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Abstract
In commodity and energy markets swing options allow the buyer

to hedge against futures price fluctuations and to select its preferred
delivery strategy within daily or periodic constraints, possibly fixed
by observing quoted futures contracts. In this paper we focus on
the natural gas market and we present a dynamical model for com-
modity futures prices able to calibrate liquid market quotes and to
imply the volatility smile for futures contracts with different deliv-
ery periods. We implement the numerical problem by means of a
least-square Monte Carlo simulation and we investigate alternative
approaches based on reinforcement learning algorithms.

JEL classification codes: C63, G13.
AMS classification codes: 65C05, 91G20, 91G60.
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1 Introduction
In energy markets, a class of commonly traded contracts allows the buyer
to select its preferred delivery strategy within daily or periodic constraints,
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while the purchase price can be fixed at inception or determined before the
starting date of the delivery period by observing the prices of quoted futures
contracts. These contracts are usually known as swing options since the
buyer is allowed to swing between a lower and an upper boundary in the
commodity flow.

From the modelling point of view, the daily selection of the delivery strat-
egy along with constraints on the total consumption force us to describe the
swing option pricing problem as a specific type of a stochastic control problem
for the optimal consumption strategy. Its theoretical aspects are described in
Barrera-Esteve et al.1 and later in Bardou et al.2. These papers derive con-
ditions for existence of an optimal consumption strategy of a specific type,
named bang-bang, in which only the minimum or maximum consumption
allowed by all the constraints is selected on each delivery day. Several other
properties of the solution have been proven3,4 when the set of admissible
strategies is subject to such restriction, since the problem then reduces to
multiple optimal stopping.

The first numerical works in the literature date back to the nineties and
they focus on specific payoffs5. Several algorithms have been proposed since
then. Tree methods6 are able to handle fairly general swing option payoffs,7
different dynamics8,9,10 and generalizations11,12 which drop the no-arbitrage
pricing setting in favour of a more flexible game-theoretic goal. All of these
rely on a Markov chain approximation of the commodity dynamics. A parsi-
monious but accurate representation by optimal quantization is also discussed
in the literature.13

Undiscretized continuous state spaces can be handled by least-square
Monte Carlo (LSMC) algorithms, first introduced in this context by Barrera-
Esteve et al.1. LSMC is also considered by other authors3,14 under the simpli-
fied optimal stopping formulation; in this setting, the downward-biased result
can be complemented with upper bounds via duality.15,16,17 Otherwise, if the
dynamics of the underlying are driven by Brownian or Lévy factors, con-
tinuous time approximations of the payoff lead to Hamilton-Jacobi-Bellman
partial (integro) differential equations which can be solved numerically.18,19

Finally, if the log-underlying itself follows a Lévy or Gaussian mean revert-
ing process, then efficient algorithms based on finite differences20,21 or Fourier
expansions22,23 can be designed.

Our contribution to the literature is twofold. First, we propose a simple
diffusive model for commodity futures prices, which is able to describe the
volatility smile quoted by the market for futures contracts with different de-
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livery periods. Our proposal starts from the extension of the local-volatility
linear model presented in Nastasi et al.24. We stress the importance of mod-
elling futures prices with heterogeneous delivery periods since swing option
prices depend both on day-ahead prices through the consumption strategy
and on longer period futures contracts (usually one-month contracts) to de-
termine the purchase strike prices. Using this new model, we present a study
of the effect on prices of this often overlooked feature of many real swing
contracts, by a least-square Monte Carlo implementation which is described
in detail.

Second, we investigate reinforcement learning (RL) algorithms as possi-
ble alternative tool to solve the stochastic control problem. Reinforcement
learning is a modern branch of machine learning, in which an artificial agent
automatically learns how to improve the expected cumulated reward of his
actions while interacting with a stochastic environment.25 The number of its
applications to finance is rapidly growing.26,27,28,29 The well studied swing
option problem offers an ideal field for benchmarking RL results, both quan-
titatively against more established algorithms, and qualitatively against the
known abstract properties of the optimal solution, in particular the con-
ditions under which it is of bang-bang type. We believe that the positive
outcome of such an analysis can be relevant for several reasons.

To begin with, a RL engine does not require any prior knowledge on ei-
ther the underlying dynamics or the payoff structure; in contrast, most of
the existing algorithms cleverly exploit the precise form of the consumption
constraints and optimization goal, or properties of the assumed stochastic
processes, and need a redesign if any of these is changed. Moreover, RL
relies internally on supervised machine learning tools, like neural networks
or decision trees, which have been developed specifically to be robust to
high-dimensional settings: this means that relevant features for the exercise
decision are automatically created or selected even in large problems, where
most traditional optimization approaches either break or need hand-crafted
dimensionality reductions and simplifications. Finally, the success of this
application proves the potential in finance of the recent proximal-policy op-
timization (PPO) algorithm proposed in Schulman et al.30, which we adopt in
our implementation: differently to Q-learning variants, which have been pre-
dominant in applied finance to date, PPO handles continuous actions spaces
natively, without the need of artificial discretizations. This implies that also
the exercise decision could be easily made multi-dimensional without expo-
nential demands in computational or memory resources.
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The paper is organized as follows. In Section 2 we present the model
we use to describe the prices of futures contracts on different delivery peri-
ods. Then, in Sections 3 we present numerical examples derived by means of
least-square Monte Carlo techniques. In particular we check the possibility
of optimal bang-bang strategies to test the soundness of the numerical algo-
rithm. We conclude the paper with Section 4 devoted to the application of
reinforcement learning to swing option pricing.

