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Chemical variability in volcanic gas plumes and fumaroles along the East 1 
African Rift System: new insights from the Western Branch 2 
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Highlights: 26 

• No evidence in volcanic gases of a high 3He/4He mantle plume beneath the VVP 27 
• Major contribution of a lithospheric mantle source beneath the VVP 28 
• Clear evidence of carbonate metasomatism along the Western Branch of the rift 29 
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Abstract 31 

The origin of magmatic fluids along the East African Rift System (EARS) is a long-lived field of 32 
debate in the scientific community. Here, we investigate the chemical composition of the volcanic 33 
gas plume and fumaroles at Nyiragongo and Nyamulagira (Democratic Republic of Congo), the 34 
only two currently erupting volcanoes set on the Western Branch of the rift. Our results are in line 35 
with earlier conceptual models proposing that volcanic gas emissions along the EARS mainly 36 
reflect variable contributions of either a Sub-Continental Lithospheric Mantle (SCLM) component 37 
or a Depleted Morb Mantle (DMM) component, and deeper fluid. At Nyiragongo and 38 
Nyamulagira, our study discards a major contribution of a high 3He/4He mantle plume component 39 
in the genesis of volcanic fluids beneath the area. High CO2/3He in fumaroles of both volcanoes is 40 
thought to reflect carbonate metasomatism in the lithospheric mantle source. As inferred by 41 
previous results obtained on the lava chemistry, this carbonate metasomatism would be more 42 
pronounced beneath Nyiragongo. This supports the idea of the presence of distinct metasomes 43 
within the lithospheric mantle beneath the Western Branch of the rift. 44 
 45 
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1 Introduction 51 

The East African Rift System (EARS) is the longest active continental rift system on Earth and is 52 
extensively studied by the scientific community focused on plate tectonics and geodynamics (e.g., 53 
Rooney et al., 2020) (Fig. 1). In the last few years, the role of continental rifting on the global 54 
carbon budget and climate dynamics has also been revisited (Wong et al., 2019). Large diffusive 55 
CO2 emissions together with the unusual abundance of carbon-rich melts are among many 56 
evidences of the high outflux of volatile elements along the EARS. However, the origin of volatile 57 
elements beneath the EARS remains understudied with respect to other geodynamical contexts 58 
(Rooney et al., 2020). It has been firstly proposed that only the Afar-Ethiopian part of the EARS 59 
shows the contribution of a deep common (‘C’-type) mantle plume as revealed by the abundance 60 
of primordial helium (3He/4He up to 19.6 Ra and mostly >9 Ra) (Pik et al., 2006; Darrah et al., 61 
2013; O’Connor et al., 2019; Rooney et al., 2020). The magmatic activity along the Eastern and 62 
Western branches of the rift marked by lower 3He/4He values (<9 Ra) were ascribed to the 63 
contribution of either a Depleted Morb Mantle ‘DMM’ (Fischer et al., 2009) or second-order type 64 
mantle plumes upwelling in the shallow mantle (<500 km) (Pik et al., 2006). The discovery of 65 
ratios as high as 15 Ra in the Rungwe Volcanic Province in the South of Tanzania (Barry et al., 66 
2013) upset this theory and has favored the emergence of a new model in which gas emissions 67 
along the whole EARS testify various extents of mixing between two components (Halldorsson et 68 
al., 2014; O’Connor et al., 2019): (1) a deep Common (‘C’-type) mantle plume (cf. the “African 69 
Superplume”) and (2) the Sub-Continental Lithospheric Mantle ‘SCLM’ (De Moor et al., 2013; 70 
Lee et al., 2017). 71 

