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Abstract Multi-level Monte Carlo sampling techniques exploit the locality of quantum field theory to
provide a solution in purely-bosonic quantum field theories to the signal-to-noise ratio problem that affects
the lattice determination of a large class of quantities. However, it is not straightforward to generalize
multi-level sampling to lattice theories with fermionic content, such as QCD, due to the loss of manifest
locality after the fermion path integral is performed. We discuss how the decrease of the fermion propagator
with Euclidean distance induces a systematic approximation of the fermion propagator and the fermion
determinant, in which the gauge field dependence of distant spacetime regions is completely factorized.
This allows us to apply multi-level sampling to the lattice QCD computation of hadronic observables,
such as mesonic and baryonic correlators. In particular, we show an application of this strategy to the
disconnected contribution to the correlator of two flavour-singlet pseudoscalar densities, which results in
a significant increase of the signal-to-noise ratio when a two-level sampling scheme is used.
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1 Introduction

Numerical Monte Carlo (MC) simulations of Quantum Chromodynamics (QCD) regularized on the lattice have been
extremely successful in computing many high-energy physics (HEP) quantities in which the strong interaction plays a
rôle. One of the main achievement is the the ab-initio determination of the light spectrum of hadrons [1, 2], that can
be extracted from the exponential decay at long Euclidean distances of the appropriate correlation functions. This and
other achievements have been made possible by the combination of an exponential increase in the available computer
power and of significant algorithmic advances in the last couple of decades. This enables state-of-the-art simulations
of ensembles with more than 108 lattice points and volumes in excess of (5 fm)3 at physical quark masses [3], that
allows full control of systematics effect from the finite lattice spacing, finite volume and non-physical masses. However,
the numerical cost to compute hadronic correlation functions to a given target statistical precision is driven by the
exponential loss of the signal compared to the sampling noise with increasing Euclidean time separation, known as the
signal-to-noise ratio (S/N) problem [4, 5].1 While the S/N problem has been known for more than three decades, its
relevance has been growing in recent years thanks to availability of large lattices, that allows long time separations, and
the use of lighter pion masses, that exacerbate the problem. For instance, since the S/N of the nucleon-correlator scales
at large separations τ as e−µτ , with µ = MN − 3/2mπ ≈ 3.7 fm−1 [5], to gain as little as 0.5 fm of additional distance
requires a 40-fold increase of the number of samples, and thus an increase by this same factor in the computational
cost.

Analogous severe problems afflict the computation of correlators in a large variety of quantum systems, from the
harmonic oscillator to Yang-Mills (YM) theory. In some cases, multi-level MC sampling algorithms have been proposed,
which lead to an impressive acceleration of the simulations [8–14]. They take advantage of the fact that, when the
action and the observables depend locally on the integration variables, the S/N problem can be solved by independent
sampling of the local building blocks of the observable.

In the case of theories with fermions, such as QCD, the standard approach to the MC simulation of lattice theory
requires to integrate out analytically the fermionic fields. Consider the partition function of QCD on a Euclidean

1 In spectroscopy studies the S/N is mitigated using complex hadron interpolators, which suppress the excited-state contam-
ination at short distance. However, these methods are not suited for computations that require correlators of bare fields, such
as the HVP contribution to (g − 2)µ [6], or at very long distances, such as nucleon structure studies [7].
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lattice with a doublet of mass-degenerate quarks

Z =
∫
D
[
U, ψ̄, ψ

]
e−SG[U ]−ūDu−d̄Dd =

∫
D[U ] det

{
D†D

}
e−SG[U ]. (1)

Performing the Gaussian path integral over ψ and ψ̄ results in positive-definite quark determinant factor det{D†D},
that is typically simulated with pseudofermions [15]

det
{
D†D

}
∼
∫
D
[
φ†, φ

]
e−|D

−1φ|2 . (2)

Moreover, using Wick’s theorem fermionic observable are expressed in terms of quark propagators.
The quark determinant and the quark propagator are non-local functions of the gauge field, and the manifest

locality of the action is lost. This has consequences: since changing a single link requires recomputing the action
globally, local MC algorithms are not competitive any more.2 Because of these, state-of-the-art algorithm are variants
of the global hybrid Monte Carlo (HMC) algorithm [20]. For the same reason, the formulation of multi-level algorithms,
based on the locality of the theory, is not straightforward in the presence of fermions.

In addition, the exact fermion path integral results in a partial mitigation of the S/N problem for hadronic
correlators that have only connected Wick’s contractions. Indeed, numerical evidence shows that the quark propagator
on a typical gauge field configuration is still suppressed with Euclidean separation of source and sink when inserted
in hadronic quantities. At large distance, it holds∥∥D−1(x, y)

∥∥ = tr
{
D−1(x, y)D−1(x, y)†

}1/2 ∼ e− 1
2Mπ|x−y|, (3)

where Mπ is the mass of the lightest pseudoscalar meson, that is associated to the longest fermionic correlation length
in the theory. Therefore, even if the quark propagator and quark determinant are non-local, the dependence of hadronic
quantities on gauge links at a physical distance, e.g. 0.5 fm, is exponentially suppressed. Building on this observation,
in refs [21, 22] we propose a multi-level integration algorithm for lattice QCD that addresses the S/N problem of a
large set of hadronic observables.

In our thesis [23], we study a specific hadronic quantity: the mass of the lightest flavour-singlet pseudoscalar
meson, e.g. the η′ meson mass in the three-flavour theory. This mass has a quantum anomaly contribution, and it is
connected to the topological susceptibility of the YM theory, that we also computed [24, 25], by the Witten-Veneziano
formula [26, 27], an intrinsically non-perturbative relation.3 However, this mass is extracted from the long distance
behaviour of the the flavour-singlet pseudoscalar two-point function, which is affected by a severe S/N problem that
significantly limits the statistical precision of standard MC techniques. Therefore, in ref. [23] we propose to apply the
multi-level algorithm that we introduced to the flavour-singlet pseudoscalar correlator, focussing in particular on the
disconnected Wick’s contraction contribution.

In this article we present a self-contained introduction to the method proposed in the thesis, including material
from refs [21, 22, 30, 31] and addressing the factorization and multi-level sampling of both the quark propagator and
the quark determinant. The article is structured as following: In sect. 2 we introduce the S/N problem in general and in
the specific case of fermionic correlators. In sect. 3 we introduce the original multi-level algorithm, explaining the link
with locality and the issues introduced by fermionic theories. Sect. 4 is dedicated to the first aspect of the development
of multi-level sampling for fermions: the factorization of the quark propagator. Building on it, in sect. 5 we report a
numerical study of the multi-level sampling of the disconnected contribution to the pseudoscalar meson propagator,
while in sect. 6 the connected contribution case is discussed briefly. The factorization of the quark determinant, as the
second aspect of a multi-level algorithm for fermions, is the topic of sect. 7. Finally, in sect. 8 we write a factorized
action for lattice QCD and we briefly discuss the implementation of a two-level HMC algorithm.

2 Signal-to-noise ratio of MC observables

As a prototypical manifestation of the S/N problem, let us first study a purely-bosonic theory. Consider the two-point
function of a local bosonic field O(x) projected to definite three-momentum p

GO(x0 − y0,p) =
∑

x

eip·x 〈O(x)O†(y)
〉

=
∑
k

∣∣ 〈0|O|k,p〉∣∣2e−EO,k(p)|x0−y0| ∼ e−EO,0(p)|x0−y0|. (4)

2 Attempts to make proposals including dynamical fermions based on link updates as in refs [16–19] have not been adopted
in large scale projects.

3 See also refs [28, 29] on progress towards the non-perturbative test of the Witten-Veneziano formula.
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Assuming that O has non-vacuum quantum numbers and the theory has a mass gap, the exponential decay at large
Euclidean time separations |x0 − y0| singles out the lightest state compatible with the symmetry transformation
properties of the field O. In MC simulations, the path-integral expectation value is estimated on a finite sample of n
gauge field configurations Ui, i = 1, . . . , n

ḠO(x0 − y0,p) = 1
n

n∑
i=1

∑
x

eip·xO[Ui](x)O†[Ui](y). (5)

For a large number n of configurations, which we assume to be statistically uncorrelated, ḠO approximates the field-
theoretic expectation value with an error of order

√
σ2(GO)/n [4, 5]. The variance σ2(GO) of GO has a field-theoretic

expression
σ2(GO)(x0 − y0,p) =

∑
x,x′

e−ip·x′ 〈
O(x)O†(x+ x′)O†(y)O(y)

〉
− |GO(x0 − y0,p)|2. (6)

Inserting a full set of eigenstates of the Hamiltonian, we observe that 〈0|OO†|0〉 6= 0 since it has an overlap with the
vacuum. Therefore, the first term on the r.h.s. is not a connected correlation function in the field-theoretical sense and
it has a non-zero limit for |x0 − y0| → ∞. Thus, the S/N of the MC correlator decays exponentially with |x0 − y0|

GO√
σ2(GO)/n

∼
√
ne−EO,0(p)|x0−y0|. (7)

In many cases, the exponential decay of S/N with separation |x0 − y0| is a main limitation to the accuracy with
which the spectrum and the matrix elements can be studied. Indeed, most of the systematic effects, such as finite
volume and finite lattice spacing, can be solved with a polynomial increase of the simulation cost. On the contrary, one
way to deal with excited states systematics is to increase the source-sink separation, but this requires an exponential
increase of the number of configurations n, and thus of the simulation cost, to maintain the same statistical accuracy.

