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ABSTRACT. The aim of this paper is to present and discuss some equivalent characterizations of p-parabolicity
in terms of existence of special exhaustion functions. In particular, Khas’minskii in [K] proved that if there
exists a 2-superharmonic function K defined outside a compact set such that limx→∞K(x) = ∞, then R is 2-
parabolic, and Sario and Nakai in [SN] were able to improve this result by showing that R is 2-parabolic if and
only if there exists an Evans potential, i.e. a 2-harmonic function E : R \K → R+ with limx→∞ E(x) = ∞.
In this paper, we will prove a reverse Khas’minskii condition valid for any p > 1 and discuss the existence of
Evans potentials in the nonlinear case.

Given a complete Riemannian manifold R, we say that R is p-parabolic if every compact subset K ⊂ R

has p-capacity zero, or equivalently if every bounded below p-subharmonic function is constant. In the
following we briefly recall some definitions and results relative to p-capacity and p-harmonic functions.
Some good references for this introductory part are [HKM] and [G] (for the p = 2 case only). Note that
[HKM] works on Rn, but from the proofs it is quite clear that all the local results extend also to generic
Riemannian manifolds.

This paper is dedicated to characterize the p-parabolicity of a complete Riemannian manifold through the
so-called Khas’minskii condition, i.e. a manifold R is p-parabolic if and only if for any p-regular compact
set (for example for many compact set with smooth boundary) there exists a p-superharmonic function
f : R \ K → R+ with f |∂K = 0 and limx→∞ f(x) = ∞. This condition is discussed in [G] and in
[PRS], in particular the latter article provides some other equivalent characterizzations and applications of
this condition.

In the following Dp(f) will denote its p-Dirichlet integral, i.e.

Dp(f) ≡
∫

Ω
|∇f |p dV

where Ω is the domain of the function f . W 1,p(Ω) stands for the standard Sobolev space, while L1,p(Ω)

is the so-called Dirichlet space, i.e. the space of functions in W 1,p
loc (Ω) with finite p-Dirichlet integral.

Hereafter, we assume that R is a complete smooth noncompact Riemannian manifold without boundary
with metric tensor gij and volume form dV .

Definition 0.1. Given a compact set and an open set K ⊂ Ω ⊂ R, we define

Capp(K,Ω) ≡ inf
ϕ∈C∞c (Ω), ϕ(K)=1

∫
Ω
|∇ϕ|p dV

If Ω = R, then we set Capp(K,R) ≡ Capp(K).
By a standard density argument for Sobolev spaces, the definition is unchanged if we allow ϕ − ψ ∈
W 1,p

0 (Ω \K), where ψ is a cutoff function with support in Ω and equal to 1 on K.
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By definition, R is p-parabolic if and only if Capp(K) = 0 for every K ∈ R, or equivalently if there
exists a compact set with nonempty interior K̃ with Capp(K̃) = 0.

Definition 0.2. A real function h defined on an open Ω ⊂ R is said to be p-harmonic if h ∈ W 1,p
loc (Ω) and

∆ph = 0 in the weak sense, i.e.∫
Ω
|∇h|p−2 〈∇h|∇φ〉 dV = 0 ∀ φ ∈ C∞c (Ω)

The space of p-harmonic functions on an open set Ω is denoted by Hp(Ω).

We recall that p-harmonic functions are always continuous (in fact, they are C1,α(Ω)) and they are also
minimizers of the p-Dirichlet integral

Definition 0.3. A function s ∈W 1,p
loc (Ω) is a p-supersolution if ∆ph ≤ 0 in the weak sense, i.e.∫

Ω
|∇s|p−2 〈∇s|∇φ〉 dV ≥ 0 ∀ φ ∈ C∞c (Ω), φ ≥ 0

A function s : Ω → R ∪ {+∞} (not everywhere infinite) is said to be p-superharmonic if it is lower
semicontinuous and for every open D b Ω and every p-harmonic function on D with h|∂D ≤ s|∂D, then
h ≤ s on all D. The space of p-superharmonic functions is denoted by Sp(Ω).

