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YOUNG EQUATIONS WITH SINGULARITIES

DAVIDE ADDONA, LUCA LORENZI, AND GIANMARIO TESSITORE

Abstract. In this paper we prove existence and uniqueness of a mild solution
to the Young equation dy(t) = Ay(t)dt + σ(y(t))dx(t), t ∈ [0, T ], y(0) = ψ.
Here, A is an unbounded operator which generates a semigroup of bounded
linear operators (S(t))t≥0 on a Banach space X, x is a real-valued η-Hölder
continuous. Our aim is to reduce, in comparison to [4] and [1] (see also [2, 5]),
the regularity requirement on the initial datum ψ eventually dropping it.

The main tool is the definition of a sewing map for a new class of increments
which allows the construction of a Young convolution integral in a general
interval [a, b] ⊂ R when the Xα-norm of the function under the integral sign
blows up approaching a and Xα is an intermediate space between X and D(A).

Mathematics Subject Classification: Primary: 35R60; Secondary: 60H05, 60H15,
47D06.
Keywords: Nonlinear Young equations, Mild solutions and their smoothness, Semi-
groups of bounded operators, Singular convolution integral.

1. Introduction

This paper is devoted to the study of the existence, uniqueness and regularity of
the mild solution to the non-linear evolution problem

dy(t) = Ay(t)dt + σ(y(t))dx(t), t ∈ [0, T ], y0 = ψ, (1.1)

when the operator A : D(A) ⊂ X → X generates a semigroup of linear bounded
operators (S(t))t≥0 on X , with smoothing effects, and x is a η-Hölder continuous
function with values in a suitable space. By mild solution of (1.1) we mean a
function y which satisfies the equation

y(t) = S(t)ψ +

∫ t

0

S(t− r)σ(y(r))dx(r), t ∈ [0, T ]. (1.2)

We stress that, since x has not finite variation, the integral appearing in the above
formula has to be intended in a non-obvious sense. Integrals such as

∫ t

s

y(r)dx(r), (1.3)

when neither x or y have bounded variation, have been introduced by L.C. Young in
[9] when x and y have finite p-variation1 and q-variation, respectively, with 1

p+
1
q > 1

(equivalently, when y is β-Hölder continuous and x is η-Hölder continuous with
β + η > 1), and are therefore called Young integrals. In [8], T. Lyons extended

1A function z : [a, b] → X has finite r-variation if the supremum of
∑n

j=1
‖z(tj ) − z(tj−1)‖

r

over all the partitions Π = {a = t0 < t1 < . . . < tn = b} of [a, b] is finite.

1
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the definition of the integral in (1.3) when 1
p + 1

q < 1 (i.e., when β + η < 1) by

adding some “structure” to the irregular path x giving birth to the rough-paths
theory. A different approach has been developed by M. Gubinelli in [3], where the
rough integral is defined as the unique solution of an algebraic problem under some
analytic conditions. Here, we follow this approach and we limit ourselves to solve
(1.2) in the Young case.

The evolution equation (1.1) in infinite dimensional spaces was first addressed
in [4]. It is clear that the key point consists of the definition of the convolution
integral

∫ t

s

S(t− r)ϕ(r)dx(r) (1.4)

for suitable functions ϕ and Hölder continuous path x defined on [0, T ]. This is
done in [4, 5] by adapting the sewing map approach to the case of convolutions.
Given A : [a, b]2< → X , where [a, b]2< := {(s, t) : a ≤ s ≤ t ≤ b}, the authors of [4, 5]

defined the ‘convolutional’ increment (δ̂A)(r, s, t) := A(r, t)−A(s, t)−S(t−s)A(r, s)

for a ≤ r ≤ s ≤ t ≤ b and proved that, if ‖(δ̂A)(r, s, t)‖X ≤ C|t − r|µ for every
a ≤ r ≤ s ≤ t ≤ b and some constants C > 0 and µ > 1, then the limit

R(s, t) := lim
|Π(s,t)|→0

n∑

i=1

S(t− ti)A(ti−1, ti), (s, t) ∈ [a, b2]<, (1.5)

exists (here Π(s, t) is a partition of [s, t] and |Π(s, t)| is its mesh). The convolution
integral can then be defined by:

I (s, t) := A(s, t)−R(s, t), (s, t) ∈ [a, b]2<, (1.6)

and, with the special choice A(s, t) = S(t − s)ϕ(s)(x(t) − x(s)) for every a ≤ r ≤
s ≤ t ≤ b, where x is a real-valued η-Hölder continuous function and ϕ : [a, b] → X
verifies ‖ϕ(t)−S(t− s)ϕ(s)‖X ≤ C|t− s|β for every a ≤ s ≤ t ≤ b and some β > 0,
with η + β > 1, the above construction suggests to set

∫ t

s

S(t− r)ϕ(r)dx(r) := I (s, t), (s, t) ∈ [a, b]2<.

Once the convolution integral in (1.4) is defined, its properties allow proving ex-
istence and uniqueness of the mild solution to (1.1) by means of a fixed-point
argument. We underline that a crucial assumption in [4, 5] is that the initial da-
tum ψ belongs to an intermediate space Xα between X and D(A) with η + α > 1.
Moreover, the solution lives in the same space Xα with no gain of regularity. On
the contrary, in the classical case, see for instance [6] or [7], i.e., when x is smooth
and A generates an analytic semigroup, then no regularity assumptions on ψ are
needed (in particular, we can choose ψ ∈ X). Moreover, if the intermediate spaces
are interpolation spaces of indexes α and ∞ and the initial datum belongs to any
of such spaces, then y(t) ∈ D(A) for every t ∈ (0, T ] and y satisfies (1.1) in the
original differential form.

This consideration was the starting point of [1], where the second of the limita-
tions described above is tackled. To be more specific, in [1] equation (1.2) is studied
when x is a real-valued η-Hölder continuous path with η > 1

2 . We showed that the
mild solution y to (1.1) becomes more regular as soon as it leaves 0, that is, still
under the assumption that ψ ∈ Xα with α + η > 1, we proved that y(t) ∈ D(A)
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for every t ∈ (0, T ]. Moreover, an estimate of the blow-up of ‖y(t)‖D(A) when t
approaches 0 has been proved. Thanks to this result, we also provided an integral
representation of the solution y, which yields a chain rule for F ◦ y when F is a
smooth function.

The aim of the present paper is to overcome the first of the two limitations
described above, namely the regularity request ψ ∈ Xα, with α + η > 1, on the
initial datum ψ. We investigate here the properties of the mild equation (1.1) when
ψ belongs to a larger spaceXθ with 0 ≤ θ < α. Under such weaker assumptions, the
function t 7→ ‖S(t)ψ‖α has a singularity at 0, thus the definition of the convolution
integral (1.4) has to be extended to the case when the function f has a singularity
at 0. First, we modify the construction of the sewing map introducing a different
notion of increment: given g : [a, b]2< → X , we set (δSg)(r, s, t) := S(s− r)g(r, t) +
g(s, t)− S(s− r)g(r, s) for every a ≤ r ≤ s ≤ t ≤ b and prove, see Proposition 2.8,
that the limit

R(s, t) := lim
|Π(s,t)|→0

n∑

i=1

S(t− ti−1)g(ti−1, ti), (s, t) ∈ [a, b]2<, (1.7)

exists whenever ‖(δSg)(r, s, t)‖X ≤ C|t− r|µ for every a ≤ r ≤ s ≤ t ≤ b and some
constants C > 0 and µ > 1. We notice that in (1.7), differently from what happens
in (1.5), the semigroup (S(t))t≥0 is never evaluated at 0, since ti−1 < t = tn for
every i = 1, . . . , n. This allows exploiting the regularizing properties of (S(t))t≥0

in order to deduce regularizing properties for the convolution integral I defined as
in (1.6).

Then, see Theorem 2.12, we go further and, taking advantage of the regularity
of the convolution integral, we extend the definition of (1.4) when the continuous
function ϕ : (a, b] → Xα has a singularity of order γ > 0 at a and there exist
constants C > 0, ρ > 1 − η, β ∈ [0, α] and γ ∈ (0, 1) such that ‖ϕ(t) − S(t −
s)ϕ(s)‖Xβ

≤ C|t− s|ρ|s− a|−γ for every a < s ≤ t ≤ b. Roughly speaking, we use

Proposition 2.8 to define the value of
∫ t

s
S(t− r)ϕ(r)dx(r) when (s, t) ∈ [a+ θ, b]2<,

for every θ ∈ (0, b−a), and then we exploit its regularity in order to extend it up to
s = a. We also prove estimate (2.23) which is an essential tool when dealing with
equation (1.2).

Eventually, taking into account estimates (2.23) on the singular convolution in-
tegral, we are in a position prove existence, uniqueness and smoothness of the mild
solution to (1.1) with x ∈ Cη([0, T ]), η ∈ (1/2, 1), and general initial datum ψ ∈ Xθ

with, possibly, η+ θ < 1. This is firstly done in Subsection 3.1, when, besides other
technical assumptions (see Hypotheses 3.2), σ is globally Lipschitz continuous on
a regular space Xα with α + η > 1. Then, see Subsection 3.2, we allow σ to be
only locally Lipschitz continuous in Xα. This framework turns out to be suitable to
treat parabolic equations in spaces of continuous functions, see Example 3.14. Fi-
nally, in Subsection 3.3, we drop the above-mentioned local Lipschitzianity request
on σ and only require that σ′ is locally Lipschitz continuous from Xα to the larger
space X . This allows treating, for instance, one-dimensional parabolic equations in
L2-spaces, see Example 3.18.

The paper is organized as follows. In Section 2, we first state the general as-
sumptions and describe the functional spaces that will be used in the paper. In
Subsection 2.2, we present our version of the sewing map, construct the convolu-
tion integral and study its regularity. Next, in Subsection 2.3 we extend the above
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results to the case of functions with singularities. Finally, Section 3 is devoted to
the study of equation (1.2).

Notation. For every a, b ∈ R, with a < b, we set [a, b]n< := {(t1, . . . , tn) : a ≤ t1 ≤
t2 ≤ . . . ≤ tn ≤ b} and (a, b]n< := {(t1, . . . , tn) : a < t1 ≤ t2 ≤ . . . ≤ tn ≤ b}.
By Π(a, b) we denote a partition of the interval [a, b], i.e., Π(a, b) := {t0 = a <
t1 < . . . < tn = b} for some n ∈ N. |Π(a, b)| is the amplitude of the partition, i.e.,
|Π(a, b)| := maxi=1,...,n |ti − ti−1|, and the limit |Π(a, b)| → 0 is meant as limit on
direct sets. Finally, we denote by B : (0,∞) × (0,∞) → R the Euler β-function

defined by B(α, β) =

∫ 1

0

tα−1(1 − t)β−1dt for every α, β ∈ (0,∞).

2. The sewing map and the convolution integral for singular
functions

2.1. Main assumptions, spaces of functions and increments.

Hypotheses 2.1. (i) A : D(A) ⊂ X → X is the generator a semigroup of

bounded operators (S(t))t≥0 on the Banach space X.

(ii) For every λ ∈ [0, 3), there exists a space Xλ (with the convention that X0 = X
and X1 = D(A)) such that if β < λ then Xλ is continuously embedded into

Xβ. We denote by Kλ,β a positive constant such that ‖x‖β ≤ Kλ,β‖x‖λ for

every x ∈ Xλ;

(iii) for every ζ, λ ∈ [0, 3), with ζ ≤ λ, and µ, ν ∈ [0, 1], with µ > ν, there exist

positive constants Lζ,λ,T , and Cµ,ν,T , which depend on T , such that2

{
(a) ‖S(t)‖L (Xζ ,Xλ) ≤ Lζ,λ,T t

−λ+ζ ,

(b) ‖S(t)− I‖L (Xµ,Xν) ≤ Cµ,ν,T t
µ−ν ,

(2.1)

for every t ∈ (0, T ];
(iv) S(t) is injective for every t ≥ 0.

Remark 2.2. Conditions (2.1) imply that the function t 7→ S(t) is continuous in
(0,+∞) with values in L (X). Indeed, fix t0 > 0, t ∈ (t0/2, 2t0) and λ > 0. Using
(2.1), we can estimate

‖S(t)x− S(t0)x‖X =‖(S(t ∨ t0 − t ∧ t0)− I)S(t0 ∧ t)x‖X

≤Cµ,0,2t0 |t− t0|
λ‖S(t0 ∧ t)x‖Xλ

≤2λCλ,0,2t0L0,λ,2t0t
−λ
0 ‖x‖X |t− t0|

λ

for every x ∈ X so that the function t 7→ S(t) is continuous at t0 with values
in L (X). On the other hand, we stress that we do not require continuity of the
function t 7→ S(t)x at t = 0.

Example 2.3. If A is a sectorial operator on X, then Hypotheses 2.1 are satisfied

with Xλ = DA(λ,∞) for every λ ∈ (0, 2), X2 = D(A2) and Xλ = {x ∈ D(A2) :
A2x ∈ DA(λ− 2,∞)} if λ ∈ (2, 3).

Let a(s, t) := S(t − s) − IdX for every (s, t) ∈ [a, b]2<. Following [5], for every

n ∈ N we introduce the operator δ̂n : C([a, b]n<;Xλ) → C([a, b]n+1
< ;Xλ) defined by

(δ̂nf)(t1, . . . , tn+1) :=(δnf)(t1, . . . , tn+1)− a(tn, tn+1)f(t1, . . . , tn)

2When no confusion may arise, we do not indicate the dependence of the constants on T .
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:=

n+1∑

j=1

(−1)n−jf(t1, . . . , tn+1)
∧j − a(tn, tn+1)f(t1, . . . , tn)

:=
n∑

j=1

(−1)n−jf(t1, . . . , tn+1)
∧j − S(tn+1 − tn)f(t1, . . . , tn)

for every f ∈ C([a, b]n<;Xλ) and (t1, . . . , tn+1) ∈ [a, b]n+1
< , where, for every j =

1, . . . , n + 1, (t1, . . . , tn+1)
∧j is the vector, with n components, obtained from

(t1, . . . , tn+1) erasing the j-th element. In particular, if n = 1, then we have

(δ̂1f)(s, t) = f(t)− f(s)− a(s, t)f(s) = f(t)− S(t− s)f(s), (s, t) ∈ [a, b]2<,

and, if n = 2, then we have

(δ̂2f)(r, s, t) :=f(r, t)− f(r, s)− f(s, t)− a(s, t)f(r, s)

=f(r, t)− f(s, t)− S(t− s)f(r, s)

for every (r, s, t) ∈ [a, b]3<.

Definition 2.4. Let α, β and γ be nonnnegative constants. Then, Cβ([a, b];Xα),
as usual, denotes the Banach space of Holder continuous functions from [a, b] to
Xα. Moreover:

(i) C β([a, b]2<;Xα) is the set of continuous functions f : [a, b]2< → Xα such that

f(s, s) = 0 for every s ∈ [a, b] and

‖f‖Cβ([a,b]2<;Xα) := sup
a≤s<t≤b

‖f(s, t)‖Xα

(t− s)β
<∞.

Similarly, C β([a, b]3<;Xα) is the set of continuous functions f : [a, b]3< → Xα

such that f(r, s, t) = 0 when r = s or s = t and

‖f‖Cβ([a,b]3<;Xα) := sup
a≤r<s<t≤b

‖f(r, s, t)‖Xα

(t− r)β
<∞.

(ii) C−γ((a, b];Xα) is the set of continuous functions f : (a, b] → Xα such that

‖f‖C−γ((a,b];Xα) := sup
t∈(a,b]

(t− a)γ‖f(t)‖Xα <∞.