2.1 Variance of fermionic correlators

The presence of fermions in the theory modifies the S/N asymptotic described in the previous sections. Consider the
correlation function of two quark bilinear fields with Dirac structure Γ and non-singlet flavour

GudΓ (x0 − y0,p) = −
∑

x

eip·x 〈[d̄Γu](x)[ūΓd](y)
〉

= −
∑

x

eip·x 〈W con
Γ,ud(x, y)

〉
∼ e−E

ud
Γ,0(p)|x0−y0|. (8)

where W con
Γ,ud is the connected Wick’s contraction

W con
Γ,ud(x, y) = [d̄(x)Γu(x)][ū(y)Γd(y)] = − tr

{
γ5ΓD

−1
u (x, y)Γγ5D

−1
d (x, y)†

}
, (9)

and EudΓ,0(p) is the exponential decay rate at large temporal separations. Since the quark path integral is computed
exactly, the MC variance is due only to fluctuations of the gauge field

σ2(GudΓ )(x0 − y0,p) =
〈∣∣∣∑

x

eip·xW con
Γ,ud(x, y)

∣∣∣2〉− ∣∣GudΓ (x0 − y0,p)
∣∣2 ∼ e−Mππ|x0−y0|. (10)

While the second term in the r.h.s. is just the square of the two-point function, the first term is obtained from the
Wick’s contraction of the two-point function of [d̄Γu][d̄′Γu′], where the two quark and two antiquark fields have
different flavour in order to avoid disconnected Wick’s contractions. This term can be shown to behave asymptotically
as the lightest state with at least four quark lines, irrespective of Γ and p, that is identified with a pair of zero-
momentum pions. Therefore, any mesonic correlator with non-singlet flavour has a S/N that at long distances varies
according to

GudΓ√
σ2(GudΓ )/n

∼
√
ne−(EudΓ,0(p)−Mπ)|x0−y0|, (11)

where we set Mππ = 2Mπ working in a large volume and assuming that there is no bound state. Thus, as a direct
consequence of the fact that the quark path integral is computed exactly, the S/N problem is mitigated. The pion
plays a special rôle: from Eq (11) is evident that both the mean and the width of the distribution of the pseudoscalar
correlator decrease with distance at the same rate, thus there is no exponential S/N degradation in the pion propagator.
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Therefore, eq. (11) provides a heuristic argument in support of eq. (3), i.e. the numerical evidence that the quark
propagator on a typical gauge field configuration

∥∥D−1(x, y)
∥∥ = −W con

γ5,ud
(x, y) is suppressed exponentially with the

pion mass at a large Euclidean separations between source and sink. This provides a partial mitigation of the S/N that
extends to other fermionic correlators. A notable example is the nucleon propagator: its variance contains six quark
lines connecting source to sink, and thus its S/N decays asymptotically with the exponential rate MN − (3/2)Mπ [5].

The quark-line suppression does not help in the case of flavour-singlet correlators. Indeed, in this case both con-
nected and disconnected Wick’s contractions are present

GuuΓ (x0 − y0,p) = −
∑

x

eip·x 〈[ūΓu](x)[ūΓu](y)〉 = −
∑

x

eip·x 〈W con
Γ,uu(x, y)

〉
−
∑

x

eip·x 〈W dis
Γ,uu(x, y)

〉
, (12)

W dis
Γ,uu(x, y) = [ū(x)Γu(x)][ū(y)Γu(y)] = tr

{
ΓD−1

u (x, x)
}

tr
{
ΓD−1

u (y, y)
}
. (13)

The noise of GuuΓ is then usually dominated by the variance of the disconnected Wick’s contraction that is not
suppressed with distance. Intuitively, this is because there are no quark propagator lines that connects x with y in the
variance of W dis

Γ,uu(x, y). Instead, as in the bosonic case, the variance has a non-zero limit for |x0 − y0| → ∞.

3 Multi-level methods and locality

A way to improve the MC sampling exploiting the locality of quenched lattice QCD, known as the multi-hit method [8],
was originally introduced to achieve smaller statistical errors on Wilson and Polyakov loops. In ref. [9], Lüscher and
Weisz further developed this idea and proposed the multi-level algorithm as a full solution to the exponential S/N
problem. They achieved a boost of the standard n−1/2 scaling of the statical error by splitting the MC estimator in two
(or more) levels of sampling. At the lowest level-0, the observable is averaged on n0 configurations that spans the whole
gauge field. At level-1 (and higher), n1 gauge field configurations are generated for each level-0 configuration. The
level-1 updates are characterized by the independent update of different spacetime regions of the lattice, and they are
used to independently average the observable in distinct regions. The original multi-level idea has been subsequently
extended to different bosonic theories and observables [10–14].

To understand how multi-level methods are based on locality, following ref. [10] consider a partition of the spacetime
manifold in mutually disjoint subsets Λ0, Λ1 and Λb, with the requirement that any continuous path from Λ0 to Λ1
necessary passes through Λb. We denote with UΛi a gauge field configuration supported in Λi. Then, the theory is
local if the probability density in the path integral can be written as

dP [UΛ0∪Λ1 ] =
∫
Λb

dP [UΛb ]dP0[UΛ0 ]dP1[UΛ1 ], (14)

i.e. there exists P0 and P1 such that UΛ0 and UΛ1 influence each other only through UΛb [10]. This definition of locality
automatically realizes a domain decomposition that factorizes the theory into sectors that are not directly influenced.

The locality condition in eq. (14) is satisfied if the action S[U ] can be written as S0[UΩ0 ] + Sb[UΛb ] + S1[UΩ1 ],
where Ωi = Λi ∪ Λb, setting

dP [UΛb ] = Z0Z1

Z
D[UΛb ] e−Sb[UΛb ], dP0[UΛ0 ] = 1

Z0
D[UΛ0 ] e−S0[UΩ0 ], dP1[UΛ1 ] = 1

Z1
D[UΛ1 ] e−S1[UΩ1 ]. (15)

Most lattice discretizations of YM theory are local in this sense. For instance, a partition in thick time slices of Wilson’s
plaquette action is given in ref. [9], with the boundaries Λb defined as the set of spatial links on a fixed time slice.

3.1 Factorization of the path integral

Consider two fields O0 and O1 localized respectively in Ω0 and Ω1. As a direct consequence of locality, their correlator
has a factorized path integral expression

GO0O1 = 〈O0[U ]O1[U ]〉 =
∫

dP [U ]O0[U ]O1[U ] =
∫
Λb

dP [UΛb ]⟪O0[UΩ0 ]⟫Λ0
⟪O1[UΩ1 ]⟫Λ1

, (16)

with
⟪O0⟫Λ0

[UΛb ] =
∫
Λ0

dP0[UΛ0 ]O[UΩ0 ], ⟪O1⟫Λ1
[UΛb ] =

∫
Λ1

dP1[UΛ1 ]O1[UΩ1 ]. (17)
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Thus, the path integral average is factorized into independent averages in disjoint domains Λ0 and Λ1, that are
functionals of the boundary field UΛb , times an average over the “boundary” Λb. In eqs (17), we introduced the notation
⟪•⟫Λ to denote the field-theoretical sub-lattice expectation value in the domain Λ at fixed boundary conditions. Its
worth noting that this expectation value is still a functional of the field on the boundary. We can perform a further
step on eq. (16): re-expressing Z0 and Z1 in path-integral form and using eq. (14), we obtain a standard path integral
on the whole lattice

GO0O1 =
∫

dP [U ]⟪O0⟫Λ0
[UΛb ]⟪O1⟫Λ1

[UΛb ] =
〈
⟪O0⟫Λ0

⟪O1⟫Λ1

〉
, (18)

where the sub-lattice expectation values are treated as fields depending on the boundary field only.
There are many different ways in which this factorization can be iterated. One possibility is to further subdivide

the Λ0 and Λ1, to obtain a factorization in more than two regions. A second possibility is to iterate the factorization
on ⟪O0⟫Λ0

and ⟪O1⟫Λ1
to obtain a nested expression with three or more levels.

3.2 The multi-level MC algorithm

The two-point function in eq. (18) has a simple realization in terms of a multi-level MC algorithm [9]. In the simple
case of a two-domain two-level realization:

level-0: a number n0 of field configurations {Ui}, i = 1, . . . , n0 defined on the whole lattice is generated, using a
standard MC;

level-1: starting from every level-0 field configuration, a number n1 of field configurations {Ui,j}, j = 1, . . . , n1 is
generated updating independently fields in the two regions and keeping fixed fields in the boundary region Λb.

This requires computer time comparable to the generation of n0n1 configurations with a standard single-level algorithm.
The two-point function is estimated as two-level averaging process

G2lvl
O0O1

= 1
n0

n0∑
i=1


 1
n1

n1∑
j=1

O0[Ui,j ]

 1
n1

n1∑
j=1

O1[Ui,j ]

 . (19)

It is important to notice that every level-1 field configuration in the domain Λ0 combined with every level-1 field
configuration in the domain Λ1 is an independent configuration for both O0 and O1 fields. This means that at level-1
we have effectively n2

1 configurations.
Eq. (19) is an improved estimator of GO0O1 . Suppose that O0 and O1 show no dependence at all on the boundary

field. Then, each term in the square parenthesis in eq. (19) estimates the field-theoretical expectation value with an
error of order

√
σ2(Oi)/n1 . This, combined with the level-0 average, results in an error scaling with (n0n

2
1)− 1/2 ,

instead of the (n0n1)− 1/2 of the standard case. In general, O0 and O1 retain, at least indirectly, a dependence on
the quantum fluctuations of the boundary field. This induces in the estimator in eq. (19) a contribution to the error
that scales with n0

− 1/2 . This scaling will dominate for n1 →∞, but how large n1 can be before it becomes dominant
depends on the details of the observable and the domain decomposition. With a sensible setup, the dependency is
small and one can take quite large n1 before the boundary contribution becomes relevant.