We recall that all p-supersolutions have a lower-semicontinuous rappresentative in W 1,p
loc (Ω) and s ∈

W 1,p
loc (Ω) is p-superharmonic if and only if it is a p-supersolution. In particular thanks to Caccioppoli-type

estimates all bounded above p-superharmonic functions are p-supersolutions. The family of p-superharmonic
functions is closed under right-directed convergence, i.e. if sn is an increasing sequence of p−superharmonic
functions with pointwise limit s, then either s = ∞ everywhere or s is p-superharmonic. By a truncation
argument, this also shows that every p-superharmonic function is the limit of an increasing sequence of
p-supersolutions.

Now we turn our attention to special p-harmonic functions, the so-called p-potentials.

Proposition 0.4. GivenK ⊂ Ω ⊂ R with Ω bounded andK compact, and given ψ ∈ C∞c (Ω) s.t. ψ|K = 1,
there exists a unique function:

h ∈W 1,p(Ω \K) h− ψ ∈W 1,p
0 (Ω \K)

This function is a minimizer for the p-capacity, explicitly:

Capp(K,Ω) =

∫
Ω
|∇h|p dV

for this reason, we call h the p-potential of the couple (K,Ω). Note that if Ω is not bounded, it is still
possible to define its p-potential by a standard exhaustion argument.

One might ask when the p-potential of a couple of sets is continuous on Ω. In this case the set Ω \ K
is said to be regular with respect to the p-laplacian, or simply p-regular. p-regularity depends strongly on
the geometry of Ω and K, and there exist at least two characterization of this property: the Wiener criterion
and the barrier condition. For the aim of this paper we simply note that p-regularity is a local property
and that if Ω \ K has smooth boundary, then it is p-regular. As references for the Wiener criterion and
the barrier condition, we cite [HKM] and [KM] (which deal only with Rn, but as observed before local
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properties of Rn are easily extended to Riemannian manifolds) and [BB], a very recent article which deals
with p-harmonicity and p-regularity on metric spaces.

Before proceding, we cite some elementary estimates on the capacity.

Lemma 0.5. Let K1 ⊂ K2 ⊂ Ω1 ⊂ Ω2 ⊂ R. Then:

Capp(K2,Ω1) ≥ Capp(K1,Ω1) Capp(K2,Ω1) ≥ Capp(K2,Ω2)

Moreover, if h is the p-potential of the couple (K,Ω), for 0 ≤ t < s ≤ 1 we have:

Capp ({h ≤ s}, {h < t}) =
Capp(K,Ω)

(s− t)p−1

Proof. The proofs of these estimates follow quite easily from the definitions, and they can be found in
propositions 3.6, 3.7, 3.8 in [Ho1], or in section 2 of [HKM]. Even though the setting of [HKM] is Rn, all
the argumets used apply also to the Riemannian case. �

In the following section we cite some technical results that will be essential in our proof of the reverse
Khas’minskii condition, in particular the solvability of the obstacle problem and the minimizing property
of its solutions and a technical lemma about uniformly convex Banach spaces. Section 2 contains the main
results of this article, the proof of the reverse Khas’minskii condition. We tried to use as few technical tools
as possible in our proof, so as to make it is readable and understandable by non-specialists.

1. OBSTACLE PROBLEM

In this section we present the so-called obstacle problem, a technical tool that will be foundamental in
our main theorem.

Definition 1.1. Let R be a Riemannian manifold and Ω ⊂ R be a bounded domain. Given θ ∈ W 1,p(Ω)

and ψ : Ω→ [−∞,∞], we define the set:

Kθ,ψ = {ϕ ∈W 1,p(Ω) s.t. ϕ ≥ ψ a.e. ϕ− θ ∈W 1,p
0 (Ω)}

we say that s ∈ Kθ,ψ solves the obstacle problem relative to the p-laplacian if for any ϕ ∈ Kθ,ψ:∫
Ω

〈
|∇s|p−2∇s

∣∣∣∇ϕ−∇s〉 dV ≥ 0

It is evident that the function θ defines in the Sobolev sense the boundary values of the solution s, while
ψ plays the role of obstacle, i.e. s must be ≥ ψ at least almost everywhere. Note that if we set ψ ≡ −∞,
the obstacle problem turns into the classical Dirichlet problem. Anyway for our purposes the two functions
θ and ψ will always coincide, and in what follows for simplicity we will write Kψ,ψ ≡ Kψ.
The obstacle problem is a very important tool in nonlinear potential theory, and with the development of
calculus on metric spaces it has been studied also in this very general setting. In the following we cite some
results relative to this problem and its solvability.