If γ = 0, then we set Cb((a, b];Xα) := C0((a, b];Xα);

(iii) C β
−γ((a, b]

2
<;Xα) is the set of continuous functions f : (a, b]2< → Xα such that

f(s, s) = 0 for every s ∈ (a, b] and

‖f‖
C

β
−γ((a,b]

2
<;Xα) := sup

a<s<t≤b
(s− a)γ

‖f(s, t)‖Xα

(t− s)β
<∞.

Similarly, C β
−γ((a, b]

3
<;Xα) is the set of the continuous functions f : (a, b]3< →

Xα such that f(r, s, t) = 0 when r = s or s = t and

‖f‖
C

β
−γ((a,b]

3
<;Xα) := sup

a<r<s<t≤b
(r − a)γ

‖f(r, s, t)‖Xα

(t− r)β
<∞.

We introduce a new increment and an operator acting on functions f : [a, b]n< →
X .
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Definition 2.5. For every n ∈ N and every function f : [a, b]n< → X, we set:

(δS,1f(t1, t2)) :=S(t1 − a)(f(t2)− f(t1)),

(δS,nf)(t1, . . . , tn+1) :=
n−1∑

i=1

(−1)n−if((t1, . . . , tn+1)
∧i)

+ S(tn − tn−1)[f(t1, . . . , tn−1, tn+1)− f(t1, . . . , tn)].

Further, for every n ∈ N, f : [a, b]n< → X and (t1, . . . , tn) ∈ [a, b]n<, we set

(S1f)(t) = S(t− a)f(t), if n = 1, and (Snf)(t1, ..., tn) := S(tn − tn−1)f(t1, ..., tn),
if n ≥ 2.

Lemma 2.6. For every n ∈ N and every function f : [a, b]n< → X, it holds that

δ̂nSnf = Sn+1δS,nf. (2.2)

Proof. Fix f : [a, b]n< → X . From the definition of the operators δ̂n and δS,n it
follows that

(δ̂nSnf)(t1, . . . , tn+1)

=

n+1∑

i=1

(−1)n−i(Snf)((t1, . . . , tn+1)
∧i)− a(tn, tn+1)(Snf)(t1, . . . , tn)

=(−1)n−1S(tn+1 − tn)f(t2, . . . , tn+1) + (−1)n−2S(tn+1 − tn)f(t1, t3 . . . , tn+1)

+ . . .+ S(tn+1 − tn−1)f(t1, . . . , tn−1, tn+1)− S(tn+1 − tn−1)f(t1, . . . , tn)

=S(tn+1 − tn)

( n−1∑

i=1

(−1)n−if((t1, . . . , tn+1)
∧i)

+ S(tn − tn−1)[f(t1, . . . , tn−1, tn+1)− f(t1, . . . , tn)]

)

for every (t1, . . . , tn+1) ∈ [a, b]n+1
< and the term in brackets is (δS,nf)(t1, . . . , tn+1).

The following result is the analogous of [5, Proposition 3.1], which deals with

the increment δ̂n.

Lemma 2.7. Im(δS,n) = Ker(δS,n+1) for every n ∈ N.

Proof. Let us begin by proving the inclusion Im(δS,n) ⊆ Ker(δS,n+1). For this
purpose, we fix a function g ∈ Im(δS,n) and let f : [a, b]n< → X be such that g =

δS,nf . From Lemma 2.6 it follows that δ̂nSnf = Sn+1g. Clearly, the function δ̂nSnf

belongs to the range of the operator δ̂n which, by [5, Proposition 3.1], coincides with

the kernel of the operator δ̂n+1. Therefore, by applying (2.2) with n replaced by
n+ 1 we infer that

0 =δ̂n+1δ̂nSnf = δ̂n+1Sn+1g = Sn+2δS,n+1g.

Since each operator S(t) is one to one, we conclude that δS,n+1g = 0, so that g
belongs to the kernel of the operator δS,n+1.

To prove the inclusion “⊃”, we fix a function f : [a, b]n+1
< → X such that

δS,n+1f = 0 and consider the function g : [a, b]n< → X , defined by g(t1, . . . , tn) =



YOUNG EQUATIONS WITH SINGULARITIES 7

f(a, t1 . . . , tn) for every (t1, . . . , tn) ∈ [a, b]n<. Note that

(δS,ng)(t1, . . . , tn+1) =

n−1∑

i=1

(−1)n−if(a, (t1, . . . , tn+1)
∧i)

+ S(tn − tn−1)[f(a, t1, . . . , tn−1, tn+1)− f(a, t1, . . . , tn)]

=

n−1∑

i=1

(−1)n−if((a, t1, . . . , tn+1)
∧i+1)

+ S(tn − tn−1)[f(a, t1, . . . , tn−1, tn+1)− f(a, t1, . . . , tn)]

=

n∑

i=2

(−1)n+1−if((a, t1, . . . , tn+1)
∧i)

+ S(tn − tn−1)[f(a, t1, . . . , tn−1, tn+1)− f(a, t1, . . . , tn)]

=(δS,n+1f)(a, t1, . . . , tn+1)− (−1)nf(t1, . . . , tn+1)

=(−1)n+1f(t1, . . . , tn+1)

for every (t1, . . . , tn+1) ∈ [a, b]n+1
< . From this chain of equalities it follows that f is

the image under the operator δS,n of the function (−1)n+1g. The proof is complete.

2.2. The sewing map and the convolution integral for the new increment.
The aim of this subsection is to prove the existence of a sewing mapM for functions
in Ker(δS,3). As a byproduct, we are able to define the convolution integral for a
wide class of functions.

Proposition 2.8. Fix µ > 1, α ∈ [0, 2) and f ∈ C µ([a, b]3<;Xα)∩Ker(δS,3). Then,

there exists a unique function M ∈
⋂

0≤ε<1

C µ−ε([a, b]2<;Xα+ε) such that δ̂2M = S3f

on [a, b]3<. Moreover, for every ε ∈ [0, 1) there exists a positive constant C =
C(ε, α, µ, b− a) such that

‖M‖Cµ−ε([a,b]2<;Xα+ε) ≤ C‖f‖Cµ([a,b]3<;Xα). (2.3)

Proof. Uniqueness. Fix f ∈ C µ([a, b]3<;Xα) and let M1,M2 be two functions as in

the statement. Then, δ̂2(M1 −M2) = 0, and therefore, by [5, Proposition 3.1], it

follows that there exists a function g ∈ C([a, b];Xα) such that δ̂1g = M1 −M2 ∈
C µ([a, b]2<;Xα). From [5, Proposition 3.4] we conclude that g ≡ 0, i.e., M1 =M2.

Existence. Since f ∈ Ker(δS,3), from Lemma 2.7 it follows that there exists
a function g : [a, b]2< → X such that f = δS,2g. Lemma 2.6 shows that S3f =

S3δS,2g = δ̂2S2g. If we set ψ := S2g, then we get δ̂2ψ = S3f .
Since the rest of the proof is rather long, we split it into several steps. In Step

1, we construct the function M . Unfortunately, from the way the function M is

defined, is not easy to prove that δ̂2M = S3f . Hence, in Steps 2 to 4, we prove
that, for every s, t ∈ [a, b], with s < t, it holds that

M(s, t) = ψ(s, t)− lim
|Π(s,t)|→0

n∑

i=1

S(t− ti)ψ(ti−1, ti), (2.4)

in Xα, where Π(s, t) := {s = t0 < t1 < . . . < tn = t} is a partition of [s, t]. Using
this formula, in Step 5 we complete the proof.
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Step 1. Let us fix (s, t) ∈ [a, b]2<, with s < t, and for every n ∈ N ∪ {0} let us
consider the partition

Πn(s, t) := {s = rn0 < . . . < rn2n = t}, rni := s+ i
t− s

2n
, i = 0, . . . , 2n, (2.5)

of [s, t]. For every n ∈ N ∪ {0}, we set

Mn(s, t) := ψ(s, t)−

2n∑

i=1

S(t− rni )ψ(r
n
i−1, r

n
i ). (2.6)

Moreover, Mn is a continuous function on [a, b]2< \ {(s, s) : s ∈ [a, b]}. Note that
r00 = s, r01 = t and, therefore, M0(s, t) = 0.

By straightforward computations, we get

Mn(s, t) = ψ(s, t)−
2n∑

i=1

S(t− rn+1
2i )ψ(rn+1

2i−2, r
n+1
2i )

and

Mn+1(s, t) =ψ(s, t)−

2n∑

i=1

S(t− rn+1
2i )ψ(rn+1

2i−1, r
n+1
2i )

−

2n∑

i=1

S(t− rn+1
2i−1)ψ(r

n+1
2i−2, r

n+1
2i−1)

=ψ(s, t)−
2n∑

i=1

S(t− rn+1
2i )ψ(rn+1

2i−1, r
n+1
2i )

−

2n∑

i=1

S(t− rn+1
2i )S(rn+1

2i − rn+1
2i−1)ψ(r

n+1
2i−2, r

n+1
2i−1),

so that, recalling that (S3f)(r, s, t) = S(t− s)f(r, s, t), we deduce that

Mn+1(s, t)−Mn(s, t) =
2n∑

i=1

S(t− rn+1
2i )(δ̂2ψ)(r

n+1
2i−2, r

n+1
2i−1, r

n+1
2i )

=

2n∑

i=1

S(t− rn+1
2i )(S3f)(r

n+1
2i−2, r

n+1
2i−1, r

n+1
2i )

=
2n∑

i=1

S(t− rn+1
2i−1)f(r

n+1
2i−2, r

n+1
2i−1, r

n+1
2i ).

Let us stress that, differently from the equality obtained in [5, Theorem 3.5], the
argument of S(·) is always greater than or equal to 2−n−1(t − s), so that it never
reaches 0. This allows to exploit the smoothing properties of the semigroup in order
to get better regularity in space. Since M0(s, t) = 0, it follows that

Mn(s, t) =

n−1∑

k=0

[Mk+1(s, t)−Mk(s, t)]. (2.7)

Each term in (2.7) belongs to Xα+ε for every ε > 0, by Hypothesis 2.1(iii)-(a).
Moreover, for every ε ∈ [0, 1) and k ∈ N ∪ {0} we can estimate

‖Mk+1(s, t)−Mk(s, t)‖Xα+ε
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≤Lα,α+ε‖f‖Cµ([a,b]3<;Xα)|t− s|µ2−kµ
2k∑

i=1

|t− rk+1
2i−1|

−ε

=Lα,α+ε‖f‖Cµ([a,b]3<;Xα)|t− s|µ2−kµ
2k∑

i=1

1

rk+1
2i − rk+1

2i−1

∫ rk+1
2i

rk+1
2i−1

|t− rk+1
2i−1|

−εdξ

≤2Lα,α+ε‖f‖Cµ([a,b]3<;Xα)|t− s|µ−12k(1−µ)

∫ t

s

(t− ξ)−εdξ

=21+k(1−µ)(1− ε)−1Lα,α+ε‖f‖Cµ([a,b]3<;Xα)|t− s|µ−ε,

where Lα,α+ε = Lα,α+ε,b−a and we have used the fact that the function ξ 7→ (t−ξ)−ε

is increasing in (s, t). It follows that the series defined in (2.7) converges in Xα+ε

as n tends to ∞.
Denote by M(s, t) the limit in Xα+ε of the sequence {Mn}. Since this sequence

uniformly converges in [a, b]2<, the function M is continuous in [a, b]2< \ {(s, s) : s ∈
[a, b]}. Using the above computations, we can easily extend M on the diagonal of
[a, b]2<, setting M(s, s) = 0 for every s ∈ [a, b]. The so obtained function, which we
still denote by M , belongs to C µ−ε([a, b]2<;Xα+ε) for every ε ∈ [0, 1) and formula
(2.3) holds true.

Step 2. This is the crucial step to prove formula (2.4). Let us fix s′, t′ ∈ [a, b] with
s′ < t′, and let us consider a partition Π(n)(s′, t′) = {s′ = rn0 < rn1 < . . . < rnn = t′}
of [s′, t′], with more than two points. We set

M̂n(s
′, t′) = ψ(s′, t′)−

n∑

i=1

S(t′ − rni )ψ(r
n
i−1, r

n
i ). (2.8)

and notice that there exists i ∈ {1, . . . , n − 1} such that rni+1 − rni−1 ≤ 2(t′−s′)
n−1 .

Indeed, suppose by contradiction that rni+1−r
n
i−1 >

2(t′−s′)
n−1 for every i = 1, . . . , n−1.

Then, from the formula

t′ − s′ =

n−1∑

i=1

(rni+1 − rni−1)− rnn−1 + rn1 ,

we get the contradiction t′ − s′ > 2(t′ − s′)− (rnn−1 − rn1 ) > t′ − s′.

Let us denote by in an element of {1, . . . , n− 1} such that rni+1 − rni−1 ≤ 2(t′−s′)
n−1

and consider the partition Π(n−1)(s′, t′) = {s′ = rn−1
0 < rn−1

1 < . . . < rn−1
n−1 = t′} ⊂

Π(n)(s′, t′) of [s′, t′], where rn−1
i = rni for every i ∈ {0, . . . , in − 1}, and rn−1

i−1 = rni
for every i ∈ {in + 1, . . . , n}. Accordingly to (2.8), we define

M̂n−1(s
′, t′) = ψ(s′, t′)−

n−1∑

i=1

S(t′ − rn−1
i )ψ(rn−1

i−1 , r
n−1
i ).

Arguing as above, we infer that there exists in−1 ∈ {1, . . . , n−2} such that rn−1

in−1+1
−

rn−1

in−1−1
≤ 2(t′−s′)

n−2 . We set rn−2
i := rn−1

i for every i ∈ {0, . . . , in−1 − 1} and

rn−2
i−1 := rn−1

i for every i ∈ {in−1+1, . . . , n− 1}. Iterating this procedure, for every

k ∈ {1, . . . , n − 1} we define a partition Π(k)(s′, t′) = {s′ = rk0 < rk1 < . . . < rkk =
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t′} ⊂ Π(k+1)(s′, t′) of [s′, t′] and a function

M̂k(s
′, t′) = ψ(s′, t′)−

k∑

i=1

S(t′ − rki )ψ(r
k
i−1, r

k
i ).