A field survey in the Virunga Volcanic Province (Democratic Republic of Congo) in 2020 72 
allowed gas collection from volcanic gas plumes (large quantity of volcanic gases that disperse 73 
and dilute in the atmosphere) and fumaroles (vents through which steam and volcanic gases are 74 
emitted) at Nyiragongo and Nyamulagira (Fig. 1), the only two currently erupting volcanoes on 75 
the Western Branch of the EARS (see Methods in Supplementary Information). Based on the first 76 
chemical characterization of the fumaroles at Nyamulagira, we explore here the current 77 
geochemical variability of gas emissions in this part of the Virunga Volcanic Province. By 78 
compiling previous chemical data obtained from fumaroles and volcanic gas plumes only, at other 79 
persistently active volcanoes along the EARS, we investigate the spatial variability of geochemical 80 
markers in volcanic gaseous emissions along the EARS (Fig. 2). 81 
 82 

2 Samples and Methods 83 

The chemical characterization of volcanic gas plumes was performed by using a Multicomponent 84 
Gas Analyzer System (MultiGAS) designed at the Istituto Nazionale di Geofisica e Vulcanologia 85 
– Sezione di Palermo (INGV Palermo) (Aiuppa et al., 2006; Liuzzo et al., 2013). The instrument 86 
allows the collection of H2O, CO2 and SO2 contents in the plume with a 1 Hz acquisition frequency. 87 
Two acquisition periods (>30 minutes) were realized at Nyamulagira on February 4 and 6, 2020. 88 
Two other series of measurements were obtained at Nyiragongo on February 12, 2020 (Fig. 1c, d). 89 
Time series were then postprocessed to calculate CO2/SO2 and H2O/CO2 ratios with a typical 90 
uncertainty <10%. Only ratios with a r-squared >0.7 on a period greater than 5 minutes were 91 
considered and averaged to obtain final values for each volcanic gas plume (Table S-1). 92 
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One fumarolic gas sample (F2) was collected on February 4, 2020, within the Nyamulagira 93 
summit crater with outlet temperature of 84°C (Fig. 1d). Glass samplers were used in line with a 94 
50 cm stainless-steel tube and Dewar glass tubes (Vaselli et al., 2006). Similarly, two fumarolic 95 
gas samples (F1-A & F1-B) were collected on February 12 and 13, 2020, on the second platform 96 
within the Nyiragongo summit crater (for a description of the summit crater see e.g. Burgi et al., 97 
2020) with outlet temperature of 82°C (Fig. 1c). Collected gas samples were then analyzed at the 98 
INGV Palermo for their contents in major and minor gaseous species as well as for the isotopic 99 
composition of noble gases (3He, 4He, 20Ne, 40Ar, 38Ar, 36Ar) and their relative ratios, and few 100 
other stable isotopes (d13C of CO2) (Table S-2). Content in major and minor gaseous species in 101 
glass samplers was analyzed by the use of a gas chromatograph (GC, Agilent 7890 equipped with 102 
PPU and MS5A columns) associated with a MicroGC module (equipped with a PPU column) and 103 
a double detector (TCD and FID) using argon as carrier gas. The analytical errors were < 3%. The 104 
abundances and isotope compositions of He were determined by a split flight tube mass 105 
spectrometer (Helix SFT-GVI). Neon abundance and isotope composition (20Ne) was determined 106 
by a Helix MC Plus Thermo. The abundances and isotope compositions of Ar were measured in a 107 
multicollector mass spectrometer (Helix MC-GVI). The analytical errors of the He, Ne, and Ar-108 
isotope analyses were less than 0.4%, 0.06% and 0.2%, respectively. Analysis of carbon isotopes 109 
were obtained with a Thermo Delta Plus XP CF-IRMS coupled with a Thermo TRACE Gas 110 
Chromatograph (GC) and a Thermo GC/C III interface. The analytical error on d13C are <0.1‰. 111 
The analytical procedure and correction for air-contamination of noble gases are the same as the 112 
ones described in Boudoire et al. (2020). In particular, the so-called magmatic-derived 40Ar* was 113 
calculated accordingly with the following formula that assumes that all the measured 36Ar is of 114 
atmospheric origin: 115 

 116 

40𝐴𝑟∗ = 40𝐴𝑟" − '
40𝐴𝑟
36𝐴𝑟*#$%

× 	36𝐴𝑟" 117 

 118 
where 40Ar* represents the corrected 40Ar (40Ar/36Ar = 295.5), and the “m” subscript indicates 119 
“measured”. In the figures (Fig. 2, 3, 4, 5), the analytical uncertainty on laboratory measurements 120 
is less than the size of the symbols. 121 

