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Abstract
It is common practice for auditors to verify only a sample of recorded values to esti-
mate the total error amount.Monetary-unit sampling is often used to over-sample large
valued items which may be overstated. The aim is to compute an upper confidence
bound for the total errors amount. Naïve bounds based on the central limit theorem
are not suitable, because the distribution of errors are often very skewed. Auditors fre-
quently use the Stringer bound which known to be too conservative.We propose to use
weighted empirical likelihood bounds for Monetary-unit sampling. The approach pro-
posed is different from mainstream empirical likelihood. A Monte–Carlo simulation
study highlights the advantage of the proposed approach over the Stringer bound.

Keywords Coverages · External audit · Nominal level · Stringer bound · Tolerable
error amount · Unequal probability Sampling

Mathematics Subject Classification 62D05 · 62G15 · 62G20

1 Introduction

In practice, it is natural to audit only a sample of accounting records to establish the
correctness of the entire financial reporting process. Audit techniques are divided into
twomain areas: the so-called “internal audit”which is carried out internally tomonitor
the accounting process, and “external audit” carried out by accounting experts who
certify the correctness of the accounting recording process. We shall focus on the
latter. In general, auditing aims to verify whether there are material errors in a set of N
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accounting records or items. The inferential problem facing the auditor is to decide, on
the basis of sample information, whether the errors found on the accounting records
are attributable only by random material errors or by fraudulent actions. Each item in
the sample provides the auditor with two types of information: the recorded amount (or
book amount) and the audited amount (or corrected amount). The difference between
these two amounts is called the error which is used to estimate the overall unknown
error amount.

Auditors want to verify if the total error falls below a pre-assigned “tolerable error
amount” denotedA hereafter. This can be achieved by calculating an upper confidence
bound for the total error. If this bound is lower than A, the auditor concludes that no
misstatement has been made. On the contrary, if this bound is larger than A, then
the auditor may decide to verify all the recorded amounts. Alternatively, a p-value
calculated at A can be used instead.

The primary focus is on the upper bound of the confidence interval rather than
point estimation. The fraction of incorrect items present in a sample can also be very
variable leading to unreliable estimates and confidence bounds. In fact, two scenarios
are possible. We may have a relatively high number of small errors which results in
a high overall error rate. The second scenario is when we have a small amount of
larger errors and a small overall error rate. Thus, the distribution of errors may be very
skewed with many null errors. As a consequence, the upper limits of the confidence
intervals based upon variance estimates and the central limit theorem are no longer
adequate (e.g. Cox and Snell 1979). The actual coverage of these intervals is frequently
lower than the chosen nominal level (Kaplan 1973; Neter and Loebbecke 1975; Beck
1980). In practice, auditors tend to use unconventional confidence interval limits (e.g.
Horgan 1996), such as Stringer’s (1963) bounds. This approach, however, tends to
give conservative limits with coverages larger than the nominal level.

Audit sample are often selected with “probability proportional to size” sampling
without replacement, also called “monetary-unit sampling” (MUS) (e.g. Arens and
Loebbecke 1981; Higgins and Nandram 2009). Large valued items containing the
greatest potential of large overstatement, have more chance of being sampled.

Chen et al. (2003) proposed an empirical likelihood bound for population contain-
ingmany zero values. This approach is limited to simple random sampling, and cannot
be directly usedwithMUS.An analogous parametric likelihood-based approach based
on mixture models was proposed by Kvanli et al. (1998). However, non-parametric
approaches are preferable because it avoids making assumption about the distribution
of the errors. We propose to use Berger and Torres’s (2016) non-parametric weighted
empirical likelihood approach, which takes into account of the unequal selection prob-
abilities inherent withMUS. Empirical likelihood providing confidence bounds driven
by the distribution of the data (Owen 2001); that is, it tends to give large upper bounds
with skewed data. This makes it particularly suitable for MUS. Bootstrap is another
well-knownnon-parametric approach for confidence bounds.However, itmay perform
poorly with data containing many zero errors. In this paper, we compare numeri-
cally the empirical likelihood bound proposed by Berger and Torres’s (2016) with the
Stringer’s (1963) bound.

This paper is organized as follows. Section 2 describesMUS and the point estimator
of the total overstatement error. In Sect. 3, we describe the empirical bound proposed,
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the Stringer’s (1963) bound and other alternative bounds. The results of the simulation
study are presented in Sect. 4.

2 Statistical samplingmethod in auditing

An accounting population consists of N line items with recorded (or book) values,
{zi : i = 1, . . . , N }, where zi > 0. The audited (correct) amount of the N line items
in the population is denoted by {xi : i = 1, . . . , N }. The values xi are unknown before
sampling, whereas zi are known.