Proposition 1.2. If Ω is a bounded domain in a Riemannian manifold R, the obstacle problem Kθ,ψ has
always a unique (up to a.e. equivalence) solution if Kθ,ψ is not empty (which is always the case if θ =

ψ). Moreover the lower semicontinuous regularization of s coincides a.e. with s and it is the smallest
p-superharmonic function in Kθ,ψ, and also the function in Kθ,ψ with smallest p-Dirichlet integral. If the
obstacle ψ is continuous in Ω, then s ∈ C(Ω).
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In [HKM], Heinonen, Kilpeläinen and Martio prove this theorem in the setting of a Euclidean measure
space with a doubling property and a Poincaré inequality, but it is quite clear that the techniques involved
also apply to the setting of any Riemannian manifold. As mentioned before, this problem has been ex-
tensively studied also on measure metric spaces with a doubling property and a Poincaré inequality (for
example bounded domains in Riemannian manifolds with respect to the measure induced by the metric),
and proposition 1.2 holds even in this more general setting (see [K2M]).

We make a remark on the minimizing property of the p-superharmonic function, which will play a central
role in our proof.

Remark 1.3. Let s be a p-superharmonic function in W 1,p(Ω) where Ω ⊂ R is a bounded domain. Then
for any function f ∈W 1,p(Ω) with f ≥ s a.e. and f − s ∈W 1,p

0 (Ω) we have:

Dp(s) ≤ Dp(f)

Proof. This remark follows easily form the minimizing property of the solution to the obstacle problem. In
fact, the previous proposition shows that s is the solution to the obstacle problem relative to Ks, and the
minimizing property follows. �

When it comes to the obstacle problem (or similarly to the Dirichlet problem), the regularity of the
solution on ∂Ω is always a good question. An easy corollary to theorem 7.2 in [BB] is the following:

Proposition 1.4. Given a bounded Ω ⊂ R with smooth boundary and given a ψ ∈ W 1,p(Ω) ∩ C(Ω), then
the unique solution to the obstacle problem Kψ is continuous up to ∂Ω.

Note that it is not necessary to assume ∂Ω smooth, it suffices to assume ∂Ω regular with respect to the
p-Dirichlet problem, or equivalently that satifies the Wiener criterion in each point, but we think that for the
aim of this paper it is not necessary to go into such interesting but quite technical details.

In the following we will need this lemma about uniform convexity in Banach spaces. This lemma doesn’t
seem very intuitive at first glance, but a very simple two dimensional drawing of the vectors involved shows
that in fact it is quite natural.

Lemma 1.5. Given a uniformly convex Banach spaceE, there exists a function σ : [0,∞)→ [0,∞) strictly
positive on (0,∞) with limx→0 σ(x) = 0 such that for any v, w ∈ E with ‖v + 1/2w‖ ≥ ‖v‖:

‖v + w‖ ≥ ‖v‖
(

1 + σ

(
‖w‖

‖v‖+ ‖w‖

))
Proof. Note that by the triangle inequality ‖v + 1/2w‖ ≥ ‖v‖ easily implies ‖v + w‖ ≥ ‖v‖. Let δ be the
modulus of convexity of the space E. By definition we have:

δ(ε) ≡ inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ s.t. ‖x‖ , ‖y‖ ≤ 1 ‖x− y‖ ≥ ε
}

Consider the vectors x = αv y = α(v + w) where α = ‖v + w‖−1 ≤ ‖v‖−1. Then:

1−
∥∥∥∥x+ y

2

∥∥∥∥ = 1− α
∥∥∥v +

w

2

∥∥∥ ≥ δ(α ‖w‖) ≥ δ( ‖w‖
‖v‖+ ‖w‖

)
‖v + w‖ ≥

∥∥∥v +
w

2

∥∥∥(1− δ
(

‖w‖
‖v‖+ ‖w‖

))−1

Since
∥∥v + w

2

∥∥ ≥ ‖v‖ and by the positivity of δ on (0,∞) if E is uniformly convex, the thesis follows. �
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Recall that all Lp(X,µ) spaces with 1 < p <∞ are uniformly convex thanks to Clarkson’s inequalities,
and their modulus of convexity is a function that depends only on p and not on the underling measure space
X . For a reference on uniformly convex spaces, modulus of convexity and Clarkson’s inequality, we cite
his original work [C].