Rain gauge collectors were deployed (i) beneath the volcanic plume at Nyamulagira (less 122 
than <500 m distance to the plume emission center) during the field mission and (ii) at the 123 
Observatoire Volcanologique de Goma more than 20 km further downwind (more details of the 124 
sampling procedure are available in Calabrese et al. (2011)). Rainwater samples were collected to 125 
investigate plume-rain interaction and define a Local Meteoric Water Line (LMWL) based on d18O 126 
and dD of H2O. Stable isotopes for H2O in both condensates from one fumarole (F3) at 127 
Nyamulagira (Table S-2) and rainwaters (Table S-3) were analyzed at the INGV – Osservatorio 128 
Vesuviano by means of a near-infrared laser analyzer (Picarro L2130i) using WS-CRDS 129 
(wavelength scanned cavity ring down spectroscopy) technique (analytical errors are: dD ± 0.5‰, 130 
d18O ± 0.08‰; data are reported vs. V-SMOW) (see Caliro et al. (2015) for details about the 131 
analytical procedure). It was not possible to collect a condensate from F2 at Nyamulagira. 132 
Consequently, isotopic values in this study refer to the two condensates collected from a high-133 
temperature (>1000 °C) fumarole (F3) for which, in turn, we had problems collecting the gas 134 
phase. Expected d18O value in local rain was calculated from the equation of Bowen & Wilkinson 135 
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(2002) with a latitude of 1° and an altitude of 3000 m in accordance with the geographic position 136 
of the Nyamulagira volcano. 137 

Previous data obtained in volcanic gas plumes and fumaroles at persistently active 138 
volcanoes along the EARS are compiled from Gerlach (1982), Oppenheimer et al. (2002), Pik et 139 
al. (2006), Sawyer et al. (2008a,b), Fischer et al. (2009), Tedesco et al. (2010), Bobrowski et al. 140 
(2016, 2017), Boucher et al. (2018) and Mollex et al. (2018). The composition of the end-members 141 
used to define the mixing curves are defined from the following literature: DMM (Sheppard & 142 
Epstein, 1970; Gautheron & Moreira, 2002; Zelenski & Taran, 2011; Clog et al., 2013; Barry et 143 
al. 2013; Hallis et al., 2015; Rizzo et al., 2018), African Superplume (Pik et al., 2006; Darrah et 144 
al., 2013), SCLM (Gautheron & Moreira, 2002; Rizzo et al., 2018), Continental Crust (Zelenski & 145 
Taran, 2011; Taran & Zelenski, 2015), Oceanic Crust (Zelenski & Taran, 2011; Barry et al. 2013; 146 
Taran & Zelenski, 2015), Limestone (Barry et al. 2013), Sediments (Zelenski & Taran, 2011; Barry 147 
et al. 2013), Mantle carbonates (Harmer, 1999; Casola et al., 2020; Carnevale et al., 2021), Air 148 
and ASW (Zelenski & Taran, 2011). 149 