Needless to say, the views expressed in this paper are those of the authors
and do not necessarily represent the views of their institutions.

2 Modelling Commodity Smiles
The local-volatility linear model presented in Nastasi et al.24 allows to de-
scribe futures prices in a parsimonious way while preserving a perfect fit to
plain vanilla options (PVO) quoted in the commodity market. Moreover,
mid-curve options and calendar spread options can be calibrated by means
of a best-fit procedure. In the original paper some extensions are discussed to
introduce multiple risk factors to drive the curve dynamics and to allow for
stochastic volatilities. Here, we stick to the one-dimensional specification of
the model and we investigate how to extend it to deal with futures contracts
on different delivery periods.

2.1 Modelling Futures with Different Delivery Periods
Futures on commodities like natural gas, oil and electricity have as underlying
a daily flow for the whole delivery period. Often day-ahead futures are quoted
on the market as a close proxy of the spot prices. Moreover, futures on
different delivery periods are usually quoted ranging from one day to a whole
year. On the other hand, PVO contracts are usually quoted only for the
most liquid delivery period.

A common way to model these futures prices consists in introducing a
dynamics for futures with the shortest delivery period, and in building longer
periods by summing futures prices. Yet, it is difficult to find models which
allows to derive closed-form formulae for futures prices with longer periods.31

Here, we rely on the linear form of the drift coefficient and on using a single
risk factor to derive simple closed-form formulae for sums of futures prices.
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We start by introducing the instantaneous futures price process ftpT q
with delivery at time T , and we assume that for each T we can model it by
the local-volatility linear model,24 so that we can write

ftpT q � f0pT q
�

1 � p1 � stqe
�

³T
t apuq du

	
(1)

where the spot process is given by

dst � aptqp1 � stq dt� ηpt, stqst dWt , s0 � 1 (2)

where Wt is a standard Brownian motion under the risk neutral measure, a
is a non-negative function of time, and η is Lipschitz in the second argument,
bounded and greater than a strictly positive constant.

Then, we calculate the futures price for a contract with delivery period
rT � δ0, T � δ1s simply by averaging the instantaneous futures price over the
delivery period. We obtain

FtpT, δq �

» 8

0
wpu� T, δqftpuq du , wpτ, δq :� 1tδ0¤τ¤δ1u

δ1 � δ0
(3)

where we define δ :� δ1 � δ0, and we discard the dependency on δ0 to lighten
the notation. For instance, the futures contracts with a delivery period of
one month we mentioned in the introduction are now denoted as FtpT, 1mq.

By straightforward manipulation of the integral we may express FtpT, δq
for different delivery period δ as follows:

FtpT, δq � F0pT, δq
�

1 � p1 � stpδqqe
�

³T
t Apu,δq du

	
(4)

where we define the fictitious spot process

stpδq :� 1 � p1 � stqGpt, δq (5)

which depends on the deterministic functions

Apt, δq :� aptq � Bt logGpt, δq (6)

Gpt, δq :� 1
F0pt, δq

» 8

0
wpu� t, δqf0puqe

�
³u
t apvq dv du (7)

We notice that the relationship between FtpT, δq and stpδq is the same
holding between ftpT q and st up to a change in parameters. Also, we have
ftpT q � FtpT, 0q and st � stp0q.
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Moreover, we can see that the dynamics followed by stpδq is still a local-
volatility linear model. Indeed, we can differentiate the above relationships
and we obtain

dstpδq � Apt, δqp1 � stpδqq dt� ηpt, δ, stpδqqstpδq dWt , s0pδq � 1 (8)

where we define the local volatility function

ηpt, δ, kq :�
�

1 � 1 �Gpt, δq

k



η

�
t, 1 � 1 � k

Gpt, δq



(9)

The following bounds hold:

stpδq ¡ 1 �Gpt, δq , 0   Gpt, δq ¤ 1 (10)

so that the spot price is always positive.

2.2 Calibration of Futures Option Smile
Usually we can find liquid quotes for PVO only on a single delivery period,
we name it δ̄. This is the case for natural gas, the commodity we use as an
example in this paper. We focus on this scenario.