Fix k = 1, . . . , n − 1 and denote by ik+1 the index such that Π(k)(s′, t′) = {s′ =

rk+1
0 < . . . < rk+1

ik+1−1
< rk+1

ik+1+1
< . . . < rk+1

k+1}. Note that

M̂k+1(s
′, t′) =ψ(s′, t′)−

k+1∑

i=1

S(t′ − rk+1
i )ψ(rk+1

i−1 , r
k+1
i )

=ψ(s′, t′)−

ik+1−1∑

i=1

S(t′ − rk+1
i )ψ(rk+1

i−1 , r
k+1
i )

− S(t′ − rk+1

ik+1
)ψ(rk+1

ik+1−1
, rk+1

ik+1
)− S(t′ − rk+1

ik+1+1
)ψ(rk+1

ik+1
, rk+1

ik+1+1
)

−

k+1∑

ik+1+2

S(t′ − rk+1
i )ψ(rk+1

i−1 , r
k+1
i )

=ψ(s′, t′)−

ik+1−1∑

i=1

S(t′ − rki )ψ(r
k
i−1, r

k
i )−

k∑

ik+1+1

S(t′ − rki )ψ(r
k
i−1, r

k
i )

− S(t′ − rk+1
ik+1

)ψ(rk+1
ik+1−1

, rk+1
ik+1

)− S(t′ − rk+1
ik+1+1

)ψ(rk+1
ik+1

, rk+1
ik+1+1

)

so that

M̂k+1(s
′, t′)− M̂k(s

′, t′) =S(t′ − rk+1
ik+1+1

)ψ(rk+1
ik+1−1

, rk+1
ik+1+1

)

− S(t′ − rk+1
ik+1+1

)ψ(rk+1
ik+1

, rk+1
ik+1+1

)

− S(t′ − rk+1
ik+1

)ψ(rk+1
ik+1−1

, rk+1
ik+1

)

=S(t′ − rk+1

ik+1+1
)(δ̂2ψ)(r

k+1

ik+1−1
, rk+1

ik+1
, rk+1

ik+1+1
)

=S(t′ − rk+1

ik+1
)f(rk+1

ik+1−1
, rk+1

ik+1
, rk+1

ik+1+1
)

for every k = 1, . . . , n− 1. Assumption (2.1)(a) and the hypothesis on f imply that

‖M̂k+1(s
′, t′)− M̂k(s

′, t′)‖Xα ≤Lα,α‖f‖Cµ([a,b]3<;Xα)|r
k+1
ik+1+1

− rk+1
ik+1−1

|µ

≤2µLα,α(t
′ − s′)µ‖f‖Cµ([a,b]3<;Xα)k

−µ (2.9)

for every k = 1, . . . , n− 1. From M̂1(s
′, t′) = 0 it follows that

M̂n(s
′, t′) =

n−1∑

k=1

[̂Mk+1(s
′, t′)− M̂k(s

′, t′)],

and from (2.9) we infer that

‖M̂n‖Xα ≤ 2µ(t′s′)µLα,α‖f‖Cµ([a,b]3<;Xα)

n−1∑

k=1

k−µ ≤ Cµ‖f‖Cµ([a,b]3<;Xα)(t
′ − s′)µ,

(2.10)

where Cµ := 2µLα,α

∑∞
k=1 k

−µ.
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Step 3. Let us fix s, t ∈ [a, b], with s < t, and let Π1(s, t) = {s = u0 < u1 < . . . <
um = t} and Π2(s, t) = {s = w0 < w1 < . . . < wh = t} be two partitions of [s, t]
with Π1(s, t) ⊂ Π2(s, t). For every i = 1, . . . ,m, let us denote by sij, j = 0, . . . , ji,

the elements of Π2(s, t) which satisfy ui−1 = si0 < si1 < . . . < siji = ui. If we set

MΠ1(s, t) :=ψ(s, t)−

m∑

i=1

S(t− ui)ψ(ui−1, ui),

MΠ2(s, t) :=ψ(s, t)−

h∑

j=1

S(t− wj)ψ(wj−1, wj)

=ψ(s, t)−

m∑

i=1

ji∑

j=0

S(t− sij)ψ(s
i
j−1, s

i
j),

then we get

MΠ1(s, t)−MΠ2(s, t) =

m∑

i=1

(
S(t− ui)ψ(ui−1, ui)−

ji∑

j=0

S(t− sij)ψ(s
i
j−1, s

i
j)

)

=

m∑

i=1

S(t− ui)

(
ψ(ui−1, ui)−

ji∑

j=0

S(ui − sij)ψ(s
i
j−1, s

i
j)

)
.

Thanks to (2.10) we can estimate every term of the above sum by setting s′ = ui−1

and t′ = ui for every i = 1, . . . ,m. It follows that

‖MΠ1(s, t)−MΠ2(s, t)‖Xα ≤Lα,αCµ‖f‖Cµ([a,b]3<;Xα)

m∑

i=1

(ui − ui−1)
µ

≤Lα,αCµ‖f‖Cµ([a,b]3<;Xα)|t− s| max
i=1,...,m

(ui − ui−1)
µ−1.

(2.11)

Step 4. Now, we are ready to prove (2.4). We fix s, t ∈ [a, b], with s < t, and
ε > 0, and we prove that, if we choose δ := [(4Lα,αCµ‖f‖Cµ([a,b]3<;Xα)(t−s))

−1ε]∧1,

then for every partition Π(s, t) = {s = t0 < t1 < . . . < tn = t} of [s, t], with
|Π(s, t)| ≤ δ, we get

∥∥∥∥M(s, t)− ψ(s, t) +

n∑

i=1

S(t− ti)ψ(ti−1, ti)

∥∥∥∥
Xα

≤ ε. (2.12)

This will yield (2.4).
We fix a partition Π(s, t) of [s, t] as above and set

MΠ(s, t) = ψ(s, t)−

n∑

i=1

S(t− ti)ψ(ti−1, ti).

We recall that there exists m ∈ N such that, for every m ≥ m, it holds that
‖M(s, t)−Mm(s, t)‖Xα ≤ ε/2, where Mm(s, t) has been defined in (2.6) for every
m ∈ N ∪ {0}. Without loss of generality, we may assume m ≥ log2(δ

−1(t − s)),
which implies that t−s

2m ≤ δ. Therefore,

‖M(s, t)−MΠ(s, t)‖Xα ≤‖M(s, t)−Mm(s, t)‖Xα + ‖Mm(s, t)−MΠ(s, t)‖Xα

≤
ε

2
+ ‖Mm(s, t)−MΠ(s, t)‖Xα . (2.13)
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We set Π̂(s, t) := Πm(s, t) ∪ Π(s, t) =: {s0 = s < s1 < . . . < sh = t} for some
h ∈ {max{n, 2m}, . . . , n+2m − 1}, where Πm(s, t) has been introduced in (2.5) for
every m ∈ N ∪ {0}. We also set

MΠ̂(s, t) := ψ(s, t)−

h∑

i=1

S(t− si)ψ(si−1, si).

Since both Π(s, t) and Πm(s, t) are contained in Π̂(s, t), from estimate (2.11) we
infer that

‖Mm(s, t)−MΠ(s, t)‖Xα ≤‖Mm(s, t)−MΠ̂(s, t)‖Xα + ‖MΠ̂(s, t)−MΠ(s, t)‖Xα

≤Lα,αCµ‖f‖Cµ([a,b]3<;Xα)(|Πm(s, t)|+ |Π(s, t)|)(t− s)

≤2Lα,αCµδ‖f‖Cµ([a,b]3<;Xα)(t− s) ≤
ε

2
,

which gives (2.12) combined with (2.13).
Step 5. Now, we complete the proof, using formula (2.4) to show that

(δ̂2M)(r, s, t) = (δ̂2ψ)(r, s, t) = (S3f)(r, s, t), (r, s, t) ∈ [a, b]3<.

We first observe that

(δ̂2M)(r, r, t) =M(r, t)−M(r, t)− S(t− r)M(r, r) = 0

and (S3f)(r, r, t) = S(t − r)f(r, r, t) = 0 since, by definition of C µ([a, b]3<;Xα), f
vanishes at the points of [a, b]3< with at least two components which coincide. Hence,

(δ̂2M)(r, r, t) = (S3f)(r, r, t). In the same way, we can show that (δ̂2M)(r, s, s) =
(S3f)(r, s, s) for every a ≤ r < s ≤ b.

Let us consider the case when a ≤ r < s < t ≤ b. For this purpose, we use (2.4)
to show that, for every a ≤ r < s < t ≤ b, it holds that

(δ̂2M)(r, s, t) =M(r, t)−M(s, t)− S(t− s)M(r, s)

=ψ(r, t)− lim
|Π(r,t)|→0

n∑

i=1

S(t− ti)ψ(ti−1, ti)

− ψ(s, t) + lim
|Π(s,t)|→0

n∑

i=1

S(t− ti)ψ(ti−1, ti)

− S(t− s)ψ(r, s) + S(t− s) lim
|Π(r,s)|→0

n∑

i=1

S(s− ti)ψ(ti−1, ti)

=(δ̂2ψ)(r, s, t) − lim
|Π(r,t)|→0

n∑

i=1

S(t− ti)ψ(ti−1, ti)

+ lim
|Π(s,t)|→0

n∑

i=1

S(t− ti)ψ(ti−1, ti) + lim
|Π(r,s)|→0

n∑

i=1

S(t− ti)ψ(ti−1, ti).

Since

lim
|Π(r,t)|→0

n∑

i=1

S(t− ti)ψ(ti−1, ti)

= lim
|Π(s,t)|→0

n∑

i=1

S(t− ti)ψ(ti−1, ti) + lim
|Π(r,s)|→0

n∑

i=1

S(t− ti)ψ(ti−1, ti),
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the assertion follows at once.

Let us provide an example of a function f which satisfies the assumptions of
Proposition 2.8. The great relevance of this example will be made clear in the
second part of Subsection 2.3.

Example 2.9. Fix two positive numbers ρ and η such η + ρ > 1. Further, let x ∈

Cη([a, b]) and ϕ : [a, b] → X be such that δ̂1ϕ ∈ C ρ([a, b]2<;Xα) for some α ∈ [0, 2).
Finally, let g : [a, b]2< → Xα be the function defined by g(s, t) := (x(t) − x(s))ϕ(s)
for every (s, t) ∈ [a, b]2<. Note that

(δS,2g)(r, s, t) =− g(s, t) + S(s− r)g(r, t) − S(s− r)g(r, s)

=(x(t) − x(s))(−ϕ(s) + S(s− r)ϕ(r))

=− (x(t) − x(s))(δ̂1ϕ)(r, s) (2.14)

for every (r, s, t) ∈ [a, b]3<. This means that the function f = δS,2g belongs to

C µ([a, b]3<;Xα) with µ = η + ρ. Further, from Lemma 2.7 we infer that δS,3f = 0.
The assumptions of Proposition 2.8 are satisfied and, consequently, there exists a

unique function M ∈
⋂

ε∈[0,1)

C µ−ε([a, b]2<;Xα+ε) such that δ̂2M = S3f = S3δS,2g =

δ̂2S2g. Moreover,

‖M‖Cµ−ε([a,b]2<;Xα+ε) ≤ C‖x‖Cη([a,b]‖δ̂1ϕ‖Cρ([a,b]2<;Xα)

for every ε ∈ [0, 1) and some positive constant C = C(ε, α, µ).

Let g ∈ C([a, b]2<;Xα) be a function such δS,2g ∈ C µ([a, b]3<;Xα) for some α ∈
[0, 2) and η > 1. Following [5], we introduce the function kg : [a, b]2< → X defined
by

kg(s, t) = S(t− s)g(s, t)−M(s, t), (s, t) ∈ [a, b]2<, (2.15)

where M is the function defined in Proposition 2.8, associated to the function
f = δS,2g. Using the arguments in the last part of the proof of Proposition 2.8,
it can be easily checked that the function Ig = kg(a, ·) satisfies the condition

(δ̂1Ig)(s, t) = kg(s, t) for every (s, t) ∈ [a, b]2< and belongs to C([a, b];Xα). More-
over, Ig vanishes at t = a and this is the unique function with this property which
belongs to C([a, b];X). Indeed, suppose that J is another function in C([a, b];X)

which vanishes at t = a and satisfies the condition δ̂1J = kg. Then, the function

h = Ig − J vanishes at a and δ̂1h = 0 in [a, b]. In particular, (δ̂1h)(a, t) = 0 for
every t ∈ [a, b], which means that h(t) − S(t − a)h(a) = h(t) vanishes for every
t ∈ [a, b].

Inspired by [5], we provide the following definition.

Definition 2.10. Let g ∈ C([a, b]2<;Xα), for some α ∈ [0, 2), be such that δS,2g ∈
C µ([a, b]3<;Xα) for some µ > 1. The function Ig = kg(a, ·), where kg has been

defined in (2.15), is called convolution integral of g.

2.3. Convolution integrals with singularities. Since the map t 7→ ‖S(t)ψ‖Xα

has a singularity at t = 0 of order α−ρ if ψ ∈ Xρ, we need to extend the statement
of Proposition 2.8 when f ∈ C µ

−γ((a, b]
3
<;Xα), i.e., when the function f has a

singularity of order γ > 0 at s = a, and µ > 1. To begin with, we show that,
thanks to Proposition 2.8, we can define a unique function M on (a, b]2< which
enjoys nice properties.
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Lemma 2.11. Fix µ > 1, α ∈ [0, 2) and let g : (a, b]2< → X be a function such that

δS,2g belongs to C µ
−γ((a, b]

3
<;Xα). Then, there exists a unique function M which

belongs to
⋂

ε∈[0,1)

C µ−ε([a + θ, b]2<;Xα+ε) for every θ ∈ (0, b − a) and satisfies the

condition δ̂2M = S3δS,2g in (a, b]3<.

Proof. We begin the proof by observing that the function f = δS,2g satisfies the
assumptions of Proposition 2.8 in [a+θ, b]3< for every θ ∈ (0, b−a). Hence, for every

θ ∈ (0, b − a) there exists a unique function Mθ ∈
⋂

ε∈[0,1)

C µ−ε([a + θ, b]2<;Xα+ε)

such that δ̂2Mα = S3f in [a+ θ, b]3<.
Note that, if 0 < θ1 < θ2 < b − a, then Mθ1 and Mθ2 coincide on [a + θ2, b]

2
<.

Therefore, if for every (s, t) ∈ (a, b]2< we setM(s, t) =Mθ(s, t) for some θ ∈ (0, s−a),
then the function M fulfills the required properties.

Theorem 2.12. Fix η ∈ (0, 1), µ > 1, α, β ∈ [0, 2), with 0 ≤ α − β < 1, γ ∈
(0, η ∧ (µ + β − α)) and suppose that g belongs to C η

−γ((a, b]
2
<;Xα) and satisfies

the condition δS,2g ∈ C µ
−γ((a, b]

3
<;Xβ). Then, the function kg : (a, b]2< → X,

defined by kg(s, t) := S(t− s)g(s, t)−M(s, t) for every (s, t) ∈ (a, b]2< (where M is

the function defined in Lemma 2.11) can be extended up to s = a and it belongs to⋂

ε∈[0,ε0)

C η∧(µ+β−α)−γ−ε([a, b]2<;Xα+ε), where ε0 = (1+β−α)∧(η∧(µ+β−α)−γ).

Further, δ̂2kg = 0 on [a, b]3< and there exists a positive constant C, which depends

on ε, µ, b − a, η, γ, α and β, such that

‖kg‖Cη∧(µ+β−α)−γ−ε([a,b]2<;Xα+ε) ≤ C(‖g‖C
η
−γ((a,b]

2
<;Xα) + ‖δS,2g‖C

µ
−γ((a,b]

3
<;Xβ)).

(2.16)

Proof. To begin with, we observe that the function g satisfies the assumptions of
Lemma 2.11, with α being replaced by β. Hence, there exists a unique function M ,

which belongs to
⋂

ε∈[0,1)

C µ−ε([a + θ, b]2<;Xβ+ε) for every θ ∈ (0, b − a), such that

δ̂2M = S3δS,2g = δ̂2S2g in (a, b]3< (see Lemma 2.6).
Let us fix ε ∈ [0, ε0), (s, t) ∈ (a, b]2<, with s < t, and n ∈ N, and introduce the

function

M̃n(s, t) = ψ(s, t)−

2n∑

i=2

S(t− rni )ψ(r
n
i−1, r

n
i ) =Mn(s, t) + S(t− rn1 )ψ(s, r

n
1 ),

(2.17)

where ψ = S2g for every (s1, s2) ∈ (a, b]2<, r
n
i = s + i

2n (t − s) for every n ∈ N and
i = 0, . . . , 2n, and the function Mn is defined in (2.6). We omit from the definition

of M̃ , the term S(t − rn1 )ψ(s, r
n+1
1 ) in order to stay away from the singularity at

s = a. For every n ≥ 1 we get

M̃n+1(s, t)− M̃n(s, t)

=Mn+1(s, t)−Mn(s, t) + S(t− rn+1
1 )ψ(s, rn+1

1 )− S(t− rn1 )ψ(s, r
n
1 )

=

2n∑

i=2

S(t− rn+1
2i−1)(δS,2g)(r

n+1
2i−2, r

n+1
2i−1, r

n+1
2i )
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− S(t− rn+1
1 )[(δS,2g)(s, r

n+1
1 , rn+1

2 )− ψ(s, rn+1)]− S(t, rn+1
2 )ψ(s, rn+1

2 )

=
2n∑

i=2

S(t− rn+1
2i−1)(δS,2g)(r

n+1
2i−2, r

n+1
2i−1, r

n+1
2i )− S(t− rn+1

1 )g(rn+1
1 , rn+1

2 ).