3.3 Theories with fermions

The validity of eq. (16) relies on some necessary conditions: first, the theory must be local, i.e. it is possible to factorize
the action of the theory in domains as described in eq. (14); second, the fields in the expectation value must be localized
to a domain, or can be written as a product of localized fields. However, in the numerical simulation of lattice theory
with fermions both conditions are not satisfied. Indeed, after integrating out fermions explicitly,

1. the path-integral Boltzmann weight includes the determinant of the Dirac operator, that is a non-local functional
of the gauge field and it does not satisfy eq. (14);

2. fermionic observables are given by the inverse of the Dirac operator, that is also a non-local functional of the gauge
field and it is not factorizable in contribution localized to a region.

In the rest of this article, we generalize multi-level sampling to theories with fermions, addressing the two issues
separately. Taking QCD as the reference theory, we develop approximations to the quark propagator and to the
quark determinant that allow to write them as the product of local factors. In both cases, the approximation can
be systematically improved and the exact propagator and determinant are recovered in an appropriate limit. It is
important to stress that the proposed algorithm in unbiased in spite of the use of an approximation. Even far from
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yy

xx

xx

Ω0 Λ1

Λ0 Ω1

Figure 1. Sketch of the partition of the lattice in Ωi and Λi regions. Above the lattice we label the regions Ω0 and Λ1 that
leads to the block decomposition in eqs (20) and (21). Below we label the regions Λ0 and Ω1 that corresponds to the block
decomposition in eq. (22). Starting from a point source y ∈ Λ0, a quark propagator can be evaluated on a sink x localized either
in Λ0 or in Λ1.

the aforementioned limit, the correction to the approximation is small and we take its contribution into account. As
we will show, this is obtained using standard variance reduction ideas [32–36] and reweighting techniques, for the
propagator and determinant factorization respectively.

In sect. 4 we first study the factorization of the quark propagator. The resulting approximated quark propaga-
tor allows us to write hadronic observables that can be computed using a multi-level estimator such as the one in
eq. (19), at least in the quenched approximation of QCD, in which the determinant contribution to the path integral
is neglected. The quark propagator approximation is such that the correction term is suppressed with respect to exact
non-factorizable observable on every representative gauge field configuration. Estimating this small correction with a
standard MC results in a reduced impact on the S/N.

Then, in sect. 7 we study the factorization of the quark determinant and we describe an algorithm to perform
multi-level sampling in QCD with dynamical fermions.

4 Factorization of the quark propagator
The quark propagator D−1(x, y), defined as the solution of the Dirac equation on a point-like source in y, has a
non-local dependence on all the gauge links of the lattice Ω. However, the locality of the underlying physics suggests
to us that the dependence of D−1(x, y) on gauge links should be decreasing for links further away from x and y. In
this section, we use this physical intuition to introduce a factorization of the gauge field dependence of the quark
propagator in a way that is suitable for multi-level MC sampling.

Let us introduce a region Ω0 ⊂ Ω of the lattice Ω such that the source point y ∈ Ω0, and denote the complementary
as Λ1 = Ω \Ω0. The Dirac operator then assumes the block form4

D =
(
DΩ0 D∂Ω0

D∂Λ1 DΛ1

)
, (20)

where we are using the notation and conventions of ref. [37], also introduced in appendix A. Using the block decom-
position of the quark propagator matrix D−1 from eq. (65a) we have

D−1 =
(
D−1
Ω0

+D−1
Ω0
D∂Ω0D

−1D∂Λ1D
−1
Ω0

−D−1
Ω0
D∂Ω0D

−1P>Λ1

−PΛ1D
−1D∂Λ1D

−1
Ω0

PΛ1D
−1P>Λ1

)
, (21)

were we used (66a) to express the Schur complement [Q/QΩ0 ]−1 as PΛ1Q
−1P>Λ1

. In addition, we define a region
Λ0 ⊂ Ω0 around the source point y ∈ Λ0 such that Λ0 and Λ1 are separated by an intermediate region that we call
Λb, as depicted graphically in fig. 1. The complementary region is Ω1 = Ω \ Λ0, and Λb = Ω0 ∩ Ω1. This leads to a
second block decomposition formula, based on Λ0 and Ω1, that we obtain using eq. (65b)

D−1 =
(

PΛ0D
−1P>Λ0

−PΛ0D
−1D∂Λ0D

−1
Ω1

−D−1
Ω1
D∂Ω1D

−1P>Λ0
D−1
Ω1

+D−1
Ω1
D∂Ω1D

−1D∂Λ0D
−1
Ω1

)
. (22)

As we show in the following, these two formulae are the starting point to rewrite the quark propagator D−1(x, y) in a
way such that the gauge field dependence on Λ0 and Λ1 is completely factorized. Having chosen a source point y ∈ Λ0,
we can either consider sink points x that are close to y, so that we have x ∈ Λ0, or consider y that are at a distance
from y, so that x ∈ Λ1. We study the former, denoted as “same region”, in sect. 4.1, and the latter, “different regions”,
in sect. 4.2.

4 The action of DΩ0 (and DΛ1 respectively) on a quark field in Ω0 (Λ1) is equivalent to the action of the full Dirac operator
D with Dirichlet boundary conditions on ∂Ω0 (∂Λ1) [37].
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D−1(x, y) =
y

x
Ω0 Λ1

+
y

x
zΩ0 Λ1

=
y

x
Ω0 Λ1

+
y

x

[1− w]−1[1− w]−1

z1

z2

Λ0 Λb Λ1

Figure 2. Pictorial representation of the factorization of the quark propagator for y, x ∈ Ω0. The first equation is a represen-
tation of eq. (23), while the last of eq. (26). ⭐ represents the insertion of the Neumann series of w defined in eq. (27).

4.1 Source and sink in the same region

When x, y ∈ Λ0, including the propagator trace case y = x, the upper left element from eq.(21) is the relevant one.
Writing explicitly all the spacetime indices, we have

D−1(x, y) = D−1
Ω0

(x, y) +
∑
z∈∂Ω0

[
D−1
Ω0
D∂Ω0

]
(x, z)

[
D−1D∂Λ1D

−1
Ω0

]
(z, y), x, y ∈ Ω0. (23)

In particular, comparing this expression with the lower left element of eq. (21), the last factor in eq. (23) is, up to a
sign, a quark propagator from y ∈ Ω0 to its exterior boundary. Thus, it gets a suppression O

(
e−Mπdy/2

)
, where dy

is the distance of y from ∂Ω0. Similarly, the second term in the r.h.s. of eq. (23) is O
(
e−Mπdx/2

)
, with dx being the

distance of x from the same boundary. Therefore,∥∥D−1(x, y)−D−1
Ω0

(x, y)
∥∥ ∼ e−Mπd, with d = (dx + dy)/2. (24)

D−1
Ω0

(x, y) is pictured in fig. 2 as including all the paths from x to y that are within the region Ω0. The second term
in the r.h.s of eq. (23) is then represented graphically as the last term in the first equation in fig. 2, including paths
in Λ1 that can wind in Ω0.

This approximation can be improved. Comparing eq. (21) with eq. (22), we observe that [D−1D∂Λ1D
−1
Ω0

](z, y) =
[D−1

Ω1
D∂Ω1D

−1](z, y) for z ∈ Λ1 and y ∈ Λ0. Performing this replacement in eq. (23), we have

D−1(x, y) = D−1
Ω0

(x, y) +
∑
z∈∂Ω1

w̃(x, z)D−1(z, y), x ∈ Λ0, y ∈ Ω0, (25)

where w̃(x, z) = [D−1
Ω0
D∂Ω0D

−1
Ω1
D∂Ω1 ](x, z) for z ∈ ∂Ω1 and x ∈ Λ0. Formally solving for D−1, we arrive at

D−1(x, y) = D−1
Ω0

(x, y) +
∑

z1,z2∈∂Ω1

w̃(x, z1) [1− w]−1 (z1, z2)D−1
Ω0

(z2, y), (26)

where we used the properties of D∂Ω1 acting form the left to introduce [38],

w(z1, z2) =
[
P∂Ω1D

−1
Ω0
D∂Ω0D

−1
Ω1
D∂Ω1

]
(z1, z2), zi ∈ ∂Ω1, (27)

that has the crucial property of being an operator living on the ∂Ω1 boundary only. The [1− w]−1 term in Eq (26)
is the sum of the Neumann series of w. The second term in the r.h.s. of Eq (26) is then an infinite sum of products of
D−1
Ω0

and D−1
Ω1

propagator, thus any truncation of the sum leads to a factorization of the gauge field dependence in Λ0
and Λ1. The series converges fast thanks to the properties of w, that is studied in details in sect. 7.4 in the context
of the determinant factorization. Intuitively, since the expression in eq. (27) entails a propagator from ∂Ω1 to ∂Ω0
and back, we expect ‖w‖ ∼ e−Mπ∆, where ∆ is the “thickness” of Λb. The last equation in fig. 2 provides a pictorial
representation of eq. (26), where the summed series of w insertions is denoted by a ⭐ .

