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1 Introduction

Relativistic trace anomalies (see [1] for a review) give non-trivial constraints on the possible

infrared (IR) dynamics which can emerge from an ultraviolet (UV) unitary theory. In 2

dimensions this is established by Zamolodchikov c-theorem [2]. In 4 dimensions the mono-

tonicity property of the anomaly coefficient a (a-theorem) was first conjectured in [3]; a

perturbative proof was given by [4–6] with the local renormalization group (RG) equations.

A proof using dispersion relations was given in [7, 8].

The local RG equations [4–6] are derived imposing the Wess-Zumino (WZ) consistency

conditions for the trace anomaly [9, 10] of the theory in a generic gravity background with

spacetime-dependent couplings. It is a very useful tool to study relativistic RG flows nearby

conformal fixed points in various dimensions [11–16] and it has also interesting applications

in the supersymmetric case [13, 17, 18]. For reviews see [19, 20].

Genuine anomalies correspond to terms which are intrinsic properties of the field theory

and do not depend on the choice of counterterms used in the renormalization procedure.

There are other violations of conformal symmetries in curved space which instead are
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counterterm-dependent. For example, in the relativistic case in 4 dimensions the trace of

the energy-momentum tensor contains the following terms:

Tµµ ⊃ aE4 − cW 2 + bR2 − 2

3
a′�R . (1.1)

The anomaly coefficient a coincides, at the fixed point, with the decreasing function in the a-

theorem, while c has no monotonicity property [21]. The coefficient b vanishes at conformal

fixed points due to the Wess-Zumino consistency conditions. Moreover, as we will show, it

is possible to choose counterterms in such a way that it vanishes along a specific RG flow

trajectory which interpolates between an UV and an IR fixed point. The a′ coefficient can

be shifted by a counterterm in the vacuum functional which is proportional to R2 and so it

is not a genuine scheme-indepedendent anomaly. However, this term could still play a role

in the monotonocity properties of the RG flow. For example, following [22, 23] one may

consider the difference between the UV and IR a′ coefficient ∆a′ = a′UV −a′IR along a given

RG flow trajectory; in a scheme where b = 0 along the RG flow, this is a monotonically-

decreasing quantity. Note that it explicitly depends on the given RG trajectory and not

just on its end points. In [22, 23] it was conjectured that the minimum of ∆a′ among all

the possible RG flows coincides with ∆a = aUV − aIR .

It is interesting to explore trace anomalies also in the non-relativistic case, in order

to study non-trivial constraints on the renormalization group flow.1 At a generic scale-

invariant fixed point, various relative scaling of space and time, which are parameterized

by the dynamical exponents z, are in principle allowed i.e.

xi→eσxi , t→ezσt . (1.2)

Moreover, the details of the anomaly structure depend crucially on the symmetry content

of the theories, in particular if we require or not boost invariance and also if we require

or not integrability of time slices of the gravitational background (Frobenius condition).

This condition is important for causality when the gravitational background is physical;

on the other hand, in order to define the energy-momentum tensor, we need to consider

generic variations of the background metric, including the ones which do not satisfy the

Frobenius condition.

Scale anomalies in theories without boost invariance (Lifshitz) were studied by several

authors, e.g. [24–29]. It turns out that, in all the cases that have been studied so far,

the scheme-independent trace anomalies at the fixed point have vanishing Weyl variation

(type B [30]2).

In this paper we will be interested in the case with boost invariance. The natural back-

ground is provided by the Newton-Cartan (NC) gravity. Two different attitudes concerning

trace anomalies are possible:

1One may wonder if a non-relativistic trace anomaly can be obtained as an infrared limit of a relativistic

one. This is not the case because the relativistic scale symmetry is explicitly broken by the mass gap which

is necessary to have a non-relativistic limit. Indeed relativistic trace anomaly coefficients count the number

of massless degrees of freedom, which is zero for a z 6= 1 fixed point. The non-relativistic scale symmetry

is an IR emergent phenomenon which does not exist in the far relativistic UV.
2Anomalies with non-trivial Weyl variation are instead called of type A; they correspond to non-trivial

solutions of the Wess-Zumino consistency conditions.
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• The case where causality is not required on the gravity background; this setting was

first studied by [31]. In this case the anomaly in 2 + 1 dimensions and for z = 2 has a

very rich structure, because an infinite number of terms can be written by dimensional

analysis. All these terms live in separated sectors, which are labelled by the integer

Nn. A Weyl variation does not change the value of Nn and the WZ consistency

conditions can be studied independently in each separated sector, where just a finite

number of terms is present. In particular, in the simplest sector Nn = 0 the anomaly

structure is identical to the trace anomaly of relativistic theories in 4 dimensions and

a natural type A candidate for a monotonicity theorem is the coefficient of the E4

term. The calculation of the Nn = 0 anomaly in the case of a free scalar was recently

done in [32].

• The case in which the Frobenius condition is imposed has a much simpler anomaly

structure. For d = 2 + 1 and z = 2, the number of terms allowed by dimensional

analysis is finite [33] and the only scheme-independent anomaly turns out to be of

type B [28, 33].

The purpose of the present paper is to initiate an analysis, using the local RG formal-

ism, of the non-relativistic scale anomalies in theories with Galilean boost invariance. We

focus on the d = 2 + 1 and z = 2 case, and we explore both the case with and without

Frobenius condition:

• The structure of the local RG equation in the simplest sector Nn = 0 of the case

without Frobenius conditions turns out to be the same as for the relativistic theories

in 4 dimensions.

• If we impose the Frobenius conditions, there is no scheme-independent a-theorem

candidate. However it is still interesting to study the local RG equations; for example

it might be possible to identify monotonic scheme-dependent quantities analog to the

a′ of the relativistic four-dimensional case. A similar study, in the case without boost

invariance, was done in [29].

We also study in detail the Nn = 1 sector of the anomaly without Frobenius conditions

and we find that no anomaly is allowed by WZ consistency condition. We leave the study

of higher sectors with Nn > 1 as a challenging problem for further investigation; it could

be that these sectors contain some interesting candidates for monotonicity theorems.