2. KHAS’MINSKII CONDITION

In this section, we prove the Khas’minskii condition for a generic p > 1 and show that it is not just a
sufficient condition, but also a necessary one.

Proposition 2.1 (Khas’minskii condition). If there exists a compact set K ⊂ R and a p-superharmonic
finite-valued function K : R \K → R with

lim
x→∞

K(x) =∞

then R is p-parabolic.

Proof. This condition was proved in [K] in the case p = 2, however since the only tool necessary for this
proof is the comparison principle, it is easily extended to any p > 1. An alternative proof can be found in
[PRS].
Fix an open relatively compact set D with K ⊂ D (for simplicity, we may also assume ∂D smooth), and fix
an exhaustion Dn of R with D0 ≡ D. Set mn ≡ minx∈∂Dn K(x), and consider for every n the p-capacity
potential hn of the couple (D,Dn). Since K is superharmonic, it is easily seen that hn(x) ≥ 1−K(x)/mn

for all x ∈ Dn \ D. By letting n go to infinity, we obtain that h(x) ≥ 1 for all x ∈ R, where h is the
capacity potential of (D,R). Since by the maximum principle h(x) ≤ 1 everywhere, h(x) = 1 and so
Capp(D) = 0. �

Observe that the hypothesis of K being finite-valued can be dropped. In fact if K is p-superharmonic, the
set {x s.t. K(x) = ∞} has p-capacity zero, and so the reasoning above would lead to h(x) = 1 except on
a set of p-capacity zero, but this indeed implies h(x) = 1 everywhere (see [HKM] for the details).

Before proving the reverse of Khas’minskii condition for any p > 1, we present a short simpler proof
in the case p = 2 and we briefly describe the reasoning that brought us to the general proof. In the linear
case, the sum of 2-superharmonic functions is again 2-superharmonic, but of course this fails to be true for
a generic p. Thanks to linearity, it is easy to prove that:

Proposition 2.2. Given a 2-parabolic Riemannian manifold, for any compact set K with smooth boundary
(actually p-regular is enough), there exists a 2-superharmonic continuous function K : R \K → R+ with
f |∂K = 0 and limx→∞K(x) =∞.

Proof. Consider a regular (=with smooth boundary) exhaustion {Kn}∞n=0 ofRwithK0 ≡ K. For any n ≥ 1

define hn to be the p-potential of (K,Kn). By the comparison principle, the sequence h̃n = 1 − hn is a
decreasing sequence, and sinceR is 2-parabolic the limit function h̃ is the zero function. By Dini’s theorem,
the sequence h̃n converges to zero locally uniformly, so it is not hard to choose a subsequence h̃n(k) such
that the series

∑∞
k=1 h̃n(k) converges locally uniformly to a continuous function. It is straightforward to see

that K =
∑∞

k=1 h̃n(k) has all the desidered properties. �
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For the nonlinear case, even though this proof doesn’t apply, the idea is similar in some aspects. Indeed,
we will build an increasing locally uniformly bounded sequence of p-superharmonic functions, and the limit
of this sequence will be the function K.

The idea behind the proof in the nonlinear case is to extend the following well-known result about sets of
p-capacity zero.

Proposition 2.3. A set E ⊂ Rn is of p-capacity zero if and only if there exists a p-superharmonic s function
with s|E =∞.