The error in item i, is yi := zi − xi . When yi > 0, the i-th item is overstated and
when yi < 0, it is understated. We have 100% overstatement if yi = zi . When yi = 0,
the account is error free. A large fraction of the items in the population are error free
while the non-zero errors are usually highly skewed to the right (Johnson et al. 1981;
Neter et al. 1985). The total error amount is defined as

YN :=
N∑

i=1

yi =
N∑

i=1

ti zi , (1)

where

ti := yi
zi

is called the fractional error or “taint” that is the fraction of error within zi .
The purpose is to estimate, on sample basis, the total error amount YN . More pre-

cisely, the auditors is mostly interested in obtaining an upper bound of a confidence
interval derived from an estimate of YN . If the upper bound exceeds a “tolerable error
amount” A, we conclude that there are significant material errors in the book values,
or on the contrary there are only minor errors.

Generally, the audit processes consists in selecting samples with “monetary-unit
sampling” (MUS) also called “dollar unit sampling” (Arens and Loebbecke 1981).
According to this approach, an accounting balance can be considered as a group of
monetary units that can be either correct or incorrect. If the selected monetary-unit
falls within the i th item then a taint is observed. In practice a systematic random
sample S of size n with unequal probabilities proportional to zi is often selected (e.g.
Madow 1949; Tillé 2006, Section 7.2). However, the approach proposed is not limited
to systematic sampling.

Under MUS, an audit amount xi is selected with probability πi := nzi Z
−1
N ; where

ZN :=
N∑

i=1

zi

denotes the known total book amount. We usually have nzi Z
−1
N < 1. However, with

small population or right-skewed zi , we may have nzi Z
−1
N > 1 for some units. In this
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case, we need to adjust the πi with the usual scaling method that can be found in Tillé
(2006, Sect. 2.10); that is, πi = 1 if nzi Z

−1
N > 1 and the remaining πi are adjusted

so that
∑N

i=1 πi = n. The Horvitz and Thompson (1952) estimator of YN is given by

Ŷn :=
∑

i∈S
wi yi , (2)

with wi := π−1
i . If nzi Z

−1
N ≤ 1 for all i , scaling is not needed and (2) reduces to the

mean per-unit Ŷn = ZN t̄ , where t̄ := n−1 ∑
i∈S ti is the sample mean of the taints.

3 Confidence bound for the total error amount

The interest of the auditors usually focuses on obtaining an upper confidence bound
for YN , at a specified confidence level 1 − α ∈ [0.5, 1), e.g. α = 0.05 or 0.01. If this
upper bound exceeds a tolerable error amountA, then there is statistical evidence of a
possible material error. When this bound is less thanA, we conclude that the recorded
values are a fair reflection of the accounts.

It is important to compute confidence intervals whose limits are reliable. The pres-
ence of low error rates means that yi usually have a strongly positive asymmetric
distribution, because small yi are much more frequent than large yi . As a result, the
upper limits of the naïve confidence intervals based on variance estimation and the
central limit theorem [see (13) below] can be problematic as their coverage is gen-
erally below the confidence level 1 − α (Kaplan 1973; Neter and Loebbecke 1975;
Beck 1980), because the sampling distribution is usually not normal (Stringer 1963;
Kaplan 1973; Neter and Loebbecke 1975, 1977). In addition, a negative correlation
between Ŷn and standard error estimates can increase the probability of type II error
and reduces the probability of type I error (Kaplan 1973). The lack of normality is
the main reason for not using classical statistical inference, based on the central limit
theorem (Ramage et al. 1979; Johnson et al. 1981; Neter et al. 1985; Ham et al. 1985).

Non-traditional heuristic estimation methods have been developed to overcome the
above problems (e.g. Horgan 1996). Thesemethods are known as “Combined Attribute
and Variable” (CAV) (Goodfellow et al. 1974a, b) some of which will be described in
Sects. 3.4 and 3.3. The Stringer’s (1963) bound, described in Sect. 3.3, is widely used
by auditors. Swinamer et al.’s (2004) simulation study show that the upper bound is
too conservative, with confidence level frequently greater than 1 − α.

3.1 Weighted empirical likelihood’s bounds proposed for MUS

Berger and Torres (2016) developed an empirical likelihood approach for unequal
probability sampling. We show how this method can be used to derive a confidence
bound for the total error YN .