4.2 Source and sink in different regions

A second possibility is that x is at a physical distance from y, such that x ∈ Λ1. Then, taking the lower left element
from eq. (22) we have

D−1(x, y) = −
∑
z∈∂Ω1

[
D−1
Ω1
D∂Ω1

]
(x, z)D−1(z, y), x ∈ Ω1, y ∈ Λ0. (28)
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D−1(x, y) = y x
z

Ω0 Λ1

= y x
[1− w]−1[1− w]−1

z1

z2
Λ0 Λb Λ1

Figure 3. Pictorial representation of the factorization of the quark propagator for y ∈ Λ0 and x ∈ Ω1. The first equation is a
representation of eq. (28), while the last of eq. (29). ⭐ represents the insertion of the Neumann series of w defined in eq. (27).

The r.h.s. of eq. (28) contains a D−1 factor that depends on the gauge field of the whole lattice, thus the gauge field
dependence is not factorized yet. However, since D−1(z, y) acts on y ∈ Λ0 and it is evaluated in z ∈ ∂Ω1, with both
well into Ω0, we can use the factorization derived sect. 4.1, specifically eq. (26), to write

D−1(x, y) = −
∑

z1,z2∈∂Ω1

[
D−1
Ω1
D∂Ω1

]
(x, z2) [1− w]−1 (z2, z1)D−1

Ω0
(z1, y), x ∈ Ω1, y ∈ Λ0. (29)

where w is defined in eq. (27). As in the same-region case in eq. (26), any truncation of the Neumann series of w in
eq. (29) leads to a factorization of the gauge field dependence in Λ0 and Λ1, that is suitable for the application of
multi-level MC sampling. Fig. 3 provides a pictorial representation of eqs (28) and (29). The fast convergence of the
series means that the “zeroth-order” approximation

D−1(x, y) ' −
[
D−1
Ω1
D∂Ω1D

−1
Ω0

]
(x, y), x ∈ Ω1, y ∈ Λ0, (30)

is most of the time adequate, with ‖D−1 −D−1
Ω1
D∂Ω1D

−1
Ω0
‖ ∼ e−Mπ∆, where ∆ is the “thickness” of Λb.

In a multi-region setup, such as the partition in thick time slices that is introduced in fig. 8, it is possible to iterate
the steps that lead to eq. (30) to obtain a fully-factorized quark propagator spanning more than two regions

D−1
f (x, y) = (−)m−1

∑
zi∈∂Ωi

[
D−1
Ωm

D∂Ωm

]
(x, zm)

1∏
i=m−1

[
D−1
Ωi
D∂Ωi

]
(zi+1, zi)D−1

Ω0
(z1, y), x ∈ Ωm, y ∈ Λ0, (31)

that is pictured in fig. 4. Since in each factor the inverse Dirac operators are such that source and sink are always at
a distance ∆ from the Dirichlet boundary conditions, ‖D−1 −D−1

f (x, y)‖ ∼ e−Mπ∆ still holds.

5 Multi-level integration of the disconnected meson propagator

The decomposition obtained in sect. 4.1 calls for a multi-level integration of disconnected contributions to correlation
functions. Consider the disconnected Wick’s contraction of the mesonic two-point function in eq. (12), specialized to
the pseudoscalar case,

W dis
γ5

(x, y) = tr
{
γ5D

−1(x, x)
}

tr
{
γ5D

−1(y, y)
}
, (32)

and assume that y ∈ Λ0 and x ∈ Λ1. Applying eq. (23) to both quark traces, the Wick’s contraction is decomposed as

W dis
γ5

(x, y) = W dis,f
γ5

(x, y) +W dis,r
γ5

(x, y) (33)

where the factorized contribution is

W dis,f
γ5

(x, y) = tr
{
γ5D

−1
Ω1

(x, x)
}

tr
{
γ5D

−1
Ω0

(y, y)
}
, (34)

D−1(x, y) =
[
1 +O

(
e−Mπ∆

)]
× y x

z1z1 z2z2 zmzm

Λ0 Λb Λ1 Λb . . . Λb Λm

∆∆

Figure 4. Pictorial representation of the approximated factorized quark propagator in a multi-region setup, from a source
y ∈ Λ0 to a sink x ∈ Ωm.
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y

x

Λ0 Λb Λ1

y

x

Λ0 Λb Λ1

y

x

Λ0 Λb Λ1

Figure 5. Pictorial representation of the factorization of the disconnected Wick’s contraction of the two-point function of
quark bilinears. The leftmost picture depicts the factorized contribution W dis,f

γ5 defined in eq. (34). The central picture is a
representation of the residual contribution W dis,r1

γ5 , with W dis,r2
γ5 being similar but with the rôle of x and y exchanged. The

rightmost picture depicts the residual contribution W dis,r3
γ5 .

while the rest of the contraction is further decomposed in
W dis,r
γ5

(x, y) = W dis,r1
γ5

(x, y) +W dis,r2
γ5

(x, y) +W dis,r3
γ5

(x, y), (35)
where

W dis,r1
γ5

(x, y) = tr
{
γ5
[
D−1
Ω1
D∂Ω1D

−1D∂Λ0D
−1
Ω1

]
(x, x)

}
tr
{
γ5D

−1
Ω0

(y, y)
}
, (36a)

W dis,r2
γ5

(x, y) = tr
{
γ5D

−1
Ω1

(x, x)
}

tr
{
γ5
[
D−1
Ω0
D∂Ω0D

−1D∂Λ1D
−1
Ω0

]
(y, y)

}
, (36b)

W dis,r3
γ5

(x, y) = tr
{
γ5
[
D−1
Ω1
D∂Ω1D

−1D∂Λ0D
−1
Ω1

]
(x, x)

}
tr
{
γ5
[
D−1
Ω0
D∂Ω0D

−1D∂Λ1D
−1
Ω0

]
(y, y)

}
. (36c)

The contribution in eq. (34) has the property of being the product of two factors that are local to Ω0 and Ω1.
Therefore, it is possible to apply multi-level sampling to it〈

W dis,f
γ5

(x, y)
〉

2lvl =
〈⟪

tr
{
γ5D

−1
Ω1

(x, x)
}⟫⟪

tr
{
γ5D

−1
Ω0

(y, y)
}⟫〉

. (37)
Of course, this assumes that is possible generated independent gauge field configuration in different regions, as it is
the case when the disconnected Wick’s contribution is studied in the quenched theory, or using the corresponding
factorization of the Dirac determinant introduced in sect. 7. Conversely, the remaining contribution W dis,r

γ5
is not

factorized and it cannot be estimated with multi-level techniques. However, the contribution from W dis,r1
γ5

is expected
to be suppresses, for a typical configuration, by a factor e−Mπdx at large temporal separations, with dx being the
distance of x from ∂Ω1. Similarly, W dis,r2

γ5
is suppressed by a factor e−Mπdy with dy being the distance of y from ∂Ω0.

Thus, the noise from the non-factorized contribution is suppressed with distance accordingly. Choosing x and y to be
roughly equidistant from Λb, the noise decays with an exponential rate that is half of the one of the expected signal
of the disconnected contribution, i.e. a halving of the exponential S/N problem of the standard MC estimator. The
last contribution, W dis,r3

γ5
, is expected to be already proportional to e−Mπ(dx+dy) ∼ e−Mπ|x0−y0|. This is of the same

order of the expected signal, and therefore the standard level-0 average is adequate.
The factorization can be iterated using eq. (26). With the next iteration, the W dis,r

γ5
contribution splits into a term

that is suitable for multi-level sampling and a residual term that is further suppressed, at least as e−Mπ(d+∆), where d
is either dx or dy and ∆ is the thickness of Λb. However, this involves the multi-level evaluation of quark lines crossing
the boundary that, as discussed in sect. 6, is technically more involved.

5.1 Numerical tests

In ref. [21] we tested the factorization of the disconnected Wick’s contraction in a two-level setup with two active
region. To disentangle from the complexity of the factorization of the quark determinant, that is described in sect. 7,
we performed the test in the quenched approximation of QCD. We employed Wilson’s plaquette action discretization
with parameters β = 6.0, T ×L3 = 64a×243a3 and open boundary conditions (OBCs) in the temporal direction, that
correspond to a lattice spacing of a = 0.093 fm fixed using the value 0.5 fm for the Sommer scale r0/a = 5.368 [39].
We thus generated n0 = 200 level-0 independent gauge field configurations spaced by 400 molecular-dynamics units
(MDUs) using openQCD [40, 41] implementation of the HMC algorithm. For each level-0 configuration, we generated
n1 = 100 level-1 configurations updating independently two thick time slices of equal size, Λ0 = {x|x0 < 32a} and
Λ1 = {x : x0 > 32a}, while keeping the spatial links at x0 = 32a fixed, also spacing the configurations by 400 MDUs.
On these configurations, we studied a doublet of mass-degenerate valence light quark, discretized with the unimproved
Wilson–Dirac operator with κ = 0.1560 that corresponds to Mπ = 455 MeV [42].