Hence,

‖M̃n+1(s, t)− M̃n(s, t)‖Xα+ε

≤Lβ,α+ε‖δS,2g‖C
µ
−γ((a,b]

3
<;Xβ)

2n∑

i=2

|rn+1
2i − rn+1

2i−2|
µ|t− rn+1

2i−1|
β−α−ε|rn+1

2i−2 − a|−γ

+ Lα,α+ε‖g‖C
η
−γ((a,b]

2
<;Xα)|t− rn+1

1 |−ε2−(n+1)η(t− s)η|rn+1
1 − a|−γ

≤Lβ,α+ε‖δS,2g‖C
µ
−γ((a,b]

3
<;Xβ)|t− s|µ2−nµ

2n∑

i=2

|t− rn+1
2i−1|

β−α−ε|rn+1
2i−2 − a|−γ

+ 2−η+γ+ε2n(γ−η)Lα,α+ε‖g‖C
η
−γ((a,b]

2
<;Xα)|t− s|η−γ−ε, (2.18)

where the constants Lρ,δ = Lρ,δ,b−a have been defined in Hypothesis 2.1(iii)-(a)
and in the last step of (2.18), we have used the inequality

|t− rn+1
1 |−ε|rn+1

1 − a|−γ =(t− s)−ε(1 − 2−n−1)−ε

(
s− a+

t− s

2n+1

)−γ

≤2ε(t− s)−ε

(
t− s

2n+1

)−γ

= 2ε+γ(1+n)(t− s)−ε−γ .

Let us estimate the first term in the right-hand side of (2.18). We stress that,
differently from the computations in the proof of Proposition 2.8, we have the
additional factor |rn+1

2i−2−a|
−γ , which arises from the singularity of δS,2g at a. Note

that

rn+1
2i−2 − a = rn+1

2i −
t− s

2n
− a ≥

1

2
(rn+1

2i − a)

if i ≥ 2. Hence,

2n∑

i=2

|t− rn+1
2i−1|

β−α−ε|rn+1
2i−2 − a|−γ

≤
2n∑

i=2

2γ

rn+1
2i − rn+1

2i−1

∫ rn+1
2i

rn+1
2i−1

|t− rn+1
2i−1|

β−α−ε|rn+1
2i − a|−γdξ

≤2γ+12n|t− s|−1

∫ t

s

(t− ξ)β−α−ε(ξ − a)−γdξ,

where we have used the fact that the function ξ 7→ (t − ξ)β−α−ε is increasing in
(−∞, t) and the function ξ 7→ (ξ − a)−γ is decreasing in (a,∞). Further,

∫ t

s

(t− ξ)β−α−ε(ξ − a)−γdξ ≤

∫ t

s

(t− ξ)β−α−ε(ξ − s)−γdξ

=B(β − α− ε+ 1, 1− γ)(t− s)1+β−α−γ−ε.

It follows that

‖M̃n+1(s, t)− M̃n(s, t)‖Xα+ε
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≤2γ+1+n(1−µ)Lβ,α+εB(β − α− ε+ 1, 1− γ)‖δS,2g‖C
µ
−γ((a,b]

3
<;Xβ)|t− s|µ+β−α−γ−ε

+ 2−η+γ+ε2n(γ−η)Lα,α+ε‖g‖C
η
−γ((a,b]

2
<;Xα)|t− s|η−γ−ε.

Next, we note that

M̃n(s, t)− ψ(s, t) =

n−1∑

k=1

[M̃k+1(s, t)− M̃k(s, t)]− ψ(2−1(s+ t), t)

and, consequently, recalling that ψ(r11 , r
1
2) = S(2−1(t−s))g(2−1(s+t), t) and taking

into account that |2−1(s+ t)− a|−γ ≤ 2γ(t− s)−γ , we can estimate

‖M̃n(s, t)− ψ(s, t)‖Xα+ε ≤C1(‖δS,2g‖C
µ
−γ((a,b]

3
<;Xβ) + ‖g‖C

η
−γ((a,b]

2
<;Xα))

×

( n−1∑

k=1

(2k(1−µ)+2k(γ−η)) + 1

)
|t− s|[η∧(µ+β−α)]−γ−ε

≤C2(‖δS,2g‖C
µ
−γ((a,b]

3
<;Xβ) + ‖g‖C

η
−γ((a,b]

2
<;Xα))

× |t− s|[η∧(µ+β−α)]−γ−ε (2.19)

for some positive constants C1 and C2 which depend on ε, µ, b− a, γ, η, α and β,
since the series

∑∞
k=1(2

k(1−µ) + 2k(γ−η)) converges. Further, from (2.17) we get

‖M̃n(s, t)−Mn(s, t)‖Xα+ε ≤ 2−nηLα,α+ε‖g‖C
η
−γ((a,b]

2
<;Xα)(s− a)−γ |t− s|η−ε

and we conclude that M̃n(s, t) converges to M(s, t) in Xα+ε, as n tends to ∞.
Hence, letting n tend to +∞ in (2.19), it follows that the function kg = ψ −M
satisfies the estimate

‖kg(s, t)‖Xα+ε ≤C2(‖δS,2g‖C
µ
−γ((a,b]

3
<;Xβ) + ‖g‖C

η
−γ((a,b]

2
<;Xα))

× |t− s|[η∧(µ+β−α)]−γ−ε. (2.20)

Showing that (δ̂2kg)(s, t) = 0 is an easy task. Indeed, by the definition of the

function ψ, it follows that δ̂2ψ = δ̂2S2g in (a, b]3<, which coincides with δ̂2M , as it
has been shown at the very beginning of the proof.

Finally, to conclude the proof, we show that function kg can be extended to
[a, b]2< with a continuous function. First of all, we observe that kg is continuous in
(a, b]2< \ {(s, s) : s ∈ [a, b]} since ψ and M are therein continuous. Moreover, using
estimate (2.20), we can extend the function kg by continuity to the points (s, s) with
s ∈ (a, b] by setting kg(s, s) = 0. Next, we observe that, for every a < r < s < t, it
holds that

kg(r, t)− kg(s, t) = (δ̂2kg)(r, s, t) + S(t− s)kg(r, s) = S(t− s)kg(r, s).

From (2.20) we infer that

‖kg(r, t)− kg(s, t)‖Xα+ε ≤ Lα+ε,α+ε‖kg(r, s)‖Xα+ε ≤ C|s− r|[η∧(µ+β−α)]−γ−ε.

This implies that the kg(s, t) converges in Xα+ε as s tends to a+. We denote
the previous limit by kg(a, t). As a byproduct, (2.20) holds true for every (s, t) ∈
(a, b]2< \ {(a, a)} and, using this formula we can extend by continuity kg at (a, a)

setting kg(a, a) = 0. It follows that δ̂2kg ≡ 0 in [a, b]3<.
It remains to prove the continuity of kg in {a}× [a, b]. Fix t0 ∈ [a, b] and (s, t) ∈

[a, b]2<. We show that kg(s, t) converges to kg(a, t0) in Xα+ε as (s, t) tends to (a, t0)

in [a, b]2<. First, we consider the case t0 > a. If t > t0, then, since (δ̂2kg)(a, s, t) =
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(δ̂2kg)(a, t0, t) = 0, it follows that kg(a, t) = kg(s, t)+S(t−s)kg(a, s) and kg(a, t) =
kg(t0, t) + S(t− t0)kg(a, t0). Hence,

kg(s, t)− kg(a, t0) =kg(s, t)− kg(a, t) + kg(a, t)− kg(a, t0)

=− S(t− s)kg(a, s) + kg(t0, t) + S(t− t0)kg(a, t0)− kg(a, t0)

=− S(t− s)kg(a, s) + kg(t0, t) + a(t0, t)kg(a, t0)

On the other hand, if t < t0, then we can split

kg(s, t)− kg(a, t0) =kg(s, t)− kg(a, t) + kg(a, t)− kg(a, t0)

=− S(t− s)kg(a, s)− (kg(t, t0) + a(t, t0)kg(a, t)),

where we have used the formulas kg(a, t) = kg(s, t)+S(t−s)kg(a, s) and kg(a, t0) =
kg(t, t0)+ kg(a, t)+ a(t, t0)kg(a, t). Combining the cases t > t0 and t < t0 it follows
that

‖kg(s, t)− kg(a, t0)‖Xα+ε ≤Lα+ε,α+ε‖kg(a, s)‖Xα+ε + ‖kg(t0 ∧ t, t0 ∨ t)‖Xα+ε

+ ‖a(t0 ∧ t, t0 ∨ t)kg(a, t0 ∧ t)‖Xα+ε . (2.21)

From (2.1)(b) and estimate (2.20), we get

‖a(t0 ∧ t, t0 ∨ t)kg(a, t0 ∧ t)‖Xα+ε

≤Cα+ε,α+ε′‖kg(a, t0 ∧ t)‖Xα+ε′
|t− t0|

ε′−ε

≤C2Cα+ε,α+ε′(‖δS,2g‖C
µ
−γ((a,b]

3
<;Xβ) + ‖g‖C

η
−γ((a,b]

2
<;Xα))

× |b− a|[η∧(µ+β−α)]−γ−ε|t− t0|
ε′−ε (2.22)

for every ε′ ∈ (ε, ε0). From (2.20), (2.21) and (2.22) we easily conclude that kg(s, t)
tends to kg(a, t0) as (s, t) tends to (a, t0).

Finally, if t0 = a, then, since ‖kg(s, t) − kg(a, a)‖Xα+ε = ‖kg(s, t)‖Xα+ε , using
(2.20) we conclude that kg(s, t) converges to k(a, t0) as (s, t) tends to (a, t0).

Remark 2.13. (i) From the proof of Theorem 2.12, it follows that kg1+g2 =
kg1 + kg2 for every pair of functions g1, g2 ∈ C η

−γ((a, b]
2
<;Xα) such that δS,2g1

and δS,2g2 belong to C µ
−γ((a, b]

3
<;Xβ), where the parameters α, β, γ, η and µ

are as in the statement of the quoted theorem.
(ii) Still from the proof of Theorem 2.12 it follows that condition (2.1)(a) is used

just to prove that kg regularizes in space. Hence, without such a condition
and assuming that β = α, the assertion of Theorem 2.12 still holds true with
ε = 0, i.e., the function kg exists, belongs to C η−γ([a, b]2<;Xα) and enjoys
estimate (2.20) with ε = 0 and the constant C, therein appearing, depends
on b− a, η, γ and α.

Based on Theorem 2.12 and Remark 2.18, we can now give the following defini-
tion, which generalizes Definition 2.10.

Definition 2.14. Let g ∈ C η
−γ((a, b]

2
<;Xα) be such that δS,2g ∈ C µ

−γ((a, b]
3
<;Xβ),

where η ∈ (0, 1), µ > 1, 0 ≤ β ≤ α ≤ 2, α − β < 1 and γ ∈ [0, η ∧ (µ + β − α)).
Then, the function Ig = kg(a, ·) is called convolution integral of g.

Example 2.15. Fix η ∈ (0, 1), α, β ∈ [0, 2) such that 0 ≤ α−β < 1, ρ ∈ (1− η, 1),
γ ∈ [0, η ∧ (ρ + η + β − α)), x ∈ Cη([a, b]) and ϕ ∈ C−γ((a, b];Xα) such that

δ̂1ϕ C ρ
−γ((a, b]

2
<;Xβ). Let g(s, t) = (x(t) − x(s))ϕ(s) for every (s, t) ∈ [a, b]2<, as
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in Example 2.9. It is easy to check that g belongs to C η
−γ((a, b]

2
<;Xα). Moreover,

Example 2.9 shows that (δS,2g)(r, s, t) = −(x(t)−x(s))(δ̂1ϕ)(r, s) for every (r, s, t) ∈
(a, b]3<. Hence, the function δS,2g belongs to C µ

−γ((a, b]
3
<;Xβ) where µ = η+ ρ > 1,

and

(r − a)γ‖(δS,2g)(r, s, t)‖Xβ
≤ ‖x‖Cη([a,b])‖δ̂1ϕ‖C

ρ
−γ((a,b]

2
<;Xβ)|t− r|µ,

for every (r, s, t) ∈ (a, b]3<.

In view of Theorem 2.12 and Example 2.15, we can give the following definition.

Definition 2.16. Fix α, β ∈ [0, 2), with 0 ≤ α − β < 1, η ∈ (0, 1), ρ ∈ (1 − η, 1),
γ ∈ [0, η ∧ (ρ + η + β − α)) and x ∈ Cη([a, b]). Further, let ϕ ∈ C−γ((a, b];Xα) be

such that δ̂1ϕ ∈ C ρ
−γ((a, b]

2
<;Xβ). Then, we define the convolution integral of the

semigroup (S(t))t≥0 with the function ϕ, by setting
∫ t

s

S(t− r)ϕ(r)dx(r) =: kg(s, t),

for every (s, t) ∈ [a, b]2<, where g(s, t) = (x(t) − x(s))ϕ(s) for every (s, t) ∈ [a, b]2<.

In what follows, for every (s, t) ∈ [a, b]2< we will also use the shorter notation
IS,ϕ(s, t) := kg(s, t) to denote the convolution integral in Definition 2.16. The
notation underline the dependence on the semigroup (S(t))t≥0 and on the function
ϕ.

Remark 2.17. Let x and ϕ be as in Definition 2.16. Then, from Theorem 2.12 it

follows that IS,ϕ belongs to
⋂

ε∈[0,ε0)

C η∧(η+ρ+β−α)−γ−ε([a, b]2<;Xα+ε), where ε0 =

(1 + β − α) ∧ (η ∧ (η + ρ + β − α) − γ), and, for every ε ∈ [0, ε0), there exists a
positive constant C, which depends on ε, b− a, η, γ, α, β and ρ, such that

sup
(t,s)∈[a,b]2<

(t− s)−η∧(η+ρ+β−α)+γ+ε

∥∥∥∥
∫ t

s

S(t− r)ϕ(r)dx(r)

∥∥∥∥
Xα+ε

≤C‖x‖Cη([a,b])(‖ϕ‖C−γ((a,b];Xα) + ‖δ̂1ϕ‖C
ρ
−γ((a,b]

2
<;Xβ)) (2.23)

for every s, t ∈ [a, b]2<.

Remark 2.18. We stress that, if x ∈ C1([a, b]), ϕ ∈ C−γ((a, b];Xα) and δ̂1ϕ ∈
C α
−γ((a, b]

2
<;X) with α ∈ (0, 1) and γ satisfying the assumptions of the quoted

theorem, then the function IS,ϕ is the classical convolution of the semigroup with
the function ϕ, i.e.,

IS,ϕ(s, t) =

∫ t

s

S(t− ξ)ϕ(ξ)x′(ξ)dξ, (s, t) ∈ [a, b]2<. (2.24)

Note that∫ t

s

S(t− ξ)ϕ(ξ)x′(ξ)dξ =

∫ t

s

S(t− ξ)
[
S(ξ − s)ϕ(s) + (δ̂1ϕ)(s, ξ)

]
x′(ξ)dξ

=S(t− s)g(s, t) +

∫ t

s

S(t− ξ)(δ̂1ϕ)(s, ξ)x
′(ξ)dξ

=: S(t− s)g(s, t) +N(s, t)

for every (s, t) ∈ [a, b]2<.
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Thus, we need to prove that M +N = 0 where M is defined in Example 2.9, see
also Proposition 2.8.