The “maximum empirical likelihood estimator” is defined by

ŶEL = argmax �(Y ),
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where �(Y ) is the following “weighted empirical likelihood function”:

�(Y ) := max
pi :i∈S

{∑

i∈S
log(npi ) : pi > 0,

∑

i∈S
pi = 1,

∑

i∈S
piwi

(
yi − Yπi

n

)
= 0

}
, (3)

where wi := π−1
i are weights. The function (3) is different from Owen’s (1988)

and Chen et al.’s (2003) empirical likelihood functions, because the constraint within
(3) contains the adjustments wi which take into account of the fact that the yi are
selected with unequal probabilities, under MUS. The function (3) can also be adjusted
to accommodate stratification (see Berger and Torres 2016, for more details).

Using Lagrangian multipliers, we have that the set of pi that maximises∑
i∈S log(npi ) for a given Y is given by

pi (Y ) := 1

n

{
1 + wi ci (Y )�η

}−1
,

where ci (Y ) is the 2 × 1 vector function

ci (Y ) :=
{
πi ,

(
yi − Yπi

n

)}�
(4)

and η is the Lagrangian vector which is such that the constraint

n
∑

i∈S
pi (Y ) wi ci (Y ) = (n, 0)� (5)

holds. Thus, (3) reduces to

�(Y ) =
∑

i∈S
log

{
npi (Y )

} = −
∑

i∈S
log

{
1 + wi ci (Y )�η

}· (6)

This function can be calculated numerically from the observed yi (i ∈ S) and a given
value Y .

In practice, the function (3) is not needed for point estimation, because it can be
shown that ŶEL = Ŷn given by (2). This function is used to derive an upper confidence
bound. The (1− α) “empirical likelihood confidence bound” bα is the largest root of

χ2
1,1−2α − 2�(bα) = 0, (7)

where χ2
1,1−2α denotes the upper (1 − 2α)-th quantile of a χ2-distribution with one

degree of freedom. A root-finding algorithm, such that the Brent (1973) and Dekker’s
(1969) method, can be used to find bα .

The quantity bα is an upper confidence bound, because the convexity of −2�(Y )

implies that the equation χ2
1,1−2α − 2�(Y ) = 0 has two roots bL and bα , such that

bL < bα . Berger and Torres (2016) showed that

− 2�(YN)
d→ χ2

1 , (8)
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where χ2
1 denotes the χ2-distribution with one degree of freedom. Hence

Pr{−2�(YN) ≤ χ2
1,1−2α} → 1 − 2α or Pr{bL ≤ YN ≤ bα} → 1 − 2α, by using

the convexity of −2�(Y ). Thus, [bL, bα] is a two-sided (1 − 2α) confidence interval.
Hence, bα is indeed an upper confidence bound.

The computation of bα involves a root-finding algorithm. A simpler and less com-
putationally intensive approach based on a “p-value” of a one-side test, can be used
to check if bα ≤ A at a given level α, whereA denotes the “tolerable error amount”.
A p-value less than α means that bα is below A. In other words, bα ≤ A if p-value
≤ α, and bα > A otherwise. This p-value is given by

p-value := 1

2

[
1 + (−1)δ{Ŷn≤A}F{−2�(A)}

]
. (9)

This is the p-value of a one-side test. Here, F{·} is the cumulative distribution of a
χ2-distribution with one degree of freedom. Here, δ{Ŷn ≤ A} = 1 if Ŷn ≤ A and
δ{Ŷn ≤ A} = 0 otherwise. The value of F{−2�(A)} can be found from the usual
statistics table of χ2-distributions. Note that A < Ŷn implies p-value ≥ 0.5, because
F{−2�(A)} ≥ 0. It can be shown that p-value ≤ α implies 2�(A) ≥ χ2

1,1−2α and
Ŷn ≤ A. The strict concavity of (6) implies thatA is larger than the largest root bα of
(7). Hence bα ≤ A. The trivial case A < Ŷn always implies bα > A. In this case, we
always have that p-value ≥ 0.5.

Berger and Torres (2016) showed that (8) holds conditionally on {yi , πi : i =
1, . . . , N }. Property (8) relies on regularity conditions, such as the existence of fourth
moments of Ŷn , n/N → 0 and that the central limit theorem holds for Ŷn . In fact, Ŷn
may not be normally distributed, because of the skewness of the distribution of yi . It
turns out that for moderate n, simulation studies have shown that the distribution of
−2�(YN) is still well approximated by a χ2-distribution, even with skewed yi (Owen
1988; Berger and Torres 2016). Since empirical likelihood is a data driven approach,
the bound bα should capture the skewness of the yi .