Proof. See theorem 10.1 in [HKM] for the proof. �

Consider the p-Royden compactificationR∗p of the manifoldR (like every compactification, the boundary
Γp = R∗p\R reflects in some sense the behaviour ofR at infinity). The concept of p-capacity can be extended
to subsets of R∗p, and it turns out that R is p-parabolic if and only of Capp(Γp) = 0 (see for example [T]).
Then in some sense, by mimicking the proof of proposition 2.3, we get our statement. There are although
some tecnical aspects to be considered, for example the boundedness assumption on the domain Ω makes it
impossible to use the theory of the obstacle problem to solve it on the complement of a compact set inR, and
also some convergence properties of the solutions are not so obvious and need some careful consideration.

For the sake of simplicity, in this article we chose to limit the use of abstract technical tools like the
p-Royden compactification and follow instead a more direct approach.

We first prove that if R is p-parabolic, then there exists a proper function f : R → R with finite p-
Dirichlet integral.

Proposition 2.4. Let R be a p-parabolic Riemannian manifold. Then there exists a positive continuous
function f : R→ R such that: ∫

R
|∇f |p dV <∞ lim

x→∞
f(x) =∞

Proof. Fix an exhaustion {Dn}∞n=0 of R with every ∂Dn smooth, and let {hn}∞n=1 be the p-capacity poten-
tial of the couple (D0, Dn). Then by an easy application of the comparison principle the sequence:

h̃n(x) ≡


0 if x ∈ D0

1− hn(x) if x ∈ Dn \D0

1 if x ∈ DC
n

is a decreasing sequence of continuous function converging pointwise to 0 (and so also locally uniformly by
Dini’s theorem) and also

∫
R

∣∣∣∇h̃n∣∣∣p dV → 0. So we can extract a subsequence h̃n(k) such that

0 ≤ h̃n(k)(x) ≤ 1

2k
∀x ∈ Dk ∧

∫
R

∣∣∣∇h̃n(k)

∣∣∣p dV <
1

2k

It is easily verified that f(x) =
∑∞

k=1 h̃n(k)(x) has all the desidered properties. �

We are now ready to prove the reverse Khas’minskii condition, i.e.:

Theorem 2.5. Given a p-parabolic manifold R and an open nonempty compact K ⊂ R with smooth
boudary, there exists a continuous positive superharmonic function K : R \K → R such that

lim
x→∞

K(x) =∞
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Proof. Fix a continuous proper function f : R → R+ with finite Dirichlet integral such that f = 0 on a
compact neighborhood ofK, and letDn be a smooth exhaustion ofR such that f |DC

n
≥ n. We want to build

by induction an increasing sequence of continuous functions s(n) ∈ L1,p(R) p-superharmonic in KC with
s(n)|K = 0 and such that s(n) = n in a neighborhood of infinity (say SCn , where Sn is compact). Moreover
we will ask that s(n) is locally uniformly bounded, so that K(x) ≡ limn s

(n)(x) is finite in R and has all the
desidered properties.
Let s(0) ≡ 0, and suppose by induction that an s(n) with the desidered property exists. Hereafter n is
fixed, so for simplicity we will write s(n) ≡ s, s(n+1) ≡ s+ and Sn = S. Define the functions fj(x) ≡
min{j−1f(x), 1}, and consider the obstacle problems on Ωj ≡ Dj+1\D0 given by the obstacle ψj = s+fj
1. For any j, the solution hj to this obstacle problem is a p-superharmonic function defined on Ωj bounded
above by n + 1 and whose restriction to ∂D0 is zero. If j is large enough such that s = n on DC

j (i.e.
S ⊂ Dj), then the function hj is forced to be equal to n+ 1 on Dj+1 \Dj and so the function:

h̃j(x) ≡


hj(x) x ∈ Ωj

0 x ∈ D0

n+ 1 x ∈ DC
j+1

is a continuous function on R, p-superharmonic in D0
C . If we are able to show that h̃j converges locally

uniformly to s, then we can choose an index j̄ large enough to have supx∈Dn+1

∣∣∣h̃j̄(x)− s(x)
∣∣∣ < 2−n−1,

and so the function s+ = h̃j̄ has all the desidered properties.
For this aim, consider δj ≡ hj − s. Since the sequence hj is decreasing thanks to the properties of the

solution to the obstacle problems, so is δj and therefore it converges pointwise to a function δ ≥ 0. By the
minimizing properties of hj , we have that