Taking the definition of the operators δ̂1, S3 and formula (2.14) into account, we
can write

(δ̂2N)(r, s, t) =

∫ t

r

S(t− ξ)(δ̂1ϕ)(r, ξ)x
′(ξ)dξ −

∫ t

s

S(t− ξ)(δ̂1ϕ)(s, ξ)x
′(ξ)dξ

− S(t− s)

∫ s

r

S(s− ξ)(δ̂1ϕ)(r, ξ)x
′(ξ)dξ

=

∫ t

s

S(t− ξ)(δ̂1ϕ)(r, ξ)x
′(ξ)dξ −

∫ t

s

S(t− ξ)(δ̂1ϕ)(s, ξ)x
′(ξ)dξ

=

∫ t

s

(S(t− s)ϕ(s)− S(t− r)ϕ(r))x′(ξ)dξ

=S(t− s)(ϕ(s)− S(s− r)ϕ(r))(x(t) − x(s))

=S(t− s)(δ̂1ϕ)(r, s)(x(t) − x(s))

=− (S3δS,2g)(r, s, t)

for every (r, s, t) ∈ [a, b]3<. Thus, the function A = M + N satisfies the condition

δ̂2A ≡ 0 in [a, b]3<.
To conclude that A identically vanishes in (a, b]2<, it suffices to show that it

belongs to C µ([a+ θ, b]2<;X) for every θ ∈ (0, b− a) and then apply [5, Proposition
3.4]. By Lemma 2.11, M belongs to such a space. On the other hand,

‖N(s, t)‖X ≤θ−γL0,0,b−a‖x
′‖C([a,b])‖δ̂1ϕ‖Cα

−γ((a,b]
2
<;X)

∫ t

s

(ξ − s)αdr

=θ−γL0,0,b−a(α+ 1)−1‖x′‖C([a,b])‖δ̂1ϕ‖Cα
−γ((a,b]

2
<;X)(t− s)1+α

for every (s, t) ∈ [a + θ, b]2<, with θ ∈ (0, b − a), and every ε ∈ (0, 1), and,
consequently, N belongs to C 1+α([a + θ, b]2<;X) →֒ C µ([a + θ, b]2<;X) for every
θ ∈ (0, b− a), since 1 + α > η + α = µ.

Remark 2.19. The results in Theorem 2.12 are optimal as far as both the time
and the spatial regularity are concerned.

Indeed, if we refer again to Remark 2.18, then the classical convolution integral in
(2.24) belongs to C 1−ε−γ([a, b]2<;Xα+ε) for every ε ∈ [0, 1−γ). On the other hand,
the quoted theorem shows that IS,ϕ belongs to C η−ε−γ([a, b]2<;Xα+ε) for every
η ∈ (0, 1) and ε as above, and the constant C appearing in (2.16) does not blow up as
η tends to 1 from below. Therefore, in this situation where x ∈ C1([a, b]), estimate
(2.16) shows that IS,ϕ belongs to C 1−γ−ε(([a, b]2<;Xα+ε) for every ε ∈ [0, 1 − γ),
so that the time regularity in Theorem 2.12 is optimal.

To prove also the spatial optimality of the result in Theorem 2.12, we consider
the case when (S(t))t≥0 is an analytic semigroup in the Banach space X and Xβ =
DA(β,∞) for every β ∈ (0, 1). If we choose [a, b] = [0, 1], x(t) = t for every t ∈ [0, 1]
and ϕ(t) = S(t)y for some y ∈ Xα−γ , where γ is fixed in (0, α) for some α ∈ (0, 1),
and y does not belong to any spaceXβ with β > α−γ, then we can easily check that
the classical convolution kg is given by kg(s, t) = (t−s)S(t)y for every 0 ≤ s ≤ t ≤ 1
and it does not belong to the space C δ([0, 1]2<;Xα+ε) if δ > 1 − ε − γ for every

ε ∈ (0, 1 − γ). Indeed, suppose that this function belongs to C δ([0, 1]2<;Xα+ε) for
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some δ > 1− ε− γ. Then, in particular,

‖S(t)y‖Xα+ε = ‖kg(0, t)‖Xα+ε ≤ ‖kg‖Cδ([0,1]2<;Xα+ε)t
δ−1, t ∈ (0, 1].

We claim that this estimate implies that y actually belongs to the space Xα+ε+δ−1.
Since α+ ε+ δ − 1 > α− γ we are led to a contradiction.

To prove the claim, we recall that z belongs to Xβ = DA(β,∞) for some β ∈

(0, 1) if and only if sup
t∈(0,1]

t1−β‖AS(t)z‖X < ∞. Using the semigroup law, we can

estimate

t2−α−ε−δ‖AS(t)y‖X =t2−α−ε−δ‖AS(t/2)S(t/2)y‖X

≤t2−α−ε−δ‖AS(t/2)‖L(Xα+ε,X)‖S(t/2)y‖Xα+ε

≤Ct2−α−ε−δt−1+α+εtδ−1 = C

for every t ∈ (0, 1] and the claim follows.

Remark 2.20. If γ = 0, i.e., in the non singular case, Example 2.15 shows that
Theorem 2.12 agrees with the results in [1, Lemma 2.1].

Remark 2.21. (i) From Remark 2.13(i) it follows that, if x1, x2 ∈ Cη([a, b]),

for some η ∈ (0, 1), and ϕ1, ϕ2 ∈ C−γ((a, b];Xα) are such that δ̂1ϕ1, δ̂1ϕ2 ∈
C ρ
−γ((a, b]

2
<;Xβ) for some α, β ∈ [0, 2) with 0 ≤ α− β < 1, ρ ∈ (1 − η, 1) and

γ ∈ [0, η ∧ (η + ρ+ β − α)), then

∫ t

s

S(t− r)ϕ1(r)d(x1 + x2)(r)

=

∫ t

s

S(t− r)ϕ1(r)dx1(r) +

∫ t

s

S(t− r)ϕ1(r)dx2(r)

and
∫ t

s

S(t− r)(ϕ1(r)+ϕ2(r))dx1(r)

=

∫ t

s

S(t− r)ϕ1(r)dx1(r)+

∫ t

s

S(t− r)ϕ2(r)dx1(r)

for every (s, t) ∈ [a, b]2<.
(ii) For every every x ∈ Cη([a, b]), with η ∈ (0, 1), and every ϕ ∈ C−γ((a, b];Xα)

such that δ̂1ϕ ∈ C ρ
−γ((a, b]

2;Xβ) for some α, β ∈ [0, 2) with 0 ≤ α − β < 1,
ρ ∈ (1− η, 1) and γ ∈ [0, η ∧ (η + ρ+ β − α)),it holds that

∫ t

s

S(t− r)ϕ(r)dx(r) =S(t− τ)

∫ τ

s

S(τ − r)ϕ(r)dx(r)

+

∫ t

τ

S(t− r)ϕ(r)dx(r)

for every (s, t) ∈ [a, b]2< and τ ∈ [s, t]. This property is a straightforward

rewriting of the property δ̂2kg ≡ 0 follows easily from observing that δ̂1ISϕ

identically vanishes in [a, b]3<.
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2.4. The case S(t) = Id. In this section, taking advantage of the results of the

previous subsection, we define the integral

∫ t

s

ϕ(r)dx(r), when ϕ has a singularity

at the left-endpoint of the interval where it is defined.
The main result is the following theorem.

Theorem 2.22. Fix α ∈ [0, 2). Assume that x ∈ Cη([a, b]), for some η ∈ (0, 1),
ϕ ∈ C−γ((a, b];Xα) and δ1ϕ ∈ C ρ

−γ((a, b]
2
<;Xα), for some γ ∈ (0, η) and some

ρ ∈ (1− η, 1). Then, the Young integral

∫ t

s

ϕ(r)dx(r)

is well defined for every (s, t) ∈ [a, b]2<. Moreover, there exists a positive constant

C, depending on α, γ, η, ρ and b− a, such that
∥∥∥∥
∫ t

s

ϕ(r)dx(r)

∥∥∥∥
Xα

≤C‖x‖Cη([a,b])(‖ϕ‖C−γ((a,b];Xα) + ‖δ1ϕ‖C
ρ
−γ((a,b]

2
<;Xα))|t− s|η−γ .

Proof. It suffices to apply Theorem 2.12, with S(t) = I for every t > 0, observing

that δ̂j = δj for j = 1, 2 and δS,2 = δ2, and taking Remark 2.13(ii) into account.
Note that condition (2.1)(b) is trivially satisfied since a(s, t) = 0 for every (s, t) ∈
[a, b]2<.

Example 2.23. Let x belong to Cη([0, T ]) for some T > 0 and η ∈ (0, 1). For every
α ∈ (0, 1) the function f : (0, T ] → R, defined by f(t) = t−α for every t ∈ (0, T ],
belongs to C α

−2α((0, T ];R). Indeed, it is easy to check that

|t−α − s−α|

(t− s)α
s2α =

tα − sα

(t− s)α
sαt−α ≤ sαt−α ≤ 1, 0 < s < t ≤ T.

Therefore, if we take α and η such that α < 1
2η and α+η > 1, then the assumption

of Theorem 2.22 are fulfilled and the integral

∫ t

s

r−αdx(r)

is well defined for every s, t ∈ [0, T ], with s < t.

3. Mild solutions to Young equations

In this section we study the existence and uniqueness of the mild solution to the
following nonlinear Young equation

{
dy(t) = Ay(t)dt+ σ(y(t))dx(t), t ∈ (0, T ],

y(0) = ψ,
(3.1)

where by mild solution we mean a function y : [0, T ] → X such that IS,σ◦y is
well-defined in [0, T ]2< and

y(t) = S(t)ψ + (IS,σ◦y)(0, t), t ∈ [0, T ]. (3.2)

Further, we investigate the spatial smoothness of the mild solution.
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Remark 3.1. Let us observe that IS,σ◦y(0, t) converges to 0 in X as t tends to 0,
due to Remark 2.17. The continuity at 0 of the term S(·)ψ requires a more detailed
discussion. If the semigroup (S(t))t≥0 is strongly continuous then, for every ψ ∈ X
(which is allowed by Theorem 3.5), S(t)ψ converges in X to ψ as t tends to 0 and
the initial condition can be classically interpreted. The point is that, under our
assumptions, the semigroup could be not strongly continuous. In this situation, if
ψ ∈ Xθ for some θ > 0, then, due to condition (2.1)(b), S(t)ψ converges to ψ in
X as t tends to 0 and again the initial condition can be classically interpreted. On
the contrary, if ψ only belongs to X , then, in general, S(t)ψ does not admit limit
as t tends to 0. The initial condition is satisfied by the mild solution in this sense:
for every t0 > 0, S(t0)y(t) converges in X to S(t0)ψ. Indeed, by Remark 2.2, the
function t 7→ S(t)x is continuous in (0,+∞) for every x ∈ X .

We finally observe that, if (S(t))t≥0 is an analytic semigroup and ψ ∈ D(A), then

y(t) converges to ψ in X as t tends to 0, If D(A) is a proper subspace of X (i.e.,
the semigroup is not strongly continuous) and ψ does not belong to it, then the
initial condition can also be interpreted as follows: for every λ ∈ ρ(A), R(λ,A)y(t)
converges in X to R(λ,A)ψ as t tends to 0.

We split this section into three parts. In the former we prove the results when,
among other properties, the nonlinear term σ is globally Lipschitz continuous in
Xα, for some α ∈ (0, 1). In the other two subsections we prove the same results by
assuming that σ is only locally Lipschitz continuous in Xα and that σ′ is locally
Lipschitz continuous from Xα into X , respectively, for some α ∈ (0, 1). In these
cases we need to strengthen the hypotheses on η in order to balance the lack of
regularity of σ. To simplify the computations we consider T = 1, since the general
case can be obtained with analogous arguments. We stress that, for arbitrary T > 0,
the constants which appear in the estimates also depend on T .

3.1. The case when σ is globally Lipschitz continuous in Xα. We stress
that, even if the following set of assumptions on σ might seem a bit artificial (since
we assume σ to be Lipschitz both in X and Xα while its derivative σ′ is only
assumed to be locally Lipschitz continuous). We have two reasons to also consider
this case. The former is that the proofs, although maintaining the main difficulties,
are, in this setting, easier and should help the reader to better understand the
ideas behind the computations, the latter is that the proof of the main results
under weaker hypotheses on σ can be deduced from the computations developed in
this subsection, with some slight modifications. Hence, we can see this part as an
intermediate step in order to prove more general statements.

Hypotheses 3.2. (i) Hypotheses 2.1 are satisfied for every λ, ζ such that 0 ≤
ζ ≤ λ < 2.

(ii) The function x belongs to Cη([0, 1]) for some η ∈ (1/2, 1).
(iii) The function σ : X → X is Gâteaux differentiable with bounded and locally

Lipschitz continuous Gâteaux derivative σ′. We denote by Lipσ the Lipschitz

constant of σ on X and, for every R > 0, by LipR
σ′ the Lipschitz constant of

σ′ in {z ∈ X : ‖z‖X ≤ R}.
(iv) There exists α ∈ (0, 1) such that η + α > 1, the restriction of σ to Xα maps

this space into itself, and σ is Lipschitz continuous as a map from Xα into

itself. We denote by Lipασ the Lipschitz constant of σ as a map from Xα into

itself.
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Let us introduce the following space: for every α, γ > 0, we say that f ∈ Y α
−γ(0, 1)

if f ∈ C−γ((0, 1];Xα)∩Cb((0, 1];X) and δ̂1f ∈ C α([0, 1]2<;Xα). The space Y
α
−γ(0, 1)

is a Banach space if endowed with the norm

‖f‖Y α
−γ(0,1)

:= ‖f‖C−γ((0,1];Xα) + ‖f‖Cb((0,1];X) + ‖δ̂1f‖Cα([0,1]2<;Xα)

for every f ∈ Y α
−γ(0, 1).

An analogous definition is given for Y α
−γ(0, T ) with T ∈ (0, 1)

Remark 3.3. One may ask why, if f ∈ Y α
−γ(0, 1), then the function t 7→ ‖f(t)‖Xα

has a singularity of order γ at t = 0, while the function (s, t) 7→ ‖δ̂1f(s, t)‖Xα has
not a singularity at s = 0. The reason is the following: if ψ ∈ Xθ and θ < α, then
the map t 7→ ‖S(t)ψ‖Xα has a singularity at t = 0 of order α− θ. On the contrary,

δ̂1(S(·)ψ) = 0 for every ψ ∈ X . Thus, if y is a mild solution to (3.1), then ‖y(t)‖Xα

has a singularity at t = 0, while (δ̂1y)(s, t) = IS,σ◦y(s, t) for every (s, t) ∈ [0, 1]2<,
and so it has no singularity with respect to the Xα-norm.

To begin with, we prove that the convolution integral IS(σ◦y) is well-defined for
functions y ∈ Y α

θ−α(0, 1).

Lemma 3.4. Let Hypotheses 3.2 be satisfied and fix y ∈ Y α
−γ(0, 1) with η + α > 1

and η > γ. Then:

(i) IS,σ◦y is well-defined;

(ii) IS,σ◦y belongs to C η−γ−ε([0, 1]2<;Xα+ε) and

‖IS,σ◦y‖Cη−γ−ε([0,1]2<;Xα+ε) ≤C‖x‖Cη([0,1])(1 + ‖y‖Y α
−γ(0,1)

)

for every ε ∈ [0, (1−α)∧(η−γ)] and some positive constant C, which depends

on ε, η, γ, the constant Cα,0,1 = Cα,0 in (2.1)(b), Lipσ, Lip
α
σ and the norm

of σ(0) in Xα.