 150 

3 Results 151 

MultiGAS measurements in volcanic gas plumes performed in February 2020 reveal an average 152 
CO2/SO2 ratio of 22±8.4 and 15.5±5.7 and an average H2O/CO2 ratio of 1.9±0.2 and 12.4±6.3 at 153 
Nyiragongo and Nyamulagira, respectively (Fig. 2a). At Nyiragongo, CO2/SO2 values are higher 154 
than FTIR measurements performed in the volcanic gas plume in 2005-2007 (CO2/SO2 = 5.1±0.1; 155 
H2O/CO2 = 3.0±0.2; Sawyer et al., 2008a). At Nyamulagira, CO2/SO2 values are similar to those 156 
obtained in the volcanic gas plume in 2014 with the same instrument but with a lower H2O/CO2 157 
ratio, on average (CO2/SO2 = 12.1±0.3; H2O/CO2 = 16.8±0.1; Bobrowski et al., 2017). Current and 158 
previous data show that the range of CO2/SO2 values at Nyamulagira (9.7-21.1) falls in the range 159 
of values measured at Nyiragongo (5.0-29.1). Meanwhile, the range of H2O/CO2 values is clearly 160 
higher at Nyamulagira (9.6-19.6) than at Nyiragongo (1.1-3.2). At larger scale, the ratios obtained 161 
for the two erupting volcanoes of the Western branch of the EARS range between two 162 
endmembers: Erta Ale and Ardoukoba in the Afar (CO2/SO2 = 0.2-1.9; H2O/CO2 = 3.8-25.6; 163 
Gerlach, 1982; Sawyer et al., 2008b) and Ol Doinyo Lengaï on the Eastern branch of the EARS 164 
(CO2/SO2 = 3830; H2O/CO2 = 3.1; Oppenheimer et al., 2002). 165 

N2/He and N2/Ar in fumaroles at Nyiragongo (F1-A and F1-B) range between 1885-1980 166 
and 86-91, respectively. Higher values are found in fumarole (F2) at Nyamulagira with N2/He = 167 
6814 and N2/Ar = 93. These values fall very well within the range expected for a mixture between 168 
either a DMM or a continental crust component and the air (Fig. 2b). They are intermediate 169 
between those measured at Erta Ale and Ol Doinyo Lengaï. 170 

Helium isotopes are indistinguishable in fumaroles of both volcanoes with R/Ra in the 171 
range 7.0-7.3 at Nyiragongo and 7.2 at Nyamulagira (Fig. 3a). These values set for both volcanoes 172 
of the Virunga Volcanic Province are lower than those observed in the Afar region (R/Ra > 10.9; 173 
Boucher et al., 2018; Darrah et al., 2013) but comparable to those of the Ol Doinyo Lengaï (R/Ra 174 
= 6.6-7.8; Fischer et al., 2009; Mollex et al., 2018). They are at the limit between the lower range 175 
of DMM values (R/Ra = 8±1) and the upper range of the SCLM (R/Ra = 6.1±0.9; Tedesco & 176 
Nagao, 1996; Gautheron & Moreira, 2002). 4He/40Ar* ranges from 0.83 at Nyamulagira up to 1.24-177 
1.41 at Nyiragongo, which is in accordance with previous measurements (1.02-1.20; Tedesco et 178 
al., 2010). These values are slightly higher than those measured at Ol Doinyo Lengaï (0.45-0.76). 179 
Overall, as suggested at Ol Doinyo Lengaï (Fischer et al., 2009), the range of 4He/40Ar* values 180 
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measured at Nyamulagira and Nyiragongo supports the assumption that the measured volatile 181 
compositions are restrictively affected by magma degassing. 182 

Carbon isotopes measured in the fumaroles of both volcanoes are more variable (Fig. 3b). 183 
At Nyiragongo, d13C of CO2 range from -3.7 to -3.9 ‰ and are similar to previous measurements 184 
(from -3.5 to -4.0 ‰; Tedesco et al., 2010). More negative values are measured at Nyamulagira 185 
(d13C = -5.2 ‰ in F2). With respect to preexisting measurements performed along the EARS, d13C 186 
values at Nyiragongo are close to those of Ol Doinyo Lengaï (from -2.4 to -4.0 ‰; Fischer et al., 187 
2009) slightly more positive than typical DMM values (-6±2 ‰; Sano & Marty, 1995) and closer 188 
to the European SCLM values (-3.5 ‰; Bräuer et al., 2016; Rizzo et al., 2018). d13C values at 189 
Nyamulagira are closer to those measured at Erta Ale (from -6.3 to -6.8 ‰; Boucher et al., 2018) 190 
and fall in the range of DMM values. 191 

