learning and a new query strategy for reduced annotation cost of the users were developed.

The solution proposed by Yang et al. (2020) [44], already presented in Section 3.1.1, can
be partially categorized as human assistance during the deployment of an ADAS system
that learns iteratively in real-time the desired path through repeated cooperation with the
driver, but after sufficient iterations, the system takes over to assist the human driver.

4. Discussion

This survey analyzed recent research work based on the type of CI interaction studied,
the CI task performed, and the type of AI techniques used to address the task. It was clear
that due to the extensiveness of the CI domain, only a sample of the available relevant liter-
ature was analyzed. Simultaneously, we have to consider that “collaborative intelligence”
is still an emerging concept and that it has yet to be broadened to other domains. Next, we
present the key takeaways from our review, insights into future research trends and the
developed safety recommendations for practitioners in the CI field.

As a big portion of the reviewed methods were developed for the manufacturing
context or safety-critical applications, such as aviation and the automotive industry, the
majority of the proposed solutions consider a single component of a whole complex system.
The evaluation and validation stage of the methods was varied, ranging from testing in
simulated environments and tasks, testing with standard test sets, lab-based experimental
testing using representative use-cases of the target applications, and assessment in multiple
real-world scenarios and environments (performed by a minority of the works). Even still,
the quality and representativeness of the training and testing data were rarely assessed,
and when mentioned, it was to highlight the need for more diverse datasets. Several papers
made use of high-fidelity digital twins to accelerate testing time and improve the safety of
testing procedures, particularly for solutions that involve humans.

Establishing benchmarks for such complex and fast-developing AI technology is chal-
lenging but particularly for safety-critical and human–machine collaborative systems, at the
minimum, the already existing industrial standards for system safety and methods specific
for model safety, robustness, and dependability should be used at the different stages of
model development. The recent review of Mohseni et al. (2022) [142] can be used to aid
the selection of specific ML safety techniques, which can be applied at the design stage for
inherently safe design specification, the development stage for increased performance and
robustness, and/or the deployment stage for run-time error detection. In addition, the inte-
gration of different system modules should account for how errors propagate downstream
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from the initial perception component to the final decision component, requiring the use of
AI methods and metrics to quantify model uncertainty and transmit it through the system.

There is still a clear need for general guidelines, with comprehensive paradigm-
agnostic metrics and specific procedures, that can be followed by CI researchers and
engineers to ensure the reliability and dependability of the whole system before deployment
in open-world settings. As a multitude of AI paradigms and models can be applied to solve
one specific problem, and as it is typically difficult to determine what type of approach is
more suitable to which problem, we recommend that these guidelines follow and build
upon the CI task categorization here proposed that groups multiple similar tasks and
high-level collaborative goals, in order to develop procedures that are independent of the
model chosen and instead conditional on the type of data used and expected output:

- The proposed solutions for cobot motion planning and task scheduling are typically
limited by the type of workspace/environment that the methods are applicable to,
the number of workers accounted for by the solution, the types of tasks that they
can be applied to, and by the uncertainties of human behavior. Dynamic and flexible
approaches, such as the one by Zhu et al. (2019) [40], can better deal with variations in
the expected operations but are usually harder to implement and test for compliance
with safety requirements. Future research for robot motion planning and scheduling
for collaborative human–robot interactions should be focused on dynamic/adaptive
planning methods, online learning for the continuous improvement of the models,
personalized assistance to the human collaborator, and more natural communication
channels between human and robots. A particularly interesting and novel avenue to
deal with the uncertainty of human behavior, and increase the comfort and safety of
human–robot interactions is to estimate and match the human’s expected behavior
of the robot. The exploration of this problem will be key to develop systems that can
resolve conflicts between humans and machines, reach a common ground, and adjust
tasks and goals accordingly [9].

- The use of human demonstrations to aid the machine or AI learning process during
training has a wide range of applications in robotics and automation, including for
manipulation tasks in manufacturing domains, and for navigation tasks of mobile
robots and vehicles [143]. Learning from demonstrations is a promising and versatile
approach for robots to learn complex tasks by learning to imitate a human expert. There
are, however, several limitations of the current techniques, such as the assumption that
all demonstrations are optimal and the reliance on human data, which have pushed the
research into investigating and developing solutions that (a) quantify the human factors
in LfD and try to increase the quality of demonstrations [129]; (b) optimize the learning
process while minimizing the human time cost of requesting demonstrations [135]; and
(c) learn to generalize to novel scenarios, estimate the suitability to the new scenario,
and determine when it needs human assistance/intervention [131,143]. As some of the
reviewed works proposed, human assistance/intervention can be applied with less
effort by training a model to perform the human’s intervention job (can be either to
reward or block agent actions), or by estimating, during real-time deployment, the
confidence/doubt of the learned policy model relative to the execution risk, further
improving safety [24]. Future applications should employ methods for human feedback
quality assessment, human error detection, or outlier/out-of-distribution human sam-
ple detection, such as reducing data labeling ambiguity [144], improving demonstration
quality scoring [145], or improving the human’s response time in interventions that can
lead to undesirable effects.

- The main limitation of the current human/object detection and tracking techniques
is still robustness. As such, we suggest the use of (a) transfer learning, (b) ensemble
classifiers, or (c) multiple sensor modalities to reduce occlusions and overlap effects, or
(d) to take into consideration target variants/target changes of appearance as possible
strategies to increase the robustness of detection systems. Future research should also
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focus on developing novel methods to deal with unaccounted variability in the data
after deployment, such as continual learning.