In our modelling framework futures prices of each delivery period follow a
local-volatility linear model. In particular, this is true for the delivery period
δ̄. Thus, we can follow the procedure24 to calibrate the functions Apt, δ̄q and
ηpt, δ̄, kq. We refer to such paper for a discussion of calibration performance
and accuracy. Then, we can derive the same functions for any other choice
of the delivery period δ by a direct calculation starting from the definitions
of these functions. Indeed, we get

Apt, δq � Apt, δ̄q � Bt log Gpt, δq
Gpt, δ̄q

(11)

and

ηpt, δ, kq �

�
1 � 1

k

�
1 � Gpt, δq

Gpt, δ̄q




η

�
t, δ̄, 1 � p1 � kq

Gpt, δ̄q

Gpt, δq



(12)

which we evaluate for k ¡ 1 �Gpt, δq.
The previous formula allows us to imply volatility smiles for any delivery

period. Notice that smiles for different delivery periods can be different only
if aptq ¡ 0, since if aptq � 0 we get Gpt, δq � 1.
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We show in Figure 1 the volatility smiles implied by the model for differ-
ent choices of the mean-reversion speed in the case of the TTF natural gas
market. The market quotes the volatilities of PVO contracts on futures with
one-month delivery period. Since we do not have liquid quotes for mid-curve
options or calendar spread options we do not fix the mean-reversion speed to
market data. The implied smiles maintain the same shape of the one-month
smile because the market smile is almost symmetric in shape. In Figure 2 we
plot the volatility backbones, namely the at-the-money implied volatilities
as a function of option maturity.

3 Pricing Swing Options
We set up in this numerical section the stochastic control problem required
to get swing option prices, and we solve it by means of a least-square Monte
Carlo (LSMC) simulation. As a specific example we consider swing options
traded in the TTF natural gas market.

The LSMC algorithm is particularly effective when we have to deal only
with few risk factors, since the method requires to calculate a linear regres-
sion whose size rapidly explodes as the number of risky factors increases. In
our case we adopt a parsimonious model with only one risk factor. How-
ever, for a better description of curve and smile dynamics we could look at
model extensions inclusive of additional risk factors.24 For this reason we
will also investigate in Section 4 solutions which could be applied in higher
dimensionality settings.

3.1 Contract Description
A swing option contract guarantees a flexible daily supply of gas with a
delivery period of one month. The underlying contracts are the day-ahead
futures, namely FTipTi�1, 1dq for each fixing date T1, . . . , Tnf within the de-
livery period. At each fixing date the owner of the option is allowed to buy a
quantity NTi of gas within a daily range rNm, NM s at a strike price K. The
total consumption of gas must be within a total range rCm, CM s. The option
price can be written as

W0 :� max
NPN

nf̧

i�1
E0rNTipFTipTi�1, 1dq �Kq sP0pTp,i; eq (13)
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where P0pTp,i; eq is the price of a zero-coupon bond with yield et, and the
consumption plan N :� tNT1 , . . . , NTnf

u can be chosen from a set N of plans
subject to the following constraints:

Nm ¤ NTi ¤ NM , Cm ¤

nf̧

i�1
NTi ¤ CM (14)

The strike price of swing options can be either known at inception, or
fixed at a forward date. In the latter case it is calculated as the daily average
of a specific one-month futures contract over the observation dates t1, . . . , tns .
For example, the strike price of a swing option with delivery in July 2018 is
fixed by averaging the daily observations of the JUL18 one-month contract,
namely we set

Ktns :� 1
ns

nş

j�1
FtjpJUL18, 1mq (15)

where t1 is the 1st of June 2018 and tns is the 28th of the same month (last
trading date).

We show in Figure 3 the JUL18 swing option on NG TTF day-ahead
futures term-sheet data. In this example the strike price is set by observing
one-month futures contracts.

3.2 Least-Square Monte Carlo Simulation
We can write the stochastic control problem underlying the pricing of a
swing option contract by introducing the consumption strategy NTi which
represents the quantity of gas delivered in Ti, and by defining the total con-
sumption up to time Ti as given by

CTi :�
i̧

j�1
NTj (16)

Thus, on each day Ti in the simulation we have to solve the following control
problem

WTi � max
NTi

"
NTipFTipTi�1, 1dq �Kq � E

�
WTi�1pNTiq

P0pTp,i�1; eq
P0pTp,i; eq

���� FTi , CTi�1

�*
(17)
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In case the option is forward starting we should add to the conditioning
factors also the strike price.

We can solve the control problem by means of a LSMC simulation. Here,
we describe the details of our implementation, which can be split into three
steps: (i) we build consumption grids, (ii) we estimate of the value func-
tions on the grids by means of regressions with a backward procedure, (iii)
we compute the swing option price with a standard forward Monte Carlo
simulation.

For simplicity, the method is described in the following by considering
zero interest rates and fixed strike prices.

3.2.1 Building Consumption Grids

We start by constructing the consumption grid by taking care that the points
corresponding to extreme choices of the amount to be consumed are included.
We define the global constraint functions at each fixing date Ti as given by

Ui :� min pCM �Nmpnf � iq , iNMq (18)

and
Di :� max pCm �NMpnf � iq , iNmq (19)

At each date Ti the total consumption must be within such values: Di ¤
CTi ¤ Ui. We define Ci as the vector representing the consumption grid at
fixing date Ti. The consumption grid is built by following Algorithm 1.

