Design and characterization of high-performance water-based electrolytes for lithium-ion batteries

Ivan Claudio Pellini, Shahid Khalid, Riccardo Ruffo

PhD student in Material Science and Nanotechnologies of University of Milano Bicocca

17-21 September 2023, Cefalù, Italy

Brief introduction: from global warming to lithium ion batteries

Mostly Batteries
Global clean energy factory investment by technology

- Batteries - Solar IItshore wind Inshore wind Electrolyzers

800
Annual lithium-ion battery demand by application

Lithium-ion batteries: pros and cons

Main safety problem: Flammability of electrolytes

Possible solution: water-based electrolytes

Water-based electrolytes: pros and cons
> Natural and abundant
$>$ High dielectric constant $\left(\varepsilon=78\right.$ at $\left.25^{\circ} \mathrm{C}\right)$
$>$ Good ionic conductivity
> Low viscosity
> Cheaper water-soluble salts

Narrow electrochemical stability window is a key obstacle

Low potential available for cells

Most Li ion electrodes operate beyond these potentials

Concentrated Aqueous Electrolytes/Water-in-Salt Electrolyte

Increase salt concentration: superconcentration/Water-In-Salt

Narrow electrochemical stability window is a key δ bstacle

Add SEI additives

Solid Electrolyte Interphase (SEI) layer hinder undesired reactions and protect the interphase

Main composition:

- LiF
- $\mathrm{Li}_{2} \mathrm{CO}_{3}$
- $\mathrm{Li}_{2} \mathrm{O}$

Addtives:

- Fluorinated salts
- Organic solvents

Water
Salt in Water

Water in Salt

Aim: design new water-based electrolyte design

Co-solvent: sulfolane (SL)

- Non-flammable
- Low toxicity

Stablity

- Cheap

Working temperature range

- Sulfolane
- DMC

Toxicity

1.3S: $\mathrm{H}_{2} \mathrm{O}: 1 \mathrm{~L}$
2. $\left(2.6 \mathrm{~mol} \mathrm{~kg}^{-1}\right)$

Salt: LiFTFSI

- High F content for SEI formation
- Asymmetry to hinder crystallization

Conductivity measurements

Temperature $/{ }^{\circ} \mathrm{C}$

From EIS spectra:

- From 1 Hz to 400 kHz
- sine amplitude of 25 mV in
- dip-probe symmetric platinum electrode cell

Electrolyte	σ at $25^{\circ} \mathrm{C} / \mathrm{mS} \mathrm{cm}^{-1}$	$\mathrm{~T}_{\mathrm{g}} /{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{0} /{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{g}}-\mathrm{T}_{0} /{ }^{\circ} \mathrm{C}$	$\sigma_{0} / \mathrm{S} \mathrm{cm}^{-1}$	$\mathrm{E}_{\mathrm{pa}} / \mathrm{eV}$
3S: $\mathrm{H}_{2} \mathrm{O}: 1 \mathrm{~L}$	$\mathbf{3 . 4 5}$	-98	-116	18	0.35	0.056
3S: $\mathrm{H}_{2} \mathrm{O}: 2 \mathrm{~L}$	$\mathbf{1 . 1 6}$	-83	-100	17	0.33	0.060
3S: $\mathrm{H}_{2} \mathrm{O}: 3 \mathrm{~L}$	$\mathbf{0 . 4 7}$	-76	-88	12	0.23	0.063

Electrochemical stability with different current collectors

LSV: employed to measure the working range and chose the best current collectros

Alluminum (Al):

- more stable on the cathodic side
- suffers from corrosive reactions on the anodic side

Stainless Steel (SS):

is never the best choice on both sides

Carbon Coated Alluminum (CC-AI): shows very good stability on the anodic side

Best combination:

- Al for the negative side
- CC-Al for the positive side
=> ESW > 3.5 V
$3 \mathrm{~S}: \mathrm{H} 2 \mathrm{O}: 1 \mathrm{~L}$ is the worst electrolyte

Solvation structure of the hybrid electrolytes

Electrolytes Raman spectra exhibits a band around $735 \mathrm{~cm}^{-1}$ related to a vibrational movement involving contraction/expansion of the full anion.