2 Preliminaries

2.1 Newton-Cartan geometry

The Newton-Cartan (NC) gravity is a covariant version of Newtonian gravity; putting

non-relativistic theories in a Newton-Cartan gravitational background is a very useful tool

in condensed-matter physics because it gives the natural sources for the operators in the

energy-momentum tensor multiplet, e.g. [34–41].
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A NC gravity background is defined by the tensors hαβ , hµν , and by the vectors vµ

and nµ with properties:

nµh
µα = 0 , nµv

µ = 1 , (2.1)

hµαhαν = δµν − vµnν = Pµν , hµαv
α = 0 . (2.2)

As a further ingredient, a U(1) gauge potential Aµ for the number particle symmetry must

be introduced. Causality is specified by the Frobenius condition, which takes the form

dn ∧ n = 0 , (2.3)

where the 1-form n = nµdx
µ specifies the time direction.

The symmetries of NC gravity include a local version of Galilean boosts, which

are called Milne boosts and are given by the following shifts, parameterized by the

functions ψµ(xα):

v′µ = vµ + hµνψν

h′µν = hµν − (nµP
ρ
ν + nνP

ρ
µ)ψρ + nµnνh

ρσψρψσ ,

A′µ = Aµ + P ρµψρ −
1

2
nµh

αβψαψβ . (2.4)

As a tool to write Milne boost invariant quantities in a systematic way, we use the null

reduction from a relativistic parent space,3 as introduced in [42]:

GMN =

(
0 nµ
nν nµAν + nνAµ + hµν

)
, GMN =

(
A2 − 2v ·A vµ − hµσAσ
vν − hνσAσ hµν

)
, (2.5)

where the null reduction is taken along the direction:

nM = (1, 0, . . . ) , nM = (0, nµ) (2.6)

We will refer to this trick as Discrete Light-Cone Quantization (DLCQ). Let DA, R,

RABCD, RAB denote respectively the covariant derivative, the scalar curvature and the Rie-

mann and Ricci tensors defined by the Levi-Civita connection from the metric in eq. (2.5).

The spacetime volume element is defined as:

√
g =

√
det(nµnν + hµν) =

√
− detGAB . (2.7)

Local Weyl transformations are parameterized by a function σ. In the DLCQ formalism

σ is taken independent from the null direction:

nADAσ = 0 . (2.8)

In our conventions, the Weyl scaling of the extra-dimensional metric and of the NC

objects is:

GMN→e2σGMN , nµ→e2σnµ , hµν→e2σhµν . (2.9)

Here and in the rest of the paper we specialize to dynamical exponent z = 2.

3Capital latin indices will always refer to d+2-dimensional tensors, while greek ones to d+1-dimensional

objects.
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2.2 Sources

The allowed perturbations on the background fields must satisfy eqs. (2.1). The most

general variation is parameterized by an arbitrary δnµ, a transverse perturbation δuµ with

δuµnµ = 0 and a transverse metric perturbation δh̃αβnβ = 0. In term of these quantities,

the variations of the background fields read:

δAµ , δnµ , δvµ = −vµvαδnα + δuµ , δhµν = −vµδnν − δnµvν − δh̃µν . (2.10)

At the linear order nearby the flat limit, eq. (2.10) gives:4

nµ = (1 + δn0, δni) , vµ = (1− δn0, δui) , δh̃0i = 0 ,

hµν =

(
0 −δui
−δui δij + δh̃ij

)
, hµν =

(
0 −δni
−δni δij − δh̃ij

)
. (2.11)

In term of the null reduction fields, this corresponds to:

GAB =

 0 1 + δn0 δni
1 + δn0 2δA0 δAi − δui
δni δAi − δui δij + δh̃ij

 ,

GAB =

 −2δA0 1− δn0 −δAi + δui
1− δn0 0 −δni
−δAi + δui −δni δij + δh̃ij

 . (2.12)

These sources are useful to define conserved currents. We will consider the vacuum

functional W [gµν ]:

eiW [GMN ] =

∫
Dφ eiS[φ,GMN ] (2.13)

where φ runs over the dynamical fields of the theory. The expectation values of the energy-

momentum tensor multiplet are defined by:

δW =

∫
dd+1x

√
g

(
1

2
Tijδh̃ij + jµδAµ − εµδnµ − piδui

)
. (2.14)

In this expression pi is the momentum density, Tij is the spatial stress tensor, jµ = (j0, ji)

contains the number density and current and εµ = (ε0, εi) the energy density and current.

ji is proportional to pi because only the combination δAi − δui enters the DLCQ metric,

see eq. (2.12).

The first-order Weyl variation ∆ of the vacuum functional nearby flat spacetime is:

∆WW = 2σGAB
δW

δGAB
= 2σ

(
δij

δW

δ(δh̃ij)
+ 2

δW

δ(δn0)

)
= 2σ(T ii − 2ε0) . (2.15)

In the rest of the paper we specialize to the d = 2 case.

4Upper and lower spatial indices i, j are raised by Kronecker delta and so are interchangeable.
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2.3 The trace anomaly without Frobenius condition

Let us consider a conformal field theory coupled to a background NC geometry. We will

restrict to the parity-invariant case. A generic term inside the anomaly in d+1 dimensions

can be written as a scalar obtained contracting the following d+2-dimensional tensors: the

curvature RABCD, the null direction nA and the metric GAB. We denote respectively by

Nn, ND and NR the numbers of nA vectors, covariant derivatives and Riemann tensors,5 all

taken with lower indices. NG denotes the number of metric tensors (all taken with upper

indices) which are used for the contraction. The condition for a term to be a scalar is

4NR +Nn +ND = 2NG , (2.16)

while the requirement of having the correct Weyl weight in order to enter the anomaly is

given by

2NR + 2Nn − 2NG = −4 . (2.17)

Eliminating NG from eqs. (2.16), (2.17), one obtains

4 = ND + 2NR −Nn . (2.18)

The number Nn is unchanged by Weyl transformation. This observation has interesting

implications: the Wess-Zumino consistency conditions of the terms with different Nn do

not mix with each other. Consequently, we can study each sector with a different value of

Nn independently.

