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1 Introduction

String theory is known to support many Anti-de Sitter (AdS) vacua, namely solutions of

the form AdSd×Mp where all fields are invariant under the AdS isometries. Strikingly, for

the vast majority of AdS vacua the Kaluza-Klein (KK) scale is comparable to the scale of

the cosmological constant: one often says that there is no “scale separation”. This means
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that the solutions are not really d-dimensional in any physical sense: physics looks ten-

or eleven-dimensional to a hypothetical observer. There have been many studies of the

property of scale separation in string theory, see in particular [1–6].

Recently, the feature of scale separation was revisited as part of the Swampland pro-

gram [7] (see [8, 9] for reviews). In particular, it formed part of work addressing general

properties of AdS space in quantum gravity [10]. There, it was suggested that a Swampland

condition could be that the value of the cosmological constant sets the mass scale of an

infinite tower of states. The AdS Distance Conjecture (ADC) states that this mass scale

m is related to the cosmological constant as

m ∼ Λα , (1.1)

with α ∼ O(1). The conjecture was motivated by examples in string theory, but also by

the fact that the Λ→ 0 limit is infinite distance in the space of metrics. Further, a Strong

version of this conjecture was also proposed which states that for supersymmetric vacua

α = 1
2 . This stronger form would be satisfied in any AdS vacuum which has no separation

of scales.1 The interesting proposal of the ADC, and more specifically its strong version,

motivates the work in this paper.

We are particularly interested in a proposal for a set of vacua with scale separation

which was put forward long ago in [11] (DGKT), see also [12]. These are AdS4 vacua in type

IIA string theory, have N = 1 supersymmetry, and have O6-plane singularities; indeed O-

planes are supposed to be necessary for scale separation [2]. The vacua were constructed by

considering compactifications of type IIA string theory on a Calabi-Yau manifold X6 in the

presence of background fluxes. This led to an effective supersymmetric four-dimensional

theory with a superpotential and Kähler potential that admit an infinite family of super-

symmetric AdS4 vacua. The theory is constructed by first considering a compactification

of type IIA string theory on a Calabi-Yau manifold, which gives an N = 2 supersymmetric

four-dimensional supergravity theory. The effective theory is then acted on by a projection

which takes it to an N = 1 theory, as studied generally in [13]. This projection captures the

introduction of orientifolds (O6-planes), that act as sources of negative tension. Finally,

a superpotential is induced in the theory, which aims at capturing the effects of turning

on background fluxes, and follows the general form in [13]. The resulting vacuum is then

proposed to capture some full ten-dimensional solution of string theory.

The four-dimensional construction of DGKT suggests a possible candidate counter-

example to the Strong ADC. This was already discussed in [10] where it was argued that

since there is no known ten-dimensional uplift of this vacuum its features are not established

and therefore may not be trustable. The aim of this work is to take some initial steps

towards improving our understanding of ten-dimensional solutions which are based on the

DGKT proposal.2

1The absence of scale separation was actually shown for general classical supersymmetric AdS7 vacua

in [6].
2Another approach towards establishing their validity would be to construct a dual CFT, which would

have the so far unrealised features of a parametric hierarchy between the central charge and the scaling

dimensions of an infinite number of operators. An initial search for the dual CFT to [11] was carried out

in [14].
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Over the years, several attempts have been made to lift the four-dimensional DGKT

construction to a ten-dimensional solution. The main difficulty lies in the presence of the O-

plane sources. There exist several AdS solutions with back-reacted O-planes (but without

scale separation: see for example [6] for a discussion in AdS7). But in this case, the most

concrete examples proposed in [11] involve intersecting O-planes, whose back-reaction isn’t

even known in flat space. In [15] it was proposed to simply smear the O-planes; with this

trick, an uplift to ten dimensions can indeed be found. Other similar solutions were found

with the same trick in [16].

Smearing O-planes is not physically sensible though, so the next step was to inves-

tigate whether a similar solution could be found, where the O-planes could be localised.

In [17], a local solution was found as a candidate for the behaviour near the individual

O6-planes, with a resolved singularity and a large-distance asymptotics to the smeared

solution of [15]. However, it was not clear whether it could be made global; this partially

motivated scepticism about the solution [18].

Our approach to looking for a solution is to utilise the supersymmetry equations.

First, we restrict to the equations at the two-derivative level, so neglecting higher order

α′ corrections. The supersymmetry is related to the structure group of the manifold. The

Ricci-flat metric on a Calabi-Yau has SU(3)-structure, and it is known that there are no

SU(3)-structure solutions with localised O-planes [15]. Therefore, any solution must deform

the metric away from the Ricci flat one. For this deformation to be supersymmetric it

should exhibit SU(3)×SU(3) structure, which is the most general possibility. We therefore

study whether there are ten-dimensional solutions with SU(3)×SU(3)-structure that exhibit

the properties of DGKT. Even though these would not be compactifications on the Ricci-

flat Calabi-Yau metric, they may morally be considered the uplifts to DGKT.

We find an approximate solution to the supersymmetry equations. Specifically, in [17]

it was proposed that one could look for solutions that are perturbations of the smeared

solution controlled by an expansion parameter related to the value of the cosmological

constant. Following this approach, we find a solution to the supersymmetry equations and

the Bianchi identities with localised sources, at leading order in this expansion parameter.

This is the main result of the paper. The solution is very different to the one considered

in [17], specifically we have an exactly, rather than approximately, vanishing Freund-Rubin

flux.3 However, the methodology is the same.4

Note that this approach was also recently utilised in a closely related paper [22] (which

appeared as this paper was nearing completion.) Our work focuses on the supersymmetry

equations, which were not considered in [22], but at least so far as the existence of a

first-order solution our results agree with those of [22].

Returning to the question of separation of scales, our results show that DGKT has

passed a first non-trivial test. However, we do not claim that our results show conclusively

3It should be noted that AdS solutions without a Freund-Rubin flux exist, notably in cases where they

are forbidden by dimensionality of spacetime, such as for AdS5 in M-theory [19] or AdS7 in type IIA [20],

but also not, such as in [21].
4An argument against exactly vanishing Freund-Rubin flux was suggested in [17, section 7.5]. However,

we have found a mistake in that argument (which does not influence the rest of the paper).
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that DGKT really does uplift to a full exact solution of string theory, nor that if such a

solution exists it exhibits separation of scales. We discuss the remaining open questions in

section 7.

The paper is organised as follows. In section 2 we review the basics ingredients of

DGKT that are important for a 10d description, and the most general class of 10d super-

symmetric backgrounds that they can correspond to. In section 3 we discuss how the 4d

features of DGKT constrain such 10d supersymmetric vacua, narrowing down the search

for solutions. In section 4 we present a large volume/weak coupling approximation of

the supersymmetry equations compatible with DGKT. In section 5 we solve exactly the

Bianchi identities corresponding to DGKT in a generic Calabi-Yau. In section 6 we present

our solution to the supersymmetry equations and Bianchi identities in the large volume

approximation. We express such a solution in terms of Calabi-Yau quantities, and discuss

its general features. We finally draw our conclusions in section 7.

The most technical details of the paper have been relegated to the appendices. Ap-

pendix A reviews type IIA supersymmetry equations from the viewpoint of SU(3)× SU(3)

structures, and appendix B contains the proof of what we dub the source balanced equation,

see (3.14).

2 Supersymmetric type IIA flux vacua

In this section we review the setup considered in [11], and in particular the features that

should appear in a 10d description. Since the vacua found in [11] are supersymmetric from

a 4d viewpoint, one expects their corresponding 10d backgrounds to solve the 10d super-

symmetry equations with four supercharges. These equations can be efficiently encoded in

the language of compactifications with SU(3)×SU(3) structures [23], which we also review.

As we will show in the next section, the results of [11] imply that only a specific class of

SU(3)× SU(3)-structure compactifications can describe the global aspects of these vacua.

2.1 4d description of type IIA AdS4 orientifold vacua

Let us consider type IIA string theory compactified in an orientifold of X4 ×X6 with X6

a compact real six-manifold with a Calabi-Yau metric, and therefore a Kähler 2-form JCY

and a holomorphic 3-form ΩCY. Following the standard construction [24], we take the

orientifold action to be generated by Ωp(−1)FLR,5 with R an anti-holomorphic involution

acting as RJCY = −JCY and RΩCY = −ΩCY. The fixed locus ΠO6 of R is one or several

3-cycles of X6 in which O6-planes are located. In a consistent compactification, the RR

charge of such O6-planes must be cancelled by a combination of D6-branes wrapping three-

cycles of X6 and background fluxes.