First sub-band around $730 \mathrm{~cm}^{-1}=$ Solvent-Separated Ion Pairs (SSIP)

Second sub-band around $747 \mathrm{~cm}^{-1}=$ Contact Ion Pairs (CIP)
Third sub-band at $751 \mathrm{~cm}^{-1}=$ Aggregates (AGG)

\square SSIP	CIP	.
FTFSI	AGG	
SL peak.........	Cum Fit	

Electrodes for a full cell

Positive electrode:
Spinel $\mathrm{LiMn}_{2} \mathrm{O}_{4}(\mathrm{LMO})$

Lithiation/de-lithiation profiles of LMO and LTO were studied via CV

Negative electrode:
Spinel $\mathrm{Li}_{4} \mathrm{Ti}_{5} \mathrm{O}_{12}(\mathrm{LTO})$

LTO displays a full reduction peak.

Working potential:

1.65 V vs Li$+/ \mathrm{Li}$

Theoretical capacity: $175 \mathrm{mAh} \mathrm{g}^{-1}$

LMO has two insertion/exctraction processes.

Working potential: $4.2-4.5 \mathrm{~V}$ vs Li$+/ \mathrm{Li}$ Theoretical capacity: $148 \mathrm{mAh} \mathrm{g}^{-1}$

Potential vs Li/Li ${ }^{+}$

LTO/LMO full cells cycling: $3 \mathrm{~S}: \mathrm{H}_{2} \mathrm{O}: 2 \mathrm{~L}$ and $3 \mathrm{~S}: \mathrm{H}_{2} \mathrm{O}: 3 \mathrm{~L}$

GCPL measurements were done in R2032 coin cells at room temperature $\left(30^{\circ} \mathrm{C}\right)$

Cell configuration

LTO and LMO electrode mas loading was 5.2 and $6.7 \mathrm{mg} \mathrm{cm}^{-2}$

Coulombic efficiency of the first cycle:

- 86% for 3L: $\mathrm{H}_{2} \mathrm{O}: 2 \mathrm{~L}$
- 88% for $3 \mathrm{~L}: \mathrm{H}_{2} \mathrm{O}: 3 \mathrm{~L}$

LTO/LMO full cells cycling: rate performance

Normalizations over the limiting electrode (LTO)

3S: $\mathrm{H}_{2} \mathrm{O}: 2 \mathrm{~L}$ reach higher capacity than $3 \mathrm{~S}: \mathrm{H}_{2} \mathrm{O}: 3 \mathrm{~L}$ at the higher currents. It is maybe due to the differences in conductivity.

Performances are restored after high current cycling

Round trip energy efficiencies higher than 90% at 0.5 C for the $3 \mathrm{~S}: \mathrm{H}_{2} \mathrm{O}: 2 \mathrm{~L}$ and $3 \mathrm{~S}: \mathrm{H}_{2} \mathrm{O}: 3 \mathrm{~L}$

LTO/LMO full cells cycling: long-lasting performance

C rate	Electrolyte	Starting charge / mAh g ${ }^{-1}$	Final charge / mAh g ${ }^{-1}$	Mean efficiency	Charge ratention
$\begin{gathered} 0.5 \mathrm{C} \\ \text { (1000 cycles) } \end{gathered}$	3S:H2O:2L	142	34	98.9\%	23.9\%
	3S:H2O:3L	139	90	99.5\%	64.7\%

Accelerated Rate Calorimetry (ARC) tests

Commercial electrolyte: an exothermal process starts and never ends

$3 \mathrm{~S}: \mathrm{H}_{2} \mathrm{O}: 3 \mathrm{~L}$: the same exothermal process ends spontaneously

Conclusions

- We have developed novel hybrid organic/aqueous electrolyte with ESW above 3 V using sulfolane as an organic co-solvent
- Physicochemical and electrochemical characterization was done
- The solvation structure with unique coordination structures such SSIPs, CIPs and AGGs was deeply studied via Raman spectroscopy
- The hybrid electrolyte enables a full aqueous LTO/LMO cell with an average voltage of 2.4 V and specific energy of $156 \mathrm{~Wh} \mathrm{~kg}^{-1}$
- A viable choice for future generation non-flammable, eco-friendly, economic, and highly safe aqueous

Ragone Plot

 batteries

THANK YOU FOR YOUR ATTENTION

Special thank to：Dr． Shahid Khalid and prof． Ruffo＇s group导云 Bicocià enin