- The proposed solutions for human intention prediction in driving applications were
limited by the fact that the developed improvements or sub-systems need to be inte-
grated with an autonomous driving system/ADAS, and tested for robustness with
real vehicles and environments. On the other hand, most of the motion recognition
works proposed for human–robot collaboration applications were limited by the type
of task or case study data used to train and test the models, as most focused only
on single-person detection and upper limb movement data. Compared to the works
that used image/video data, the papers that employed physiological data for motion
intention recognition had comparatively small training datasets with a limited number
of participants, even though they allowed to detect the intention up to 513 ms–2 s before
the execution of the motion. One possible future work line for human motion intention
prediction is the adaptation and personalization of the models to specific subjects when
it becomes possible to have access to large amounts of big data that physiological
sensors can provide. Fusing multiple modalities can also help to better distinguish be-
tween assistive or disruptive operator intentions, and intentional or incidental contact
between humans and robots as in the work of Amin et al. (2020) [81], by combining
vision and tactile perception data. With these limitations in mind, we recommend, as a
future work line, going beyond the prediction of the driver’s intentions for real-time
assistance, and developing human-inspired safety metrics that can be retrieved from
the trained models and serve as a prior for an autonomous driving policy.

- Ground truth labels for human state recognition can be obtained through subjective
questionnaires or objective indicators. When these methods are not available during
the online stage of the model implementation, behavioral indicators of the state of
interest can be used instead (as in [96]) for continuous learning or model performance
assessment. In addition, we recommend that systems that are already using wearable
sensors to monitor human data for other purposes, such as using human posture and
muscle activity for hand-over intention recognition [76], or human skeletal data for
determining the optimal tool delivery position [48] could add a worker physical state
recognition module for real-time robot behavior adaptation or to improve the ergonomic
design of collaborative systems. Safety applications of human state recognition were
addressed by the set of reviewed papers, demonstrating how these techniques can be
used to prevent critical situations when the operator/user is not performing at the
required level, and can cause harm to himself or others.

The challenges of building Hybrid Intelligent Systems include collaboration between
humans and machines, adaptation to humans and the environment, systems that behave
responsibly, and systems that can explain and share knowledge and strategies with each
other [9]. Research has mainly focused on collaboration and adaptation, but more work is
needed to develop explainable systems that take into account the ethical, legal, and societal
responsibilities, as well as the consequences of these systems to better manage conflicts
between intelligent systems and human experts.

Some of the reviewed CI solutions have shown signs of moving in this direction,
such as the work of Oh et al. (2021) [55] and Li et al. (2022) [57], that proposed shared-
control methods for the blending of the intelligent system’s control commands and human
commands, with the possibility to assign control authority to a human in high-risk scenarios
or in cases of considerable disagreements between the two policies. This type of control
solution, that is a middle-ground between direct and autonomous control, may be a suitable
option for new teleoperation and autonomous driving systems in Industry 5.0, to comply
with human agency and oversight requirements recently entered into force by the EU AI
Act (Regulation (EU) 2024/1689) for high-risk AI systems. Still, other current machinery
safety requirements, such as those of the Machinery Directive update (Regulation (EU)
2023/1230), require that any machinery, or related product with self-evolving behavior
or logic that operates with varying levels of autonomy should communicate its planned



Information 2024, 15, 728 35 of 42

actions (such as what it is going to do and why) to operators in a comprehensible manner.
This topic is rarely addressed in shared-control research, and methods from the explainable
AI domain [146] and human–machine interaction domain [58] should be integrated and
adopted. As an example, the presented work of Kottinger et al. (2022) [114] provided
an explainability method for robot trajectory planning oversight, by generating human-
understandable path visualizations.

Other CI solutions for conflict resolution may include, for when the intelligent system
detects human decision-making bias or model disparities between the human and system,
generating explanations that persuade the worker to take the most beneficial action or to
repair their policy [105]. Alternatively, the estimate of the system’s confidence/uncertainty
on their outputs can be communicated to the human stakeholders to support informed
decision-making [109,110].

An aspect of collaborative intelligence that was missed in the reviewed works is the
fact that in many cyber–physical systems, the intelligent machine might have to interact
with many humans in different contexts, and the humans might interact with different
system instantiations, sharing the same knowledge base [2]. Computational techniques
such as federated learning (also referred as collaborative learning) need to come into play
to achieve this multi-human multi-agent collaboration scenario.

We provide a summary of recommended actions (Figure 7) taken from the analysis of
the literature on the safe application of AI to collaborative intelligence problems.

Figure 7. CI interaction types and task categories.
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5. Conclusions

There are many opportunities in the collaborative intelligence field to take advantage
of AI techniques that can help improve the interaction between humans, computers, and
machines. In this paper, we reviewed a wide range of research work published in the
last nine years proposing intelligent solutions for collaborative intelligence problems.
The review focused on industrial applications that can benefit the most from human–
machine teaming to achieve flexible and cost-effective automation solutions, and safety-
critical industries that require human supervision as an additional safety layer for highly
automated systems.

The retrieved research was organized into eleven common CI topics and further
analyzed to gather insights into the type of AI problems that exist in CI applications and
the type of AI algorithms used to solve the presented challenges. We then identified and
discussed the key takeaways of the analysis process.

Lastly, we provided some recommendations for future research lines within the field
of CI, with the aim of bridging the commonalities between the different topics that were
addressed and achieving a more comprehensive and contextualized CI research landscape.
Despite the advances in this field, it is still far from achieving true collaboration between
humans and AI-based systems that is proactive and involves purposeful interactions,
adaptation to context, and an understanding of each other’s actions towards cooperative
learning and problem-solving [9].
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