To describe the set of background fluxes one may use the democratic formulation of

type IIA supergravity [25], in which all RR potentials are grouped in a polyform C =

C1 + C3 + C5 + C7 + C9, and so are their gauge invariant field strengths

G = dHC + eB ∧ Ḡ , (2.1)

5Here Ωp is the worldsheet parity reversal operator, FL is the space-time fermion number for the left-

movers.
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with H the three-form NS flux, dH ≡ (d−H∧) is the H-twisted differential and Ḡ a formal

sum of closed (p+ 1)-forms of X6. The Bianchi identities read

`2s d(e−B ∧G) =
∑
α

δ(Πα) ∧ e−Fα , dH = 0 . (2.2)

with `s = 2π
√
α′ the string length. Here Πα hosts a localised source with a quantised

worldvolume flux Fα, and δ(Πα) is the bump δ-function form with support on Πα and

indices transverse to it, such that `p−9
s δ(Πα) lies in the Poincaré dual class to [Πα]. Page

charge quantisation reads [26],

1

`ps

∫
πp+1

[
d(e−B ∧C) + Ḡ

]
p+1
∈ Z ,

1

`2s

∫
π3

H ∈ Z , (2.3)

where πp+1 ∈ X6 stands for any (p + 1)-cycle not intersecting the Πa’s. In the absence of

localised sources, e−B ∧C is globally well-defined and the Ḡp+1 are quantised, so one can

define the internal RR flux quanta in terms of the following integer numbers

m = `sḠ0 , ma =
1

`5s

∫
X6

Ḡ2 ∧ ω̃a , ea =
1

`5s

∫
X6

Ḡ4 ∧ ωa , e0 =
1

`5s

∫
X6

Ḡ6 , (2.4)

with ωa, ω̃
a integral harmonic two- and four-forms such that `−6

s

∫
X6
ωa∧ω̃b = δba. From the

4d EFT viewpoint, (2.4) enter the flux generated superpotential for the would-be Kähler

and B-field moduli of the compactification [27], dominating their dynamics in the large

volume regime.

In the presence of only O6-planes the Bianchi identities for the RR fluxes read

dG0 = 0 , dG2 = G0H + δO6 , dG4 = G2 ∧H , dG6 = 0 , (2.5)

where we have defined δO6 ≡ `−2
s δ(ΠO6). This in particular implies that

P.D.[ΠO6] +m[`2sH] = 0 , (2.6)

constraining the quanta of Romans parameter and NS flux.

Ref. [13] obtains a 4d effective F-term potential by combining i) the classical Kähler

potential of Calabi-Yau orientifolds without fluxes and ii) the superpotential generated by

the RR flux quanta (2.4) and NS three-form flux quanta. The approach in [11] performs a 4d

analysis of such potential, finding an infinite discretum of N = 1 AdS4 vacua. Interestingly,

this features of such vacua can be easily expressed in terms of integrals of 10d gauge

invariant field strengths, which in 4d language are seen as specific combinations of flux

quanta and axionic scalars [28–30]. Indeed, one finds that (see e.g. [31])

〈g−1
s 〉[H] =

2

5
G0[Re ΩCY] , 〈G2〉 = 0 , 〈G4〉 =

3

10
G0 , 〈G6〉 = 0 , (2.7)

where we have defined

〈g−1
s 〉 =

∫
X6
e−φJ3

CY∫
X6
J3

CY

, 〈G2〉 =

∫
X6
G2 ∧ J2

CY∫
X6
J3

CY

, 〈G4〉 =

∫
X6
G4 ∧ JCY∫
X6
J3

CY

, 〈G6〉 =

∫
X6
G6

−
∫
X6
J3

CY

.

(2.8)
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with φ the 10d dilaton.6 It is also obtained that the Calabi-Yau volume `6sVCY(X6) =

−1
6

∫
X6
J3

CY is controlled by the four-form and two-form flux quanta, more precisely by the

combination êa = ea − 1
2
Kabcmamb

m , with Kabc the triple intersection numbers of X6 [11].

As such, one may arbitrarily increase the Calabi-Yau volume by increasing the value of êa,

while the density of four-form flux remains constant, as captured by (2.7). On the other

hand, because of (2.6) the quanta of H and m are bounded and in practice be considered

to be fixed. This implies that the average value of the (inverse) dilaton scales as

〈g−1
s 〉 ∼ V

1/2
CY ∼ ê3/4 . (2.9)

Finally, the AdS4 radius RAdS scales like

RAdSMP ∼ ê9/4 . (2.10)

Therefore the 4d EFT considered in [11] suggests that as we increase ê along the infinite

family of solutions we go to a limit of weak coupling, large volume and large AdS radius.

2.2 10d description and supersymmetry equations

We now review the conditions for ten-dimensional supersymmetry, in the pure spinor for-

malism. A ten-dimensional AdS4 vacuum has a metric of the form

ds2 = e2Ads2
AdS4

+ ds2
6 . (2.11)

As in the previous subsection, we consider only internal fluxes Gk; the external fluxes are

determined by duality.

Preserved supersymmetry imposes differential equations on the internal part of the

supersymmetry parameters ηa±. From these one can build a bispinor Φ± ≡ η1
+⊗η

2 †
± , which

can be interpreted as a polyform in the internal space by the Clifford map γm → dxm. This

form obeys some algebraic constraints, that follow from its definition in terms of spinors,

and some differential equations that follow from supersymmetry.

The algebraic conditions allow several types of solutions. Only two classes are relevant

for us. The first class is made of the SU(3)-structure solutions, and are enough to describe

the smeared uplift of DGKT in [15]; they depend on a two-form J and a three-form Ω.

The second class, which is the generic solution, comprises the SU(3) × SU(3)-structure

solutions; this is the one relevant for this paper. Both classes are reviewed in appendix A;

here we only need to know that the SU(3) × SU(3) class depends on the following data:

• Two functions ψ, θ,

• A complex one-form v,

• A real two-form j,

• A complex two-form ω.

6Remarkably, similar relations hold when adding curvature corrections [32, 33] and mobile D6-branes [34].
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The function ψ measures the departure from the SU(3) class; ψ → 0 makes one fall to that

case. In that limit, the data reassemble in those of an SU(3)-structure as

J = j +
i

2 tan2 ψ
v ∧ v̄ , Ω =

i

tanψ
v ∧ ω . (2.12)

On the other hand, θ is the phase of η2 †
+ η1

+. Finally, the forms v, j, ω are the same data

that define an SU(2)-structure in six dimensions, see appendix A for more details.

The differential equations imposed by supersymmetry on the Φ± can be written as [23]

dHΦ+ = −2µe−AReΦ− , (2.13a)

dH
(
eAIm Φ−

)
= −3µImΦ+ + e4A ? λG . (2.13b)

Here ? is the internal Hodge dual, and λ is a sign reversal operation defined on a k-form

as λ(αk) = (−1)bk/2cαk. The mean value of e−A can fixed by shifting A by a constant and

absorbing its effect into the definition of µ ≡
√
−Λ/3, which is the AdS4 scale seen from

the 10d string frame perspective (not to be confused with 1/RAdS in (2.10), even if related

to it). For our purposes, it is more convenient to replace the second by the alternative

expression [35]

J+ · dH
(
e−3AIm Φ−

)
= −5µe−4AReΦ+ + G . (2.14)

The new operator J+· is associated in a certain way to the form Φ+; we will see in explicit

examples what it reduces to.

Let us now present in some detail what one gets by plugging in (2.13a), (2.14) the

solutions to the algebraic constraints for Φ±. Here we will focus on those classes of solutions

that are more relevant for the computations of the following sections, leaving the rest for

the more detailed discussion of appendix A.

2.2.1 SU(3)-structure

For an SU(3)-structure the pure spinors have the form

Φ+ = e3A−φeiθe−iJ , Φ− = ie3A−φΩ . (2.15)

where J and Ω do not need to be closed, allowing for SU(3)-structure torsion classes. From

here one finds that

dθ = 0 3dA = dφ (2.16)

and the following expression for the fluxes [36]:

H = 2µe−Acos θRe Ω , (2.17a)

G0 = 5µe−φ−Acos θ , (2.17b)

G2 =
1

3
µe−φ−Asin θ J − J · d

(
e−φIm Ω

)
, (2.17c)

G4 =
3

2
µe−φ−Acos θ J ∧ J , (2.17d)

G6 = 3µe−φ−Asin θ dvolX6 . (2.17e)
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The operation J · is defined as J−1x: one inverts the two-form J to obtain a bivector, and

one contracts this bivector with the forms that follow it. We will see more precisely how

that works in the solutions below.

2.2.2 SU(3)× SU(3) with θ = 0

Here we consider the special case θ = 0, since, as we will argue in section 3, this case is the

one suitable for a microscopic description of the DGKT vacua. SU(3)×SU(3) backgrounds

with θ 6= 0 have a similar but slightly more involved description; we defer their discussion

to appendix A.2.