The disconnected Wick’s contraction is decomposed according to eqs (33) and (35), and the factorized contribution
is computed using the two-level estimator in Eq (19)

Gdis,f
γ5,2lvl(x0, y0) = 1

n0

n0∑
i=1

 1
n1

n1∑
j=1

∑
x

tr
{
γ5D

−1
Ω1

[Ui,j ](x, x)
} 1

n1

n1∑
j=1

1
L3

∑
y

tr
{
γ5D

−1
Ω0

[Ui,j ](y, y)
} . (38)
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The terms in eq. (36) are instead computed using a standard estimator, but still making use of the 100 level-1
configurations as global configurations,5

Gdis,r12
γ5

(x0, y0) = 1
n0n1

n0∑
i=1

n1∑
j=1

1
L3

∑
x,y

{
W dis,r3
γ5

[Ui,j ](x, y) +W dis,r1
γ5

[Ui,j ](x, y)
}
, (39a)

Gdis,r3
γ5

(x0, y0) = 1
n0n1

n0∑
i=1

n1∑
j=1

1
L3

∑
x,y

W dis,r3
γ5

[Ui,j ](x, y), (39b)

where we summed for convenience the r1 and r2 contributions. For both exact propagators D−1 and factorized ones
D−1
Ω0

and D−1
Ω1

, we achieved a significant noise reduction using the hopping parameter expansion identity tr{γ5D
−1} =

κp tr{γ5D
p
hopD

−1}, where 2κD = 1− κDhop and p ≤ 8 [43, 44, 35], and estimating the trace stochastically

1
ns

ns∑
1

∑
x

η†i (x)
[
κ8D8

hopD
−1γ5η

]
(x) ns→∞−−−−→

∑
x

tr
{
γ5D

−1} (40)

on ns = 100 sources ηi of Gaussian noise [45, 46], defined on the whole spacetime volume. No attempt was made
at further optimising the stochastic estimator and the number of sources. For recent results combining multi-level
sampling and state-of-the-art stochastic estimation of propagator traces, see ref. [47].

The numerical results for Gdis,f
γ5,2lvl, Gdis,r12

γ5
and Gdis,r3

γ5
are plotted in fig. 6 as a function of the temporal separation

of the pseudoscalar densities. The central values and their errors are shown in the plots on the left and right columns
respectively. The sum of the three contributions, Gdis

γ5,2lvl, is also shown in each plot on the left for comparison. In all
cases x0 ∈ Ω1 and y0 ∈ Ω0 and they are chosen to be as much as possible equidistant from the boundary at x0 = 32a.

The statistical error on Gdis,f
γ5,2lvl in the top-right plot of fig. 6 is a flat function of the temporal separation with

sizeable deviations near the boundaries of the domains. Error bars are smaller than the symbols. Up to the largest
value that we have, n1 = 100, the error decreases as n−1

1 , i.e. the two-level MC works at full capacity. The mean value
of Gdis,f

γ5,2lvl in the top-left plot is compatible with zero. The correlation between Gdis
γ5

and Gdis,f
γ5,2lvl goes from 0.9 to 1.0

for temporal separations from 15a to 50a, a value that collapses towards zero when the multi-level is switched on. The
statistical error on Gdis,r12

γ5
in the middle-right plot of fig. 6 shows a strong dependence on the temporal separation.

It is compatible with an exponential behaviour of the form e−M |x0−y0|/2 as expected from eqs (36a) and (36b), but
with an effective mass aM = 0.14, lighter than expected and ≈ 67 % of the pion mass. It decreases as n−1/2

1 up
to n1 = 100 and, at fixed temporal distance, it becomes the dominant contribution to the error of Gdis

γ5,2lvl once n1

is large enough. The mean value of Gdis,r12
γ5

is ≈ 67 % of the full correlator at |x0 − y0| = 15a, and it becomes the
dominant contribution at larger distances. The statistical errors on Gdis,r3

γ5
in the bottom-right plot of fig. 6 decreases

exponentially as e−M |x0−y0|/2 as expected from eq. (36c), and it scales as n−1/2
1 .

Our best estimate of the disconnected contribution is shown in fig. 7, where also the result without multi-level
is plotted for comparison. A clear picture emerges. Without multi-level, at large temporal separations, the statistical
error on the standard estimate of the disconnected Wick’s contraction contribution to the pseudoscalar propagator is
dominated by the one on Gdis,f

γ5
. The second largest contribution is the statistical error on Gdis,r12

γ5
which, however, is

exponentially suppressed as e−M |x0−y0|/2. Once the two-level integration is switched on, the error on Gdis,r12
γ5

decreases
as n−1

1 , while the one on Gdis,r12
γ5

continues to scale as n−1/2
1 . The right plot in fig. 7 shows that, for n1 = 100, the error

on the multi-level estimator decreases with e−M |x0−y0|/2 up to a temporal separation of ≈ 30a, and it is dominated by
the flat error on Gdis

γ5,2lvl for temporal separations & 35a. As it is shown in the left plot, this results in a S/N larger than
one for ten additional time slices. The parameter n1 can thus be tuned, up to a prefactor of O(1), so that n1 ∼ eMd

with d being the maximum temporal separation in which one is interested in. In this way, the error on the factorized
contribution is reduced to the level of (or below) the uncertainty on Gdis,r12

γ5
at the same cost of generating n0n1 global

configurations. The net computational gain is therefore proportional to n1, and a good statistical precision is reached
with a total number of updates n0n1 proportional to eMπ|x0−y0|. Notice that the factor at the exponent is halved with
respect to the standard MC.

6 Multi-level integration of connected meson and baryon propagators
In parallel to the disconnected contributions discussed in the previous section, using the factorization obtained in
sect. 4.2 it is possible to apply multi-level sampling to connected Wick’s contraction contributions to hadron propa-

5 On any given configuration, the quark traces in eq. (36) are easy computed as the difference between exact the quark
propagators and factorized ones, e.g. tr

{
γ5
[
D−1
Ω1
D∂Ω1D

−1D∂Λ0D
−1
Ω1

]}
= tr

{
γ5D

−1}− tr
{
γ5D

−1
Ω1

}
.
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Figure 6. The plots in the left column show, from top to bottom, the contributions Gdis
γ5,2lvl, Gdis,r12

γ5 and Gdis,r3
γ5 as function of

temporal separation |x0 − y0|, together with the best estimate of the full correlator given by the sum o the three. The plots in
the right column show, for each of the three contributions, the corresponding statistical error as function of temporal separation
and for various values of level-1 samples n1.

0 10 20 30 40 50 60
|y0 − x0| /a
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Figure 7. The best estimate of Gdis
γ5 is shown in the left plot, together with its statistical error in the right plot, as a function of

temporal separation |x0 − y0|, both with and without two-level sampling. In the latter case, the n1 = 100 level-1 configurations
are treated as if they were correlated level-0 ones.
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Λ0 ⊂ ΛaΛ0 ⊂ Λa ΛbΛb Λ1 ⊂ ΛaΛ1 ⊂ Λa ΛbΛb Λ2 ⊂ ΛaΛ2 ⊂ Λa ΛbΛb Λ3 ⊂ ΛaΛ3 ⊂ Λa

Figure 8. Sketch of a possible decomposition of the lattice in Λa and Λb thick-time-slice regions. Λa is the union of the thick
time slices, labelled by Λi, i = 0, . . . , 3, whose links are active at level-1 of two-level integration. Λb is the union of the thick
time slices that act a buffer between Λi regions and whose links are not updated at level-1.

gators. The factorization and multi-level integration of two-point functions, such as and the nucleon propagator and
the pion propagator, which however is not affected by the S/N problem, has been covered in ref. [21] in the zero-
momentum case. In ref. [31], the study of connected Wick’s contraction has been extended to the vector correlator
and the pseudoscalar one at non-zero momentum. They are both interesting observables, with the former playing a
prominent rôle in the computation of the hadronic vacuum polarization (HVP) contribution to (g− 2)µ and the latter
being a building block of transition matrix elements such as heavy meson decay form factors.

In all these cases, numerical tests in the quenched approximation show that multi-level sampling is effective in
addressing the S/N problem. Here we choose to discuss only a technical detail of the implementation: The evaluation
of the matrix product of quark propagator factors such as those in eqs (26) and (29) requires to handle and aver-
age independently quark propagator matrices with open indices on a region boundary. While this is avoided in the
simplest implementation of the disconnected Wick’s contraction case discussed in sect. 5, the lowest-order factorized
approximation of a connected Wick’s contraction contains a number of factorized quark line as in eq. (30), thus the
matrix product of D−1

Ω1
D∂Ω1 and D−1

Ω0
. In the case of a decomposition in two thick-time-slice regions, the product of

matrix factors local to Ω0 and Ω1 amounts to a contraction of size |∂Ω1|` = (L/a)3`, where L/a is the number of
lattice sites in any spatial direction and ` is the number of quark lines in the Wick’s contraction, e.g. ` = 2 for mesons
and ` = 3 for baryons. This is numerically not feasible.

A solution is to transform the matrix product in a reduced number of ordinary products, introducing a projection
PL =

∑Nm
i=1 φiφ

†
i , where φi are Nm orthonormal vectors supported on ∂Ω1. The projection is then used to define

D−1
f,PL(x, y) = −

Nm∑
i=1

[
D−1
Ω1
D∂Ω1φi

]
(x)
[
φ†iD

−1
Ω0

]
(y), x ∈ Ω1, y ∈ Λ0. (41)

Using this quark propagator, connected Wick’s contractions reduce to a sum of N `
m products. However, eq. (41)

introduces a further approximation on top of eq. (30). Therefore, cutting the quark lines with the projection is a
solution only if it is possible to obtain a good approximation, at the level of eq. (30) or better, with a reasonable
number Nm of vectors.