Proof. (i). Let us prove that the function σ ◦ y satisfies the assumptions of Remark
2.17 with a = 0, b = 1, γ = α− θ, ρ = α and β = 0, i.e., σ ◦ y ∈ C−γ((0, 1];Xα) and

δ̂1(σ ◦ y) ∈ C α
−γ((0, 1]

2
<;X). The continuity of σ ◦ y and δ̂1(σ ◦ y) is a consequence

of the regularity of σ and y. Further, from Hypothesis 3.2(iii) it follows that

‖σ(z)‖Xα ≤ Lα
σ(1 + ‖z‖Xα), z ∈ Xα, (3.3)

where Lα
σ = max{Lipασ , ‖σ(0)‖Xα}. Therefore, we infer that

sγ‖σ(y(s))‖Xα ≤Lα
σs

γ(1 + ‖y(s)‖Xα) ≤ Lα
σ(1 + ‖y‖C−γ((0,1];Xα)). (3.4)

Let us prove the condition on δ̂1(σ ◦ y). For this purpose, we observe that

‖(δ̂1(σ ◦ y))(s, t)‖X ≤‖σ(y(t))− σ(y(s))‖X + ‖a(s, t)σ(y(s))‖X

≤Lipσ‖y(t)− y(s)‖X + Cα,0|t− s|α‖σ(y(s))‖Xα

≤Lipσ‖(δ̂1y)(s, t)‖X + Lipσ‖a(s, t)y(s)‖X

+ Cα,0L
α
σ |t− s|α(1 + ‖y(s)‖Xα)

≤Lipσ‖(δ̂1y)(s, t)‖X + Cα,0|t− s|α(Lα
σ + (Lipσ + Lα

σ)‖y(s)‖Xα)

for every (s, t) ∈ (0, 1]2<. By recalling the definition of Y α
−γ(0, 1), we conclude that

sγ
‖(δ̂1(σ ◦ y))(s, t)‖X

|t− s|α
≤Cα,0L

α
σ + [(Cα,0 ∨ 1)Lipσ + Cα,0L

α
σ ]‖y‖Y α

−γ(0,1)
.
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Hence, the assumptions of Remark 2.17 are fulfilled by σ ◦ y and so the convolution
integral IS,σ◦y is well-defined.

(ii). From (i) and Remark 2.17, it follows that IS,σ◦y ∈ C η−γ−ε([0, 1]2<;Xα+ε)
for every ε ∈ [0, (1−α)∧ (η−γ)) and estimate (2.23) holds true, with σ ◦ y in place
of ϕ.

Theorem 3.5. Let Hypotheses 3.2 be satisfied. Then, for every ψ ∈ Xθ with α ≥ θ
and η > 2α − θ, there exists a unique mild solution y to (3.1) which belongs to

Y α
θ−α(0, 1).

Remark 3.6. If θ = α then Theorem 3.5 coincides with [1, Theorem 3.2]. On
the other side, we can also choose an initial datum ψ barely belonging to X . The
conditions η > 2α and α + η > 1 imply η > 2/3. In other words, we can drop any
regularity requirement on the initial datum as long as we choose a slightly more
regular noise x (but still not differentiable).

Proof of Theorem 3.5. To begin with, we notice that, if y is a mild solution to (3.1),
then a straightforward consequence of Remark 2.21(ii) is that

y(t) = S(t− τ)y(τ) + IS,σ◦y(τ, t), (τ, t) ∈ [0, 1]2<.

Since it is rather long, we divide the proof into some steps.
Step 1. We prove a general estimate of the right-hand side of (3.2).
Taking advantage of Lemma 3.4 with γ = α − θ, it is not hard to prove that

for every y ∈ Y α
θ−α(0, T ) the function [0, T ] ∋ t 7→ S(t)ψ + IS,σ◦y(0, t) belongs to

Y α
θ−α(0, T ) for every T ∈ (0, 1].
We introduce the operator Γ : Y α

θ−α(0, T ) → Y α
θ−α(0, T ), defined by

(Γ(y))(t) := S(t)ψ + IS,σ◦y(0, t), t ∈ [0, T ].

We claim that

‖y‖Y α
θ−α(0,T ) ≤(L0,0Kθ,0 + Lθ,α)‖ψ‖Xθ

+ CT η+θ−2α‖x‖Cη([0,1])(1 + ‖y‖Y α
θ−α

(0,T )), (3.5)

with

C := C(Kα,0 + 2)(Kα,0 + Cα,0 + 1)(Lipσ + Lα
σ).

Recall that the constants Kα,β, Lζ,α and Cµ,ν have been defined in Hypotheses 2.1.
For every s ∈ (0, T ] it holds that

‖y(s)‖X ≤ L0,0Kθ,0‖ψ‖Xθ
+Kα,0‖IS,σ◦y(0, s)‖Xα , (3.6)

‖y(s)‖Xα ≤ Lθ,αs
θ−α‖ψ‖Xθ

+ ‖IS,σ◦y(0, s)‖Xα . (3.7)

We want to apply Remark 2.17 with a = 0, b = T , ϕ = σ ◦ y, γ = α− θ, ρ = α and

β = ε = 0. The continuity of σ ◦ y and of δ̂1(σ ◦ y) follows from the properties of y
and σ. From (3.3) we infer that

‖σ ◦ y‖Cθ−α((0,T ];Xα) ≤ Lα
σ(T

α−θ + ‖y‖Y α
θ−α(0,T )).

Let us estimate ‖δ̂1(σ ◦ y)‖Cα
θ−α((0,T ]2<;X). For every (s, t) ∈ (0, T ] we get

‖(δ̂1(σ ◦ y))(s, t)‖X ≤‖σ(y(t))− σ(y(s))‖X + ‖a(s, t)σ(y(s))‖X

≤Lipσ‖y(t)− y(s)‖X + Cα,0|t− s|α‖σ(y(s))‖Xα
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≤Lipσ(‖(δ̂1y)(s, t)‖X + ‖a(s, t)y(s)‖X)

+ Cα,0L
α
σ(1 + ‖y(s)‖Xα)|t− s|α

≤
(
Lipσ(Kα,0‖δ̂1y‖Cα([0,1]2<;Xα) + Cα,0‖y(s)‖Xα)

+ Cα,0L
α
σ(1 + ‖y(s)‖Xα)

)
|t− s|α, (3.8)

from which it follows that

‖δ̂1(σ ◦ y)‖Cα
θ−α((0,T ]2<;X)≤ (Kα,0 + Cα,0)(Lipσ + Lα

σ)(1 + ‖y‖Y α
θ−α(0,T )).

From Remark 2.17 we deduce that there exists a positive constant C such that

‖IS,σ◦y‖Cη+θ−α([0,T ]2<;Xα)

≤C‖x‖Cη([0,1])

[
Lα
σ(1 + ‖y‖Y α

θ−α(0,T ))

+ (Kα,0 + Cα,0)(Lipσ + Lα
σ)(1 + ‖y‖Y α

θ−α(0,T ))
]

≤C‖x‖Cη([0,1])(Kα,0 + Cα,0 + 1)(Lipσ + Lα
σ)(1 + ‖y‖Y α

θ−α(0,T )). (3.9)

Replacing (3.9) in (3.6) and (3.7) we get

‖y‖Cb((0,T ];X) + ‖y‖Cθ−α((0,T ];Xα)

≤(L0,0Kθ,0 + Lθ,α)‖ψ‖Xθ

+ C(Kα,0 + 1)T η+θ−α‖x‖Cη([0,1])(Kα,0 + Cα,0 + 1)(Lipσ + Lα
σ)(1 + ‖y‖Y α

θ−α(0,T )),

(3.10)

where we used the fact that T ≤ 1 and α ≥ θ to estimate T η ≤ T η+θ−α.
It remains to estimate ‖δ̂1y‖Cα([0,T ]2<;Xα). Since (δ̂1y)(s, t) = IS,σ◦y(s, t) for

every (s, t) ∈ [0, T ] and η > 2α− θ, from (3.9) we infer that

‖δ̂1y‖Cα([0,T ]2<;Xα) ≤T
η+θ−2α‖δ̂1y‖Cη+θ−α([0,T ]2<;Xα)

≤T η+θ−2αC‖x‖Cη([0,1])(Kα,0 + Cα,0 + 1)(Lipσ + Lα
σ)

× (1 + ‖y‖Y α
θ−α(0,T )). (3.11)

The definition of ‖ · ‖Y α
θ−α(0,T ), (3.10) and (3.11) give (3.5).

Step 2. We are now in a position to prove a global a priori estimate.
We claim that, if y is a mild solution to (3.1), then there exists a positive constant

R, which depends on ‖ψ‖Xθ
, α, θ, x, η and σ, such that

‖y‖Y α
θ−α(0,1)

≤ R. (3.12)

Notice that y ∈ Y α
θ−α(0, 1) is a mild solution to (3.1) if and only if it is a fixed point

of Γ. Thus, if y ∈ Y α
θ−α(0, 1) is a mild solution and we choose

T :=

(
1

2C‖x‖Cη([0,1])

) 1
η+θ−2α

∧ 1,

then (3.5) immediately implies that

‖y‖Y α
θ−α

(0,T ) ≤ 2(L0,0Kθ,0 + Lθ,α)‖ψ‖Xθ
+ 1.

So, we can say that there exists T ∈ (0, 1] such that ‖y‖Y α
θ−α(0,T ) ≤ R1 for some

R1 > 0 which depends on ‖ψ‖Xθ
, α, θ, x, η and σ.
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If T = 1, then we are done, otherwise we notice that y ∈ C([T , 1];Xα) and

δ̂1y ∈ C α([T , 1]2<;Xα). In particular, y is a solution in [T , 1] with initial datum

y(T ) ∈ Xα Arguing as in Step 1 in the proof of [1, Theorem 3.1], we infer that
there exists R2 > 0, which depends on ‖y(T )‖Xα , α, θ, x, η and σ, such that

‖y‖C([T,1];Xα)
+ ‖δ̂1y‖Cα([T ;1]2<;Xα) ≤ R2.

Moreover, ‖y(T )‖Xα can be estimated by R1 and T above, so that R2 > 0 finally
depends on ‖ψ‖Xθ

, α, θ, x, η and σ.
If we join the two estimates above, then we get

‖y(s)‖X ≤ R1 ∨ (Kα,0R2), s ∈ (0, 1],

sα−θ‖y(s)‖Xα ≤ R1 ∨R2, s ∈ (0, 1],

‖(δ̂1y)(s, t)‖Xα ≤ (R1 ∨R2)|t− s|α, (s, t) ∈ [0, T ] or (s, t) ∈ [T , 1].

If s ∈ (0, T ] and t ∈ (T , 1], recalling that

(δ̂1y)(s, t) = IS,σ◦y(s, t) = S(T − s)IS,σ◦y(s, T ) + IS,σ◦y(T , t),

then we get

‖(δ̂1y)(s, t)‖Xα ≤L0,0‖(δ̂1y)(s, T )‖Xα + ‖(δ̂1y)(T , t)‖Xα

≤(L0,0R1|T − s|α +R2|t− T |α)

≤(L0,0R1 +R2)|t− s|α.

Putting everything together we infer that there exists a positive constant R ≥ R1,
which depends on ‖ψ‖Xθ

, α, θ, x, η and σ, such that (3.12) holds true.
Step 3. Let us prove that Γ is a contraction in the closed ball B of Y α

θ−α(0, T∗),
centered at 0 and with radius R, for some positive T∗, where R is the constant in
(3.12). As a byproduct, we infer that there exists a unique mild solution y1 to (3.1)
in [0, T∗]. Indeed, if ỹ is another mild solution to (3.1) in [0, T∗], then from (3.12)
it follows that ‖ỹ‖Y α

θ−α(0,T∗) ≤ R, which means that ỹ ∈ B and it is a fixed point

of Γ. Hence, ỹ = y1.
Suppose that we have proved that Γ is a contraction in B. If T∗ = 1 then we

are done, otherwise we can apply the arguments in the proof of [1, Theorem 3.1] in
[T∗, 1] with initial datum y1(T∗) ∈ Xα, exploiting the extra regularity of the initial
datum. It follows that there exists a unique mild solution y2 ∈ C([T∗, 1];Xα) with

δ̂1y2 ∈ C α([T∗, 1]
2
<;Xα) to the problem
{
dy(t) = Ay(t)dt+ σ(y(t))dx(t), t ∈ (T∗, 1],

y(T∗) = y1(T∗).

Hence, if we set

y(t) :=

{
y1(t), t ∈ [0, T∗],

y2(t), t ∈ [T∗, 1],

then we obtain the unique mild solution to (3.1).
So, let us show that there exists T∗ ∈ (0, 1] such that Γ is a contraction in B.

We begin by proving that Γ maps B into itself. For this purpose, we fix y1 ∈ B.
From (3.5), with T being replaced by T ∗, it follows that

‖Γ(y)‖Y α
θ−α(0,T∗) ≤(L0,0Kθ,0 + Lθ,α)‖ψ‖Xθ
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+ CT η+θ−2α
∗ ‖x‖Cη([0,1])(1 + ‖y‖Y α

θ−α(0,T∗))

≤
1

2
R+ CT η+θ−2α

∗ ‖x‖Cη([0,1])(1 +R).

By choosing

T∗ =

(
1

2

R

C‖x‖Cη([0,1])(1 +R)

) 1
η+θ−2α

∧ 1,

it follows that Γ(y) ∈ B.
Let us now prove that Γ is a 1/2-contraction, provided we choose T∗ small enough.

Note that, for every y1, y2 ∈ B, it holds that

(Γ(y1))(t) − (Γ(y2))(t) = IS,σ◦y1−σ◦y2(0, t), t ∈ [0, T∗],

and

(δ̂1(Γ(y1)− Γ(y2)))(s, t) = IS,σ◦y1−σ◦y2(s, t), (s, t) ∈ [0, T∗]
2
<.