In the case θ = 0 the pure spinors have the form

Φ+ = e3A−φ cosψ exp[−iJψ] , Φ− = e3A−φ cosψ v ∧ exp[iωψ] , (2.18)

where

Jψ ≡
1

cos(ψ)
j +

i

2 tan2(ψ)
v ∧ v̄ , ωψ ≡

1

sin(ψ)

(
Reω +

i

cos(ψ)
Imω

)
. (2.19)

Details about v, j, ω are reviewed in appendix A.

There are first some equations that do not involve the fluxes:

Rev = −e
A

2µ
(3dA− dφ− tanψdψ) = −e

A

2µ
d log(cosψe3A−φ) , (2.20a)

d(e3A−φ cosψJψ) = 0 . (2.20b)

To arrive to (2.18) one needs to perform a B-field transformation on the pure spinors

and the fluxes [17, 37, 38], with bΦ± = tanψ Im ω. The physical fluxes are obtained by

undoing it:

H = Ĥ + d(tanψImω) , G = etanψImω∧F , (2.21)

where

Ĥ = 2µe−ARe(iv ∧ ωψ) , (2.22a)

F0 = −Jψ · d(cosψe−φImv) + 5µ cosψe−A−φ , (2.22b)

F2 = −Jψ · d Im(i cosψe−φv ∧ ωψ)− 2µ
sin2 ψ

cosψ
e−A−φImωψ , (2.22c)

F4 = J2
ψ

[
1

2
F0 − µ cosψe−A−φ

]
+ Jψ ∧ d Im(cosψe−φv) , (2.22d)

F6 = 0 . (2.22e)

In the limit ψ → 0 and upon making the replacements (2.12) one recovers (2.17) with

θ = 0.
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3 Constraining the solution

As expected for data obtained from the 4d EFT, the relations (2.7) correspond to integrated

quantities, and so there could be an infinite number of 10d backgrounds that correspond

to them. Nevertheless, when combined with supersymmetry they result in some stringent

constraints on the microscopic description of DGKT vacua. In this section we develop

such constraints by using the machinery of SU(3) × SU(3)-structure compactifications.

The result is quite simple to state: DGKT vacua should correspond to 10d backgrounds

such that i) the internal flux G6 vanishes pointwise and ii) it corresponds to a genuine

SU(3)× SU(3) structure with θ = 0.

3.1 The Freund-Rubin flux

A key characteristic of type IIA flux compactifications studied so far is their Freund-Rubin

flux. Given the compactification Ansatz (2.11), this flux is of the form

G10d
4 = c dvolX4 +G4 , (3.1)

where c is defined by

c = e4A ? G6 , (3.2)

and G4, G6 are the four- and six-form components of the internal flux (2.1). The equations

of motion imply that c is a constant, since

d (?10G6) = dvolX4 ∧ d
(
e4A ? G6

)
= dvolX4 ∧ dc = 0 , (3.3)

or in other words that the internal six-form takes the expression

G6 = c e−4AdvolX6 , (3.4)

with c constant. Notice that the volume form dvolX6 need not be −1
3J

3
CY, because the

actual internal metric of the solution is not supposed to be Calabi-Yau, even if X6 admits

a Calabi-Yau metric. In any case the last relation in (2.7) reads

c

∫
X6

e−4AdvolX6 = 0 . (3.5)

This in principle leads to two possibilities: either c or the integral vanishes. Notice however

that the integrand is positive definite — excluding perhaps regions very close to the O6-

planes where the supergravity approximation breaks down — and so should be its integral.7

Therefore, sensible 10d uplifts of DGKT vacua are those in which the six-form flux G6 (and

dual Freund-Rubin flux) must vanish point-wise on X6

G6 = 0 . (3.6)

7In practice one may shifts the warp factor by a constant that is absorbed into the AdS4 scale µ, to fix

the value of the integral to a certain positive value. We take the simple choice 〈e−4A〉 = 1 in our solution

of section 6.
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As follows from the discussion of appendix A, this condition has a straightforward impli-

cation for the poly-forms describing the SU(3) × SU(3) structure. Namely

Im Φ+|0−form = 0 . (3.7)

This simple constraint rules out several candidates for DGKT 10d vacua.

3.2 No SU(3)-structure solution

As noticed in [15], the relations (2.7) are very suggestive from the viewpoint of type IIA

flux backgrounds with SU(3) structure, whose most general solution was found in [39, 40].

Nevertheless, this particular subcase of SU(3) × SU(3)-structure compactification cannot

accommodate a 10d uplift of [11] unless the orientifold sources are smeared. While this is

a well-known obstruction, it will prove useful to review it from the present perspective.

Recall the SU(3)-structure solutions (2.17). It is easy to see that the choice θ =

0 is reminiscent of the relations (2.7), and in particular that it is compatible with the

constraints (3.6) and (3.7). However, this choice is not allowed in the present setup, unless

the Bianchi identity is modified by smearing the O6-plane sources. Indeed, it follows from

the Bianchi identity for G0 that there both the warp factor and dilaton are constant, from

where one obtains that

dIm Ω = iW2 ∧ J , (3.8)

with W2 a real, primitive (1,1)-form. Then, the Bianchi identity for G2 becomes [15, 41]

e−φ
[

1

4
|W2|2 + e−2Aµ2

(
10 cos2θ − 2

3
sin2θ

)]
Re Ω = −δO6 . (3.9)

Away from the O6-plane locus the l.h.s. of (3.9) needs to vanish, which necessarily imposes

that θ 6= 0 and a non-vanishing internal flux G6. Therefore, by the requirement (3.6) this

cannot be a 10d realisation of [11]. If δO6 is replaced with a smeared three-form source in

the appropriate cohomology class

− δO6 → G0H = 10e−φ−2Aµ2cos2θRe Ω (3.10)

such obstruction is gone, and one find solutions with W2 = θ = 0. This would-be solution

would have dJ = dΩ = 0, and would correspond to a Calabi-Yau metric. The fluxes would

read
H = 2µRe Ω ,

G0 = 5µe−φ , G2 = 0 ,

G4 =
3

2
µe−φJ2 , G6 = 0 .

(3.11)

Since A is constant, we have set it to zero, reabsorbing it in µ. To see how things scale,

assume as in [11] that F0 ∼ O(1) and that the internal space has volume V(X6) ∼ R6 in

string units. We know already that δ ∝ Re Ω; if we take δO6 ∼ − 1
R3 Re Ω, integrating δ

along a 3-cycle gives O(1), as it should. From all this we read

gs =
5

m
µ̂ ∼ R−3 , (3.12)

with µ̂ = µ`s, in agreement with (2.9).
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It has been recently proposed in [22] that this Calabi-Yau solution with smeared sources

can be seen as the leading order contribution to an expansion in the flux quantity ê con-

trolling the volume of the compactification. As we will see in section 6, this is manifest

for the solution that we find for the SU(3) × SU(3)-structure supersymmetry equations,

approximated in the large volume regime. Before deriving such equations, let us constrain

which kind of SU(3)× SU(3) structure can describe DGKT microscopically.

3.3 Setting θ = 0

Massive type IIA supergravity backgrounds solving the SU(3) × SU(3)-structure super-

symmetry equations have been analysed in [17, 42]. In particular, in [17] two different

branches of solutions were identified, as reviewed in section 2.2 and appendix A. These two

branches are described in terms of the function θ defined in section 2.2, which appears in

the pure spinors as in (A.4). One branch has θ = 0 (see section 2.2) and the other one has

non-vanishing, varying θ (see section A.2).

Our discussion above implies that the branch with θ = 0 should be more suitable to

describe DGKT. Indeed, given (A.4) one can rewrite (3.7) as θ = 0 or π. Accordingly,

one can show that after the B-field transformation (2.21) one obtains G6 = 0 from (2.22),

see appendix A. The compatibility of this branch with the presence of O6-planes seemed

unlikely from the symmetry arguments used in [17]. However, in the following sections will

see that supersymmetry equations for the case θ = 0 are rich enough to host localised and

smeared sources at the same time. In this sense what our results of the following sections

suggest is that the 10d description of [11] consists of a SU(3)×SU(3)-structure background

with θ = 0 that at large volumes can be approximated by an SU(3)-structure background

with θ = 0. Indeed, we will see that the background that we find can be organised as a

perturbative expansion on the small parameter gs ∼ V−1/2
X6

. The zeroth order contribution

is nothing but the background (3.11).