‖∇hj‖p ≤ ‖∇s+∇fj‖p ≤ ‖∇s‖p + ‖∇f‖p
‖∇δj‖p ≤ 2 ‖∇s‖+ ‖∇f‖ ≤ C

and a standard weak-compactness argument in reflexive spaces shows that δ ∈ L1,p
0 (R) with ∇δj → ∇δ

in the weak Lp sense (see for example lemma 1.33 in [HKM]). Now we prove that Dp(δj) → 0 so that
Dp(δ) = 0, and since δ = 0 on D0 we conclude δ = 0. Note also that since the limit function δ is
continuous, Dini’s theorem assures that the convergence is locally uniform.

Let λ > 0 (for example λ = 1/2), and consider the function g(x) ≡ min{s + λδj , n}. It is quite clear
that s is the solution to the obstacle problem relative to itself on S \D0, and since δj ≥ 0 with δj = 0 on
D0, g ≥ s and g− s ∈W 1,p

0 (S \D0). The minimizing property for solutions to the p-laplace equation then
guarantees that:

‖∇s+ λ∇δj‖pp ≡
∫
R
|∇s+ λ∇δj |p dV ≥

∫
S\D0

|∇g|p dV ≥

≥
∫
S\D0

|∇s|p dV = ‖∇s‖pp

1Note that ψj ∈ L1,p
0 (R), in fact for every j ψj = n+ 1 in a neighborhood of infinity
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Recalling that also hj = s+ δj is solution to an obstacle problem on Dj+1 \D0, we get:

‖∇s+∇δj‖p =

(∫
R

∣∣∣∇h̃j∣∣∣p dV )1/p

=

(∫
Ωj

|∇hj |p dV

)1/p

≤

≤

(∫
Ωj

|∇s+∇fj |p dV

)1/p

≤ ‖∇s+∇fj‖p ≤ ‖∇s‖p + ‖∇fj‖p

Uding lemma 1.5 we conclude:

‖∇s‖p

(
1 + σ

(
‖∇δj‖p

‖∇s‖p + ‖∇δj‖p

))
≤ ‖∇s‖p + ‖∇fj‖p

Since ‖∇fj‖p → 0 as j goes to infinity and by the properties of the function σ:

lim
j→∞

Dp(δj) ≡ lim
j→∞

‖∇δj‖pp = 0

�

Remark 2.6. Since
∥∥∥∇h̃j∥∥∥

p
≤
∥∥∇s(n)

∥∥
p

+ ‖∇δj‖p, if for each induction step we choose j̄ such that∥∥∇δj̄∥∥p < 2−n, the function K = limn s
(n) has finite p-Dirichlet integral.

Remark 2.7. In the previous theorem we built a function K which is proper and continuous in R, p-
superharmonic in KC and zero on K assuming K compact with smooth boundary and with non-empty
interior. However it is clear from the proof that these assumptions can be weakened. In fact, the only prop-
erties we need are that if a function δ is constant and zero on K, than it has to be zero everywhere on R, and
the obstacle problem relative to Dj \K has to be solvable with continuity on the boundary. From these we
notice that it is sufficient to assume K p−regular, which implies also that capp(K,Dj) > 0 and so δ = 0.

3. EVANS POTENTIALS

We conclude this work with some remarks on the Evans potentials for p-parabolic manifolds. Given a
compact set with nonempty interior and smooth boundary K ⊂ R, we call p-Evans potential a function
E : R \K → R p-harmonic where defined such that:

lim
x→∞

E(x) =∞ lim
x→∂K

E(x) = 0

It is evident that if such a function exists, then the Khas’minskii condition guarantees the p-parabolicity
of the manifold R. It is interesting to investigate whether also the reverse implication holds. In [N] and
[SN], Nakai and Sario prove that 2-parabolicity of Riemannian surfaces is completely characterized by the
existence of such functions. In particular they prove that:

Theorem 3.1. Given a p-parabolic Riemannian surface R, and an open precompact set R0, there exists a
(2−)harmonic function E : R \ R0 → R+ which is zero on the boundary of R0 and goes to infinity as x
goes to infinity. Moreover: ∫

{0≤E(x)≤c}
|∇E(x)|2 dV ≤ 2πc(1)
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This is the content of [N] and theorems 12.F and 13.A in [SN]. Clearly the constant 2π in equation 1 can
be substituted by any other positive constant. As noted in the Appendix to [SN] (in particular pag. 400), with
similar arguments and with the help of the classical potential theory ([H] might be of help in some technical
details), it is possible to prove the existence of 2-Evans potentials for a generic n-dimensional 2-parabolic
Riemannian manifold.