The basis for the anomaly in the sector Nn = 0 and the cohomological problem are

exactly the same as the relativistic trace anomaly in (3+1)-dimensional space-time [31]:

A = aE4 − cW 2 +Act , Act = −2

3
a′�R , (2.19)

where the Euler density and the Weyl tensor are calculated in the DLCQ space-time starting

from the corresponding metric eq. (2.5):

E4 = R2
ABMN − 4R2

AB +R2 , W 2 = W 2
ABMN = R2

ABMN − 2R2
AB +

1

3
R2 . (2.20)

In this way we immediately recognize the existence of a type A anomaly, the E4 term, and

of a type B anomaly, the squared Weyl tensor. The anomaly in eq. (2.19) was explicitly

computed for a free scalar in [32].

The sectors with Nn > 0 will be discussed in section 5.

2.4 The trace anomaly with Frobenius condition

If we impose the causality condition (2.3) the structure of the anomaly drastically changes:

only a finite number of non-vanishing terms are allowed by the conformal dimension. More-

over the type A anomaly can be eliminated by a local counterterm and becomes scheme-

dependent. This case was studied in [33] and in [28] with different formalisms. In this

section we will summarize the results using the notation of [33].

5In the notation of [28]: NT = −Nn, NS = ND + 2NR + Nn, Nε = 0.
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The condition that nM is a Killing vector for the metric gives:

0 = Ln(GMN ) = DMnN +DNnM . (2.21)

The condition that nA is null gives DMn
M = 0 and nSDSnM = 0. We define the 2-form

F̃ = F̃ABdx
A ∧ dxB = 2dn , (2.22)

which in components reads:

F̃MN = ∂MnN − ∂NnM = 2DMnN . (2.23)

In particular, F̃−α = 0.

The causality condition n ∧ dn = 0 implies that dn = n ∧ w for some one form w:

F̃AB = n[AwB] , wA = (0, wα) , nAwA = 0 . (2.24)

Note that wA in eq. (2.24) is not uniquely determined; for example it could be shifted by

wA → wA + pnA , (2.25)

where p is an arbitrary function (x− independent) without affecting F̃AB.

We define:

χ =
1

16
GMNwMwN . (2.26)

ΩAB =
1

16
(wAwB − 4DAwB) , Ω = ΩABG

AB . (2.27)

Note that χ is invariant under the shift in eq. (2.25). We can use the ambiguity in eq. (2.25)

to render ΩAB symmetric. The following property is useful:

ΩABn
B = ΩBAn

B = χnA . (2.28)

It is convenient to introduce

J = Ω− 2χ+
R

6
, (2.29)

whose Weyl variation is −2σJ .

By dimensional analysis, the anomaly can be written as a finite linear combination:

Aσ =

12∑
k=1

bkAkσ , Akσ =

∫
√
g d3x (σ Ak) , (2.30)

where bk are the anomaly coefficients and

A1 = D2R , A2 = R2 , A3 = χ2 ,

A4 = Ω2 , A5 = χΩ , A6 = χR ,

A7 = ΩR , A8 = ΩABΩAB , A9 = ΩABw
AwB ,

A10 = wADAR , A11 = D2χ , A12 = D2Ω . (2.31)
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In order to determine this basis, it is important to use the following relations, which are

valid only if the Frobenius condition is satisfied:

W 2 = 12J2 ,

E4 = 72χ2 − 4χR− 48χΩ + 8Ω2 − 8ΩABΩAB ,

(RAB + 2ΩAB)wAwB = 8χ(R− 6χ+ 4Ω) ,

ΩAB(RAB + 2ΩAB) = 12χ2 +
1

2
Ω(R+ 4Ω)− χ(R+ 9Ω) . (2.32)

Imposing the Wess-Zumino consistency condition, we find that at the conformal fixed

point the anomaly is of type B:

A = bσJ2 +Act (2.33)

where the terms in Act are arbitrary linear combinations of

σD2R , σD2(Ω− 2χ) , σ

(
12χ2 − 4χΩ− 1

2
ΩABw

AwB
)
,

σ

(
2Rχ− 2RΩ +

wADAR

2
− 6D2χ

)
,

σ

(
−9χ2 − Ω2 + 6χΩ + Ω2

AB +
χR

2

)
, (2.34)

which can all be written as Weyl variation of local counterterms (see appendix A).

3 Local RG without Frobenius condition and Nn = 0

The couplings gi are now taken as space-time dependent sources for the marginal operators

Oi of the theory, e.g.:

〈Oi(x)〉 =
δW

δgi(x)
, (3.1)

where W is the vacuum functional. The local RG generator is:

−
∫
√
gd3x (∆WW + ∆βW ) = A (3.2)

where

∆WW = 2σGAB
δW

δGAB
, ∆βW = σβk

δW

δgk
, (3.3)

and βk denote the beta functions of each coupling: βk = dgk

d log µ . The anomaly A now

includes also terms with space-time derivatives of the couplings gk. To avoid confusion,

starting from this section, the lowercase latin indices i, j, k, . . . run on the space of the

couplings gi. Moreover, we denote by ∂if = ∂f
∂gi

the derivatives of functions with respect

to couplings. If the coupling gi has some charge m under the “mass” particle number, a

dependence gi = g̃i(xµ)eimx
−

should be given in the null direction. Note that for m = 0

the coupling gi can be real, while for m 6= 0 it must be complex.
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In the sector Nn = 0, the anomaly part of the local RG equation can be formally

obtained by DLCQ reduction of the relativistic local RG [6]:

A = B + (DAσ)ZA + (D2σ)X , (3.4)

where

B = aE4 − cW 2
ABCD +

b

9
R2 +

1

3
χeiDAg

iDAR+
1

6
χfijDAg

iDAgjR+
1

2
χgijDAg

iDAgj

+
1

2
χaijD

2giD2gj +
1

2
χbijkDAg

iDAgjD2gk +
1

4
χcijklDAg

iDAgjDBg
kDBgl ,

ZA = wiE
ABDBg

i +
1

3
YiRD

Agi + SijD
AgiD2gj +

1

2
TijkD

AgiDBg
jDBgk ,

X = −2a′

3
R− UiD2gi − 1

2
VijDBg

idBgj . (3.5)