The branch in which θ is non-vanishing, is a priori not suitable to describe 10d uplift

of DGKT. First, as reviewed in section A.2, such a solution has a varying G6 flux, which

prevents it to satisfy the point-wise constraint (3.6). In addition, this sort of backgrounds

are characterised by an NS three-form flux H which is exact. As this implies vanishing H-

flux quanta, it can never describe the global features of a DGKT vacuum. Finally, a crucial

aspect of this branch is that Im Φ+|0−form 6= 0, and in fact it is not even constant. The

aim of [17] was to find a solution which only asymptotes to Im Φ+|0−form = 0, but we have

shown that this must hold locally anywhere on X6 where a 10d supergravity description is

reliable. Therefore it seems unlikely the solution in [17] can be part of a 10d description

of DGKT.

This being said, let us stress that the approximate solution that we find in section 6

breaks down near the O6-plane loci. In particular in those regions we find the same

metric singularities associated with O6-planes in flat space, featuring a divergent negative

warp factor e−4A. In the case of flat space it is known that the divergent negative warp

factor around the O6-plane is resolved by string theory corrections, uplifting the solution

to M-theory on a G2 manifold with an Atiyah-Hitchin metric on the former O6-plane

region [43–46]. In the case at hand we are dealing with massive type IIA string theory and
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therefore we lack an M-theory description, so it would be very interesting to understand

how the theory resolves such a singularity. One possibility could be that the full solution

with θ = 0 does not have any singularity. This would be quite analogous to the result

found in [17] for the θ 6= 0 branch. Indeed, there it was shown that such massive type

IIA solutions with O6-planes can resolve the O6-plane singularity without resorting to an

M-theory description. As these belong to a different branch of SU(3) × SU(3)-structure

backgrounds, we will take an agnostic approach towards this possibility.

3.4 The source balanced equation

If the obstruction for SU(3)-structure solutions can be circumvented by SU(3) × SU(3)-

structure backgrounds with θ = 0 a natural question is how the equation (3.9) leading to

the obstruction is modified. In the following we would like to present a generalisation of

eq. (3.9), valid for any SU(3)×SU(3)-structure background, which we dub source balanced

equation.

For this we first need to introduce the Mukai pairing

〈ω1, ω2〉 ≡ ω1 ∧ λ (ω2)|top , (3.13)

for the poly-forms ω1 and ω2, where |top indicates that we only extract the top form of the

product. The source balanced equation then reads

3µ2e−4A 〈Re Φ+, Im Φ+〉 − e4A
∑
k

Gk ∧ ?Gk + dX5 =
〈
δ(3)

source, e
AIm Φ−

〉
, (3.14)

where δ
(3)
source =

∑
α δ(Πα) contains all the localised sources wrapping three-cycles, both

O6-planes and D6-branes. In addition

X5 ≡
〈
eAIm Φ−,G

〉
= −G2 ∧

(
eAIm Φ−

)
3

+G4 ∧
(
eAIm Φ−

)
1

+G0

(
eAIm Φ−

)
5
, (3.15)

where the subscripts denote the degree of the form to be picked out.

Eq. (3.14) is derived in appendix B by using the Bianchi identities and the supersym-

metry equations. Notice that it takes a similar form to (3.9) in the sense that the left-hand

side is supported over the whole manifold, while the right-hand side is localised. One can

see this relation as a generalisation of (3.9), in which case one had X5 = 0. Indeed, recall

that in the SU(3)-structure case (Im Φ−)1 = (Im Φ−)5 = 0 and that G2 is a (1,1)-form.

In section 6.3 we will test our solution with this equation, to see in which way (3.9) is

modified to allow for a consistent SU(3) × SU(3)-structure solution.

4 The large volume approximation

We now consider the BPS equations in a limit where the cosmological constant is small,

aiming for a solution similar to (3.11) but without smearing. We will do this by taking the

parameter µ̂ = µ`s in (2.13), (2.14) to be small; recalling (3.12) gs will then also be small

and R large.

– 12 –



J
H
E
P
0
8
(
2
0
2
0
)
0
8
7

4.1 Defining the limit

As we have seen in section 3, the smeared solution comes from an SU(3)-structure,

but the solution with localised O6-planes that we are looking for cannot. As discussed

around (2.12), the function ψ interpolates between SU(3) and SU(3) × SU(3). So in the

limit we also have to take the function ψ to be at least of order µ̂ ∼ R−3 ∼ gs at leading

order, recalling (3.12). In addition, from (3.11) we see that for F0 to stay non-zero in the

limit we need eφ → 0. On the other hand, since we are already making µ̂ → 0, eA should

not scale. For simplicity in the following we will fix 〈e−4A〉 = 1.

A limit with all these features was originally devised in [17], exactly for the solution at

hand. As we commented earlier, there the focus was on the local behaviour, and we have

argued above that solution cannot capture the global solution, essentially because θ 6= 0

was taken there. In the limit, the problem presented itself already in eq. [17]; it was noted

below eq. (6.12) in that paper that Re Ω has to be exact at leading order, and that this

could be an obstruction to finding a global solution.

Nevertheless, we can still apply the same ideas of [17] to the θ = 0 case. Notably,

it was decided there to expand in µ, but with a subleading behaviour that is either an

even or odd function of µ. This was found to simplify the equations significantly, and it

was inspired in turn by a similar limit in [47] where ψ → 0 but the cosmological constant

remained fixed.

Implementing this strategy in our case leads us to taking gs → 0, with the following

Ansatz:
µ̂ =

m

5
gs , ψ = gsψ1 +O(g3

s) , θ = 0 ,

eφ = gse
δφ0+g2sδφ2+O(g4s) , eA = eA0+g2sA2+O(g4s) .

(4.1)

It is important to stress that the equations will fix the coefficients of the expansion

as a function of the coordinates, in such a way that some extra powers of the parameter

gs ∼ R−3 will appear. For example we will find below that

eA0 ∼ a0 + a1R
−4 ∼ a0 + a1g

4/3
s . (4.2)

This might look confusing, but the method is sensible as long as these “hidden” powers

of gs are not smaller with respect to terms we have ignored in (4.1). The same comment

applies to the expansion of the forms, to which we now turn.

4.2 Forms and fluxes

We now have to decide how to scale the forms. Re v is already determined by (2.20a). Due

to the µ in the denominator of that equation, (4.1) would imply that Rev ∼ − 5eA

2gsm
d(3A0−

δφ0), whereas as we explained above we would like Re v → 0 in the limit. For this reason

we take

δφ0 = 3A0 . (4.3)

Now we obtain

Re v = gsRe v1 +O(g3
s) , Re v1 =

1

2
eA0df? , f? ≡ −

5

m

(
3A2 − δφ2 −

1

2
ψ2

1

)
. (4.4)
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As for j and ω, we want them to reconstruct in the limit an SU(3)-structure (J,Ω). We

will simply assume here the latter to be fixed, and (j, ω) to be determined by (2.12). We

don’t know whether this assumption is really warranted at higher orders in our expansion,

but up to the order of our computations we will see no difference. All this leads to

Jψ = J +O(g2
s) , Ω =

i

ψ1
v1 ∧ ω0 +O(g2

s) . (4.5)

In fact we will be able to write everything in terms of v and the fixed (J,Ω). It should be

remarked that we are not assuming these to be those of the underlying Calabi-Yau, since

we are aiming at removing the smearing.

Ω still defines an almost complex structure I: we mentioned in section 2.2 that it is

at every point the wedge product of three one-forms ha, which are then defined to be the

(1, 0)-forms of I. In fact we see from (4.5) that v1 is one of these (1, 0)-forms, and we can use

this to determine Im v1 in the expansion Im v ∼ gsIm v1 +O(g3
s). But we are not assuming

I to be integrable; this would be implied by dΩ = 0, which is not part of the equations we

found in section 2.2.2. On the other hand, at leading order (2.20b) simply becomes

dJ = 0 . (4.6)

The metric is not really needed to find a solution; it is determined by the forms of

the SU(3) × SU(3)-structure. The procedure comes originally from generalised complex

geometry [37], and was explained in detail in [17, section 2.2.2]. Fortunately at the leading

order we are working with, the procedure reduces to the simpler one for SU(3)-structures,

which we will illustrate in an example later on. In terms of this metric, one can invert the

relation for Ω in (4.5) with a contraction:

ω0 = − i

2ψ1
v̄1 · Ω . (4.7)

One last comment about the geometric forms: we are taking the volume of the internal

space X6 to be Vol(X6) ∼ R6, but we are taking care of that by scaling coordinates rather

than the metric and forms. So for example for the torus cases below, the periodicities of

the internal coordinates will scale like

∆y ∼ R . (4.8)

One can of course easily always switch to another point of view, where the coordinates don’t

rescale and forms do; this would lead to J ∼ R2J0, Ω ∼ R3Ω0. We take this viewpoint in

the explicit example of section 6.2.
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Applying the above procedure to (2.22) we obtain the following relations between the

fluxes and the SU(3)× SU(3)-structure forms:

Ĥ =
2

5
F0gse

−A0Re Ω +O(g3
s) , (4.9a)

F0 = F0e
−4A0 − J · d(e−3A0Im v1) +O(g2

s) , (4.9b)

F2 = − 1

gs
J · d(e−3A0Im Ω) +O(gs) , (4.9c)

F4 = F0J
2

(
1

2
− 1

5
e−4A0

)
+ J ∧ d(e−3A0Im v1) +O(g2

s) , (4.9d)

F6 = 0 . (4.9e)

Where recall that F0 = `−1
s m. Using (2.21) we find the physical fluxes

H = Ĥ + gsd(ψ1Imω0) +O(g3
s) , G = e(gsψ1Imω0+O(g3s))∧F . (4.10)

Notice that (Imω0)3 = 0, so the exponential truncates.