This argument however is not adaptable to the nonlinear case (p 6= 2). In fact it relies heavily on the
harmonicity of Green potentials and on tools like the energy and transfinite diameter of a set that are not
available in the nonlinear contest. In the end the potential E is build as a special convex combination of
Green kernels defined on the 2-Royden compactification of R, and while convex combinations preserve
2-harmonicity, this is evidently not the case when p 6= 2.

Since p-harmonic functions minimize the p-Dirichlet of functions with the same boundary values, it
would be interesting from a theoretical point of view to prove existence of p-Evans potentials and maybe
also to determine some of their properties. From the practical point of view such potentials could be used
to get informations on the underlying manifold R, for example they can be used to improve the Kelvin-
Nevanlinna-Royden criterion for p-parabolicity as shown in [VV].

Even though we were not able to prove the existence of such potentials in the generic case, some particular
cases are easier to manage. As shown in [PRS], conclusions similar to the ones in theorem 3.1 can be easily
obtained in the case R is a model manifold or all of its ends are roughly Euclidean or Harnack. We briefly
discuss these very particular cases hoping that the ideas involved in these proofs will be a good place to start
for a proof in the general case.

First of all we recall the definition model manifolds:

Definition 3.2. A complete Riemannian manifold R is a model manifold (or a spherically simmetric mani-
fold) if it is diffeomorphic to Rn and if there exists a point o ∈ R such that in exponential polar coordinates
the metric assumes the form:

gij =

{
1 0

0 σ(r)δij

}
where σ is a smooth positive function on (0,∞) with σ(0) = 0 and σ′(0) = 1.

For some references on polar coordinates and model manifolds, we cite [G] (a very complete survey on
2-parabolicity) and the book [P1].

Define the function A(r) =
√
g(r) = σ(r)

n−1
2 , where g(r) is the determinant of the metric tensor.

Note that, except for a constant depending only on n, A(r) is the area of the sphere of radius r. On model
manifolds, the radial function

fp,r̄(r) ≡
∫ r

r̄
A(t)

− 1
(p−1)dt

is a p-harmonic function away from the origin o, in fact:

∆p(f) =
1
√
g

div(|∇f |p−2∇f) =
1
√
g
∂i

(
√
g
(
gkl∂kf∂lf

) p−2
2
gij∂jf

)
=

=
1

A(r)
∂r

(
A(r) A(r)

− p−2
p−1 A(r)

− 1
p−1 r̂

)
= 0
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where r̂ is the gradient of r, which in polar coordinates has components (1, 0 · · · , 0). The function min{fp,r̄, 0}
is a p-subharmonic function on R, so if fp,r̄(∞) < ∞, R cannot be p-parabolic. An easy application of
the Khas’minskii condition shows that also the reverse implication holds, so that a model manifold R is
p-parabolic if and only if fp,r̄(∞) =∞. This shows that if R is p-parabolic, then for any r̄ > 0 there exists
a radial p-Evans potential fp,r̄ ≡ Er̄ : R \Br̄(0)→ R+, moreover it is easily seen by direct calculation that:∫

BR

|∇Er̄|p dV = Er̄(R) ⇐⇒
∫
Er̄≤t
|∇Er̄|p dV = t

This estimate is similar to the one in equation 1, and it allow us to conclude that:

Capp(Br̄, {Er̄ ≤ t}) =

∫
{Er̄≤t}\Br̄

∣∣∣∣∇(Er̄t
)∣∣∣∣p dV = t1−p

SinceR is p-parabolic, it is clear that Capp(Br̄, {Er̄ ≤ t}) must go to 0 as t goes to infinity, but this estimate
tells us also how fast the convergence is.