d18O and dD measurements of H2O of rainwaters collected less than 500 m-far from the 192 
plume emission center at Nyamulagira and at the Observatoire Volcanologique de Goma (more 193 
than 20 km-further) show a well-marked linear correlation (dD = 8.08 d18O + 20.07; R2 = 0.996), 194 
parallel to the Global Meteoric Water Line (GMWL), and could be representative of the Local 195 
Meteoric Water Line (LMWL) (Fig. 4). In this respect, the calculated local rain should have an 196 
isotopic composition of d18O = -11.1 ‰ and dD = -69.4 ‰ (Bowen & Wilkinson, 2002). d18O and 197 
dD measurements of H2O performed in the condensate fraction of the Nyamulagira fumaroles 198 
(only) range from 7.2 to 8.4 ‰ and from -34.4 to -34.7 ‰, respectively. These values are far from 199 
the LMWL and quite similar to SCLM inferred values (d18O from 5 to 8 ‰ and dD from -68 to -200 
56 ‰ or from -42 to -32 ‰; Taran & Zelenski, 2015). 201 
 202 
4. Discussion 203 
4.1. Contribution of mantle components in the genesis of magmatic fluids beneath the 204 
Virunga Volcanic Province 205 
Recent attempts to describe the geochemical variability along the EARS, especially in gaseous 206 
emissions, refer mainly to various extents of mixing between a deep Common (‘C’-type) mantle 207 
plume (cf. the “African Superplume”) and a SCLM component (De Moor et al., 2013; Halldorsson 208 
et al., 2014; Lee et al., 2017; Mollex et al., 2018; O’Connor et al., 2019). Within this frame of 209 
reference, measurements obtained in the Afar region (Erta Ale, Dallol) are ascribed to a greater 210 
contribution of the mantle plume (Darrah et al., 2013; Boucher et al., 2018) whereas the activity 211 
on the Eastern Branch (Ol Doinyo Lengaï) is thought to represent the predominant contribution of 212 
the SCLM in the genesis of magmatic fluids (Mollex et al., 2018; Lee et al., 2017). 213 