Formally we can write exactly the same consistency conditions as in the relativistic

case in d = 4, and the same set of local counterterms can be used to shift the anomaly

coefficients. A detailed analysis can be found in [6]. It is interesting to focus on the

consistency conditions that give a perturbative proof of the a theorem:

8∂ia− χgijβ
j = −Lβwi , (3.6)

χgij + 2χaij + 2∂iβ
kχakj + βkχbkij = LβSij , (3.7)

where Lβ is the Lie derivative in the coupling space along the direction given by the beta

functions βi, e.g.:

Lβwi = βk∂kwi + ∂iβ
kwk . (3.8)

Then equation (3.6) can be re-written as:

βi∂iã =
1

8
χgijβ

iβj , ã = a+
1

8
wiβ

i , (3.9)

then the quantity ã is monotonically decreasing along the RG flow provided that χgij is

a positive-definite metric. In the limit of small βi (which corresponds to leading-order in

conformal perturbation theory), this is equivalent to the fact that χaij is negative-definite

(see eq. (3.7)).

In the relativistic case, the positiveness of −χaij follows from the fact that it coincides,

with the Zamolodchikov metric6 in an opportune class of schemes. Positivity of Zamolod-

chikov metric, for unitary theories, in turn follows from the positivity of the spectral density

function in the Källén-Lehmann spectral representation, see [20] for a review.

The key missing ingredient for a perturbative proof of the monotonicity of ã in the

non-relativistic case is the negativity of the anomaly coefficient χaij . In spite of the apparent

similarities with the relativistic case, the proof of the negativity of χaij does not seem to

follow from a straightforward generalization of the relativistic argument. We leave this

issue as a topic for further investigation.

6The Zamolodchikov metric is defined from the two-point functions of the marginal operators:

〈Oi(x)Oi(0)〉 =
Gij(g

k)

x2(d+2) .
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Another interesting consistency condition is:

βk∂k(4a
′ + Uiβ

i) = 8b− χaijβiβj . (3.10)

The quantity a′ is scheme-dependent at the fixed point; indeed if we add a counterterm

δW = CR2 +
1

3
EiDAg

iDAR , (3.11)

there is the following shift in the anomaly coefficients in eq. (3.5):

δd = 2C +
1

2
Eiβ

i , δb = Lβ(D) , δχei = Lβ(Ei) . (3.12)

The quantity b vanishes at the conformal fixed point; then it can be written as b = βiξi
for some smooth vector ξi. Along a particular RG trajectory, we can write ξi = ∂iG, and

then we can use the counterterm C = −G to make b vanishing along an RG trajectory. In

this scheme the difference ∆a′ = a′UV − a′IR corresponds to

∆a′ = −1

4

∫ UV

IR
χaij

dgi

dt

dgj

dt
dt , t = log µ , (3.13)

which formally resembles the action of a free particle moving in the space of couplings.

If the metric −χaij is positive-definite, then ∆a′ is always positive, even if dependent on

the specific RG flow trajectory. In the relativistic case, it was conjectured [22, 23] that

∆a ≤ ∆a′ and that the lowest possible value of ∆a′ coincides with ∆a; it is reasonable

that a similar property is valid also in the non-relativistic case.

4 Local RG with Frobenius condition

If the Frobenius condition holds, the number of terms in the anomaly is finite. In this

section we perform an analysis of the local renormalization group in the case of marginal

perturbations; in this case the study of the WZ consistency conditions is formally different

from the relativistic case. We know from section 2.4 that the scheme-independent content

of the anomaly is just a single term of type B, whose coefficient is therefore unconstrained

by the local RG equations. On the other hand, Tµµ has several geometrical contributions

which have a non-trivial RG evolution, analogously to the a′ coefficients of the relativistic

case. These coefficients are not universal properties of each conformal fixed point, but still

may give interesting constraint on the possible RG flows.

We choose the following basis:

(∆W
σ + ∆β

σ)W =

∫
d3x
√
g
(
σB · R+ DAσZA

)
, (4.1)

– 10 –
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where

B · R = η1R2 + η2χ2 + η3Ω2 + η4χΩ + η5χR+ η6ΩR

+ η7ΩABΩAB + η8ΩABw
AwB + η9wADAR+ η10D2R+ η11D2χ+ η12D2Ω

+ c1iD
2giR+ c2iD

2giχ+ c3iD
2giΩ + c4iDAg

iwAR+ c5iDAg
iwAχ+ c6iDAg

iwAΩ

+ e1ijDAg
iDAgjR+ e2ijDAg

iDAgjχ+ e3ijDAg
iDAgjΩ

+ e4ijDAg
iDBg

jwAwB + e5ijDAg
iDBg

jΩAB + e6ijD
2giD2gj + e7ijD

2giDAgjwA

+ k1ijmDAg
iDAgjD2gm + k2ijmDAg

iDAgjDBgmwB

+ qijmnDAg
iDAgjDBg

mDBgn , (4.2)

ZA = d1iDBg
iΩAB + d2iDBg

iwAwB + d3iD
AgiR+ d4iD

Agiχ

+ d5iD
AgiΩ +DA(d6iD

2gi) + d7iD
2giwA

+ f1ijD
AgiD2gj +DA(f2ijDBg

iDBgj) + f3ijD
AgiDBgjwB

+ TijkDBg
iDBgjDAgk . (4.3)

The terms ηk are present also in the case of constant space-time couplings and cor-

responds to the anomaly discussed in section 2.4. At the conformal fixed point, all the

allowed terms with non-vanishing Weyl variations are variations of local counterterms, see

appendix A.