To summarise, in order to find a solution in this limit we need to find an SU(3)-

structure (J,Ω), a (1, 0)-form v1, and a funcntion A0, such that eA0Re v1 is exact, J is

closed ((4.4), (4.6)). When plugged into (4.9) these should provide an expression for the

fluxes that solves the Bianchi identities, up the order of the approximation.

5 Solving the Bianchi identities

In this section we solve exactly the Bianchi identities for the internal sources that corre-

spond to [11]. For this we consider a manifold X6 that admits a Calabi-Yau metric, namely

a metric of SU(3) holonomy, so that we can have a 10d interpretation of the sources that

appear in [11]. Looking at the first relation in (2.7) and the expression for H in terms of

SU(3)× SU(3) structures with θ = 0 one infers that it must be of the form

H = 2µRe ΩCY + dB̃ , (5.1)

with 5µ〈g−1
s 〉 = G0. Let us for now set B̃ = 0 and solve the Bianchi identities in this

case, and then recover the general solution by applying a B-field transformation. For the

particular solution we denote the RR fluxes by F̃2p.

The Bianchi identity for the two-form flux reads

`2sdF̃2 = 2mµ̂Re ΩCY + δ(ΠO6) , (5.2)

with µ̂ = µ`s. By Hodge decomposition the most general solution is of the form

`2sF̃2 = d†CYK + F̃ h
2 + dC1 , (5.3)

with dC1 exact, F̃ h
2 Calabi-Yau harmonic, and d†CY constructed with the Calabi-Yau metric.

Finally, K is a 3-form current that always exists, as it satisfies the following Laplace

equation

∆CYK = 2mµ̂Re ΩCY + δ(ΠO6) , (5.4)
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where ∆CY = d†CYd + dd†CY is constructed from the CY metric. Indeed, following [48,

section 3.4] notice that dRe ΩCY = d δ(ΠO6) = 0, ∆CYdK = 0 and dK is harmonic.

Because it is also exact, then necessarily dK = 0. We conclude that ∆CYK = dd†CYK from

where (5.3) follows. One can then constrain K by using that JCY, ΩCY are covariantly

constant with respect to ∆CY:

∆CYK∧JCY = 0⇒∆CY(K∧JCY) = 0 ⇒ K∧JCY = 0 , (5.5)

∆CYK∧Re ΩCY = 0⇒∆CY(K∧Re ΩCY) = 0⇒K =ϕRe ΩCY +cIm ΩCY +Re k, (5.6)

with ϕ a real function, c a constant that we will take to be zero, and k a (2,1) primitive

current. Here we have used that there are no harmonic 5-forms in the CY metric. One

then obtains that

d†CYK = ?CY (dϕ ∧ Im ΩCY)− ?CYdIm k = −JCY · d (2ϕIm ΩCY)− V2 , (5.7)

where V2 is a primitive (1,1)-form in the CY sense. One can check that this implies that

`2sF̃2 = −JCY · d(4ϕIm ΩCY − ?CYK) + F̃ h
2 + dC1 . (5.8)

As for the remaining fluxes, it is easy to see that

F̃4 = F̃ h
4 − 4µϕJCY ∧ JCY + 2µRe ΩCY ∧ C1 + dC3 , (5.9)

with dC3 exact, F̃ h
4 Calabi-Yau harmonic, satisfies the Bianchi identity dF̃4 = 2µRe ΩCY ∧

F̃2. As for the six-form flux, we can set F̃6 = dC5 to be an exact form.

Finally, whenever B̃ in (5.1) is not trivial, the solution for the fluxes will be given by

G = eB̃∧F̃ , (5.10)

with F̃0 = G0 and the remaining F̃2p as specified.

6 Solving the supersymmetry equations

Thanks to our previous results, in this section we will be able to give a 10d supersymmetric

background describing the DGKT relations (2.7) for any manifold X6 that admits a Calabi-

Yau metric. Our strategy will be simple: we will provide expressions for Ω, J , eA0 and v1 in

terms of Calabi-Yau quantities, such that when plugged in (4.9) provide backgrounds fluxes

solving the Bianchi identities up to the appropriate order of the expansion. Because of that,

our background can only be thought of as an approximation to an actual supersymmetric

solution describing a 10d counterpart of [11]. This approximation becomes more accurate

in the limit of large volume and weak coupling, approaching the SU(3)-structure smeared

solution in that limit.
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6.1 General Calabi-Yau manifolds

Since by assumption X6 admits a Calabi-Yau metric, we can profit from the discussion

in section 5 as a guiding principle to construct the SU(3) × SU(3)-structure metric in X6.

First, as the two-form J is closed, we will assume that

J = JCY +O(g2
s) , (6.1)

where recall that gs = 5µ/m = 5V−1/2
X6

/m. Then, one can guess the form of Im Ω by

comparing (4.9c) and (5.8). Indeed, let us consider the following expression

e−3A0Im Ω = (1 + gs4ϕ) Im ΩCY − gs ?CY K +O(g2
s) , (6.2)

withK an exact three-form defined by (5.4) and ϕ defined by (5.6). Plugging this into (4.9c)

one obtains (5.8) with F̃ h
2 = dC1 = 0. Therefore with the choice (6.2), F2 in (4.9c)

satisfies (5.2). Finally, such an F2 also satisfies the Bianchi identity up to O(g2
s) terms if

we assume that B̃ ∼ O(g2
s) in (5.1), as we will do in the following.

From here, one may construct the rest of Ω. In general its real and imaginary parts

are related by a method in [49] and reviewed in [35, section 3.1]. In particular here we can

consider Im Ω as a perturbation over Im ΩCY, and apply the perturbation formulas [35,

(3.8)–(3.10)]. One finds that

e−3A0Re Ω = (1 + gs2ϕ) Re ΩCY + gsK +O(g2
s) , (6.3)

which satisfies the SU(3)-structure relation Re Ω ∧ Im Ω = 2
3J

3 provided that

e−4A0 = 1 + gs4ϕ+O(g2
s) . (6.4)

From the definition of ϕ it is easy to see that
∫
X6
ϕ = 0 and therefore 〈e−4A〉 = 1 up to

this order of approximation, as expected. This moreover leads to

e−A0Re Ω = Re ΩCY + gsK +O(g2
s) , (6.5)

and so, since dK = 0, the Bianchi identity dH = 0 is satisfied up to order O(g3
s). Finally,

when plugging (6.5) into (4.9a) we obtain that dB̃ = 2µgsK+O(g2
s), consistently with our

assumption. We finally obtain

Ω = ΩCY + gsk +O(g2
s) , (6.6)

where k the primitive (2,1)-from k defined by (5.6). Notice that this expression is compat-

ible with SU(3)-structure torsion classes, since

dΩ = gsdk = −dϕ ∧ ΩCY + igsV2 ∧ J = dA0 ∧ Im Ω + iW2 ∧ J +O(g2
s) , (6.7)

with W2 = gsV2 + O(g2
s). So the leading correction to the pair (J,Ω) corresponds to a

non-Ricci-flat, symplectic metric with SU(3)-structure.
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With this choice of (J,Ω) and warp factor it is easy to accommodate the remaining

expressions in (4.9) to satisfy the Bianchi identities with B̃ ∼ O(g2
s). Indeed, to fit (4.9d)

into (5.9) one simply needs to take

F̃ h
4 =

3

10
F0 JCY ∧ JCY , C3 = e−3AJCY ∧ Im v1 . (6.8)

Finally, the Bianchi identity for F0 is compatible with the r.h.s. of (4.9b) if one takes Im v1

to be the imaginary completion of

Re v1 =
1

2
eA0df? , (6.9)

with

∆CYf? = gsm8ϕ+O(g2
s) . (6.10)

In other words, Im v1 = I · Re v1, with I· the action of the complex structure. At the

leading order of the expansion, this implies that v1 = 1
2∂CYf?. It follows from this result

that the B-field transformation in (2.21) is suppressed by g2
s and does not induce any

change in the fluxes at the present order. In the following we will discuss in detail how

this approximate solution looks like in the case of a toroidal orbifold, where the above

expressions can be made more explicit.