3.2 Extension for large sampling fraction or strong correlation between selection
probabilities and the errors

The approach described so far relies on n/N → 0, because (8) holds under this
assumption. Berger and Torres (2016) proposed an empirical likelihood for non-
negligible n/N or when the πi are strongly correlated with the yi . We described
briefly this approach. The technical details can be found in Berger and Torres (2016)
and Berger (2018). This approach is based on a “penalised empirical likelihood func-
tion” defined by

�̃(Y ) := max
pi :i∈S

{∑

i∈S
log(npi ) − n

∑

i∈S
pi + n : pi > 0,

∑

i∈S

(
npiqi − qi − 1

n

)
= 1, n

∑

i∈S

(
piqi − qi − 1

n

)
wi

(
yi − Yπi

n

)
= 0

}
,
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where pi = n−1, if qi = 0. Here, qi = (1−πi )
1/2 are Hájek’s (1964) finite population

corrections. Note that n/N → 0 implies πi → 0 and qi → 1. If we replace qi by 1, we

have that �̃(Y ) reduces to (3). Berger and Torres (2016) showed that −2�̃(YN)
d→ χ2

1
for non-negligible n/N . Thus, the (1−α) “penalised empirical likelihood confidence
bound” b̃α is the largest quantity which is the solution to

χ2
1,1−2α − 2�̃(̃bα) = 0· (10)

The function �̃(Y ) can be calculated by using the Lagrangian method as in (6). We
expect b̃α to be smaller than bα with non-negligible n/N . The p-value of the tolerable
amount A is p-value := 0.5[1 + (−1)δ{Ŷn≤A}F{−2�̃(A)}].

Our simulation study in Sect. 4 also show that bα given by (7) can be too conser-
vative, when yi is strongly correlated with πi . This could be the case when the errors
are mainly within the tail of zi or when the πi are strongly correlated with the yi . In
these situations, b̃α is less conservative and have better coverages, even when n/N is
negligible.

The bound b̃α should be lower than bα , when the number of units with πi = 1
is large, because the variance of the sampling distribution is smaller (see Berger and
Torres 2016, for more details).

With accounting populations with a very low error rates, we may have a “zero-error
sample”; that is yi = 0 for all the sampled items. In this case, Ŷn = 0 and an auditor
evaluates the book amount as free of error. In this case, it is not be possible to obtain
empirical likelihood bounds, because the functions �(Y ) and �̃(Y ) cannot be computed
when yi = 0 for all i ∈ S. The bound b̃α cannot be computed when qi yi = 0 for all
i ∈ S; that is, when yi = 0 for all i ∈ S such that πi < 1. In this case, it may not be
possible to find pi that satisfies the constraint within �̃(Y ), for a given Y . The more
conservative bound bα can still be computed in this situation, as long as yi �= 0 for
some units with πi = 1.

3.3 The stringer bound

Suppose that we are interested in cases of overstatement, i.e. xi = zi if xi ≤ zi .
Let us also assume that the value of each overstatement does not exceed the declared
value such that 0 ≤ ti ≤ 1. Let T1, . . . , Tn be independent random variables that
describe the taints, such that Pr(0 ≤ Ti ≤ 1) = 1. Here, ti is an observation of Ti .
Let 0 ≤ t(1) ≤ t(2) ≤ . . . ≤ t(n) ≤ 1 be the ordered statistics of {T1, . . . , Tn}. Let ui
be the (1 − α) upper confidence limit for the binomial parameter when i errors are
observed in a sample of size n. The quantity ui is the unique solution to

i∑

k=0

(
n

k

)
uki (1 − ui )

n−k = α, for i = 0, 1, . . . , n − 1; (11)

with un = 1. The ui can sometimes be calculated using the Poisson approximation
instead of a binomial within (11). An upper bound for the total overstatement error
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can be obtained by combining the upper limits of the sample errors with the observed
taints. The Stringer bound, at the significance level α is defined as (e.g. Pap and van
Zuijlen 1995).

b(S)
α := ZN

{
u0 +

n∑

i=1

(ui − ui−1)t(n−i+1)

}
·

The bound relies on 0 ≤ ti ≤ 1, which is not necessary for the empirical limit bα

and b̃α . When some taints ti are negative, we can use the “Stringer offset bound” (e.g.
Clayton and McMullen 2007) given by

b(SO)

α := ZN

{
u0 +

n∑

i=1

(ui − ui−1)max(0, t(n−i+1)) + 1

n

n∑

i=1

min(ti , 0)

}
·

We have that b(SO)
α = b(S)