On each date Ti we start by adding the points allowed by a bang-bang
strategy. We use the term bang-bang as in Jaillet et al.7 to indicate a strategy
which on each date Ti is consuming the minimum or the maximum amount
of commodity according to all the constraints. Thus, defining the starting
consumption C0 as a vector with a single component equal to zero, at time
T1 we have only two possible bang-bang states given by Nm and NM (unless
global constraints are tighter). On the following date T2 the grid has three
bang-bang points, obtained by starting from the consumption levels of the
previous date and consuming the minimum or maximum allowed quantities,
and so on. Then, we refine the grid in between the bang-bang points to allow
for intermediate choices (continuous consumption strategy). The resulting
grids are depicted in Figure 4.
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Algorithm 1 Algorithm to build the consumption grid. Operations from 9
to 11 are performed only when the strategy is continuous.
1: procedure Grid(tTiu

nf
i�1, Nm, NM , Cm, CM ,∆)

2: C0 :� r0s � Starting consumption
3: for i � 1 to nf do
4: for x in Ci�1 do � Bang Bang points
5: append min pUi , x�NMq to Ci

6: append max pDi , x�Nmq to Ci

7: end for
8: Ci = unique(Ci) � Sort the grid and erase duplicates
9: for j in lengthpCi) - 1 do

10: append unifpCi
j, C

i
j�1,∆q to Ci � Thicken the grid

11: end for
12: Ci = unique(Ci) � Sort the grid and erase duplicates
13: end for
14: end procedure

3.2.2 Calculating the Regression Coefficients

Now, we proceed by describing the simulation algorithm. We start by pro-
ducing a Monte Carlo simulation on dates Ti for the day-ahead futures prices
according to Equations (4) and (8), and we build the consumption grids Ci

according to the previous algorithm. We call F pkq
Ti

the i�th fixing of the k�th
simulation. For each point Ci�1

` of the grid at previous time, we introduce
the set NpCi�1

` q of all the possible consumption levels, whose j-th element
can be defined as

NjpC
i�1
` q :� Ci

j � Ci�1
` (20)

and the the set QTipCi�1
` q of admissible consumption levels given global and

local constraints relative to the `�th point of the grid

QTipCi�1
` q :�

!
N P NpCi�1

` q
£

rNm, NM s |C
i�1
` �N P rLi, Uis

)
(21)

Then, we can write the control problem on the grid as given by

WTi

�
F
pkq
Ti
, Ci�1

`

	
� max

NPQTi pCi�1
`

q

!
N
�
F
pkq
Ti

�K
	
� E

�
WTi�1

�
FTi , C

i�1
` �N

� �� FTi � F
pkq
Ti

�)
(22)
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with terminal condition

WTnf

�
F
pkq
Tnf

, C
nf�1
j

	
�

$&
%

min
�
CM � C

nf�1
j , NM

	�
F
pkq
Tnf

�K
	

F
pkq
Tnf

¡ K

max
�
C
nf�1
j � Cm , Nm

	�
F
pkq
Tnf

�K
	

F
pkq
Tnf

¤ K

(23)
We can solve the problem backwards in time by starting from the ter-

minal condition in Tnf , and proceeding to the previous steps by numerically
evaluating the forward expectation in the right-hand side of Equation (22) by
means of the Monte Carlo simulation. We call fTi

�
F ;Ci�1

` �N
�
the estimate

of such forward expectation

E
�
WTi�1

�
FTi�1 , C

i�1
` �N

� �� FTi � F
pkq
Ti

�
� fTi

�
F ;Ci�1

` �N
�

(24)

and we suppose that it is quadratic with respect to day-ahead futures prices:

fTi pF ;Cq :� αi pCq � βi pCqF � γi pCqF 2 (25)

We note that Ci�1
` � N P Ci by construction, hence we can estimate the

coefficients by regressing for each j the realizations

ypkq :� WTi�1

�
F
pkq
Ti�1

, Ci
j

	
(26)

against
xpkq :� F

pkq
Ti

(27)
The problem given by Equation (22) at each time Ti   Tnf is then solved
by replacing the forward expectation with the estimate just performed (25).
The procedure is repeated backwards in time until the first fixing.

3.2.3 Pricing with a Forward Simulation

Once the backward procedure is completed we have calculated the coefficients
αi, βi and γi on each grid date Ti, which allows us to approximate the forward
expectation given by Equation (25) on any scenario. Then, in order to avoid
biases, we proceed by sampling a second Monte Carlo simulation for day-
ahead futures prices. On each scenario k of the second simulation and on each
date Ti we calculate F pkq

Ti
. Starting from the first fixing, at each step, being

at a certain point Cpkq
i�1 on the grid Ci�1, we choose the quantity to consume

N̂
pkq
i solving the problem optimization (22) with the coefficients calculated in
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the previous simulation. This step takes us to the point Cpkq
i � C

pkq
i�1 � N̂

pkq
i .

Repeating the step described until reaching the last fixing we get the reward

R
pkq
Tnf

:�
nf̧

i�1
N̂

pkq
i

�
F
pkq
Ti

�K
	

(28)

Hence, the swing option price is given by averaging the rewards.