In summary, our solution is specified by the SU(3)-structure given in (6.1), (6.6); the

one-form v1 specified by (6.9); and the warping function A0 in (6.4). The Bianchi identity

were shown to be solved for F2 in (6.2); for H in (6.6); for F0 in (6.10); for F4 in (6.8). By

the general results of [50], once the supersymmetry equations and Bianchi identities are

satisfied, the equations of motion for the fields are also solved.

6.2 A toroidal orbifold example

Let us consider the particular case where X6 = T 6/Z2 × Z2, as in [12]. We consider the

choice of discrete torsion that makes it T-dual to the closed string background in [51], so

that all O6-planes have negative charge and tension. In the orbifold limit, the Calabi-Yau

structure is essentially inherited from the covering space T 6, so we can write

JCY = 4π2tidx
i ∧ dyi , (6.11)

Re ΩCY = h
(
τ1τ2τ3β

0 − τ1β
1 − τ2β

2 − τ3β
3
)
, (6.12)

Im ΩCY = h (α0 − τ2τ3α1 − τ1τ3α2 − τ1τ2α3) , (6.13)

where

ti = RxiRyi , τi =
Ryi

Rxi
, h = 8π3

√
t1t2t3
τ1τ2τ3

= 8π3Ry1Ry2Ry3 , (6.14)

and we have the following basis of bulk three-forms

α0 = dx1 ∧ dx2 ∧ dx3 , β0 = dy1 ∧ dy2 ∧ dy3 ,

α1 = dx1 ∧ dy2 ∧ dy3 , β1 = dy1 ∧ dx2 ∧ dx3 ,

α2 = dy1 ∧ dx2 ∧ dy3 , β2 = dx1 ∧ dy2 ∧ dx3 ,

α3 = dy1 ∧ dy2 ∧ dx3 , β3 = dx1 ∧ dx2 ∧ dy3 .
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In principle one can consider partially cancelling the charge of the O6-planes with D6-

branes on top of them, and so different choices of H-flux that will cancel the corresponding

generalisation of the tadpole condition (2.6). For simplicity, we will consider those cases

where the H-flux is of the form

`s[H] = 8q
(
[β0]− [β1]− [β2]− [β3]

)
, (6.15)

for some choice of q ∈ Z, with qm = 4 in the particular case where no D6-branes are

present. Then supersymmetry requires that

τ1 = τ2 = τ3 = 1 , and µ̂ =
4q

h
, (6.16)

from where it is clear that µ̂ ∼ V−1/2
X6

. In this setup we find a solution for (5.4) of the form

K = qm
(
B0β

0 −B1β
1 −B2β

2 −B3β
3
)
, (6.17)

with

B0 = −h2/3
∑
~η

∑
~0 6=~n∈Z3

e2πi~n·[(y1,y2,y3)+~η]

4π2~n2
, B1 = −h2/3

∑
~η

∑
~0 6=~n∈Z3

e2πi~n·[(y1,x2,x3)+~η]

4π2~n2
,

(6.18)

B2 = −h2/3
∑
~η

∑
~0 6=~n∈Z3

e2πi~n·[(x1,y2,x3)+~η]

4π2~n2
, B3 = −h2/3

∑
~η

∑
~0 6=~n∈Z3

e2πi~n·[(x1,x2,y3)+~η]

4π2~n2
,

where for simplicity we have set Ry1 = Ry2 = Ry3 = R,8 and ~η has entries which are either

0 or 1/2. Notice that d(Biβ
i) = 0 ∀i so that K is closed, and in fact exact.

It is important to point out that the expansion for the Bi’s in terms of Fourier modes

should be understood as a formal solution since the sum is not convergent. A regularised

version of these Green functions using the Jacobi theta function was originally suggested

in [52] and some details have been recently studied in [53]. For practical purposes, the

regularised functions behave as standard Green functions in flat space when approximating

the source and go to zero as we move away.

Following the Calabi-Yau general discussion, can rewrite things as (5.6) with

ϕ =
qm

4h

3∑
i=0

Bi , Re k = K − ϕRe ΩCY . (6.19)

Notice that ϕ ∼ O(R−1) but it is not suppressed by an extra factor of gs. Eq. (6.2) becomes

e−3A0Im Ω = C0α0 − C1α1 − C2α2 − C3α3 +O(g2
s) , (6.20)

with Ci = h − gsqm (Bi −
∑
Bi). Stability techniques from [49] (reviewed for example

in [35, section 3.1]) tell us when a three-form can be the imaginary part of a decomposable

8Otherwise one should replace ~n2/R2 by |~n|2 =
∑
i

(
ni/Ryi

)2
.
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form e−3A0Ω, and what the real part is. For (6.20) this tells us that Ω exists in regions

where C0C1C2C3 > 0, and determines

e−A0Re Ω = h2/3 (C0C1C2C3)1/3 [C−1
0 β0 − C−1

1 β1 − C−1
2 β2 − C−1

3 β3
]

+O(g2
s)

= Re ΩCY + gsK +O(g2
s) . (6.21)

where we have used that from imposing the relation Re Ω ∧ Im Ω = 2
3J

3
CY one obtains

e−4A0 = h−4/3 (C0C1C2C3)1/3 = 1 + 4gsϕ+O(g2
s) , (6.22)

in agreement with (6.4) and (6.5). By combining all these expressions we obtain

Ω = ie3A0C0

[
dx1 + i

(
C2C3

C0C1

)1/2

dy1

]
∧

[
dx2 + i

(
C1C3

C0C2

)1/2

dy2

]
∧

[
dx3 + i

(
C1C2

C0C3

)1/2

dy3

]
,

(6.23)

which corresponds to the metric

ds2 = h2/3

[(
C0C1

C2C3

)1/2

(dx1)2 +

(
C0C2

C1C3

)1/2

(dx2)2 +

(
C0C3

C1C2

)1/2

(dx3)2

]
(6.24)

+h2/3

[(
C2C3

C0C1

)1/2

(dy1)2 +

(
C1C3

C0C2

)1/2

(dy2)2 +

(
C1C2

C0C3

)1/2

(dy3)2

]
+O(g2

s) .

Regarding the fluxes, we find that

Ĥ =
2

5
F0gs (Re ΩCY + gsK) +O(g3

s) , (6.25)

F2 = `−2
s d†CYK +O(gs) , (6.26)

F4 = F0J
2
CY

(
3

10
− 4

5
gsϕ

)
+

1

5
F0JCY ∧ d ((1 + gsϕ)Im v1) +O(g2

s) , (6.27)

where Im v1 is the imaginary completion of

2e−A0Re v1 = df? +O(g2
s) , with f? = gs

2qm2

h

∑
i

B̃i . (6.28)

where B̃i stand for the functions Bi in (6.18) with the replacement R2/~n2 → R4/|~n|4. Note

that, unlike the Bi, the B̃i can be shown to be convergent, so there is no need to regularise

them.

6.3 Comparison with the smeared solution

Let us summarise our approximate solution. We obtain that the background fluxes are

given by `sG0 = m and

H = gs
2

5
G0 (Re ΩCY + gsK) +O(g7/3

s ) = gs
2

5
G0Re ΩCY

(
1 +O(g4/3

s )
)
, (6.29a)

G2 = `−2
s d†CYK +O(gs) = O(g2/3

s ) , (6.29b)

G4 = G0J
2
CY

(
3

10
− 4

5
gsϕ

)
+O(g2

s) =
3

10
G0J

2
CY

(
1 +O(g4/3

s )
)
, (6.29c)

G6 = 0 , (6.29d)
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where gs = 5V−1/2
X6

/m, K is defined by (5.4) and the proof of G6 =
(
ebF
)
|6 = 0 is given in

appendix A.3. The warp factor, dilaton and internal metic are specified by

e−A = 1 + gsϕ+O(g2
s) = 1 +O(g4/3

s ) , (6.30a)

eφ = gs (1− 3gsϕ) +O(g3
s) = gs

(
1 +O(g4/3

s )
)
, (6.30b)

Ω = ΩCY + gsk +O(g2
s) = ΩCY

(
1 +O(g4/3

s )
)
, (6.30c)

J = JCY +O(g2
s) = JCY

(
1 +O(g4/3

s )
)
, (6.30d)

v = gs
1

2
∂CYf? +O(g3

s) = O(g2
s) (6.30e)

where recall that ϕ and k are defined by (5.6), and f? by (6.10). When next to a p-form,

the above scalings O(gks ) is to be interpreted with respect to the natural scaling of the

p-form, so the total scaling of the object is O(g
k−p/3
s ).