Part of the WZ consistency condition give some algebraic relations which can be used

to solve for ηk, k = 4, . . . 9:

η4 =
1

6
(−6βic1i − βic3i + 2βic5i + 8βic6i + 72η1 − 2η2 − 18η3) ,

η5 =
1

12
(6βic1i + 2βic2i + βic3i + 4βic6i − 8βid7i − 72η1 − 4η11 − 8η12 − 6η3) ,

η6 =
1

3
(−3βic1i + 2βid7i + 36η1 + η11 + 2η12) ,

η7 =
1

2
(−6βic1i − βic3i + 72η1 − 2η3) ,

η8 =
1

48
(30βic1i + 5βic3i + 2βic5i − 4βic6i − 360η1 − 2η2 + 18η3) ,

η9 =
1

12
(−2βid7i − η11 − 2η12) . (4.4)

The remaining consistency conditions are listed in appendix B. Starting from these,

we can identify some possible candidates for monotonicity properties. Let us introduce:

Ã1 = −2η12 + 12η10 − 2βkd6k ,

Ã2 = 48η1 +
2

3
η2 − 4η3 + βk

(
−4c1k −

2

3
c3k −

2

3
c5k +

4

3
c6k − d1k − 16d2k

)
,

Ã3 = −72η1 + 2η3 − 4η11 − 8η12 + βk(6c1k + c3k − d1k − 8d7k) ,

Ã4 = η11 + 2η12 − 6η10 + βk(3d3k − 3c1k + 2d7k) . (4.5)
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From eq. (B.1), (B.2), (B.3), (B.4) we find the following relations:

βi∂iÃ1 + βi(12c1i − 2c3i )− 4e6ijβ
iβj = 0 ,

βi∂iÃ2 + (32e4ij + 2e5ij)β
jβi − (8c5i + 16c6i )β

i = 0 ,

βi∂iÃ3 + βi(−2c2i − 4c3i − 24c4i + 4c6i ) + (2e5ij + 8e7(ij))β
iβj = 0 ,

βi∂iÃ4 + βi(12c4i − 6c1i − 3c1l (∂iβ
l) + 3(∂ic

1
l )β

l)− 6e1ijβ
iβj = 0 . (4.6)

Each of the previous equations has a structure which is reminiscent of the relativistic

equation for a′, see eq. (3.10). Note in fact that the terms proportional to cki can be shifted

using the counterterms in appendix A and set to zero along a RG trajectory. Consequently,

we may consider linear combinations of the four previous quantities Ãk as candidates for

monotonicity theorems. In particular, e6ij is the analog of the 1
2χ

a
ij of the previous section

because it is the coefficient of the σD2giD2gj term of the anomaly, so Ã1 is identified with

the a′ term.

5 The Nn > 0 sectors

In the absence of Frobenius condition (2.3), the number of possible terms in the anomaly

basis is infinite. Each term can be formed solely by a combination of vectors nA, covariant

derivatives DA, curvature tensors RABCD and metric tensors GAB. These terms can be

conveniently organized and classified. A convenient way is to introduce an integer number

Nn labelling the number of DLCQ vectors nA entering the term. This partition splits

the infinite terms into infinite sectors identified by the value of Nn. This has a double

advantage: a) Since a Weyl transformation does not modify the value of Nn, anomalies

can be studied separately in each sector Nn; b) Although the number of sectors is infinite,

the possible anomaly terms are finite within a given sector.

Inside each sector, the following relations limit the number of possible terms:

I the internal symmetries of the curvature tensors,

II the Bianchi identity

DERABCD +DCRABDE +DDRABEC = 0 , (5.1)

III since nA generates an isometry, the following Lie derivatives vanish

Ln(GAB) = 0 ,

Ln(R) = 0 ,

Ln(RAB) = 0 ,

Ln(RABCD) = 0 .

(5.2)

Let us fix a value of Nn. Then, a dimensional analysis constraints the number NR of

curvature tensors entering the anomaly term to the following

0 ≤ NR ≤

{
1
2(Nn + 3) if Nn odd
1
2(Nn + 4) if Nn even

(5.3)
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This splits the sector Nn into distinct subsectors labelled by NR. Once NR is fixed,

the number of covariant derivatives ND is also fixed according to eq. (2.18). We will often

make use of the following commutation relation to move terms into different subsectors NR

[DM , DN ]XA1...Ak
B1...Bl

= +RA1
PMNX

PA2...Ak
B1...Bl

+ . . .

−RPB1MNX
A1...Ak

PB2...Bl
− . . .

(5.4)

The following systematic procedure can be applied to find a basis of terms entering

the anomaly for each separate sector Nn:

a) Find all the possible subsectors with NR going from 0 to the value (5.3).

b) Start from NR = 0; use repeatedly eq. (5.4) to move terms of this subsector to subsectors

with higher NR.

c) Within the remaining terms, apply the relations I–III to restrict the numbers of possible

terms in the anomaly basis.

d) Increase NR by one and repeat the points b) and c).

e) The final basis will be the union of the basis obtained for each subsectors.

5.1 The sector Nn = 1

We apply the procedure considering the simplest non trivial sector, i.e. Nn = 1 . According

to (5.3), we have three subsectors NR = 0, 1, 2. Without taking into account geometrical

constraints, such as eqs. (5.1), (5.2), the number of possible terms forming the basis of the

anomaly is 86. The procedure above is a systematic way to select the linearly independent

terms; although it is simple in principle, it is quite lengthy and non-trivial in practical uses;

it selects just 3 terms out of 86. The result is summarized in table 1, and the basis is given

by the bold terms.

The result is the basis:

B1 = (nARAB)DBR

B2 = (DCRAB)nARBC (5.5)

B3 = (nDRABCD)DBRAC ,

and the anomaly:

A ⊃
∫
d3x
√
gσ

3∑
k=1

fkBk . (5.6)

5.2 Cohomological problem of the Nn = 1 sector

It is possible to show that none of the three terms in the basis can be written as a Weyl vari-

ation of any combination of the remaining ones. Consequently, there are not counterterms

(i.e. scheme dependent terms) in the anomaly.
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Subsector Possible terms

NR = 0 DADBDCD
CDBnA , DADCDBD

CDBnA , DADCD
CDBD

BnA ,

ND = 5 DBDADCD
CDBnA , DBDCDAD

CDBnA , DBDCD
CDAD

BnA ,

DBDCD
CDBDAn

A , DCDADBD
CDBnA , DCDAD

CDBD
BnA ,

DCDBDAD
CDBnA , DCDBD

CDAD
BnA , DCDBD

CDBDAn
A ,

DCD
CDADBD

BnA , DCD
CDBDAD

BnA , DCD
CDBD

BDAn
A .