WT0 pFT0 ; 0q � ET0

�
RTnf

�
(29)

3.3 Numerical Investigations with LSMC
We are now ready to calculate the price of swing options with the local-
volatility linear model by using the LSMC algorithm. It is our aim to high-
light the impact of the mean-reversion speed in swing option prices. More-
over, we wish to show that Theorem 2.4 in Bardou et al.13 holds, and the
LSMC algorithm is able to select the optimal strategies in agreement with
the theorem.

We consider for our numerical analysis futures contracts on the TTF
natural gas, quotations are expressed in e/MWh. We calibrate our model
to PVO quoted on 29 March 2018 on ICE market. We consider swing option
contracts with delivery ranging from May 2018 up to June 2019. We consider
both fixed-strike option and floating-strike options with at-the-money strike.
The strike price is calculated by considering the one-month futures contract
delivering in the same period of delivery of the swing contract. Fixed-strike
options evaluate the futures price at contract inception, while floating-strike
options make a daily average of the futures prices on a time window starting
after contract inception and ending before delivering, as previously depicted
in Figure 3. All contracts, if not specified otherwise, have global constraints
given by:

Cm � 12.5 MWh , CM � 20 MWh (30)
and, following a usual choice in the literature,13 without loss of generality
the daily constraints are set to:

Nm � 0 MWh , NM � 1 MWh (31)

We remark that different choices of daily constraints can be obtained by
simply shifting and scaling all the relevant quantities.
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3.3.1 Fixed vs. Floating-Strike Options

We start by analyzing the impact of the mean-reversion speed on swing
option prices. In Figure 5 we show the swing option prices for different deliv-
ery periods, each period corresponding to the delivery of a futures contract
quoted in the market. The trend of the price of the fixed strike options with
respect to the delivery month can be easily understood. As time increases,
the option increases its time value, which translates into an increase in price.
The increasing trend as a function of the mean-reversion speed is instead
explained by the two graphs in Figure 1. This picture shows that the volatil-
ity of the day-ahead contract, i.e. one-day delivery period, implied by the
model, increases as the mean-reversion speed increases, which translates into
an increase in the price of the swing option. On the contrary, if we look
at the prices of the forward start options for mean-reversion speed equal to
0, we note that the price trend reproduces the shape of the at the money
market volatility at Figure 2. This is due to the fact that the volatility of the
monthly Futures observed during the strike period is equal to the volatility
of the day-ahead contract. By increasing the mean reversion, instead, we
have the two opposite effects: the volatility of the strike decreases, while
the volatility of the day-ahead contract, as already said, increases. As a re-
sult the forward volatility relative to the fixing period increases, producing
increasing prices as the mean-reversion speed increases.

In the following sections we will focus on specific numerical problems, so
that we will consider only the case of a fixed-strike option delivering in May
2018. Moreover, we set the mean-reversion speed to 1.

3.3.2 Bang-Bang Strategies

We continue by investigating the strategies selected by the LSMC algorithm.
We recall that Theorem 2.4 in Bardou et al.13 describes the structure of opti-
mal strategies for swing options when the consumption levels have a specific
form. In particular, it states that the if the minimum global constraint and
the difference between the global constraints can be expressed as an integer
multiple of the difference between the daily constraints, then the optimal
strategy is consuming the daily minimum or maximum on all dates (we say
that the strategy is of bang-bang type). For instance, the swing option con-
tract used for the example of Figure 5 does not satisfy the theorem, while
the same contract with integer values for the global constraints is within the
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theorem since the difference between the local constraints is 1.
We start from one of the cases studied in the previous section (fixed-

strike delivering in May 2018 with a � 1). Such case does not satisfy the
hypotheses of the Theorem since the minimum global constraint is not an
integer number. The price of the corresponding swing option contract can
be read in the top-left entry of Table 1. Then, we consider three different
scenarios.

1. We limit the allowed strategies to be only of bang-bang type. We
expect to see a reduced price in this case since we forbid intermediate
consumption choices. Indeed, in the top-right entry of the table we
obtain a lower price.

2. Without limitations on the strategies we change the minimum global
constraint to 12 MWh, so that now we satisfy the hypotheses of the
Theorem. In the bottom-left entry of the table we report the price of
this scenario. The price is now bigger since the global constraints are
wider.

3. With the constraint of the previous scenario we limit the allowed strate-
gies to be only of bang-bang type. We expect not to see a reduced price
in this case since we forbid consumption choices which are not selected
for the optimal strategy. Indeed, in the bottom-right entry of the table
we can see that the price is unchanged.

We support our discussion by showing in Figure 6 the graph of daily
consumption NTi selected by the optimal strategy on a particular simu-
lation path, when we assume that the minimum global constraint is ei-
ther 12.5 MWh (out-of-theorem hypotheses, left panel) or 12 MWh (within-
theorem hypotheses, right panel). When we are out of the theorem hypothe-
ses we can see that exists an optimal strategy (red line) which is not of
bang-bang type, and we are able to exploit these strategies.