We notice that the natural parameter of the expansion is g
4/3
s ∼ V−2/3

CY , or in other

words the quantum of four-form flux G4. We also notice that at leading order we recover

precisely the Calabi-Yau background with fluxes (3.11). At next order our solution is an

SU(3)×SU(3) background, which contains an SU(3)-structure pair (J,Ω) with the following

torsion classes

dΩ = iW2 ∧ J + d(φ− 2A) ∧ Ω (6.31)

dJ = 0 (6.32)

and with eφ−3A = gs. While this is the starting point for the analysis of SU(3)-structure

backgrounds with θ = 0, the difference here is that a varying warp factor is allowed. This is

thanks to the presence of a non-trivial one-form v. This varying warp factor, and in general

the three-form K obtained from solving the Bianchi identity for G2 at leading order, also

modifies the fluxes H and G4 at this order, adding a non-CY-harmonic piece.

In view of the no-go results for SU(3)-structure compactifications of section 3, one may

wonder how this approximate background at O(gs) can overcome the obstructions therein.

In particular let us see how (3.9) is modified to allow for a non-smeared solution. First

notice that to arrive to this equation one uses that [40]

dG2 ∧ Ω +G2 ∧ dΩ = d(G2 ∧ Ω) . (6.33)

In type IIA SU(3)-structure compactifications G2 ∧ Ω ≡ 0 iff the warp factor is constant,

as one can show from (2.17c) and the general expression for dΩ. In the case of a SU(3)-

structure background this follows when we impose that the r.h.s. of (2.17b) is closed. In our

more general background this expression generalises to (4.9b) allowing for a non-constant,

subleading piece or the warp factor, as the solution shows explicitly. This in turn implies

that d(G2∧Ω) 6= 0 adding the extra term to (3.9). In our solution this term is comparable to

the terms in the l.h.s. of (3.9) wedged with Im Ω, which would then scale like Ω. Therefore

the cancellation of this term is possible away from the localised sources and no smearing

is needed.
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Notice that this the term d(G2 ∧ Ω) is a non-trivial contribution to X5 in the source

balanced equation (3.14). So let us analyse how this more general equation can be satisfied

for our approximate solution. Using the background in (6.29) and (6.30) one obtains

3µ2e−4A 〈Re Φ+, Im Φ+〉 ∼ −
2

25
G2

0J
3 ∼ O(g0

s) dvolX6 , (6.34a)

e4A
∑

k
Gk ∧ ?Gk ∼

26

75
G2

0J
3 +
|G2|2

6
J3 ∼ O(g0

s) dvolX6 +O(g4/3
s ) dvolX6 , (6.34b)

−dX5 ∼ −
4

15
G2

0J
3 − δ(3)

source ∧
1

gs
Im ΩCY ∼ O(g0

s) dvolX6 , (6.34c)

where, although G2 ∧ ?G2 ∼ O(g
4/3
s ) at leading order, we are writing explicitly this term

to make easier the comparison with (3.9). Even if the sum of the first two terms gives

a positive definite quantity — recovering the case θ = 0 in (3.9) — the terms coming

from dX5 are able to compensate this contribution. Indeed, for the case at hand one can

check that the leading contribution to (6.34c) comes from d
(
G2 ∧

(
eAIm Φ−

)
3

)
and that

it cancels the other two contributions at order O(g0
s). In fact, one can easily check that

this corresponds to the contribution d(e−φG2 ∧ Ω) that would allows to circumvent the

obstruction related to (3.9).

7 Conclusions

In this paper we have found approximate solutions to the ten-dimensional supersymmetry

equations which exhibit some key features of the DGKT four-dimensional vacua [11]. The

solutions are first order in an expansion parameter corresponding to the average 10d dilaton

gs, or equivalently to the AdS4 scale µ or V−1/2
X6

in string units.

The solutions are such that in the limit gs → 0 the background metric of the Calabi-

Yau X6 is the Ricci-flat one and the warp factor is constant. The non-vanishing fluxes are

G0 and G4 = 3
10G0J

2
CY. This background corresponds to the smeared-O6-plane solution

to DGKT proposed in [15]. For small but non vanishing gs, corrections to this background

appear. The leading ones can be described in terms of the solution to the Bianchi identity

dG2 = G0H + δO6, which defines a function ϕ and a (2,1)-form k. The first one corrects

the warp factor and the dilaton, and the second one the three-form Ω. Due to this metric

deformation X6 becomes a manifold with SU(3)×SU(3)-structure.9 Finally, H and G4 are

also corrected in terms of ϕ and k, no longer being harmonic forms in the Calabi-Yau sense.

Given that our solution was obtained in an expansion in the average string coupling gs,

one might wonder whether it competes with the genus expansion in string theory. Since we

are at weak coupling, certainly the leading order part of the solution is under good control.

The next order comes in at g
4/3
s . We expect that string loop corrections should appear at

order g2
s or higher, and therefore the analysis should hold at least to first order. We leave a

more detailed analysis of the magnitude of string corrections in this background for future

work.

9This can also be thought of as SU(3)-structure with an additional 1-form. The SU(3)-structure part

has the same torsion classes as type IIA Minkowski backgrounds with O6-planes.

– 22 –



J
H
E
P
0
8
(
2
0
2
0
)
0
8
7

Perhaps an even more delicate issue is the fact that we have solved the equations at

the two-derivative level, so at leading order in α′. Higher α′ corrections are controlled by

the curvature radius which is again related to our expansion parameter gs ∼ R−3. In this

case a more accurate analysis of the magnitude and, importantly, the precise form of such

corrections is needed to see whether their effect is substantial.

Regarding the issue of scale separation and the Strong ADC, our results show that the

DGKT proposal for scale separation has passed a first non-trivial test. There could have

been an obstruction manifest already at first order in the supersymmetry equations, but

we have shown that this is not the case (at least at the two-derivative level).

However, they are still far from settling the issue. Before even asking about separation

of scales we may ask whether a full ten-dimensional solution actually exists. At a technical

level, a first possible obstruction may appear at the next order in the expansion parameter.

Indeed, a crucial part of DGKT is that it involves intersecting sources, and ten-dimensional

solutions of such sources are poorly understood. At the first, linearised, level of the ex-

pansion the interactions between the sources drop out which is why we are able to find a

solution relatively easily. The interactions only appear at the next level, where this feature

of the construction is first tested. Note that if a solution does exist, it would be interesting

to see if it also realises the picture proposed in [31, section 5.3] in which the pure spinors

Φ± differ from the Calabi-Yau ones only by non-harmonic forms.

There are also other, older and more general, open problems with any solutions of

massive type IIA with O-planes. In our approximate solution, near an O6-plane we obtain

an warping behaviour of the form e−4A ∼ 1 − gs`s
r [53]. This defines a region in which

we enter strong coupling and the supergravity approximation breaks down. Typically the

O-plane singularities may be resolved by uplifting to M-theory or F-theory. This is not

possible here due to the mass parameter, and so the fate of these singularities remains an

open question. It should be noted that the mass parameter, which obstructs an M-theory

uplift [54], is the crucial element to obtaining scale-separated vacua (it cannot be turned

off, unlike some of the other fluxes). Practically, what this means is that we are simply not

able to say anything about what happens near the O-planes in our solution. The hope is

therefore that either we make progress on understanding the O-planes, or that we are able

to settle the relevant questions without needing to worry about them.10

There are other open questions, some of which were raised already in [11], such as

the control of higher derivative terms in the presence of large fluxes parameters. Further,

even if a ten-dimensional solution of string theory can be firmly proven under controlled

approximations, it still remains to be checked that it really does exhibit separation of scales.

For example, as we have shown, the solution exhibits dilaton gradients and warp factors

which must be accounted for in establishing the mass scales of the KK and string modes.

If the remaining open questions can be addressed and the property of scale separation

proven, we would reach a significant result in string theory, and a counter example to

the Strong ADC (the normal ADC is of course satisfied in DGKT). In such a scenario it

10An interesting possibility is that the singularities are removed already in the IIA supergravity descrip-

tion, similarly to the ideas in [17].
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would be interesting if there is a possible refinement of the Strong ADC which may hold.

A particularly interesting proposal was made in [55] related to the presence of discrete

symmetries. In any case, we find it exciting and encouraging that the recent activity,

and progress reported in this paper, suggests that at least the issue of DGKT and scale

separation may be settled one way or the other in the not too distant future.
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A SU(3)× SU(3)-structure compactifications

In this appendix we will give more details about the pure spinor approach to supersymme-

try.