NR = 1 R(DADBD
BnA) , R(DBDAD

BnA) , R(DBD
BDAn

A) ,

ND = 3 RBC(DAD
CDBnA) , RAC(DBD

CDBnA) , RAB(DCD
CDBnA) ,

RBC(DCDAD
BnA) , RAC(DCDBD

BnA) , RBC(DCDBDAn
A) ,

RABCD(DDDCDBnA) , RACBD(DDDCDBnA) , RADBC(DDDCDBnA) .

(DADBn
B)DAR , (DBDADAn

B)DAR , (DBD
BnA)DAR ,

(DBD
BnA)DCRAC , (DAD

BnA)DCRBC , (DBDAn
A)DCRBC ,

(DCDBnA)DARBC , (DCDBnA)DBRAC , (DCDBnA)DCRAB ,

(DCDBnA)DDR
ABCD , (DCDBnA)DDR

ACBD , (DCDBnA)DDR
ADBC .

(DAn
A)DBD

BR , (DBnA)DADBR , (DBnA)DBD
AR ,

(DBn
A)DADCR

BC , (DBnA)DBDCR
AC , (DBn

A)DCDAR
BC ,

(DBnA)DCDBR
AC , (DAn

A)DCDBR
BC , (DBnA)DCD

CRAB

(DBnA)DCDDR
ABCD , (DBnA)DCDDR

ACBD , (DBnA)DCDDR
ADBC .

nA(DADBD
BR) , nA(DBD

ADBR) , nA(DBD
BDAR) ,

nA(DADCDBR
BC) , nA(DBDCD

CRAB) , nA(DCDADBR
BC) ,

nA(DCDBDAR
BC) , nA(DCDBD

CRAB) , nA(DCD
CDBR

AB) ,

nA(DBDDDCR
ABCD) , nA(DBDDDCR

ACBD) , nA(DBDDDCR
ADBC) .

NR = 2 (DAn
A)R2 , (DBnA)RRAB , (DAn

A)RBCR
BC ,

ND = 1 (DBnA)RACR
BC , (DBnA)RCDR

ACBD ,

(DAn
A)RBCDERBCDE , (DAn

A)RBCDERBDCE ,

(DBnA)RBCDERACDE , (DBnA)RBDCERACDE .

nAR(DAR) , nARAB(DBR)nARAB(DBR)nARAB(DBR) , nAR(DBR
AB) ,

nARBC(DCRAB)nARBC(DCRAB)nARBC(DCRAB) , nAR
AB(DCRBC) , nARBC(DARBC) ,

nARBC(DDR
ABCD) , nARABCD(DDRBC)nARABCD(DDRBC)nARABCD(DDRBC) ,

nARABCD(DER
BCDE) , nARABCD(DER

BECD) ,

nARBCDE(DARBCDE) , nARBCDE(DARBDCE) ,

nARBCDE(DCRABDE) , nARBCDE(DERABCD) .

Table 1. List of all the 86 scalars with Weyl weight -4 built with 1 vector nA. The bold terms

compose the final basis for the anomaly.

– 14 –



J
H
E
P
1
1
(
2
0
1
6
)
1
6
3

We can now study the cohomological problem by finding the commutator of two

Weyl variations

∆WZ
σ1σ2Bk = δσ1(x)

∫
d3x
√
g Bkσ2(y)− δσ2(x)

∫
d3x
√
g Bkσ1(y) , (5.7)

for all the terms in the basis, k = 1, 2, 3.

Using integration by parts, eq. (5.7) can be written as a linear combination of 9 inde-

pendent expressions Wj :

∆WZ
σ1σ2Bk =

∫
d3x
√
g

(
9∑

k=1

MkjWj

)
. (5.8)

The null space of the matrix Mkj corresponds to the consistent combination entering

the anomaly.

The nine independent expressions are:

W1 = (σ[1DAσ2])nBD
ADBR , W2 = (σ[1DAσ2])RnBR

AB ,

W3 = (σ[1DAσ2])nBR
ACRBC , W4 = (σ[1DAσ2])RBCnDR

ABCD ,

W5 = (σ[1DAσ2])(DBnC)DCRAB , W6 = (DAσ[1D
2σ2])nBR

AB , (5.9)

W7 = (DAσ[1DBσ2])nCD
ARBC , W8 = (DAσ[1DBσ2])(DCn

B)RAC ,

W9 = (DAσ[1DBDCσ2])nDR
ABCD .

The transpose of the matrix Mkj is:

(M t)mk =



2 −1 3
2

−2 1 0

0 0 −3

0 0 3

0 0 −3

6 1 1

0 −2 −1

0 −4 4

0 0 −2


. (5.10)

The null space of this matrix has dimension 0 and so the coefficients fk in eq. (5.6) must

vanish. There is not any consistent term which satisfies the Wess-Zumino conditions in the

Nn = 1 sector.

5.3 Sectors with higher Nn

The problem of the higher Nn sectors is obviously the proliferation of terms in the basis.

Although the procedure is clear in principle, the problem is intractable on the practical side

unless faced with suitable computer software. This goes beyond the purpose of the present

paper. In principle, the possibility that other type A anomalies exists in higher Nn sectors
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cannot be discarded. What is for sure is that an infinite set of type B anomalies can be

found, suitably combining Weyl tensors with n vectors [31]. For instance, the combination

WMNPQW
MNPSWQ

ASBn
AnB (5.11)

is non-vanishing, belongs to the sector Nn = 2, has the correct Weyl weight and has

vanishing Weyl variation. Similar combinations can be built for any even value of Nn,

because by dimensional analysis one Weyl tensor balances 2 nA vectors, and the number

of type B anomalies is infinite.

6 Conclusions

In this paper we initiated the study of the local renormalization group formalism in the

case of a non-relativistic theory with boost invariance in d = 2 spatial dimensions and

nearby a fixed point with dynamical exponent z = 2.

