Design and characterization of high-performance water-based electrolytes for lithium-ion batteries

Ivan Claudio Pellini, Shahid Khalid, Riccardo Ruffo

PhD student in Material Science and Nanotechnologies of University of Milano Bicocca

Brief introduction: from global warming to lithium ion batteries

Mostly Batteries Global clean energy factory investment by technology

Batteries Solar Offshore wind Onshore wind Electrolyzers

Stationary storage

Consumer electronics

E-buses

Lithium-ion batteries: pros and cons

Wide range of applications

Main safety problem: Flammability of electrolytes

Possible solution: water-based electrolytes

Water-based electrolytes: pros and cons

Narrow electrochemical stability window is a key obstacle

- Natural and abundant
- > High dielectric constant ($\epsilon = 78$ at 25°C)
- Good ionic conductivity
- Low viscosity
- Cheaper water-soluble salts

Low potential available for cells

Most Li ion electrodes operate beyond these potentials

Concentrated Aqueous Electrolytes/Water-in-Salt Electrolyte

Increase salt concentration: superconcentration/Water-In-Salt

Narrow electrochemical stability window is a key obstacle

Add SEI additives

Solid Electrolyte Interphase (SEI) layer hinder undesired reactions and protect the interphase

Main composition:

- LiF
- Li_2CO_3
- Li₂O

Addtives:

- Fluorinated salts
- Organic solvents

Aim: design new water-based electrolyte design

Conductivity measurements

Electrochemical stability with different current collectors

LSV: employed to measure the working range and chose the best current collectros

Alluminum (AI):

- more stable on the cathodic side
- suffers from corrosive reactions on the anodic side

Stainless Steel (SS): is never the best choice on both sides

Carbon Coated Alluminum (CC-AI): shows very good stability on the anodic side

Best combination:

- Al for the negative side
- CC-Al for the positive side => ESW > 3.5 V

3S:H2O:1L is the worst electrolyte

Solvation structure of the hybrid electrolytes

Electrolytes Raman spectra exhibits a band around 735 cm⁻¹ related to a vibrational movement involving contraction/expansion of the full anion.

Electrodes for a full cell

Negative electrode: Spinel Li₄Ti₅O₁₂ (LTO)

Positive electrode: Spinel LiMn₂O₄ (LMO)

🖸 Li

🗭 M n

• 0

Lithiation/de-lithiation profiles of LMO and LTO were studied via CV

LTO displays a full reduction peak.

LMO has two insertion/exctraction processes.

Working potential: 1.65 V vs Li⁺/Li Theoretical capacity: 175 mAh g⁻¹ Working potential: 4.2-4.5 V vs Li⁺/Li Theoretical capacity: 148 mAh g⁻¹

LTO/LMO full cells cycling: 3S:H₂O:2L and 3S:H₂O:3L

LTO and LMO electrode mas loading was 5.2 and 6.7 mg cm⁻²

88% for 3L:H₂O:3L

LTO/LMO full cells cycling: rate performance

Normalizations over the limiting electrode (LTO)

 $3S:H_2O:2L$ reach higher capacity than $3S:H_2O:3L$ at the higher currents. It is maybe due to the differences in conductivity.

Performances are restored after high current cycling

Round trip energy efficiencies higher than 90% at 0.5C for the $3S:H_2O:2L$ and $3S:H_2O:3L$

LTO/LMO full cells cycling: long-lasting performance

C rate	Electrolyte	Starting charge / mAh g ⁻¹	Final charge / mAh g ⁻¹	Mean efficiency	Charge ratention
<mark>0.5 C</mark> (1000 cycles)	3S:H ₂ O:2L	142	34	98.9%	23.9%
	3S:H ₂ O:3L	139	90	99.5%	<mark>64.7%</mark>

Accelerated Rate Calorimetry (ARC) tests

Conclusions

- We have developed novel hybrid organic/aqueous electrolyte with ESW above 3 V using sulfolane as an organic co-solvent
- Physicochemical and electrochemical characterization
 was done
- The solvation structure with unique coordination structures such SSIPs, CIPs and AGGs was deeply studied via Raman spectroscopy
- The hybrid electrolyte enables a full aqueous LTO/LMO cell with an average voltage of 2.4 V and specific energy of 156 Wh kg⁻¹
- A viable choice for future generation non-flammable, eco-friendly, economic, and highly safe aqueous batteries

THANK YOU FOR YOUR ATTENTION

Special thank to: Dr. Shahid Khalid and prof.

GIORNATE ELETTROCHIMICA ITALIANA 17-21 September 2023, Cefalù, Italy