α , when 0 ≤ ti ≤ 1.
The Stringer bound has been extensively studied in literature and many empirical

studies confirm that the coverage level is at least equal to its nominal level. However,
this bound is very conservative (Leitch et al. 1982; Reneau 1978; Anderson and Teitle-
baum 1973; Wurst et al. 1989; Higgins and Nandram 2009) and is usually much larger
than the total error (1). This is also confirmed by the simulation study in Sect. 4. The
direct consequence is that auditors may reject an acceptable accounting populations
(Leitch et al. 1982). Bickel (1992) studied the asymptotic behaviour of the Stringer
bound and showed that in case of large samples the confidence level is frequently
higher than its nominal level. Pap and van Zuijlen (1996) showed that the Stringer
bound is asymptotically conservative. In Sect. 4, we show that the Stringer bound is
more conservative than the empirical likelihood bound. Indeed, bα and b̃α are usually
smaller than b(S)

α and have confidence levels close to α. The “Stringer offset bound”
b(SO)
α can be less conservative, when some ti are negative.
It is not possible to compute the empirical likelihood bounds (bα or b̃α) with zero-

error sample. However, the Stringer approach has the advantage of providing a bound
in this situation. Indeed, when yi = 0 for all the sampled items, ti = 0, Ŷn = 0 and
b(S)
α = ZNu0 = ZN(1 − α1/n). Since usually, Ŷn = ZN t̄ , we can view (1 − α1/n) as
an upper bound for the average taints. This upper bound decreases with n, reflecting
the fact that with a large zero-error sample, the average taint has more change of being
small.

3.4 Other confidence bounds

Fienberg et al. (1977) introduced a less conservative bound based on a multinomial
distribution derived fromMUS. The method is rather complex because it is necessary
tomaximise over a joint confidence region. Leslie et al. (1979) proposed a “cell bound”
which can be much greater than the actual error amount when we have a low error
rate (Plante et al. 1985). Dworin and Grimlund (1984, 1986) introduced the so-called
“moment bound” which is obtained by approximating the sampling distribution with
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a three-parameters gamma distribution. The method of moments is used to estimate
these parameters. Simulation studies shows that the moment bound gives coverage
close to the nominal level, and is less conservative than the Stringer bound.

Fishman (1991) showed that Hoeffding’s inequality can be used to derive a confi-
dence bound, which can bemore conservative than the Stringer bound. Howard (1994)
proposed a bound based on bootstrap and Hoeffding’s inequality. This bound is not
uniformly better than the Stringer (1963) bound, when the accounts are characterized
by low error rates.

When the non-zero accounts values can be described by a suitable parametricmodel,
Kvanli et al. (1998) showed that it is possible to use a parametric likelihood ratio statis-
tics to define a two-sided confidence interval for the mean error. The nominal value is
achieved when this parametric model holds. However, the bound depends entirely on
the parametric model. Assuming a model that does not follow the distribution of the
account may affect the coverage. The method introduced in Sect. 3.1 is very similar,
but it has the advantage of being non-parametric, because it is not necessary to assume
a model for the errors.

4 Simulation studies

In this section, we compare the numerical performance of the empirical likelihood
bounds proposed with the Stringer bound. The recorded values zi are simulated from
a skewed log-normal distribution,

log(Nzi ) ∼ N (1, σ 2 = 1.44), i = 1, . . . , N · (12)

We use this distribution, because zi are monetary values which usually follow a right-
skewed distribution. Furthermore, the main reason for using MUS is the skewness of
zi . The resultingπi , proportional to zi , are right-skewed, with someπi = 1, depending
on the values of N and n. The distribution of the taints ti is crucial, because it drives
the sampling distribution of Ŷn and the upper bounds. Indeed, when πi < 1, we have
that Ŷn = ZN t̄ and the sample mean t̄ of the taints drives the sampling distribution
of Ŷn . We shall consider uniform, and skewed distributions, with positive and negative
ti , and large fractions of ti = 0 and 1. In the different simulation setup considered, we
shall vary n as well as the distribution of ti . The values zi generated are fixed and the
same, for a given N . This isolates the effects of the distribution of the taints ti .