If we do not impose the Frobenius condition, the trace anomaly and the local RG

contain an infinite number of terms, organized in an infinite number of sectors with de-

coupled equations. In each sector there is only a finite number of terms; in particular, in

the simplest sector Nn = 0 the WZ consistency conditions are formally the same as in the

relativistic case in 4 space-time dimensions. Moreover we investigated the structure of the

trace anomaly in the sector Nn = 1 and we found that it is vanishing at the conformal

fixed point.

If the Frobenius condition is imposed, the structure of the trace anomaly is much

simpler; only a finite number of terms are allowed by dimensional analysis. Moreover, all

the quantities that are constrained by the local RG equation are scheme-dependent at the

fixed point. However, it could be that they still give useful constraints on the RG flow,

similarly to the a′ conjecture in the relativistic case [22, 23]. Indeed, we have found four

scheme-dependent quantities Ã1 . . . Ã4 whose evolution is described by an equation which

is similar to the one for a′ in the relativistic case. An analogous study was performed in [29]

in the case of non-relativistic theories without boost invariance.

Several directions deserve further investigation:

• The proof of a conjectured a-theorem in the Nn = 0 sector of the anomaly without

Frobenius condition is reduced to the positivity of a quadratic form in the coupling

space χgij . In spite of the formal similarities with the relativistic case, the proof does

not seem to be trivial. It would be interesting to check this issue in examples and

eventually to search for a proof.

• The anomaly sectors without Frobenius condition may contain other type A anoma-

lies. Unfortunately the number of terms quickly proliferates as we increase Nn; a

more efficient strategy is needed for a systematic analysis.

• We studied in detail just the z = 2, d = 2 case. The DLCQ reduction still works for

generic z, provided that one assigns different Weyl weights to different components

of extra dimensional tensors, see appendix A of [33]. Anomalies can arise only when
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d+ z is an even number; the case that we considered is one of the simplest and most

commonly used in condensed matter applications. It would be interesting to study

other combinations (d, z).

• The scheme-dependent quantities Ã1 . . . Ã4 are constrained by the local RG group

equation in the Frobenius case. The monotonicity of these quantities is another

open question.

• In the conjecture proposed in [22, 23], the minimum of the quantity ∆a′ along all

the possible RG flows is related to the difference ∆a, which is a independent on the

RG trajectory. It would interesting to find scheme-independent quantities related to

Ã1 . . . Ã4 in a similar way.
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A Local counterterms in the Frobenius case

Here we will consider the following local counterterms in the vacuum functional W :

W →W +

∫
√
g d3x

[
K1R

2 +K2(Ω− 2χ)2 +K3χ
2 +K4Ω

2 +K5χR+K6J
2
]
. (A.1)

We use the Weyl variations in table 2.

The variation of each term induces a shift in the anomaly coefficients in eq. (4.1). The

local RG equations in eq. (4.4) and in appendix B are invariant under these shifts; this

provides several non-trivial cross-checks of our calculations. The list of the shifts induced

by each term is:

1. Counterterm K1:

∆(K1R
2) = σβi∂iK1R

2 − 12K1(D
2σ)R , (A.2)

δη1 = βi∂iK1 , δd3i = 24∂iK1 , δη10 = −12K1 ,

δc1i = 12∂iK1 , δe1ij = 12∂ijK1 . (A.3)

2. Countertem K2:

∆(K2(Ω− 2χ)2) = σβi∂iK2(Ω− 2χ)2 + 2K2(D
2σ)(Ω− 2χ) , (A.4)

δη2 = 4L(K2) , δη3 = L(K2) , δη4 = −4L(K2) , δη11 = −4K2 ,

δη12 = 2K2 , δc2i = 4∂iK2 , δc3i = −2∂iK2 , δd4i = 8∂iK2 ,

δd5i = −4∂iK2 , δe2ij = 4∂ijK2 , δe3ij = −2∂ijK2 . (A.5)
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Term Weyl variation

R −2σR− 6D2σ

χ −2σχ− 1
2w

A∂Aσ

Ω −2σΩ− wA∂Aσ +D2σ

wA −4DAσ

wA −2σwA − 4DAσ

RMN −2DMDNσ −GMND
2σ

ΩCB DBDCσ − 1
4GBCw

KDKσ

R2 −4σR2 − 12RD2σ

(Ω− 2χ)2 −4σ(Ω− 2χ)2 + 2(Ω− 2χ)D2σ

χ2 −4σχ2 − χwADAσ

Ω2 −4σΩ2 − 2ΩwADAσ + 2ΩD2σ

χΩ −4σχΩ−
(
χ+ 1

2Ω
)
wADAσ + χD2σ

χR −4σχR− 1
2Rw

ADAσ − 6χD2σ

ΩR −4σΩR−RwADAσ + (R− 6Ω)D2σ

ΩABΩAB −4σΩABΩAB + 2ΩABD
ADBσ − 1

2ΩwA∂Aσ

ΩABw
AwB −4σΩABw

AwB + wAwBDADBσ − 4χwADAσ − 8ΩABw
ADBσ

wADAR −4σwADAR− 4DAσDAR− 2RwADAσ − 6wADAD
2σ

Table 2. Weyl variation of several terms.