Since for every (s, t) ∈ [0, T∗]
2
< it holds that

‖IS,σ◦y1−σ◦y2(s, t)‖Xα ≤ |t− s|η+θ−α‖IS,σ◦y1−σ◦y2‖Cη+θ−α([0,T∗]2<;Xα)

using Remark 2.17, with γ = α − θ, a = 0, b = T∗, ρ = α, β = ε = 0, we deduce
that

‖IS,σ◦y1−σ◦y2(s, t)‖Xα ≤C|t− s|η+θ−α‖x‖Cη([0,1])(‖σ ◦ y1 − σ ◦ y2‖Cθ−α((0,T∗];Xα)

+ ‖δ̂1(σ ◦ y1 − σ ◦ y2)‖Cα
θ−α((0,T∗]2<;X)), (3.13)

for every (s, t) ∈ [0, T∗]
2
<. Let us estimate the first term in the right-hand side of

(3.13). For every s ∈ (0, T∗], we get

sα−θ‖σ(y1(s))− σ(y2(s))‖Xα ≤Lipασs
α−θ‖y1(s)− y2(s)‖Xα

≤Lipασ‖y1 − y2‖Y α
θ−α(0,T∗). (3.14)

Next, we estimate ‖δ̂1(σ ◦ y1 − σ ◦ y2)‖Cα
θ−α((0,T∗]2<;X). For every (s, t) ∈ (0, T∗]

2
<,

we can write

(δ̂1(σ ◦ y1 − σ ◦ y2))(s, t) = (δ1(σ ◦ y1 − σ ◦ y2))(s, t) − a(s, t)(σ(y1(s))− σ(y2(s))),

and

sα−θ‖a(s, t)(σ(y1(s))− σ(y2(s)))‖X ≤Cα,0Lip
α
σs

α−θ‖y1(s)− y2(s)‖Xα |t− s|α

≤Cα,0Lip
α
σ |t− s|α‖y1 − y2‖Y α

θ−α(0,T∗). (3.15)

Further,

(δ1(σ ◦ y1 − σ ◦ y2))(s, t)

=σ(y1(s) + (δ1y1)(s, t))− σ(y1(s))−
(
σ(y2(s) + (δ1y1)(s, t))− σ(y2(s))

)

+ σ(y2(s) + (δ1y1)(s, t)) − σ(y2(s) + (δ1y2)(s, t))

=

∫ 1

0

[σ′(y1(s) + r(δ1y1)(s, t))− σ′(y2(s) + r(δ1y1)(s, t))](δ1y1)(s, t)dr

+ σ(y2(s) + (δ1y1)(s, t)) − σ(y2(s) + (δ1y2)(s, t)), (3.16)

from which it follows that

sα−θ‖δ1(σ ◦ y1 − σ ◦ y2)(s, t)‖X
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≤Lip3Rσ′ sα−θ‖y1(s)− y2(s)‖X‖(δ1y1)(s, t)‖X + Lipσs
α−θ‖(δ1y1)(s, t)− (δ1y2)(s, t))‖X

≤Lip3Rσ′ sα−θ‖y1(s)− y2(s)‖X
(
‖(δ̂1y1)(s, t)‖X + ‖a(s, t)y1(s)‖X

)

+ Lipσs
α−θ

(
‖(δ̂1(y1 − y2))(s, t)‖X + ‖a(s, t)(y1(s)− y2(s))‖X

)

≤Lip3Rσ′ ‖y1 − y2‖Y α
θ−α(0,T∗)

(
Kα,0‖y1‖Y α

θ−α(0,T∗) + Cα,0s
α−θ‖y1(s)‖Xα

)
|t− s|α

+ Lipσ
(
Kα,0‖y1 − y2‖Y α

θ−α(0,T∗) + Cα,0s
α−θ‖y1(s)− y2(s)‖Xα

)
|t− s|α

≤Lip3Rσ′ (Kα,0 + Cα,0)‖y1‖Y α
θ−α(0,T∗)‖y1 − y2‖Y α

θ−α(0,T∗)|t− s|α

+ Lipσ(Kα,0 + Cα,0)‖y1 − y2‖Y α
θ−α(0,T∗)|t− s|α. (3.17)

Putting together (3.13)-(3.17), we infer that

‖IS,σ◦y1−σ◦y2(s, t)‖Xα ≤C̃|t− s|η+θ−α‖x‖Cη([0,1])‖y1 − y2‖Y α
θ−α(0,T∗), (3.18)

for every (s, t) ∈ [0, T∗]
2
< and some positive constant C̃ which depends on α, θ, η,

R and σ. Further,

‖IS,σ◦y1−σ◦y2(s, t)‖Xα

|t− s|α
≤
‖IS,σ◦y1−σ◦y2(s, t)‖Xα

|t− s|η−θ−α
|t− s|η+θ−2α

≤C̃T η+θ−2α
∗ ‖x‖Cη([0,1])‖y1 − y2‖Y α

θ−α(0,T∗) (3.19)

for every (s, t) ∈ [0, T∗]
2
<. Therefore, we get

tα−θ‖(Γ(y1))(t)− (Γ(y2))(t)‖Xα + ‖(Γ(y1))(t) − (Γ(y2))(t)‖X

+
‖(δ̂1(Γ(y1)− Γ(y2)))(s, t)‖Xα

|t− s|α

≤‖IS,σ◦y1−σ◦y2‖Xα + ‖IS,σ◦y1−σ◦y2‖X +
‖IS,σ◦y1−σ◦y2(s, t)‖Xα

|t− s|α

≤C̃T η+θ−2α
∗ (Kα,0 + 2)‖x‖Cη([0,1])‖y1 − y2‖Y α

θ−α(0,T∗)

for every (s, t) ∈ [0, T∗]
2
<. This implies that a suitable choice of T∗ gives

‖Γ(y1)− Γ(y2)‖Y α
θ−α(0,T∗) ≤

1

2
‖y1 − y2‖Y α

θ−α(0,T∗),

i.e., Γ is a 1
2 -contraction on B and, therefore, it admits a unique fixed point in B

which we denote by y1.

Now, we prove some regularizing properties of the solution y to (3.1).

Proposition 3.7. Let Hypotheses 3.2 be satisfied. Then, for every ψ ∈ Xθ with

α ≥ θ and η > 2α − θ, the unique mild solution y to (3.1) in [0, 1] belongs to

C((0, 1];Xρ) and Cη+α−ρ
loc ((0, 1];Xρ) for every ρ ∈ [η + α − 1, η + α). Finally, for

every µ ∈ [0, η+α− 1) there exists a positive constant C = C(‖ψ‖Xθ
, α, θ, x, η, σ, µ)

such that

‖y(t)‖X1+µ ≤ Ctθ−1−µ, t ∈ (0, 1]. (3.20)

Remark 3.8. We stress that the behaviour of the X1+µ-norm of y in estimate
(3.20) is sharp. Indeed, in the particular case when σ ≡ 0, y(t) = S(t)ψ for every
t ∈ (0, 1] and estimate (3.20) agrees with (2.1)(a).
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Proof of Proposition 3.7. Let us notice that, for every τ ∈ (0, 1), y is the unique
mild solution to {

dv(t) = Av(t)dt + σ(v(t))dx(t), t ∈ (τ, 1],

v(τ) = y(τ),

with y(τ) ∈ Xα. From [1, Theorem 3.1], it follows that y(t) ∈ C((0, 1];Xρ) and

Cη+α−ρ
loc ((0, 1];Xρ) for every ρ ∈ [η + α − 1, η + α). It remains to prove estimate

(3.20).
Let us fix τ ∈ (0, 1] and observe that, using Remark 2.21 and formula (3.2), we

can easily show that

y(t) = S(t− τ/2)y(τ/2) + IS,σ◦y(τ/2, t) (3.21)

for every t ∈ [τ, 1], so that, using (2.23), which holds true also when γ = 0 (see
Remark 2.20), we obtain

‖y(t)‖Xζ
≤Lα,ζ(t− τ/2)α−ζ‖y(τ/2)‖Xα + C(t− τ/2)η+α−ζ‖x‖Cη([0,1])

× (‖σ ◦ y‖C([τ/2,1];Xα) + ‖δ̂1(σ ◦ y)‖Cα([τ/2,1]2<;X))

≤2α−θLα,ζ,1‖y‖Y α
θ−α(0,1)

(t− τ/2)α−ζτθ−α + C(t− τ/2)η+α−ζ‖x‖Cη([0,1])

× (‖σ ◦ y‖C([τ/2,1];Xα) + ‖δ̂1(σ ◦ y)‖Cα([τ/2,1]2<;X)) (3.22)

for every ζ ∈ [α, 1) and t ∈ [τ, 1].
Let us estimate the last factor in the right-hand side above: from (3.4), with

γ = α− θ, we get

‖σ ◦ y‖C([τ/2,1];Xα) ≤ 2α−θLα
στ

θ−α(1 + ‖y‖Y α
θ−α(0,1)

). (3.23)

By taking advantage of (3.8), we easily infer that

‖δ̂1(σ ◦ y)‖Cα([τ/2,1]2<;X)

≤2α−θτθ−α(Kα,0 + Cα,0)(Lipσ + Lα
σ)(1 + ‖y‖Y α

θ−α(0,1)). (3.24)

By replacing (3.23) and (3.24) in (3.22) we conclude that

‖y(t)‖Xζ
≤ c1(t− τ/2)α−ζτθ−α, t ∈ [τ, 1], (3.25)

for some positive constant c1 which depends on ‖ψ‖Xθ
, α, θ, x, η, σ and ζ.

Now, we need to go beyond ζ < 1. To this aim, we fix λ ∈ [0, η + α − 1) and

we estimate ‖(δ̂1(σ ◦ y))(s, t)‖Xλ
. Since η < 1 it follows that λ < α. For every

(s, t) ∈ [τ, 1]2< we get

‖(δ̂1(σ ◦ y))(s, t)‖Xλ
≤‖σ(y(t))− σ(y(s))‖Xλ

+ ‖a(s, t)σ(y(s))‖Xλ

≤Kα,λLip
α
σ‖y(t)− y(s)‖Xα + Cα,λL

α
σ(1 + ‖y(s)‖Xα)|t− s|α−λ

≤Kα,λLip
α
σ(‖(δ̂1y)(s, t)‖Xα + ‖a(s, t)y(s)‖Xα)

+ Cα,λL
α
στ

θ−α(1 + ‖y‖Y α
θ−α(0,1)

)|t− s|α−λ.

To estimate the first term in the last side of the previous chain of inequalities,
we observe that

‖(δ̂1y)(s, t)‖Xα + ‖a(s, t)y(s)‖Xα

≤‖y‖Y α
θ−α(0,1)

|t− s|α + C2α−λ,α‖y(s)‖X2α−λ
|t− s|α−λ
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≤|t− s|α−λ(‖y‖Y α
θ−α(0,1)

+ c1C2α−λ,α(s− τ/2)λ−ατθ−α)

≤(‖y‖Y α
θ−α(0,1)

+ 2α−λc1C2α−λ,α)τ
λ+θ−2α|t− s|α−λ,

where we have applied (3.25) with ζ = 2α− λ, so that

‖(δ̂1(σ ◦ y))(s, t)‖Xλ
≤Kα,λLip

α
σ(‖y‖Y α

θ−α(0,1)
+ 2α−λc1C2α−λ,α)τ

λ+θ−2α|t− s|α−λ

+ Cα,λ,L
α
στ

θ−α(1 + ‖y‖Y α
θ−α(0,1)

)|t− s|α−λ. (3.26)

It follows that

‖δ̂1(σ ◦ y)‖Cα−λ([τ,1]2<;Xλ) ≤ c2τ
λ+θ−2α, (3.27)

where c2 is a positive constant which depends on ‖ψ‖Xθ
, α, θ, x, η, σ and λ.

Finally, we fix µ ∈ [0, η + α− 1) and take

λ = (η + α− 1)−
1

2
[(η + α− 1− µ) ∧ (η − α+ µ)],

which belongs to the interval (µ, η + α − 1). Applying again estimate (2.23),
with β = λ, ρ = α − λ, γ = 0 and ε = 1 + µ − α, we infer that IS,σ◦y ∈
C η+α−1−µ([ε, 1]2<;X1+µ) and

‖IS,σ◦y‖Cη+α−1−µ([τ,1]2<;X1+µ) ≤C(‖σ ◦ y‖C([τ,1];Xα) + ‖δ̂1(σ ◦ y)‖Cα−λ([τ,1]2<;Xλ))

≤C(Lα
στ

θ−α(1 + ‖y‖Y α
θ−α(0,1)

) + c2τ
θ+λ−2α)

≤c3τ
θ+λ−2α, (3.28)

where c3 is a positive constant which depends on ‖ψ‖Xθ
, α, θ, x, η, σ, λ and µ.

Taking (3.21) into account and applying (3.28), with τ replaced by τ/2, we
deduce that

‖y(t)‖X1+µ ≤L1+µ,α|t− τ/2|α−1−µ‖y(τ/2)‖Xα + 22α−θ−λc3τ
θ+λ−2α

≤L1+µ,α|t− τ/2|α−1−µτθ−α‖y‖Y α
θ−α(0,1)

+ 22α−θ−λc3τ
θ+λ−2α

≤c4τ
θ−1−µ (3.29)

for every t ∈ [τ, 1], where c4 is a positive constant which depends on ‖ψ‖Xθ
, α, θ, x,

η, σ and µ. In particular, we get ‖y(t)‖X1+µ ≤ c4t
θ−1−µ for every t ∈ (0, 1], where

c4 is independent of t, since λ > η + α− 1− (η − α− µ)/2, so that

λ− 2α+ 1 + µ ≥
1

2
(η − α+ µ) > 0,

due to the condition η > 2α−θ, and this yields the inequality θ+λ−2α ≥ θ−1−µ.

Remark 3.9. Hypotheses 2.1 is assumed with 0 ≤ ζ ≤ λ < 2, since Proposition 3.7
involves only the spaces Xγ , with γ < 2. It is easy to check that, if Hypotheses 2.1
are satisfied for every λ and ζ such that 0 ≤ ζ ≤ λ ≤ 1+β for some β ∈ (0, 1), then
Proposition 3.7 still holds true with ρ and µ replaced by ρ∧ (1 + β) and 1 + µ∧ β,
respectively.
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3.2. The case when σ is locally Lipschitz continuous in Xα. In this subsec-
tion, we prove that a mild solution to (3.1) also exists if we weaken the assumptions
on σ as long as we strengthen the hypotheses on the Hölder exponent η of x. As in
the previous subsection, we get global existence and uniqueness of the mild solution
y and we provide regularity properties of y.

Hypotheses 3.10. (i) Hypotheses 2.1 are satisfied with 0 ≤ ζ ≤ λ < 2;
(ii) Hypotheses 3.2(i)-(ii) are satisfied;

(iii) there exists α ∈ (0, 1) such that η+α > 1 and the restriction of σ to Xα maps

the space into itself. Moreover, there exist positive constants Lα
σ , Lip

α
σ and ω

such that

‖σ(x)− σ(y)‖Xα ≤ Lipασ(1 +R)ω‖x− y‖Xα , x, y ∈ B(0, R) ⊂ Xα,
(3.30)

for every R > 0 and ‖σ(x)‖Xα ≤ Lα
σ(1 + ‖x‖Xα) for every x ∈ Xα.

Theorem 3.11. Let Hypotheses 3.10 be satisfied. Then, for every ψ ∈ Xθ with

α ≥ θ and η > α + (1 + ω)(α − θ), there exists a unique mild solution y to (3.1)
which belongs to Y α

θ−α(0, 1).