Consider N = 10000, 1000 and 700. The error in item i, is yi = ti zi , with
(100 − r)% of ti are equal zero and the remaining r% positive taints are generated
randomly from uniform distributions Un(tL , tU ). Here, r denotes the error rate. We
shall consider r = 2%, 5% and 10%. Several ranges of positive taints are considered:
[tL , tU ] = [0.1, 0.3], [0.2, 0.7] and [0.5, 0.7]. The values generated yi , ti , zi are
treated as fixed. The MUS sample is based on a systematic procedure with random
ordering of line items, selected with probability proportional to zi . The sample sizes
considered are n = 100, 200 and 500. We consider 1000 replications. Consider a
nominal coverage of 1 − α = 0.95. The results are given in Tables 1 and 2.
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We shall compare b(S)
α with bα , b̃α , and b(N )

α , where b(N )
α is the following naïve

bound based on the normal approximation.

b(N )

α := Ŷn + Φ−1(1 − α) v̂(Ŷn)
1
2 , (13)

where Φ(·) is the cumulative function of a standardised normal distribution and
Φ−1(1 − α) is its 1 − α quantile. Here, v̂(Ŷn) is Hartley and Rao’s (1962) consistent
variance estimator for systematic sampling. It is well known that b(N )

α tends to be too
small. Here, b(N )

α is used as a benchmark.
Several indicators are computed to assess the accuracy of the bounds. The coverage

probability of a specific bound is the proportion of replications for which a bound
is greater than or equal to the true population error amount. A bound is considered
unreliable if its coverage is significantly different from 1 − α = 0.95. The observed
mean of a bound b is denoted by Mean(b), with b = b(N )

α , bα, b̃α or b(S)
α . In the

tables, we report the value of Mean(b)/Y0.95, where Y0.95 denotes the 95% quantile
of the observed distribution of Ŷn . The quantities Mean(b)/Y0.95 give unit free values
which are usually close to 1. The uncertainty of the bound is measured by the observed
standard deviation (s.d.) of the bounds. In the tables, we have the relative efficiencies
s.d.(bα)/s.d.(b(S)

α ) and s.d.(̃bα)/s.d.(b(S)
α ). A relative efficiency larger (smaller) than

1 indicates that bα is less (more) stable than b(S)
α . We also compute the decile ranges

of bα/b(S)
α and b̃α/b(S)

α which assess the variation of bα and b̃α with respect to b(S)
α .

It will reveal that the empirical likelihood bounds are often lower and approximately
proportional to b(S)

α .
In Table 1, the sampling fraction n/N is small. The coverage of b(N )

α is significantly
smaller than 95% and b(S)

α gives large coverages. On average bα is slightly larger than
b(N )
α and smaller than b(S)

α . The bounds bα and b(S)
α have similar standard deviations.

With n = 100, the standard deviations bα is slightly larger. Some coverages of bα

may be significantly different from 95%. With n = 100, and r = 2%, about 13% of
the samples contains only zero values for yi . Those samples have been ignored when
computing the coverages. With n = 500 and r = 10%, we observe large coverages
significantly different from 95%, because in this case n/N = 0.05 is small but not
negligible enough, leading to a more conservative bound bα . With n/N = 0.05, the
bound b̃α is more suitable and should have better coverage.

In Table 2, we consider n = 200 with N = 1000 or 700; that is, n/N is not
negligible. Usually, the bound b(N )

α has a low coverage and b(S)
α has a large coverage.

The bound bα is too conservative with 100% coverage, but bα is usually smaller than
b(S)
α , because Mean(bα) ≤ Mean(b(S)

α ). The coverages of b̃α are closer to the nominal
value, because the effect of the Hájek’s (1964) corrections qi are more pronounced
than with N = 10 000, in Table 1. However, some coverages are still significantly
different from 95%. The bound b̃α is smaller than bα . The bound b̃α is mostly smaller
than b(S)

α because the upper deciles are less than 1. The bound b̃α is more stable than
b(S)
α , because we observe a smaller s.d. for b̃α . With N = 1000, the bound bα is only
slightly more stable than b(S)

α .
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Ŷ
n
.T

he
fu
nc
tio

n
s.
d
.(
·)g

iv
es

th
e
ob

se
rv
ed

st
an
da
rd

de
vi
at
io
n.
r
is
th
e
er
ro
r
ra
te
.1

00
0
re
pl
ic
at
es

†
si
gn

ifi
ca
nt
ly

di
ff
er
en
tf
ro
m

95
%

(p
-v
al
ue

≤
0.
05

)

123



Bounds for monetary-unit sampling in auditing… 2751

Table 2 ti ∼ U (tL , tU ) and N = 700 or 1000

N [tL ; tU ] r Coverages (%) Mean(b)/Y0.95
s.d.(̃bα)

s.d.(b(S)
α )

Decile range of b̃α/b(S)
α

b(N )
α bα b̃α b(S)

α bα b̃α b(S)
α

700 [0.1 ; 0.3] 2% 88.7† 100† 96.1 100† 1.00 1.06 2.45 0.85 [0.38 ;0.47]