4 Optimal Strategies via Reinforcement Learn-
ing

As we have seen swing option pricing requires to solve a stochastic con-
trol problem with a continuous set of actions. Standard techniques rely on
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regression-based simulations whose performances may degrade when the di-
mensionality of the problem increases. In particular, if we wish to extend our
analysis to long-dated options, we should introduce more driving factors to
deal with the curve dynamics and possibly of the volatility dynamics. Indeed,
we extend the local-volatility linear model24 in this direction.

Here, we wish to price swing option with an alternative algorithm based
on reinforcement learning (RL) techniques. In our approach we use the re-
cently developed proximal policy optimization (PPO) algorithm proposed in
Schulman et al.30.

4.1 Proximal Policy Optimization Algorithm
RL25,32 describes how an agent behaves in an environment so to maximize
some notion of cumulative reward. The actions of the agent as a function of
his observations of the environment are termed the agent policy. In our case
the agent can choose the amount of commodity to be delivered within the
contract limits, so that the reward at each date is the cash flow generated by
the swing option, and the policy is the consumption strategy. Once the agent
is trained, and the optimal policy is selected, we can run a further Monte
Carlo simulation to calculate the swing option price.

4.1.1 Agent Interaction with the Environment

We consider as before a discrete time-grid of fixing times T1, . . . , Tnf . The
algorithm we chose for the training of the agent belongs to the family of
actor-critic algorithms. In particular, in our setting, this means that the
agent uses a parametric function with parameters θ to calculate both the
quantity N θ

Ti
to consume at time Ti, and its best estimate V θ

Ti
of the value

function under the current policy, identified by θ; this value function is the
expected value of future rewards, which will match the option price WTi for
optimal N θ. The agent makes its decision by observing the environment
given by: the fixing time Ti, the day-ahead futures price FTi :� FTipTi�1, 1dq,
and the total quantity of gas Cθ

Ti�1
consumed up to time Ti�1. We represent

in Figure 7 the relationships between the agent and the environment.
We adopt as learning strategy the PPO algorithm developed in Schulman

et al.30. This algorithm is well-suited for continuous control problems.1 The
1We use the implementation of the algorithm found in OpenAI Baselines https://

github.com/openai/baselines.

https://github.com/openai/baselines
https://github.com/openai/baselines
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PPO algorithm collects a small batch of experiences interacting with the
environment to update its decision-making policy. The value function of a
new policy is estimated by sampling from the environment. A brief overview
of how this is done is provided here below.

4.1.2 Description of the Learning Strategy

In the PPO algorithm the policies are randomized, so they are defined as
probability distributions on the set of possible actions. In our case they
represent the probability of a specific gas consumption on each fixing date
given the value of the day-ahead futures contract and the total level of gas
consumption up to the previous fixing date. In case of floating-strike swing
options we have to include also the strike level. If the space of controls is a
continuum, the algorithm considers the actions to be random variables Ñ θ

Ti

distributed according to independent Gaussian distributions φ centered on
the value N θ

Ti
, which is determined by a neural network:

πθTipnq :� Q
!
Ñ θ
Ti
� n | sTi , C

θ
Ti�1

)
� φpn;N θ

Ti
, ξiq (32)

where the variances ξi are added to the set θ of parameters which are subject
to optimization. Policies are identified by the PPO algorithm with these
densities.

If we wish to limit the allowed strategies only to the bang-bang ones, we
can simply restrict the action space to a discrete set. Hence, the actions will
be binomial random variables Ñ θ

Ti
, and the neural network will return the

probability parameter of such distribution.
Starting from the swing option control problem, we can define the action-

value function if a specific action is taken at time Ti as

Q̃θ
Ti
pnq :� E

�
rTipnq � Q̃θ

Ti�1
pÑ θ

Ti�1
qDpTi, Ti�1q

��� FTi , CTi�1

�
(33)

where rTipnq :� npFTi � Kq is the reward at time Ti, and the probability
space is extended to incorporate also the uncertainty in the actions.

If the action at time Ti is integrated over its law under the policy, we can
write the value function as

Ṽ θ
Ti

:� E
�
rTipÑ

θ
Ti
q � Ṽ θ

Ti�1
DpTi, Ti�1q

��� FTi , CTi�1

�
(34)

The PPO algorithm modifies θ by gradient ascent steps, so to increase
the value of an objective function which is made up of two main components,
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LA and LV . The first component LA measures the goodness of the policy,
and it is a modification of the so-called advantage

AθTi :� AθTipÑ
θ
Ti
q, where AθTipnq � Q̃θ

Ti
pnq � Ṽ θ

Ti
. (35)

Intuitively,33 AθTipnq measures the average improvement in expected reward
given by choosing the action n, over the average reward of the current policy
Ṽ θ
Ti
. Hence, a reasonable idea is to train the agent to favour large values of

AθTi . Indeed, one can prove that the gradient of the expected total cumulated
reward, which is the ultimate target of optimization, equals¸

i

E
�
AθTip∇θ log πθTipnqq|n�Ñθ

Ti

�
. (36)

This is beneficial since the realizations of the advantage are typically much
less noisy then the realizations of the cumulated rewards32,34.