3. Counterterm K3, modulo integration by parts:

∆(K3χ
2) = σβi∂iK3χ

2 −K3χw
ADAσ

= σβi∂iK3χ
2 + σK3

(
12χ2 − 4χΩ− 1

2
ΩABw

AwB
)

+ σ∂iK3 χw
ADAg

i , (A.6)

δη2 = L(K3) + 12K3 , δη4 = −4K3 , δη8 = −1

2
K3 , δc5i = ∂iK3 . (A.7)

4. Counteterm K4, modulo integ by parts:

∆(K4Ω
2) = σL(K4)Ω

2 + 2K4ΩD
2σ − 2K4Ωw

ADAσ

= σ(L(K4)− 8K4)Ω
2 + 2K4ΩD

2σ + σ2∂iK4Ωw
ADAg

i

+ σK4

(
−3ΩABw

AwB + 8Ω2
AB − 4D2χ+ 4χR+ 24χΩ

)
, (A.8)

δη3 = L(K4)− 8K4 , δη4 = 24K4 , δη5 = 4K4 , δη7 = 8K4 ,

δη8 = −3K4 , δη11 = −4K4 , δη12 = 2K4 , δc6i = 2∂iK4 ,

δc3i = −2∂iK4 , δd5i = −4∂iK4 , δe3ij = −2∂ijK4 . (A.9)
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5. Counterterm K5:

∆(K5χR) = σL(K5)χR−
K5

2
RwADAσ − 6K5χD

2σ

= σL(K5)Rχ+K5

(
2σRχ− 2σRΩ− 6χD2σ +

1

2
σwADAR

)
+
σ

2
∂iK5Rw

ADAg
i (A.10)

δη5 = L(K5) + 2K5 , δη6 = −2K5 , δη9 =
1

2
K5 , δη11 = −6K5 ,

δc2i = 6∂iK5 , δc4i =
1

2
∂iK5 , δd4i = 12∂iK5 , δe2ij = 6∂ijK5 .

(A.11)

6. Counterterm K6:

∆(FJ2) = ∆(F (Ω− 2χ+R/6)2) = L(F )(Ω− 2χ+R/6)2 , (A.12)

δη1 =
1

36
L(F ) , δη2 = 4L(F ) , δη3 = L(F ) ,

δη4 = −4L(F ) , δη5 = −2

3
L(F ) , δη6 =

1

3
L(F ) . (A.13)

B Consistency conditions with Frobenius conditions

The WZ consistency conditions generate the algebraic constraint in eq. (4.4) and the fol-

lowing system of differential equations:

∂i(−2η12+12η10)+12c1i−2L(d6i )−4e6ijβ
j−2c3i = 0 , (B.1)

∂i

(
48η1+

2

3
η2−4η3−βk

(
4c1k+

2

3
c3k+

2

3
c5k−

4

3
c6k

))
−L(d1i +16d2i )

+(32e4ij+2e5ij)β
j−8(c5i +2c6i ) = 0 , (B.2)

∂i

(
−72η1+2η3−4η11−8η12)+∂i(β

k(6c1k+c3k−4d7k)
)
−2c2i−4c3i

−24c4i +4c6i +L(−d1i−4d7i )+(2e5ij+8e7(ij))β
j = 0 , (B.3)

∂i(η
11+2η12−6η10)−∂i(3βkc1k−2βkd7k)−6c1i−3c1l (∂iβ

l)+3(∂ic
1
l )β

l

+12c4i +3L(d3i )−6e1ijβ
j = 0 , (B.4)

βk(∂id
7
k−∂kd7i )−

1

2
c2i−c3i +6c4i−c6i +2βje7[ij] = 0 , (B.5)

−12c1i +4e6ijβ
j+2c3i +2βl∂ld

6
i−d1i +6d3i−d5i−2d6i−f1ijβj−2f2ijβ

j = 0 , (B.6)

c3i +c3l (∂iβ
l)−2∂i(β

kd7k)−12c4i +
1

2
L(−d1i−d5i )+(e5ij+2e7(ij)−2e7[ij]+e

3
ij)β

j

= ∂i(3β
kc1k−2βkd7k)+3

(
c1l (∂iβ

l)−(∂ic
1
l )β

l
)

+L(d6i−3d3i )+(6e1ij+2e6ij)β
j+c3i−12c4i

= −2c2i−3c3i +12c4i−4c6i +2∂i(β
kd7k)−2c2l (∂iβ

l)−3c3l (∂iβ
l)−L

(
−d4i +8d2i−

3

2
d5i

)
− (2e2ij+3e3ij−16e4ij+2e7(ij)−2e7[ij])β

j , (B.7)
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−6∂j∂iη
9+6∂ic

4
j−∂ic6j−8e4ij+2e7ij−(∂ie

7
lj)β

l+e7lj(∂iβ
l)−βl∂lf3ij

+(f3lj+f
3
jl)∂iβ

l+2k2lijβ
l− 1

2
∂i∂jη

11−∂i∂jη12−
1

2
∂jc

2
i−∂jc3i−∂jL(d7i )+∂je

7
ikβ

k = 0 , (B.8)

−d7l (∂i∂jβl)−
1

2
e2ij−e3ij−

1

4
e5ij+k

2
ijlβ

l+
1

2
∂jc

2
i +∂jc

3
i +∂jL(d7i )−∂je7ikβk = 0 , (B.9)

∂i∂j(6η
10−η12)+6∂jc

1
i−∂jc3i−(∂jβ

l)(∂ld
6
i )−βl(∂l∂jd6i )−(∂iβ

l)(∂jd
6
l )−d6l ∂i∂jβl (B.10)

−e5ij+2e6il(∂jβ
l)+4e6ij−2(∂je

6
il)β

l−4e7ij−βl∂lf1ji−f1li(∂jβl)−f1jl(∂iβl)+2k1ljiβ
l = 0 ,

12e1ij−2e3ji−e5ij−2βl∂lf
2
ij−2f2il(∂jβ

l)−2f2jl(∂iβ
l)−2k1ijmβ

m

−2d6l (∂i∂jβ
l)+∂ij(12η10−2η12) = 0 (B.11)

−∂id1j+2f1ij+2f1il(∂jβ
l)−4f3ij+2Tljiβ

l = 0 (B.12)

−(∂id
6
l )(∂j∂kβ

l)−d6l (∂j∂k∂iβl)+6∂ie
1
jk−∂ie3jk−∂ke5ij−f1il(∂j∂kβl)−(∂iβ

l)(∂lf
2
jk) (B.13)

−βl(∂l∂if2jk)−2(∂if
2
kl)(∂jβ

l)−2f2kl(∂j∂iβ
l)+2k1jki−∂i(k1kljβl)+k1jkl(∂iβ

l)

−4k2jki−βl(∂lTjki)−Tjkl(∂iβl)−2Tlji(∂kβ
l)+4qlijkβ

l+∂i∂j∂k(6η
10−η12) = 0 ,

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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