In ref. [21] we showed how this is obtained for both mesonic and baryonic two-point functions with two choices of set
of vectors φi: those which span the deflation subspace as defined in ref. [48], and Nm orthonormal vectors constructed
by applying 10 inverse iterations of the Wilson-Dirac operator defined on a thick-time-slice region surrounding ∂Ω1.

An alternative strategy that does not involve projection on φi has recently been proposed in ref. [47] and has been
successfully applied to meson two-point functions, with the extension to baryons currently under development.

7 Factorization of the quark determinant

The aim of this section is to rewrite the quark determinant in a way that makes the gauge-field dependence local to a
region of the lattice. To this purpose, we first introduce a block decomposition of the Dirac operator the factorize the
bulk contribution of a region to the determinant, from a small non-local term that takes into account contributions
between regions. We then approach the latter term with a polynomial approximation of its inverse, which can be
written in terms of multiboson fields with a gauge-field local action.

7.1 Block decomposition of the determinant

To the purpose of the derivation, we partition the lattice in two regions, Λa and Λb, that can have disconnected
subregions. This corresponds to a LDU-decomposition of the Hermitian Dirac operator Q = γ5D as in eq. (64a), from
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which an equation between determinants follows

detQ = detQΛb · detQ/QΛb . (42)

Λa is the union of the active regions of the lattice, to be updated with level-1 updates, as shown in fig. 8. Similarly, Λb
is the union of inactive buffer regions, that act as a boundary between active regions and whose links are not updated
by level-1 updates. Partitioning Λa in even and odd active regions, denoted respectively by Λe and Λo, results in a
further block-decomposition of the Schur complement Q/QΛb

Q/QΛb = QΛa −Q∂ΛaQ−1
Λb
Q∂Λb =

(
QΛe −Q∂ΛeQ−1

Λb
Q∂ΛbP

>
Λe

−Q∂ΛeQ−1
Λb
Q∂ΛbP

>
Λo

−Q∂ΛoQ−1
Λb
Q∂ΛbP

>
Λe

QΛo −Q∂ΛoQ−1
Λb
Q∂ΛbP

>
Λo

)
=
(

QΩe/QΛb −Q∂ΛeQ−1
Λb
Q∂ΛbP

>
Λo

−Q∂ΛoQ−1
Λb
Q∂ΛbP

>
Λe

QΩo/QΛb

)
, (43)

where in the last equation we introduced the region Ωe = Λe ∪ Λb (Ωo = Λo ∪ Λb respectively) as the union of Λe
(Λo) and Λb, and we identified the diagonal blocks with the Schur complement of the block QΛe (QΛo) of the Dirac
operator QΩe (QΩo). The off-diagonal blocks of Q/QΛb are suppressed w.r.t. the diagonal ones, because they can be
represented by a quark line that propagates from Λe to Λo, or vice-versa, over the thickness of Λb. This result in a
suppression according to eq. (3). To make this argument sound, we proceed by pre-conditioning the Q/QΛb with the
inverse of its diagonal blocks, diag([QΩe/QΛb ]−1, [QΩo/QΛb ]−1)

Q/QΛb =
(

[QΩe/QΛb ]−1

[QΩe/QΛb ]−1

)−1(
1 −[QΩe/QΛb ]−1Q∂ΛeQ

−1
Λb
Q∂ΛbP

>
Λo

−[QΩe/QΛb ]−1Q∂ΛoQ
−1
Λb
Q∂ΛbP

>
Λe

1

)
=
(
PΛeQ

−1
Ωe
P>Λe

PΛoQ
−1
Ωo
P>Λo

)−1

W̃ , W̃ =
(

1 PΛeQ
−1
Ωe
Q∂ΛbP

>
Λo

PΛoQ
−1
Ωo
Q∂ΛbP

>
Λe

1

)
, (44)

where in the last equation we used the properties of the Schur complement in eqs (66) and introduced W̃ . We have

detQ = det W̃
detQ−1

Λb
· det

{
PΛeQ

−1
Ωe
P>Λe

}
· det

{
PΛoQ

−1
Ωo
P>Λo

} . (45)

The factor det W̃ can be further simplified as det W̃/W̃Λo · det W̃Λo , where the second factor evaluates to unity and
the first factor is the Schur complement

W̃/W̃Λo = W̃Λe − W̃Λe,oW̃
−1
Λo
W̃Λo,e = 1− PΛeQ−1

Ωe
Q∂ΛbP

>
ΛoPΛoQ

−1
Ωo
Q∂ΛbP

>
Λe . (46)

In the last equation, because of the action of Q∂Λb , the projection PΛo is equivalent to the projection P∂Λo on the
boundary of Λo, as defined in appendix A. Similarly, using the Schur complement of the block Λe, the determinant is
not modified by the substitution of PΛe with P∂Λe , which leads to the equation

det W̃ = det{1− w}, w = P∂ΛeQ
−1
Ωe
Q∂ΛbP∂ΛoQ

−1
Ωo
Q∂Λb , P

>
∂Λe (47)

where we introduced the operator w that is supported on the internal boundaries of Λe only. The determinant of the
Hermitian Dirac operator can thus be rewritten as

detQ = det{1− w}
detQ−1

Λb
· det

{
PΛeQ

−1
Ωe
P>Λe

}
· det

{
PΛoQ

−1
Ωo
P>Λo

} . (48)

Neither W̃ nor w are Hermitian operators. However, all the other factors in eq. (48) are real because they are
determinants of Hermitian operators, thus also W̃ and (1− w) have a real determinant.

7.2 Comparison with DD-HMC algorithm

The factorization of detQ obtained in the previous section bears similarities with the factorization introduced by the
Schwarz-preconditioned HMC algorithm, also known as DD-HMC algorithm [49]. This is evident rewriting eq. (48) as

detQ = detQΛb · detQΩe/QΛb · detQΩo/QΛb · det
{
1− P∂ΛeQ−1

Ωe
Q∂ΛbP∂ΛoQ

−1
Ωo
Q∂ΛbP

>
∂Λe

}
, (49)
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Figure 9. Pictorial representation of the contribution to the factorization of the quark determinant in eq. (48). The leftmost
picture represent quark loops that contributes to either det{PΛeQ−1

Ωe
P>Λe} or det{PΛoQ−1

Ωo
P>Λo}, i.e. quark loops that span Ωe

or Ωo. The central picture shows quark loops limited to the buffer region Λb only, that contribute to detQ−1
Ωb

. Finally, the
rightmost picture depicts quark loops that extends both on Λe and Λo across Λb, and are the residual contribution to the
factorized determinant encoded in det{1− w}.

and comparing it with eq. (2.2) of ref. [49]

detQ = detQΛe · detQΛo · det
{
1− P∂ΛeQ−1

Λe
Q∂ΛeP∂ΛoQ

−1
Λo
Q∂Λo

}
. (50)

Namely, the latter expression is obtained from the former in the limit of an empty buffer region Λb. The crucial
difference between the two derivations is that the one in sect. 7.1 keeps an explicit dependence on the separation
between Λe and Λo provided by Λb. As we show in the following, the size or “thickness” of Λb can be used to control
the smallness of the last factor in eq. (48). Conversely, there is no separation between Λe and Λo in the DD-HMC
algorithm and thus no reason to expect the last factor in eq. (50) to be small. In addition, the factorization in
eq. (48) can be shown to be equivalent to the one resulting from the overlapping Schwarz alternating procedure (SAP)
preconditioning of the Dirac operator [50, 38], instead of the non-overlapping SAP preconditioning of ref. [49].

7.3 Locality of the factorized determinant

The expression in eq. (48) is a product of factors that, with the exclusion of det{1− w}, have a localized gauge field
dependence. Specifically, det{PΛeQ−1

Ωe
P>Λe} depends only on the gauge field in Ωo, while det{PΛoQ−1

Ωo
P>Λo} depends

only on the gauge field in Ωo, and detQ−1
Ωb

depends only on the gauge field in Λb. This suggests that eq. (48) is a
step towards an independent multi-level sampling of the gauge field in Λe and Λo. Indeed, a change in the gauge
field in Λe contributes to a change of the factor det{PΛeQ−1

Ωe
P>Λe} and det{1−w} only, with the former including the

bulk contribution from within region Ωe, and the latter including the long-range contribution that extends to Λo. An
equivalent statement holds for a change in the gauge field in Λo.

Choosing a decomposition of the lattice in thick time slices regions as in fig. 8, the different contributions to eq. (48)
are represented pictorially in fig. 9 in terms of different quark-loop contributions to the determinant.

It is clear that, if the long-range contribution from det{1−w} is ignored, the gauge-field dependence is completely
factorized. Thus, we further study the operator w and its contribution to the determinant.