Proof of Theorem 3.11. Let us notice that, under Hypotheses 3.10, the estimates
in the proof of Theorem 3.5 which fail are (3.14) and (3.15). Indeed, if y1, y2 belong
to the ball B ⊂ Y α

θ−α(0, T∗) with radius R, then ‖y1(s)‖Xα , ‖y2(s)‖Xα ≤ sθ−α
R for

every s ∈ (0, T∗]. From (3.30) we get

sα−θ‖σ(y1(s))− σ(y2(s))‖Xα ≤Lipασ(1 +R)ωs−ω(α−θ)‖y1 − y2‖Y α
θ−α(0,T∗) (3.31)

and, if ω > 0 and we take the supremum of s over (0, T∗), then the right-hand side
of (3.31) blows up. To overcome this problem, we stress that under Hypotheses
3.10 we are able to apply Remark 2.17, with a = 0, b = T∗, ϕ = σ ◦ y1 − σ ◦ y2,
γ = (1 + ω)(α− θ), ρ = α and β = ε = 0. In this case, for every t ∈ [0, T∗], instead
of (3.13) we get

‖IS,σ◦y1−σ◦y2(s, t)‖Xα ≤C|t− s|η−(1+ω)(α−θ)‖x‖Cη([0,1])

× (‖σ ◦ y1 − σ ◦ y2‖C−(1+ω)(α−θ)((0,T∗];Xα)

+ ‖δ̂1(σ ◦ y1 − σ ◦ y2)‖Cα
−(1+ω)(α−θ)

((0,T∗]2<;X))

(3.32)

for every (s, t) ∈ [0, T ]2<. Estimate (3.31) shows that σ ◦ y1 − σ ◦ y2 belongs to
C−(1+ω)(α−β)((0,T∗];Xα) and

‖σ ◦ y1 − σ ◦ y2‖C−(1+ω)(α−β)((0,T∗];Xα) ≤Lipασ(1 +R)ω‖y1 − y2‖Y α
θ−α(0,T∗), (3.33)

from which it follows immediately that

s(1+ω)(α−θ)‖a(s, t)(σ(y1(s))− σ(y2(s))‖X

≤Cα,0Lip
α
σ(1 +R)ω |t− s|α‖y1 − y2‖Y α

θ−α(0,T∗). (3.34)

Moreover, we can apply (3.17) (which does not rely on the Lipschitzianity of σ in
Xα), since s

(1+ω)(α−θ)‖(δ1(σ ◦ y1 − σ ◦ y2))(s, t)‖X and from (3.34) we infer that

δ̂1(σ ◦ y1 − σ ◦ y2) ∈ C α
−(1+ω)(α−θ)((0, T∗]

2
<;X) and

‖δ̂1(σ ◦ y1 − σ ◦ y2)‖Cα
−(1+ω)(α−θ)

((0,T∗]2<;X)
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≤[Cα,0Lip
α
σ(1 +R)ω + (Kα,0 + Cα,0)(Lip

3R
σ′ R+ Lipσ)]‖y1 − y2‖Y α

θ−α(0,T∗). (3.35)

Replacing estimates (3.33) and (3.35) into (3.32), we conclude that

‖IS,σ◦y1−σ◦y2,(0, t)‖Xα ≤ CT
η−(1+ω)(α−θ)
∗ ‖x‖Cη([0,1])‖y1 − y2‖Y α

θ−α(0,T∗),

‖IS,σ◦y1−σ◦y2(s, t)‖Xα

|t− s|α
≤ CT

η−(1+ω)(α−θ)−α
∗ ‖x‖Cη([0,1])‖y1 − y2‖Y α

θ−α
(0,T∗)

for every t ∈ [0, T∗] and (s, t) ∈ [0, T∗]
2
<, respectively. Here, C is a positive constant

which depends on α, θ, x, η, R, σ and ω. Using these estimates, which replace
(3.18) and (3.19), and arguing as in the proof of Theorem 3.5, we can complete the
proof.

Under the same assumptions of Theorem 3.11 we show that the mild solution y
is indeed more regular.

Proposition 3.12. Let Hypotheses 3.10 be satisfied. Then, for every ψ ∈ Xθ with

α ≥ θ and η > α+(1+ω)(α−θ), the unique mild solution y to (3.1) in [0, 1] belongs

to C((0, 1];Xρ) and C
η+α−ρ
loc ((0, 1];Xρ) for every ρ ∈ [η+α− 1, η+α). Finally, for

every µ ∈ [0, η+α−1) there exists a positive constant C = C(‖ψ‖Xθ
, α, θ, x, η, σ, µ, ω)

such that (3.20) holds true.

Proof. The proof can be obtained arguing as in the proof of Proposition 3.7, with
the unique difference that, due to the fact that σ is only locally Lipschitz continuous
on Xα, in estimate (3.26) we need to replace Lipασ with Lipασ‖y‖

ω
Y α
θ−α(0,1)

τω(θ−α),

so that (3.27) becomes ‖δ̂1(σ ◦ y)‖Cα−λ([τ,1];2<;Xλ) ≤ c1τ
λ+θ−2α−ω(α−θ), with λ ∈

[0, η + α − 1). Here, c1 is a positive constant which depends on ‖ψ‖Xθ
, α, θ, x, η,

σ and λ.
Now, we fix µ ∈ [0, η + α− 1) and argue as in (3.29) to infer that

‖y(t)‖X1+µ ≤2µ+1−αL1+µ,ατ
θ−µ−1‖y‖Y α

θ−α(0,1)

+ 22α+ω(α−θ)−θ−λc2τ
θ+λ−2α−ω(α−θ)

for every t ∈ [τ, 1], where c2 is a positive constant which depends on µ and the
same parameters as c1.

Finally, we choose a suitable λ such that τθ−µ−1 ≥ τθ+λ−2α−ω(α−θ) for every
τ ∈ (0, 1). For instance, we can take

λ = η + α− 1−

[
1

2
(η + α− 1− µ)

]
∧ (η − α− ω(α− θ) + µ),

which belongs to the interval (µ, η + α− 1). The proof is complete.

Remark 3.13. Clearly, Remark 3.9 can be applied also to the results of this
subsection.

Example 3.14. Let A be the second-order elliptic operator on Rd defined by

A =

d∑

i,j=1

qijDij +

d∑

j=1

bjDj + c.

We assume that the coefficients of operatorA are bounded and β-Hölder continuous

in R
d, for some β ∈ (0, 1), and

∑d
i,j=1 qij(x)ξiξj ≥ µ|ξ|2 for every x, ξ ∈ R

d and
some positive constant µ.
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Let A be the realization of A in X = Cb(R
d) with maximal domain

D(A) =
{
u ∈ Cb(R

d) ∩
⋂

p<∞

W 2,p
loc (R

d) : Au ∈ Cb(R
d)
}
.

For every λ ∈ (0, 1 + β/2) \ {1/2, 1}, we take Xλ = C2λ
b (Rd) endowed with its

classical norm. Moreover, we take as X1/2 the Zygmund space of all bounded

functions g : Rd → R such that [g]X1/2
= sup

x 6=y

|g(x) + g(y)− 2g(2−1(x+ y))|

|x− y|
< ∞

endowed with the norm ‖g‖X1/2
= ‖g‖∞ + [g]X1/2

. Finally, we set X1 = D(A).

The operator A generates an analytic semigroup on Cb(R
d). Further, for every

λ ∈ (0, 1 + β/2), Xλ is the interpolation space of indexes λ and ∞ between X and
D(A). Hence, Hypotheses 3.10 is satisfied for every 0 ≤ ζ ≤ λ ≤ 1 + β. We refer
the reader to e.g., [6, Chapters 3 and 14]. Finally, we fix a function σ̂ ∈ C2

b (R)
and note that the function σ : X → X , defined by σ(f) = σ̂ ◦ f for every f ∈ X ,
satisfies Hypotheses 3.10 for every α ∈ (0, 1/2) with ω = 1.

Therefore, the assumptions of Theorem 3.5 and Proposition 3.7 are satisfied and
we conclude that, for every ψ ∈ Cθ

b (R
d) with θ ≥ 0 and θ ∈ ((3α − η)/2, α], there

exists a unique mild solution y to problem (3.1) which takes values in D(A). In
particular, if 3α < 1 and η > 3α, then we get existence and uniqueness of the
smooth mild solution y for every ψ ∈ X . We notice that, since we are assuming
η + α > 1, the inequality η > 3α implies η > 3/4.

Similarly, if α ∈ (1/2, 1) and σ̂ ∈ C3
b (R) then the function σ satisfies Hypotheses

3.10 with ω = 2.

3.3. The case when σ′ is locally Lipschitz continuous from Xα to X. We
conclude this section by proving that we can further weaken the assumptions on σ
allowing σ′ to be locally Lipschitz continuous from the smaller space Xα to X .

Hypotheses 3.15. (i) Hypotheses 2.1 are satisfied, with 0 ≤ ζ ≤ λ < 2.
(ii) The function x belongs to Cη([0, 1]) for some η ∈ (1/2, 1).
(iii) The function σ : X → X is Gâteaux differentiable with bounded Gâteaux

derivative σ′.

(iv) There exists α ∈ (0, 1) such that η + α > 1, the restriction of σ to Xα maps

the space into itself, and there exist positive constants Lipασ , Lip
α
σ′ and ω ≥ 1

such that

‖σ(x)− σ(y)‖Xα ≤ Lipασ(1 +R)ω‖x− y‖Xα ,

‖(σ′(x))(h) − (σ′(y))(h)‖X ≤ Lipασ′(1 +R)ω−1‖x− y‖Xα‖h‖X

for every x, y ∈ Xα, with ‖x‖Xα and ‖y‖Xα ≤ R, every R > 0 and h ∈ X.

Moreover, ‖σ(x)‖Xα ≤ Lα
σ(1 + ‖x‖Xα) for every x ∈ Xα and some positive

constant Lα
σ.

Theorem 3.16. Under Hypotheses 3.15 the statements of Theorem 3.11 and Propo-

sition 3.12 hold true with the same choice of all the parameters.

Proof. The only differences between this proof and the one of the quoted Theorem
and Proposition is in the existence and uniqueness part of the statement. More pre-
cisely, we need to slightly modify the arguments used to prove the crucial estimate
(3.35) that is:

‖IS,σ◦y1−σ◦y2(s, t)‖Xα ≤ C̃|t− s|η−(1+ω)(α−θ)‖x‖Cη([0,T ])‖y2 − y1‖Y α
θ−α(0,T∗),
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which holds true for every (s.t) ∈ [0, T∗]
2
< and some positive constant C̃, depending

on α, θ, x, η, R, σ and ω. The starting point is still estimate (3.32). The different

assumptions on σ′ force us to estimate the term δ̂1(σ ◦ y1 − σ ◦ y2) differently from
what we did in (3.17), to obtain that

‖δ̂1(σ ◦ y1 − σ ◦ y2)‖Cα
−(1+ω)(α−θ)

((0,T∗]2<;X) ≤C̃1‖y1 − y2‖Y α
θ−α(0,T∗) (3.36)

for some positive constant C̃1 which depends on α, θ, x, η, R, σ and ω.
Let us fix (s, t) ∈ (0, T∗]

2
<. We recall that

(δ1(σ ◦ y1 − σ ◦ y2))(s, t)

=

∫ 1

0

(σ′(y1(s) + r(δ1y1)(s, t))− σ′(y2(s) + r(δ1y1)(s, t)))(δ1y1)(s, t)dr

+ σ(y2(s) + (δ1y1)(s, t)) − σ(y2(s) + (δ1y2)(s, t)) =: φ1(s, t) + φ2(s, t),

(see (3.16)). The term φ2(s, t) is estimated by (3.17). As far as φ1 is concerned,
we get

s(1+ω)(α−θ)‖φ1(s, t)‖X

≤Lipασ′(1 + 3Rsθ−α)ω−1s(1+ω)(α−θ)‖y1(s)− y2(s)‖Xα‖(δ1y1)(s, t)‖X

=Lipασ′(1 + 3R)ω−1sα−θ‖y1(s)− y2(s)‖Xαs
α−θ‖(δ1y1)(s, t)‖X

≤Lipασ′(1 + 3R)ω−1‖y1 − y2‖Y α
θ−α(0,T∗)s

α−θ‖(δ1y1)(s, t)‖X

and, arguing as in (3.17), we infer that

sα−θ‖(δ1y1)(s, t)‖X ≤(Kα,0 + Cα,0)‖y1‖Y α
θ−α(0,T∗)|t− s|α.

Summing up, we have proved that

‖δ1(σ ◦ y1 − σ ◦ y2)‖Cα
−(1+ω)(α−θ)

((0,T∗]2<;X) ≤C̃2‖y1 − y2‖Y α
θ−α

(0,T∗)

for some positive constant C̃2, which depends on ‖ψ‖Xθ
, α, θ, x, η, R, σ and ω.

From this estimate and (3.34), (3.36) follows easily.
Now, we can complete the proof following the arguments in Theorem 3.11.

Remark 3.17. Remark 3.9 can be applied also to the results of this subsection.

Example 3.18. Let A be the realization of the second-order derivative in X =
L2((0, 1)), with homogeneous Dirichlet boundary conditions, and let σ(ψ) := σ̂ ◦ ψ
for every ψ ∈ L2((0, 1)), where σ̂ is a fixed function in C2

b (R). In this situation,

Xλ = W 2λ,2((0, 1)) if λ ≤ 1/2, Xλ = W 2λ,2((0, 1)) ∩W 1,2
0 ((0, 1)) if λ ∈ (1/2, 1),

X1 = D(A) =W 2,2((0, 1))∩W 1,2
0 ((0, 1)) and Xλ = {u ∈ W 2,2((0, 1))∩W 1,2

0 ((0, 1)) :
u′′ ∈ Xλ−1} if λ ∈ (1, 2).

Let α ∈ (14 ,
1
2 ), θ ∈ [0, α] and η ∈ (12 , 1) be such that η > 3α − 2θ. Under these

conditions, Hypotheses 3.15 are satisfied with ω = 1. Indeed, it is easy to check that

σ is Lipschitz continuous from X in itself. Moreover,

‖(σ′(y2))(h) − (σ′(y1))(h)‖
2
X =

∫ 1

0

|σ̂′(y2(ξ)) − σ̂′(y1(ξ))|
2|h(ξ)|2dξ

≤‖σ̂‖2C2
b (R)

∫ 1

0

|y2(ξ)− y1(ξ)|
2|h(ξ)|2dξ

≤‖σ̂‖2C2
b (R)

‖y2 − y1‖
2
Cb([0,1])

‖h‖2X
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≤‖σ̂‖2C2
b (R)

‖y2 − y1‖
2
Xα

‖h‖2X ,

for every y1, y2 ∈ Xα and every h ∈ X, since Xα ⊂ Cb([0, 1]) with a continuous

embedding. Therefore, the second estimate in Hypothesis 3.15 is satisfied with ω =
1. To prove that σ is locally Lipschitz continuous in Xα we observe that

(σ(y1))(x) − (σ(y2))(x) = (y1(x)− y2(x))

∫ 1

0

σ̂′(ry1(x) + (1− r)y2(x))dr

for every y1, y2 ∈ Xα and almost every x ∈ (0, 1). From this formula it follows that

‖σ(y1)− σ(y2)‖L2((0,1)) ≤ ‖σ̂′‖∞‖y2 − y1‖L2((0,1)).

Moreover,

(σ(y1))(ξ) − (σ(y2))(ξ) − (σ(y1))(η) + (σ(y2))(η)

=[y1(ξ)− y2(ξ) − y1(η) + y2(η)]

∫ 1

0

σ̂′(ry1(ξ) + (1 − r)y2(ξ))dr

+ (y1(η)− y2(η))

∫ 1

0

[σ̂′(ry1(ξ) + (1 − r)y2(ξ))− σ̂′(ry1(η) + (1− r)y2(η))]dr

so that

|(σ(y1))(ξ) − (σ(y2))(ξ) − (σ(y1))(η) + (σ(y2))(η)|
2

≤2‖σ̂′‖2∞|y1(ξ)− y2(ξ)− y1(η) + y2(η)|
2

+ 2‖σ̂′′‖2∞|y1(η)− y2(η)|
2(|y1(ξ)− y1(η)|

2 + |y2(ξ)− y2(η)|
2)

for almost every ξ, η ∈ (0, 1). Consequently, we can estimate

[σ(y1)− σ(y2)]
2
W 2α,2(0,1)

≤2‖σ̂′‖2∞[y1 − y2]
2
W 2α,2((0,1)) + 2‖σ̂′′‖2∞‖y1 − y2‖

2
∞([y1]

2
W 2α,2((0,1)) + [y2]

2
W 2α,2((0,1)))

≤C∗(1 + ‖y1‖
2
Xα

+ ‖y2‖
2
Xα

)‖y1 − y2‖
2
Xα

for some positive constant C∗, independent of y1 and y2. We have so proved that

σ is locally Lipschitz continuous on Xα and the first condition in Hypotheses 3.15
is satisfied with ω = 1.

Note that, if 3α < 1 and η > 3α then we can take θ = 0, i.e., problem (3.1)
admits a unique mild solution with initial datum ψ ∈ X = L2((0, 1)).

Finally, we observe that, if σ̂ ∈ C3
b (R) and α ∈ (1/2, 1), then the function σ

satisfies Hypotheses 3.15 with ω = 2.
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Bicocca, Milano, Via R. Cozzi 55, I-20126 Milano Italy

Email address: davide.addona@unipr.it

Email address: luca.lorenzi@unipr.it

Email address: gianmario.tessitore@unimib.it