In practice one substitutes the unknown Aθ with a pathwise quantity
which gives (approximately) the same gradient, namely

Âθi :�
nf�i�1¸
l�0

DpTi, Ti�lqλ
l
�
rTi�lpÑ

θ
Ti�l

q �DpTi�l, Ti�l�1qV
θ
t�l�1 � V θ

t�l

�
(37)

Note that if λ � 1 then ÂθTi telescopically reduces to the sum of realized
discounted rewards, while if λ   1 some bias is introduced by reducing the
impact on LA of rewards which are far in the future. This is done to get
lower variance.34

Instead, the second component LV of the objective function measures how
well V θ represents the value function Ṽ θ of the policy πθ.

Each step of the optimization procedure acts on a batch of so-called
“episodes” which are complete trajectories of state and action each resulting
from a Monte Carlo simulation of the state up to the swing option maturity.
The agent interacting with the environment calculates on each fixing date t
the policy density and the advantage for selecting an action Ñ θ

t at such time.
After the sampling process a new policy is proposed using a Stochastic

Gradient Descent (SGD) with respect to the θ parameters:

θk�1 � θk � ρ � E

�
∇θ

nf̧

i�1

�
LATipθq � βLVTipθq

�∣∣∣∣∣∣
θ�θk

�
(38)
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LATipθq :� min
#
πθTipÑ

θk
Ti
q

πθkTi pÑ
θk
Ti
q
Âθki , clip

�
1 � ε,

πθTipÑ
θk
Ti
q

πθkTi pÑ
θk
Ti
q
, 1 � ε

�
Âθki

+
(39)

LVTipθq :�
�
V θ
Ti
� pÂθki � V θk

Ti
q
	2

(40)

where the expected value is estimated over a batch of episodes, ρ is a learning
rate, clippa, x, bq is the clip function (capped and floored linear function),
while ε and β are hyper-parameters.

One of the key ideas of PPO is to ensure that a new policy update is
“close” to the previous policy by clipping the advantages. The ratio behind
this choice is to keep the new policy πθk�1 within a neighbourhood of the
old one πθk where one can trust both the first order approximation to the
objective function given by the stochastic gradient, and the function V θk

used in the estimation of the advantage. Once the policy is updated, the
experiences are thrown away and a new batch is collected with the updated
policy.

4.2 Numerical Investigations with PPO
We focus in this example on a swing option contract with at-the-money fixed
strike. The mean reversion is equal to 1 in all experiments.

Several PPO hyper-parameters will be kept fixed to the following values:
λ � 0.95, ε � 0.2, ρ � 0.0003. These are general purpose defaults30 and/or
hard-coded in the baselines implementation. The trainable parameters θ are
updated once every 2048 training episodes.

In all experiments, two distinct feed-forward neural networks with hyper-
bolic tangent activation function are used to compute respectively the action
and the value function at all times t, where the network inputs are: Ti ex-
pressed as a year fraction, the total consumption to-date remapped linearly
at each time so that its domain is always r�0.5, 0.5s, and logpFTi{FT0q. In this
way all inputs are well normalized, which helps the training of the network.
The output layer is linear, i.e. no activation function is applied.

Both when the hypotheses which guarantee the existence of bang-bang op-
tima are satisfied, and when they are not, we can allow for general rNm, NM s-
valued actions; in the former case, the learning algorithm should find out by
itself that the best strategy only involves bang-bang consumptions. The
continuous-valued consumption is obtained by clipping the network’s output
to the interval r0, 1s and then remapping the result linearly so that 0 and
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1 correspond respectively to the minimum and maximum admissible con-
sumptions given both daily and global constraints. When we want to force
bang-bang strategies instead, then only the minimum and maximum are con-
sidered as admissible actions, and a softmax layer remaps to probabilities the
output units corresponding to these two actions.

4.2.1 Neural Network Fine Tuning

We explored several possible architectures of the neural network to inves-
tigate whether it impacts the final price and/or the number of iterations
required for convergence. To this aim, we considered an option with a com-
paratively short delivery period of one week, and constraints

Nm � 0 MWh , NM � 1 MWh
Cm � 3 MWh , CM � 5 MWh

(41)

On this payoff, we tried both wide and deep architectures: 1 hidden layer
with 64 units (wide), 5 hidden layers with 4 units each (deep), and 5 hidden
layers with 64 neurons each (wide and deep).

We show in Figure 8 the learning curves of the PPO algorithm with β
fixed to 0.5 (the default in the baselines implementation). We can see that
the shallow architecture finds a slightly suboptimal policy regardless of the
high number of units (and hence of parameters). Deeper networks work
better, but the very complex 5-by-64 network is prone to over-fitting, and
indeed its performance deteriorates if optimized for too long. Hence, in what
follows we focus on the 5-by-4 network.

4.2.2 Comparison with the LSMC Algorithm

In this section, we consider the contracts with maturity of one month de-
livering in May 2018 which were analysed in section 3.3.2 in the context of
LSMC pricing.

After training, the option can be priced using either the LSMC or the RL
candidate optimal policy. We therefore run a Monte Carlo simulation with
1 million paths to get the price.