5% 92.4† 100† 95.2 100† 1.00 1.03 1.56 0.86 [0.63 ;0.68]

10% 92.9† 100† 95.3 100† 1.00 1.02 1.41 0.85 [0.71 ;0.74]

[0.2 ; 0.7] 2% 87.9† 100† 91.4† 100† 0.98 1.04 1.33 0.99 [0.74 ;0.82]

5% 92.0† 100† 93.7 98.5† 1.00 1.02 1.14 0.87 [0.88 ;0.91]

10% 92.4† 100† 94.6 99.8† 1.00 1.02 1.23 0.85 [0.82 ;0.84]

[0.5 ; 0.7] 2% 87.4† 100† 94.0 98.5† 0.99 1.04 1.16 0.90 [0.87 ;0.92]

5% 90.8† 100† 93.0† 94.4 0.99 1.02 1.06 0.87 [0.94 ;0.98]

10% 93.4† 100† 94.6 97.5† 1.00 1.02 1.09 0.84 [0.93 ;0.96]

1000 [0.1 ; 0.3] 2% 87.6† 100† 92.7† 100† 0.99 1.07 2.28 0.99 [0.39 ;0.52]

5% 89.0† 100† 94.3 100† 0.97 1.02 1.88 0.93 [0.48 ;0.59]

10% 91.9† 100† 94.0 100† 0.99 1.01 1.45 0.94 [0.67 ;0.72]

[0.2 ; 0.7] 2% 85.6† 100† 90.7† 100† 0.98 1.05 1.36 1.05 [0.69 ;0.82]

5% 89.9† 100† 94.7 99.9† 0.99 1.04 1.27 0.94 [0.79 ;0.84]

10% 90.8† 100† 93.3† 99.3† 1.00 1.02 1.15 0.93 [0.87 ;0.89]

[0.5 ; 0.7] 2% 87.8† 100† 93.6† 99.6† 0.96 1.03 1.26 0.97 [0.77 ;0.85]

5% 89.9† 100† 95.0 99.3† 1.00 1.05 1.20 0.93 [0.85 ;0.88]

10% 93.7 100† 96.1 99.5† 1.00 1.02 1.13 0.93 [0.90 ;0.91]

N = 700 or 1000. Sample size n = 200. Coverages (%).Nominal level = 1−α = 95%.Mean(b) denotes the

observed mean, with b = bα, b̃α or b(S)
α . The quantity Y0.95 is the 95% quantile of the observed distribution

of Ŷn . The function s.d.(·) gives the observed standard deviation. r is the error rate. 1000 replicates
† significantly different from 95% (p-value ≤ 0.05)

For the next series of simulations, we consider the situation when the errors are
only in the right tail, which could be the case with fraudulent behaviour. Let Z1−r

denote the 1 − r quantile of zi generated from (12), where r denotes the error rate.
We generate ti randomly from uniform distributions Un(tL , tU ), when zi > Z1−r .
If zi ≤ Z1−r , we set ti = 0. We consider r = 2%, 5% and 10%. The ranges are
[tL , tU ] = [0.1, 0.3], [0.2, 0.7] and [0.5, 0.7]. Since the errors are in the right tail,
we expect a strong correlation between πi and yi . The results are given in Table 3.
The coverages of bα are larger than with b̃α . Usually, we observe coverages closer to
95% with b̃α . The Stringer bound b(S)

α has a very large coverage and is usually larger
than b̃α . The coverage of b

(N )
α is smaller than b̃α , when n = 100. Most coverages of

b(N )
α are not significantly different from 95%, when n > 100. The bound bα is more
conservative than b̃α , even when n/N is negligible, because of the following reasons.
Some πi can be large even when n/N is negligible; thus some qi can be very different
from 1 for the units that are more likely to be selected. Furthermore, the correlation
between yi and πi makes b̃α less conservative, because the self-normalising property
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of �̃(Y ) implies that �̃(Y ) can be approximated by a quadratic form (Berger and Torres
2016) involving a small variance because of qi and the correlation between yi and πi

(e.g. Rao 1966). The bound b̃α seems to be the most appropriate.
Now, we consider the situation when we have 100% overstatement for some items;

that is, we allow ti = 1, for some i . We also consider a right-skewed beta-distribution
for 0 < ti < 1. Consider (100 − r)% of ti are equal zero and (1 − γ )r% taints
generated randomly from a Beta(2, 5) distribution. The remaining γ r% taints are
equal to one. We consider N = 10, 000, with n = 100, 200 and 500. The error rates
are r = 2%, 5% and 10%. The fraction γ of taints equal to one among the ti > 0, is
γ = 10%, 20% or 40%. Systematic sampling is used, with probability proportional
to zi . The results are given in Table 4. We also observe low coverages for b(N )