Within the Western Branch of the EARS, Rc/Ra in the range 7.1-7.5 at both Nyiragongo 214 
and Nyamulagira volcanoes may reflect (i) a DMM signature (8±1) or (ii) a SCLM-like signature 215 
(6.1±0.9) marked by a slight enrichment in 3He (Fig. 3a). d13C values of CO2 at Nyiragongo (Fig. 216 
3b) and d18O and dD measurements of H2O at Nyamulagira appear slightly different to what would 217 
be expected in the case of a contribution of the DMM (Fig. 4). The composition of the volcanic 218 
gas plumes (H2O – CO2 – St; Fig. 2a) at both Nyamulagira and Nyiragongo is also significantly 219 
different from that measured during the 1978 Ardoukoba eruption fed by E-MORB magma (Vigier 220 
et al., 1999). Conversely, d13C value of CO2 at Nyamulagira (d13C = -5.2 ‰; Fig. 3b) falls in the 221 
typical range of DMM values (-6±2 ‰; Sano & Marty, 1995): this peculiarity observed at 222 
Nyamulagira will be discussed later. Although we cannot exclude with certainty the contribution 223 
of a DMM source beneath the province, our results better suggest a contribution of the SCLM in 224 
the genesis of magmatic fluids similar to what was described for the Eastern Branch of the EARS 225 
(Mollex et al., 2018; Lee et al., 2017). This assumption match with previous conclusions from 226 
petrological investigations along the Western Branch (Rosenthal et al., 2009; Rooney et al., 2020). 227 
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Importantly, our results confirm previous conclusions made along the Western Branch of 228 
the EARS (Tedesco et al., 2010; Rooney et al., 2020) that discard a predominant contribution of 229 
high 3He/4He mantle plumes in the genesis of magmatic fluids there. Nevertheless, the involvement 230 
of deeper 3He-rich mantellic fluids may provide a reasonable explanation to the slight enrichment 231 
in primordial helium (3He) in gaseous emissions at both Nyiragongo (Rc/Ra = 7.1-7.4 and up to 232 
8.7 in previous studies) and Nyamulagira (Rc/Ra = 7.5) with respect to typical SCLM values 233 
(6.1±0.9). A similar 3He-enrichment was recently measured in fluid inclusions in calcite (Rc/Ra = 234 
9.6) from carbonatites in Uganda and is thought reflecting a rapid ascent of carbonatitic magma 235 
from depth across the SCLM (Benko et al., 2021). Deeper mantle reservoirs at the origin of such 236 
an enrichment in 3He in the SCLM may involve: an undegassed archetypal mantle plume like the 237 
African Superplume (Darrah et al., 2013), a partially degassed mantle plume component (degassed 238 
plume head or degassed material through lateral channeling of the plume; Darrah et al., 2013) as 239 
proposed in the Afar (Erta Ale; Darrah et al., 2013; Boucher et al., 2018) and/or a depleted mantle 240 
component (see Rooney et al. (2020) for a review). Further work, especially on the geochemical 241 
characterization of the SCLM beneath the province, is required to distinguish the respective 242 
contributions of these components in the genesis of magmatic fluids along the Western Branch of 243 
the EARS. 244 
 245 
4.2. Carbon enrichment tracked by gaseous emissions 246 
The CO2/3He values of the fumaroles in the Virunga Volcanic Province strongly differs from those 247 
sampled along the EARS. At Nyamulagira, CO2/3He is equal to 1.0 x 1010 (one measurement) and 248 
ranges from 2.2 to 2.3 x 1010 (two measurements) at Nyiragongo. These values are almost one 249 
order of magnitude higher than measured in Ol Doinyo Lengaï emissions representative of the 250 
SCLM beneath the Eastern Branch of the EARS (Fig. 5a). Considering the emission of 251 
natrocarbonatites at the Ol Doinyo Lengaï volcano and the hyperalkaline nature of the cogenetic 252 
nephelinitic melts (Fischer et al., 2009), such an increase of the CO2/3He seems hardly reconcilable 253 
with a differential CO2-He solubility effect in alkaline melts. The absence of significant 4He/40Ar* 254 
increase does not sustain the effect of equilibrium degassing on the increase of CO2/3He either 255 
(Burnard et al., 2004) (Fig. S-1). High CO2/3He in gas emissions at Nyamulagira and Nyiragongo 256 
are rather ascribed to various extents of mixing with either (i) a hosted sediment-limestone crustal 257 
source (Darrah et al., 2013) or (ii) mantellic carbonates as observed in other continental rift systems 258 
(Frezzotti & Touret, 2014). 259 
 The absence of important change of d13C values at high CO2/3He with respect to the SCLM 260 
(Fig. 5b) minimizes the likelihood of the influence of an interaction with crustal sediment or 261 
limestone as evidenced in regional hot springs (Tedesco et al., 2010). Once again, the presence of 262 
carbonate-bearing metasomes in the SCLM source derived from deeper fluids, as extensively 263 
documented along the Western Branch of the EARS (Rooney et al., 2020; Aiuppa et al., 2021), 264 
may provide a reasonable explanation to such a CO2/3He increase at quite constant d13C (-1 to -8 265 
‰ for primary carbonatites; Harmer, 1999; Casola et al., 2020). This hypothesis is sustained by 266 
the chemistry of lavas emitted at Nyiragongo and Nyamulagira that points out limited 267 
contamination processes at crustal levels and rather emphasizes carbonate metasomatism in the 268 
mantle source beneath Nyiragongo (Chakrabarti et al., 2009; Pouclet et al., 2016; Aiuppa et al., 269 
2021). 270 
 271 
4.3. Potential sources of heterogeneities between gaseous emissions at Nyiragongo and 272 
Nyamulagira 273 
If the composition of fumaroles at both Nyiragongo and Nyamulagira (12 km away from one 274 
another) share common features with respect to other volcanic emissions along the EARS, both 275 



manuscript submitted to Chemical Geology 

 

present distinct d13C signatures of CO2 and CO2/3He values (Fig. 3 and 4). We identified three 276 
potential scenarios that might account for such chemical variability. 277 