A.1 Types of pure spinor pairs

As we mentioned in the main text, there are various solutions to the algebraic constraints

that the pure forms Φ± have to satisfy.

• SU(3)-structure. In this case the pure spinors are (2.15), where J is a real non-

degenerate two-form, and Ω a complex three-form such that

Ω ∧ J = 0 , −1

6
J3 = − i

8
Ω ∧ Ω̄ ≡ vol6 . (A.1)

Moreover, Ω should be decomposable: at every point it should be possible to write it

as the wedge product of three one-forms. This constraint allows to reconstruct ImΩ

from ReΩ, or viceversa; explicit formulas for this were given in [49] and reviewed for

example in [35, section 3.1].

• SU(2)-structure. In this case, the data are those of a complex one-form v, a real

two-form j and a complex two-form ω which is again decomposable. They obey

j ∧ ω = 0 , ω ∧ ω̄ = 2j2 6= 0 . (A.2)

Moreover, the contractions v · j = v · ω = 0. This latter condition can be regarded

as part of the prescription on how to obtain the metric. The volume form is in this

case vol6 = − i
4v ∧ v̄ ∧ j

2.
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An equivalent definition is obtained by taking an SU(3)-structure (J,Ω) and adding

a complex one-form v. The forms j and ω are then obtained as

j = J − i

2
v ∧ v̄ , ω =

1

2
v · Ω . (A.3)

In other words, Ω = v ∧ ω.

• SU(3)× SU(3)-structure. This is the generic solution. Here [17, section 2.2.2]

Φ+ = e3A−φ cosψeiθ exp[−iJψ] , Φ− = e3A−φ cosψv ∧ exp[iωψ] , (A.4)

where Jψ and ωψ are defined in terms of an SU(2)-structure as in (2.19).

A.2 SU(3)× SU(3) θ 6= 0

We now show the generic case, θ 6= 0. The local solution in [17] belongs to this class;

however, we will see in the next section that this is unlikely to be promoted to a global

solution.

Again there are first some purely geometric equations:

d(e3A−φ cosψ sin θ) = 0 , (A.5a)

Rev =
eA

2µ sin θ
dθ , (A.5b)

d

(
1

sin θ
Jψ

)
= 2µe−AIm(v ∧ ωψ) (A.5c)

where again Jψ and ωψ are given by (2.19).

Then we have the fluxes, which are completely determined:

H = dB , G = eB∧F . (A.6)

So for example G2 = F2 +BF0, but G0 = F0. The Fk are given by

B = − cot(θ)Jψ + tanψImω , (A.7a)

F0 = −Jψ · d(e−φ cosψImv) + 5µe−A−φ cosψ cos θ , (A.7b)

F2 = F0 cot θJψ − Jψ · dRe(cosψe−φv ∧ ωψ) (A.7c)

+ µ cosψe−A−φ
[
(5 + 2 tan2 ψ) sin θJψ + 2 sin θRev ∧ Imv − 2 cos θ tan2 ψImωψ

]
,

F4 = F0

J2
ψ

2 sin2 θ
+ d
[

cosψ e−φ(Jψ ∧ Imv − cot θRe(v ∧ ωψ))
]
, (A.7d)

F6 = − 1

cos2 ψ
vol6

(
F0

cos θ

sin3 θ
+ 3

µ cosψe−φ

sin θ

)
. (A.7e)

F4 is automatically closed; this implies the Bianchi identity for G4, which is dG4+H∧G2 =

0.
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A.3 SU(3)× SU(3) θ = 0

The case θ = 0 has been discussed in subsection 2.2.2. Here we will show that for this case,

G6 =
(
ebF
)
|6 = 0, as claimed in the main text.

Explicitly, what we have to compute is:

G6 =��>
0

F6 +
�
�
�
�>

0
1

3!
F0b

3
φ +

1

2
F2 ∧ bφ ∧ bφ + F4 ∧ bφ , (A.8)

where we are already using (A.2) and (2.22e). Taking into account the expression for F2

— eq (2.22c), — F4 — eq. (2.22c) — and b = tan(ψ)Im ω, (A.8) reads:

G6 = ρe−3A cos(ψ)2Im ωψ ∧ Re v ∧ Im v ∧ dIm v

− 1

2
tan2(ψ)Im ω ∧ Im ω ∧ J−1

ψ xdRe
(
ρe−3Av ∧ ωψ

)
. (A.9)

Let us massage the second term:

− 1

2
tan2(ψ)Im ω ∧ Im ω ∧ J−1

ψ xdRe
(
ρe−3Av ∧ ωψ

)
= −1

2
tan2(ψ)j2 ∧ J−1

ψ xdRe
(
ρe−3Av ∧ ωψ

)
, (A.10)

writing j2 as

j2 = cos2(ψ)J2
ψ −

2 cos2(ψ)

tan2(ψ)
j ∧ Re v ∧ Im v = cos2(ψ)2J2

ψ −
2 cos2(ψ)

tan2(ψ)
Jψ ∧ Re v ∧ Im v ,

to obtain:

−
sin2

(
ψ2
)

2
J2
ψ ∧ J−1

ψ xdRe
(
ρe−3Av ∧ ωψ

)
+ cos2

(
ψ2
)

Re v ∧ Im v ∧ Jψ ∧ J−1
ψ xdRe

(
ρe−3Av ∧ ωψ

)
.

(A.11)

We can use now — see [17]:[
J−1
ψ x, Jψ∧

]
= h , hωk ≡ (3− k)ωk , (A.12)

to rewrite (A.11) as:

−
sin2

(
ψ2
)

2
Jψ ∧

(
J−1
ψ xJψ ∧+1

)
dRe

(
ρe−3Av ∧ ωψ

)
+

+ cos2
(
ψ2
)

Re v ∧ Im v ∧
(
J−1
ψ xJψ ∧+1

)
dRe

(
ρe−3Av ∧ ωψ

)
. (A.13)

Finally, taking into account that the supersymmetry equations imply:

Jψ ∧ d
(
ρenARe (v ∧ ωψ)

)
= 0 , dRe v = dA ∧ Re v , (A.14)

the second term of (A.9) can be written as:

− ρe−3A cos2
(
ψ2
)

Im ωψ ∧ Re v ∧ Im v ∧ dIm v , (A.15)

and therefore:

G6 = 0 . (A.16)
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B Proof of the source balanced equation

Let us show how the source balanced equation (3.14) can be derived. First consider the

following Mukai pairing〈
dH F̂ , e

AIm Φ−

〉
=
〈
F̂ , dH

(
eAIm Φ−

)〉
+ dX5 , (B.1)

with X5 defined as in (3.15). We can evaluate the left-hand side using the Bianchi iden-

tity (2.2) in the presence of O6-planes and D6-branes, while the right-hand side can be

evaluated using the supersymmetry equation (2.13b). We obtain

− 3µ
〈
F̂ , Im Φ+

〉
+ e4A

〈
F̂ , ?λ

(
F̂
)〉

+ dX5 =
〈
δ(3)

source, e
AIm Φ−

〉
. (B.2)

This expression can be rewritten by noting that taking the Mukai pairing of (2.13b) with

Φ+ yields

µ 〈Re Φ+, Im Φ+〉 = e4A
〈

Φ+, ?λ
(
F̂
)〉

. (B.3)

The existence of the SU(3) × SU(3)-structure implies a generalised Hodge decomposition

of the space of polyforms, according to their eigenvalues under two generalised complex

structures (J+,J−). Under this decomposition Φ+ is of type (3, 0). This means that

the right-hand side of (B.3) only receives a contribution from the (−3, 0) component of

?λ
(
F̂
)

, and so we can replace ?λ
(
F̂
)

with −iF̂ (see, for example [35]). We can therefore

write (B.3) as

µ 〈Re Φ+, Im Φ+〉 = −ie4A
〈

Φ+, F̂
〉
. (B.4)

Now using (B.4) we have that (B.2) reads

3µ2e−4A 〈Re Φ+, Im Φ+〉 − e4A
∑
k

F̂k ∧ ?F̂k + dX5 =
〈
δ(3)

source, e
AIm Φ−

〉
, (B.5)

proving the desired relation.

It is important to note that integrating (B.5) over the manifold leads to a constraint

which does not differentiate between a local and smeared source, and therefore can be

solved already for the SU(3)-structure case. If X5 was a completely general function, then

the solution to the integral of (3.14) would guarantee a local solution for some choice of X5.

However, X5 is not an independent function, it is fixed by the fluxes and the polyforms,

and therefore such a local solution is not guaranteed.
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