We performed a grid search on the hyperparameter β and found that
β � 0.01 was more effective than the default β � 0.5, corresponding to slower
updates of the network which approximates the value function. Moreover,
since the objective function is not convex, we run each optimization four times
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with different random starting guesses for θ, and then choose the optimized
network with the best in-sample performance on the last 1,000,000 training
episodes. The out-of-sample results of such network are shown in Table 2,
and they are compatible with the LSMC results in Table 1 within statistical
uncertainty.

We also see that the unconstrained PPO agent successfully identifies a
strategy of bang-bang type for the case Cm � 12 MWh in which we know that
it is optimal to do so. This is exemplified by Figure 9, where we fix a decision
time and plot the chosen action as a function of the other two coordinates of
the network input (i.e. normalized log-spot and consumption).

5 Conclusion and Further Developments
In this paper we presented a new model to price swing option contracts. The
model is able to calibrate liquid market quotes and to imply the volatility
smile for futures contracts with different delivery periods. The pricing al-
gorithm is implemented both by using a least-square Monte Carlo approach
and by means of a recent reinforcement learning algorithm, namely the prox-
imal policy optimization algorithm. Using the former, we investigate option
prices and optimal strategies for different configuration of the model, and
we test the impact of constraining the choice of the control problem only to
bang-bang strategies. It turns out that the constraint is irrelevant only when
the contract anagraphics satisfy certain hypotheses, but not otherwise. The
aim of exploring techniques based on reinforcement learning is due to the
fact that we wish to investigate calculation tools more suitable in more gen-
eral high-dimensional settings. We find that these novel techniques also give
accurate results. This paper focuses on situations where other techniques
are available as a benchmark, to gather evidence on the robustness of the
approach; we leave for future developments the exploration of settings where
it could be the only possibility.
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Figure 1: NG TTF PVO on JUL18 futures quoted on 29 March 2018 on
ICE market. Market (red dots) and model (blue lines) implied volatilities.
Mean reversion speed equal to 0.5 on left panel, to 1 on right panel. Delivery
periods ranging from top to bottom: 1 Day, One-Month, 3 Months, 6 Months.
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Figure 2: NG TTF PVO quoted on 29 March 2018 on ICE market. Market
(red dots) one-month futures PVO at-the-money volatilities. Model (blue
lines) day-ahead futures PVO at-the-money implied volatilities. Mean rever-
sion speed ranging from top to bottom from 1.5 to zero with a step of 0.5.
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Figure 3: Term-sheet data for a swing option contract with delivery in July
2018 in TTF natural gas market. The strike is fixed by avering the JUL18
futures contract observed in the month of June.
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Figure 4: Grids obtained for a swing delivering in the month of April 2019
with NM � 1, Nm � 0, CM � 15.7, Cm � 5.2 and ∆ � 1

6 . Left and right
panel show the bang bang and continuous cases respectively.
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Figure 5: Swing option prices by varying the delivery starting date. Mean
reversion ranging from top to bottom from 1.5 to 0 with a step of 0.5. Left
panel fixed-strike contracts. Right panel floating-strike contracts.
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Figure 6: Daily consumption selected by the optimal strategy for a fixed-
strike swing option delivering in May 2018. Left panel displays the out-of-
theorem scenario, while the right panel the within-theorem. Mean reversion
speed a � 1. The blue lines refer to the case where only bang-bang strategies
are allowed, while red lines to the case without restrictions. In the bang-bang
case (right panel) the two lines coincide.
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Figure 7: Agent description.



FIGURES 31

Figure 8: Learning curves. On the horizontal axis the number of training
episodes. The solid lines are the moving average of the realized rewards on
the last 106 episodes. The shadows represent the 98% confidence intervals.
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Figure 9: Normalized consumption as a function of normalized log-spot and
consumption, on the fourth decision date. The axes are: logpFTi{FT0q; to-
tal consumption to-date remapped linearly so that its domain is r�0.5, 0.5s;
today’s consumption remapped linearly so that its domain is r0, 1s.
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All Strategies Only Bang-Bang
Out of Theorem Hyp. 7.97 � 0.04 7.76 � 0.04
Within Theorem Hyp. 8.46 � 0.04 8.46 � 0.04

Table 1: Swing option prices in four different cases. We consider the reference
case with Cm � 12.5 MWh not satisfying the Theorem 2.4 in Bardou et al.13,
and a variant by changing the constraint to Cm � 12 MWh so that the The-
orem is satisfied. Prices are calculated either allowing all possible strategies
or only the bang-bang ones. One-sigma statistical errors are displayed.



FIGURES 34

All Strategies Only Bang-Bang
Out of Theorem Hyp. 7.92 � 0.04 7.74 � 0.04
Within Theorem Hyp. 8.40 � 0.04 8.37 � 0.04

Table 2: Swing option prices in four different cases, obtained with RL. We
consider the reference case with Cm � 12.5 MWh not satisfying Theorem 2.4
in Bardou et al.13, and a variant by changing the constraint to Cm � 12 MWh
so that the Theorem is satisfied. Prices are calculated either allowing all
possible strategies or only the bang-bang ones. One-sigma statistical errors
are displayed.
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