In the first scenario (‘1’ on Fig. 5), a process of Rayleigh fractional condensation (about 50 278 
%) of CO2 during the ascent of the gas phase up to the surface (Mook et al., 1974) could account 279 
for (i) the lowest CO2/3He and d13C values and (ii) the enrichment in less condensable gas species 280 
such a He, Ne, Ar (Table S-2) observed at Nyamulagira with respect to Nyiragongo. This process 281 
was extensively documented in peripheral “cold” dry CO2-rich emission (so-called “mazukus”) 282 
located on the edge of the Lake Kivu (Fig. 1; Tedesco et al., 2010). However, this process suggests 283 
a common source of magmatic fluids at both volcanoes (similar initial CO2/3He and d13C of CO2 284 
before condensation) that hardly reconciliates the variations observed in the chemistry of “high 285 
temperature” volcanic gas plumes between both volcanoes (Fig. 2a; Bobrowski et al., 2017) and 286 
in the lava chemistry (Chakrabarti et al., 2009; Pouclet et al., 2016). 287 

In the second scenario (‘2’ on Fig. 5), the composition of the fumaroles at Nyamulagira 288 
represents a mixing between fluids with CO2/3He and d13C values similar to those measured in the 289 
fumaroles of Nyiragongo (80%) and fluids from a partially degassed mantle plume component as 290 
proposed in Afar (20%). The analysis of halogen elements in volcanic gas plumes at both 291 
Nyamulagira and Nyiragongo also suggests a greater affinity of the former with the volcanic gas 292 
plume at Erta Ale (Bobrowski et al., 2017). However, lava isotopic chemistry rather supports the 293 
opposite scenario: the (Sr-Nd-Pb) isotopic composition of lavas at Nyiragongo ranges intermediate 294 
between those at the Nyamulagira volcano and the Common (‘C’-type) mantle plume component 295 
described in the Afar region (Chakrabarti et al., 2009; Rooney et al., 2020). In view of the contrast 296 
between the information provided by the chemical composition of the volcanic gas and those from 297 
the associated lava, this second scenario seems unlikely. 298 

While we have ruled out a major involvement of a limestone or sedimentary source to 299 
explain the high CO2/3He values measured in volcanic gas emitted at Nyiragongo and 300 
Nyamulagira, we cannot exclude that the inner variability observed in d13C values between both 301 
volcanoes may reflect the slight contribution of a recycled component. In this third scenario (‘3’ 302 
on Fig. 5), a small addition (<0.1 %) of recycled sediments could explain the more negative d13C 303 
values at Nyamulagira with respect to those at Nyiragongo. This recycled component may be either 304 
(i) intrinsic to the mantle source through the involvement of a recycled crustal material as 305 
suggested by the isotopic composition of lavas at Nyamulagira (Chakrabarti et al., 2009) or (ii) 306 
shallower, i.e., related to the interaction with metasediments at crustal level or organic matter close 307 
to the surface like observed in hot springs (Tedesco, 1995; Tedesco et al., 2020; Darrah et al., 308 
2013). In both cases, the involvement of a biogenic and potentially hydrated component could 309 
provide one explanation to the (H2O-CO2-St) affinity of the volcanic gas plume of Nyamulagira 310 
with the range of composition defined by arc volcanism (Fig. 2a; Burton et al., 2000; Aiuppa et 311 
al., 2017). 312 

We recognize that further work is required to better identify the origin of the heterogeneity 313 
in gaseous emissions between both volcanoes. Meanwhile, it is worth nothing that the last two 314 
scenarios required an initially lower CO2/3He at Nyamulagira (< 1.2 x 1010; Fig. 5b) that agrees 315 
with a lesser extent of carbonate metasomatism in the mantle source beneath Nyamulagira. This is 316 
consistent with the chemical studies (Chakrabarti et al., 2009; Pouclet et al., 2016) that ascribe the 317 
composition of Nyamulagira and Nyiragongo lavas to a mantle source incorporating preferentially 318 
either a recycled crustal component or a carbonated component, respectively. 319 
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5 Conclusions 321 