7.4 Properties of w

The form of the operator w defined in eq. (47) allows to estimate the contribution of the determinant factor det{1−w}.
First, we rewrite the two factors in its definition in the equivalent form

P∂ΛeQ
−1
Ωe
Q∂ΛbP

>
∂Λo = P∂ΛeQ

−1 [Q∂Λb +Q∂ΛoQ
−1
Ωe
Q∂Λb

]
P>∂Λo , (51a)

P∂ΛoQ
−1
Ωo
Q∂ΛbP

>
∂Λe = P∂ΛoQ

−1 [Q∂Λb +Q∂ΛeQ
−1
Ωo
Q∂Λb

]
P>∂Λe . (51b)

Therefore, w contains two factors of the propagator Q−1 between the boundaries of the Λe and Λo regions. According
to eq. (3), on every representative gauge configuration the operator gets a suppression [‖Q−1‖ (∆)]2, where ∆ is the
“thickness” of region Λb. If ∆ is large enough, the suppression approaches the asymptotic exponential rate δ̄ = e−Mπ∆.
Moreover, the matrix w can be written as the product of two Hermitian matrices,

w =
[
P∂ΛeQ

−1
Ωe
P>∂Λe

] [
Q∂ΛeQ

−1
Λb
Q∂ΛbQ

−1
Ωo
Q∂ΛoQ

−1
Λb
Q∂ΛbP

>
∂Λe

]
, (52)

acting on the boundary of region Λe. In turns, this implies that w is similar to w† [51], thus the characteristic polynomial
of w has real coefficients, the complex eigenvalues δi come in conjugate pairs and the spectrum of w is symmetric with
respect to the real axis. This confirms that det{1− w} is real, as anticipated.

In ref. [22], we tested these properties on a set of 200 configurations generated with Wilson’s plaquette action and
two flavour of non-perturbatively O(a)-improved Wilson quarks using the openQCD [40, 41] package. The parameters
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Table 1. Properties of the spectrum of w studied on 200 configurations for different values of ∆. fRe is the fraction of
configurations for which the eigenvalue with the largest magnitude is real.

∆/a δ̄ 〈maxi |δi|〉 σ(maxi |δi|) max maxi |δi| fRe(%)

8 0.3273 0.2886 0.0616 0.5130 48.5
12 0.1710 0.1692 0.0453 0.3193 46.5
16 0.1072 0.0951 0.0284 0.1977 45.5

are β = 5.3, cSW = 1.909 52, cF = c′F = 1, κ = 0.136 25 T × L3 = 64a× 323a3 and OBCs in time, that correspond to
a lattice spacing of a = 0.0652(6) fm and a pion mass of Mπ = 1454(5) = 440(5) MeV [52]. We setup a partition in
three thick time slices Λe, Λo and Λb and we compute with the Arnoldi iteration the 60 approximate eigenvalues δi of
w with the largest magnitude, for three different choices ∆ = 8a, 12a and 16a of the thickness of Λb. In the central
plot in fig. 10 we show the computed eigenvalues for the ∆ = 8a case. As expected, the eigenvalues are either real or
come in complex conjugate pairs. The eigenvalue with largest magnitude for each configuration is highlighted with a
grey dot and it can be either real or a pair with opposite imaginary part, with both possibilities being common. The
right plot in fig. 10 shows the distribution of the absolute values of the eigenvalues, with also the eigenvalue with the
largest magnitude for each configuration in grey. In both plots the blue circle or line indicates the absolute value δ̄.
Results for also ∆ = 12a and 16a is reported in table 1.

A clear message emerges form these data: the largest eigenvalue of w deceases proportionally to δ̄, with a O(1)
prefactor. This implies that (1− w) as a large spectral gap if ∆ is properly tuned.

7.5 Polynomial approximation

In this section, we estimate the residual global factor det{1 − w} in Eq (48) using a variant of the multiboson
algorithm [53–56] to det{1 − w}, i.e. we use a polynomial approximation of the inverse of (1 − w) to obtain a local
formulation of the determinant. In Lüscher’s original multiboson proposal [53] the polynomial approximation of the
inverse is applied to the Dirac operator squared Q2, whose condition number roughly proportional to a−2 and generally
rather large. This drives up significantly the order of the polynomial to obtain a faithful approximation of the inverse
over the whole spectral range of Q2, especially on fine lattices. In turn, a large number of multiboson fields has been
shown to induce large MC autocorrelation times that limit the applicability of the algorithm [57].

Conversely, the condition number of (1 − w) is ε ∼ (1 + e−Mπ∆)/(1− e−Mπ∆), which is O(1). This suggests that
a low-order polynomial might be sufficient to cover the spectral range. However, w has complex eigenvalue and the
polynomial must be chosen to faithfully represent those too [54]. Formally applying the polynomial approximation
PN (z) in eq. (67) from appendix B to the (1− w) matrix, it results

det{1−RN+1(1− w)}
det{1− w} = det{PN (1− w)} = cN

N∏
k=1

det{1− zk − w}, (53)
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Figure 10. The picture on the left is a pictorial representation of the two factor contribution to the operator w in eq. (47). The
central plot shows on the complex plane the eigenvalues δi of w for 200 configuration, while the distribution of their absolute
values in plotted on the right. In both plots, ∆ = 8a, the blue circle and line denote δ̄, the eigenvalue (or the complex conjugate
pair) with the largest magnitude for each configuration is plotted in grey, and the bulk of eigenvalues with magnitude |δi| ≤ 0.35δ̄
is hidden under the hatched region.
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Figure 11. Pictorial representation of the terms contributing to the multiboson action |W√1−zk
χk| 2 defined in eq. (61).

where zk are the roots of PN (z) in eq. (68) and cN is a known constant. Requiring N to be even and the roots to be
ordered such that zN−k = z̄k, we combine the complex-conjugate roots in manifestly-positive terms

det{1− zN−i − w} det{1− zk − w} = det
{

(1− zk − w)†(1− zk − w)
}

= det
{
W †√1−zk

W√1−zk

}
, (54)

where we used that w is similar to w† and, applying the same reasoning used to derive eq. (47), we introduced

Wy =
(

y1 P∂ΛeQ
−1
Ωe
Q∂ΛbP

>
∂Λo

P∂ΛoQ
−1
Ωo
Q∂ΛbP

>
∂Λe

y1

)
, (55)

that, differently from W̃ , lives only on the internal boundaries of regions Λe and Λo. Combining eqs (48), (53) and (54)
one arrives at the final expression of the factorized quark determinant

detQ
det{1−RN+1(1− w)} =

c−1
N

∏N/2
k=1 det

{
W †√1−zk

W√1−zk

}−1

detQ−1
Λb
· det

{
PΛeQ

−1
Ωe
P>Λe

}
· det

{
PΛoQ

−1
Ωo
P>Λo

} . (56)

Given a precision requirement, the order of the polynomial is estimated using eq. (69) from appendix B. It holds

‖1− (1− w)PN (1− w)‖ = ‖RN+1(1− w)‖ ≤ max
i
|δi|N+1 = |δ|N+1

max , (57)

where the matrix norm is ‖A‖ = sup{‖Av‖ : ‖v‖ = 1}. Then, eq. (53) implies

det{1− w} det{PN (1− w)} = det{1−RN+1(1− w)} = 1 + tr{RN+1(1− w)}+ . . . , (58)

assuming that |δ|N+1
max � 1 and tr{RN+1(1 − w)} � 1. At first order in the expansion, the relative error on the

determinant is therefore

|tr{RN+1(1− w)}| ≤
∑
i

|δi|N+1 ≤
Nev∑
i=1
|δi|N+1 + (6L3/a3 −Nev)|δNev+1|N+1

, (59)

where in the last equality the contribution from the Nev eigenvalues with the largest magnitude, e.g. the ones computed
in sect. 7.4, has been treated separately form the bulk of the modes, which satisfy |δi| � δ̄.

Given the distribution of eigenvalues of w that emerges from the numerical study in sect. 7.4, the circle centred
in one with radius one is a natural choice for the polynomial approximating (1− w)−1. However, the approximation
could be optimized using an ellipse also centred in one and tuning the focal distance.

8 The multiboson action

The determinant factors in eq. (56) are represented by scalar fields [15]. Working with Nf = 2 flavours of mass-
degenerate quarks, we represent detQ2 as

detQ2

det{1−RN+1(1− w)}2
= C

∫
D[φΛe , φ

†
Λe

] e−|PΛeQ
−1
Ωe
P>ΛeφΛe |

2

·
∫
D[φΛo , φ

†
Λo

] e−|PΛoQ
−1
Ωo
P>ΛoφΛo |

2

·
∫
D[φΛb , φ

†
Λb

] e−
∣∣Q−1

Λb
φΛb

∣∣2
·
N∏
k=1

∫
D[χk, χ†k] e−

∣∣W√1−zk
χk

∣∣2
, (60)
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where C is an irrelevant numerical constant. The three bulk contributions to the determinant are estimated with
standard techniques using pseudofermion scalar fields φΛi that are supported on Λi. The long-range contribution
encoded in the Nf ·N/2 terms det{W †yWy} is instead represented by N multiboson scalar fields χk that live on ∂Λb.
The action for multiboson field is∣∣W√1−zkχk

∣∣2 =
∑

i={e,o},j 6=i

∣∣zχΛi,k + P∂ΛiQ
−1
Ωi
QΛbχΛj ,k

∣∣2, χΛ,k = P∂Λχk. (61)

The dependence of this action from the gauge field in Λe and Λo is thus factorized, and the HMC forces of links in
different regions are independent. Moreover, the terms that contribute to the force of Λe always start on the inner
boundary of Λo, and vice versa. Thus, the forces of the multiboson action are also suppressed exponentially in the
thickness ∆ of Λb. In fig. 11 we represent graphically the terms of the sum in eq. (61) in the case of a partition of the
lattice in thick time slices.