α and a
large coverage for b(S)

α .
By comparing Table 4 with Table 1, we see that we have a lower coverage for bα

with n = 100, when r = 2% or 5%. In these situations, the bound bα has larger s.d.

than b(S)
α . We have Mean(b(S)

α )/Y0.95 < 2. In Table 1, this ratio can be larger than 2 for
r = 2%. With r = 10%, the coverage of bα is the closest to 95%. The fraction γ of
ti = 1 does not seem to affect the precision and the coverage of bα .

For the last series of simulation,we consider understatements; that is negative taints.
We follow approximately Clayton and McMullen’s (2007) simulation setup. Now, r
denotes the fraction of ti > 0, and ν represents the fraction of ti < 0, which are given
by ti = −ai , with ai generated randomly from a Beta(2, 5) distribution. The fraction
of ti = 0 is given by (100 − r − ν)%. We have (1 − γ )r% taints between 0 and
1, following a Beta(2, 5) distribution. The fraction of ti = 1 is γ r%. We consider
γ = 20%, N = 10, 000 and n = 200. The fraction of ti > 0 is r = 2%, 5% or 10%.
The fraction ν of ti < 0 is ν = 2%, 5% or 10%. Systematic sampling is used, with
probability proportional to zi . The results are given in Table 5.

For Tables 4 and 5, the positive taints are generated the same way with γ = 20%.
The differences observed between Tables 4 and 5 can be just due to the negative
taints. We notice that the coverage of b(SO)

α can be lower than 95% and decreases with
ν, because the Stringer offset bound b(SO)

α is used. The offset reduces the bound and is
more pronounced with large ν. We observe large coverages for b(N )

α . The coverages
of bα are the closest to 95%, in all cases. We observed lower coverages in Table 4 for
n = 100, because the distribution of the taints is more skewed than in Table 5. Note
that we have smaller s.d for bα compared to b(SO)

α . The large values of Mean(b)/Y0.95
observed in Table 5 are due to the fact that Y0.95 can be close to zero.

In Table 2, the number of units with πi = 1 is 46 with N = 700 and 33 with
N = 1000. With N = 10 000 and n = 500, we only have 5 units with πi = 1
(Tables 1, 3, 4 and 5). For n = 100, 200 and N = 10 000, we have πi < 1 for all
i . These numbers are the same for different distribution of taints, because we use the
same zi generated by (12), for a given N . We expect b̃α to be noticeably lower than
bα , when the number of units with πi = 1 is large. This is what we observe in Table 2.
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5 Conclusions

Our simulation study confirms that the naïve bound based on the central limit theorem
can be too small, with an observed coverage significantly lower than the nominal
level. On the other hand, the Stringer bound is too conservative, with a coverage
close to 100%, unless we have understatements. The empirical bounds proposed have
coverages closed to the nominal level and usually lies between the naïve bound and
the Stringer bound. The penalised empirical likelihood bound described in §3.2 seems
to be the most appropriate, because it takes into account of the sampling fraction and
possible correlation between the error and the selection probabilities. For example,
when the errors are mainly within the tail of the recorded values, better bounds are
obtained with the penalised empirical likelihood approach, even with small n/N .
We recommend using the penalised empirical bound, because it has better observed
coverages and may be more stable than the stringer bound.

Both empirical likelihood bounds have the advantage of respecting the confidence
level and of being less conservative than the Stringer bounds. However, they are more
numerically intensive than the Stringer bound, because they rely on a Lagrangian
parameter. The approach based onp-values is a simpler alternative to check if total error
exceed a tolerable error amount. We need to compute �(A) which requires solving (5)
with a root-search method, to obtain the value of η for Y = A. Once η is known, �(A)

can be computed from (6). The analogue to (5) for the penalised version of Section 3.2
can be easily derived. Computing the bound bα (or b̃α) is more numerically intensive
than the approach based on p-values, because it involves η for different values of Y ,
in order to solve (7) (or (10)).

Like the Stringer bound, both empirical likelihood bounds may not be suitable with
very small sample sizes. It cannot provide a bound for samples containing no errors.
It can be unstable with sample containing a tiny amount of errors. Recent empirical
likelihood approaches tackle the former (e.g. Chen et al. 2003, 2008; Jing et al. 2017)
but the are not designed to handle unequal probability sampling, used in MUS. It
would be useful to investigate how these extensions can be used under MUS.
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