Fumaroles and volcanic gas plume sampling was conducted in February 2020 at the neighboring 322 
Nyamulagira and Nyiragongo volcanoes in the Virunga Volcanic Province along the Western 323 
Branch of the EARS. The isotope chemistry of the fumaroles and the composition of the volcanic 324 
gas plume discard a major contribution of a high 3He/4He mantle plume component in the genesis 325 
of volcanic fluids beneath the area. CO2/3He values measured at both volcanoes are higher than 326 
values reported for other persistently active volcanoes along the EARS suggesting carbonate 327 
metasomatism in the Sub-Continental Lithospheric Mantle (SCLM), especially beneath 328 
Nyiragongo. This result is consistent with the chemical investigation of lavas performed in the 329 
area (Chakrabarti et al., 2009; Pouclet et al., 2021) and more globally with the presence of 330 
numerous mantle metasomes beneath the Western Branch of the EARS. Heterogeneities between 331 
gaseous emissions at Nyiragongo and Nyamulagira mainly relate to the composition of the 332 
volcanic gas plume and the d13C of the CO2 in fumaroles. We stress that such variability could 333 
reflect the influence of a biogenic and/or more hydrated component expressed in volcanic fluids 334 
at Nyamulagira. 335 
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Fig. 1 Location of volcanoes currently in eruption (plus the 1978 Ardoukoba eruption) (a) along the EARS 566 
and (b) in the Virunga Volcanic Province. The area of the cold dry CO2-rich emission so-called 567 
“mazukus” are indicated in red (Tedesco et al., 2010). Volcanic gas plume and fumaroles sampling 568 
sites at (c) Nyiragongo and (d) Nyamulagira. 569 

 570 

 571 

Fig. 2 (a) MultiGAS measurements performed in the volcanic gas plume of Nyiragongo and 572 
Nyamulagira during the 2020 field mission. Rc/Ra and d13C values from fumaroles (inlay). Data 573 
for volcanism gas plume and high temperature (> 500°C) fumaroles (arc volcanism, intraplate-rift 574 
volcanism, Italian volcanism) and for hydrothermal gases have been compiled from Aiuppa et al. 575 
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(2015, 2016), Lages et al. (2020) and Henley and Fischer (2021). (b) N2-He-Ar ternary diagram of 576 
fumaroles composition along the EARS.  577 
 578 
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Fig. 3 (a) 4He/20Ne vs. R/Ra. Black lines for mixing between the air and terrestrial end-members. 580 
(b) d13C vs. Rc/Ra. Red continuous lines for mixing between potential mantle plume-like 581 
components and the SCLM. Black dashed lines for mixing between SCLM and crustal components 582 
as testified by the chemical composition of the gas emissions from hot springs in the Virunga 583 
Volcanic Province (Tedesco et al., 2010). 584 



manuscript submitted to Chemical Geology 

 

 585 
 586 
 587 
Fig. 4 Isotopic composition (d18O and d2D of H2O) of condensates from fumarole F3 at 588 
Nyamulagira and local rainwater samples collected beneath the volcanic gas plume at Nyamulagira 589 
and at the Observatoire Volcanologique de Goma. The Local Meteoric Water Line is calculated 590 
from the collected rainwater samples (see Methods for details). Inferred range of isotopic values 591 
for the SCLM (dashed rectangles) from Taran and Zelenski (2015). 592 
 593 
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Fig. 5 (a) CO2/3He vs. Rc/Ra and (b) d13C vs. CO2/3He. Continuous red line for mixing between 595 
the “African Superplume” component and the SCLM. Black and blue dotted lines for mixing with 596 
distinct crustal components or mantle carbonates (blue dotted lines are those discussed in the text 597 
about the geochemical variability of gaseous emissions in the Virunga Volcanic Province with 598 
respect to the EARS). Green continuous, dotted and dashed lines relate to scenarios 1-2-3 599 
discussed in the text and accounting for the chemical variability of gaseous emissions between 600 
Nyamulagira and Nyiragongo. CO2 condensation process from Mook et al. (1974) computed with 601 
a temperature of 80°C similar to that measured in the fumaroles at Nyamulagira. 602 