We point out that, while we choose for simplicity to represent the determinant of a quark doublet, the multiboson
representation of det{1 − w} has been derived for a single quark flavour. Therefore, the factorization in eq. (56)
is suitable of the simulation of an arbitrary number of quark flavours with non-degenerate masses, employing Nf ·
N/2 multiboson fields and the standard RHMC technique for the bulk determinant contributions. Similarly, as an
improvement over using a single pseudofermion for each active region as in eq. (61), techniques such as the Hasenbusch
mass splitting [58, 59] and multiple time-step integration [60] can be used.

8.1 Multi-level sampling and reweighting

The expectation value of a generic field O can be written as

〈O〉 =
〈OWN 〉N
〈WN 〉N

=
〈
Of〉

N

〈WN 〉N
+
〈
Of −OWN

〉
N

〈WN 〉N
, WN = det{1−RN+1(1− w)}Nf (62)

where Of is a factorized approximation of O, such as the factorized disconnected Wick’s contraction introduced in
sect. 5, and 〈•〉N denotes the expectation value in the theory defined by the multiboson action at finite N . Since
both the action and the observable are factorized, the expectation value 〈Of〉N can be computed with a multi-level
algorithm by generating gauge field configurations with the multiboson action at finite N . The reweighting factor WN

is easily evaluated with, in the Nf = 2 case,

WN =
∫
D[η, η†] e−|[1−RN+1(1−w)]−1η|2∫

D[η, η†] e−|η|2
. (63)

8.2 Implementation and numerical tests

The HMC of a two-active-region version of eq. (60) has been implemented in ref. [22]. We refer to that publication for
the technical details of the implementation, based on an heavily modified version of the openQCD [40, 41] package,
such as how to perform the heatbath of the multiboson fields at the beginning of the the level-1 MC chain. A set
of level-1 configurations has been generated using the parameters in sect. 7.4 and updating independently two thick
time slices separated by Λb of thickness ∆ = 12a ≈ 0.8 fm, corresponding to Mπ∆ ≈ 1.7. We simulated eq. (60) using
5 mass-preconditioned pseudofermions for each bulk term and 12 multiboson fields. The latter are integrated on the
outermost of three time-step integration levels and result in a small overhead on the computational cost of a standard
HMC simulating the bulk action only. Numerical tests have been performed for correlators of the gluonic observables
such as the YM energy and topological charge densities, and for the factorized disconnected Wick’s contraction studied
in sect. 5, although with limited statistics. In all cases, the results are in line with expectations: When two local fields
are in different active regions and a two-level estimator is used, its variance scales with n−2

1 . Thus, the two-level MC
works at full capacity, resulting in a net gain in the S/N. Moreover, no particular freezing of the links is observed.

9 Conclusions

We described all the steps necessary to implement a multi-level MC integration scheme in lattice theories with fermionic
content. The proposed method relies on the locality of the lattice-discretized Dirac operator, and on the configuration
by configuration exponential decrease of its inverse with the distance between the sink and the source. It works by
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decomposing both the fermion propagator and the fermion determinant in factors that have a gauge field dependence
local to distinct spacetime regions. The propagator factorization is applied to both connected and disconnected Wick’s
contractions of correlators. The determinant factorization is a combination of a decomposition in overlapping domains,
and the multiboson representation of the small interaction among the gauge fields of distant regions. The resulting
action is local in the gauge field and can be simulated by variant of the standard HMC algorithm.

We reported the application of the method to the computation of the disconnected contribution to the correlator of
two flavour-singlet pseudoscalar densities in quenched QCD. This numerical test implements a very simple two-region
two-level setup and shows a clear gain in the S/N, with the number of configuration needed to reach a given statical
precision being proportional to the square root of these required in the standard case.

The generalization of multi-level sampling to lattice QCD opens new perspective. Many computations that are
affected by the exponential S/N degradation are expected to profit from these improvement, with prime examples
being correlators with disconnected contributions and baryonic multi-point functions.
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A Two-region block decomposition

In this section we collect elementary formulae about the block-decomposition of lattice-sized matrices, such as the
lattice Dirac operator D, which includes the mass term, or its Hermitian version Q. Consider a region of the lattice
Λ0 ∈ Ω and its complementary Λ1 = Ω \ Λ0. Following the notation of ref. [37], we define the exterior boundary ∂Λi
of Λi. Properly ordering the lattice sites so that all those in Λ0 come before the ones in Λ1, we write the matrix Q in
its block form and perform a LDU decomposition of the blocks

Q =
(
QΛ0 Q∂Λ0

Q∂Λ1 QΛ1

)
=
(

1

Q∂Λ1Q
−1
Λ0
1

)(
QΛ0

Q/QΛ0

)(
1 Q−1

Λ0
Q∂Λ0

1

)
, (64a)

where Q/QΛ0 = QΛ1 − Q∂Λ1Q
−1
Λ0
Q∂Λ0 is the Schur complement of the block QΛ0 of Q. This leads to the following

block decomposition for the inverse of Q

Q−1 =
(
Q−1
Λ0

+Q−1
Λ0
Q∂Λ0 [Q/QΛ0 ]−1Q∂Λ1Q

−1
Λ0

−Q−1
Λ0
Q∂Λ0 [Q/QΛ0 ]−1

−[Q/QΛ0 ]−1Q∂Λ1Q
−1
Λ0

[Q/QΛ0 ]−1

)
. (65a)

Equivalently, swapping the rôle of Λ0 and Λ1,

Q =
(
1 Q∂Λ0Q

−1
Λ1

1

)(
Q/QΛ1

QΛ1

)(
1

Q−1
Λ1
Q∂Λ1 1

)
, (64b)

where Q/QΛ1 = QΛ0 −Q∂Λ0Q
−1
Λ1
Q∂Λ1 and the same block decomposition of the inverse of Q can be written as

Q−1 =
(

[Q/QΛ1 ]−1 −[Q/QΛ1 ]−1Q∂Λ0Q
−1
Λ1

−Q−1
Λ1
Q∂Λ1 [Q/QΛ1 ]−1 Q−1

Λ1
+Q−1

Λ1
Q∂Λ1 [Q/QΛ1 ]−1Q∂Λ0Q

−1
Λ1

)
. (65b)

The inverse of the Schur complement appears in various blocks of the inverse of Q. In particular,

[Q/QΛ0 ]−1 = PΛ1Q
−1P>Λ1

, (66a)
[Q/QΛ1 ]−1 = PΛ0Q

−1P>Λ0
, (66b)

−Q−1
Λ0
Q∂Λ0 [Q/QΛ0 ]−1 = −[Q/QΛ1 ]−1Q∂Λ0Q

−1
Λ1

= PΛ0Q
−1P>Λ1

, (66c)
−[Q/QΛ0 ]−1Q∂Λ1Q

−1
Λ0

= −Q−1
Λ1
Q∂Λ1 [Q/QΛ1 ]−1 = PΛ1Q

−1P>Λ0
, (66d)

where PΛi are projection matrices of the right shape so that [PΛiψ] (x) is defined to be equal to ψ(x) only for x ∈ Λi.
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A.1 Boundaries

Discretizations of the Dirac operator such as the (improved) Wilson-Dirac operator are ultra-local, i.e. D is a sparse
matrix with elements connecting only nearest-neighbour sites, or possibly a finite stencil of near sites. We use this
property to define of the exterior boundary ∂Λi of Λi as the set of lattice sites in the complementary of Λi that are
in the image of D acting on Λi. With this definition, the off-diagonal blocks Q∂Λi in the decomposition in eq. (64a)
acts on ∂Λi and their image is in Λi. Projection matrices P∂Λi are defined accordingly. For instance, in the case of
the (improved) Wilson-Dirac operator that connects only nearest-neighbour sites, the exterior boundary ∂Λi is aptly
chosen as the set of points that are at distance 1 from Λi.

B Polynomial approximation of the inverse

The Chebyshev polynomials offer an asymptotically-optimal polynomial approximation of the multiplicative inverse
1/z when z ∈ C \ {0} is within an ellipse that does not contain the origin [61, 62]. When z is contained in an ellipse
centred at a distance d from the origin on the positive real axis, with a major and minor radii a and b respectively
and with focal distance c =

√
a2 − b2, the polynomial approximation of 1/z of order N is

PN (z) = 1−RN+1(z)
z

= cN

N∏
k=1

(z − zk), RN+1(z) =
TN+1

(
d−z
c

)
TN+1

(
d
c

) , (67)

where RN+1(z) is a polynomial of degree N + 1 and Tk(z) are the Chebyshev polynomial of the first kind of degree k.
The N roots zk of PN (z) are obtained by requiring that RN+1(zk) = 1 and zk 6= 0, and they are given by

zk = d

(
1− cos 2πk

N + 1

)
− i
√
d2 − c2 sin 2πk

N + 1 , k = 1, . . . , N. (68)

They lie on the ellipse in the complex plane with centre d, foci d ± c, and which passes through zero. By using the
definition of the Chebyshev polynomials, a uniform error bound on the approximation is given by

|1− zPN (z)| = |RN+1(z)| ≤
(
a+
√
a2 − c2

d+
√
d2 − c2

)N+1
1 +

[
a

c
+
√
a2

c2
− 1
]−2N−2

 . (69)

In the limit c→ 0 the ellipse becomes a circle centred in d with radius a = b, it holds

RN+1(z) =
(
d− z
d

)N+1
, |1− zPN (z)| = |RN+1(z)| ≤

(a
d

)N+1
. (70)

Zarantonello’s lemma [62, Lemma 6.26] guarantees that the polynomial is optimal in this case. The roots of PN (z) are
given by eq. (68) and they lie on a circle centred in d of radius d.
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