What we want to show now is that p-parabolic model manifolds admit p-Evans potentials relative to any
compact set K.

Proposition 3.3. Let R be a p-parabolic model manifold and K ⊂ R a p-regular compact set. Then there
exists an Evans potential e : R \K → R+ with

Capp(K, {e < t}) ∼ t1−p(2)

as t goes to infinity.

Proof. Since K is bounded, there exists r̄ > 0 such that K ⊂ Br̄. Let Er̄ be the radial p-Evans potential
relative to this ball. For any n > 0, set An = {Er̄ ≤ n} and define the function en to be the unique
p-harmonic function on An \ K with boundary values n on ∂An and 0 on ∂K. An easy application of
the comparison principle shows that en ≥ Er̄ on An \ K, and so the sequence {en} is increasing. By the
Harnack principle, either en converges locally uniformly to a harmonic function e, or it diverges everywhere
to infinity. To exclude the latter, set mn to be the minumum of en on ∂Br̄. By the maximum principle the
set {0 ≤ en ≤ mn} is contained in the ball Br̄, and using the capacity estimates in 0.5, we get that:

Capp(K,Br̄) ≤ Capp(K, {en < mn}) = Capp(K, {en/n < mn/n}) =

=
np−1

mp−1
n

CappK, en < n ≤ np−1

mp−1
n

Capp(Br̄, Er̄ < n)

mp−1
n ≤ np−1 Capp(Br̄, {Er̄ < n})

Capp(K,Br̄)
<∞

So the limit function e = limn en is a p-harmonic function in R \ K with e ≥ Er̄. Boundary continuity
estimates like the one in [M] (p236) prove that e|∂K = 0, but in this case we can use a more simple argument.
Let in fact M be the maximum of e on ∂Br̄. Then by the comparison principle, 0 ≤ en ≤ Mh for every
n, where h is the p-harmonic potential of (K,Br̄). The p-regularity of K ensures that h is continuous up to
the boudary with h|∂K = 0, and so the claim is proved.
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To prove the estimates on the capacity, consider that by the comparison principle for every n (and so also
for the limit) en ≤M + Er̄ (where this relation makes sense), so that:

Capp(K, {e < t}) ≤ Capp(Br̄, {e < t}) ≤

≤ Capp(Br̄, {Er̄ < t−M}) = (t−M)1−p ∼ t1−p

For the reverse inequality, we have:

Capp(K, {e < t}) =

∫
{e<t}\K

∣∣∣∇(e
t

)∣∣∣p dV =

∫
{e<M}\K

∣∣∣∇(e
t

)∣∣∣p dV+

+

∫
{M<e<t}

∣∣∣∇(e
t

)∣∣∣p dV =
(m
t

)p ∫
{e<M}\K

∣∣∣∇( e

M

)∣∣∣p dV+

+

(
t−m
t

)p ∫
{M<e<t}

∣∣∣∣∇( e

t−M

)∣∣∣∣p dV ≥
≥
(m
t

)p
Capp(K, {e < M}) +

(
t−m
t

)p
CappBr̄, Er̄ ∼ t1−p

�

We conclude this work with a very simple consideration. Lemma 2.14 in [Ho2] proves that on the com-
plement of a p-regular compact set in a p-parabolic Riemannian manifold, there always exists a positive
unbounded harmonic function E ′. On some particular manifolds, every nonnegative p-harmonic function
has a limit at infinity, and in particular any unbounded function goes to infinity on the ideal boundary of R.
These shows that the function E ′ is actually an Evans potential.
For example, ifR is roughly Euclidean or if all of its ends are Harnack ends, then all nonnegative p-harmonic
functions have a limit at infinity. As references for these particular properties we cite [Ho2] and [Ho3], in
particular lemma 3.23 in [Ho3] and paragraph 3 in [Ho2].

Even though we weren’t able to prove that every p-parabolic manifold admit a p-Evans potential, the
partial proofs of this last section suggest that this is true, or at least that investigating this problem could be
interesting.

Note that Evans potentials and in particular estimates like 1 and 2 are useful to study the behaviour of
functions on the manifold R, as proved in [VV].
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