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Hidden Markov models

Hidden Markov model: notation

Univariate binary response variables Yi = (Y
(1)
i , . . . ,Y

(T )
i ), with

Y
(t)
i =

{
1 if the event of interest is observed at time t for unit i

0 otherwise

Time-fixed and time-varying covariates: xi = (x
(1)
i , . . . , x

(T )
i ),

with x
(t)
i representing the vector of observed individual covariates for

unit i at time t

Hidden process: Ui = (U
(1)
i , . . . ,U

(T )
i ), following a first-order

Markov chain with state-space {1, . . . , k}
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Hidden Markov models

Model formulation

1 Measurement model: p
(
y
(t)
i

∣∣ u(t)i , x
(t)
i , y

(t−1)
i

)
represents the conditional distribution of the response variable Y

(t)
i

given the latent process U
(t)
i , with covariates x

(t)
i and lagged response

variable Y
(t−1)
i

covariates directly influence the response variable

the lagged response among covariates allows for serial dependence
between observed responses over time, thus relaxing the conditional
independence of Y given U and x

2 Latent model: p (ui )
represents the non-parametric distribution of the latent process

is not affected by covariates: the same latent model holds for all units

accounts for unobserved heterogeneity between individuals, which
remains when observed covariates in the measurement model cannot
fully explain the variability
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Hidden Markov models

Model parameters

1 Conditional response probabilities, given the latent state, the
covariate configuration, and the lagged response:

ϕ
(t)
uxy = P

(
Y

(t)
i = 1|u(t)i , x

(t)
i , y

(t−1)
i

)
,

such that:

log
ϕ
(t)
uxy

1− ϕ
(t)
uxy

= µ+ αu + x
′
i β + y

(t−1)
i γ

µ: intercept

α = (α1, . . . , αk): support points corresponding to the latent states

β = (β1, . . . , βp): regression parameters for the covariates

γ: parameter for the lagged response variable

2 Initial and transition probabilities, denoted as πu and πu|ū,
respectively
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Hidden Markov models

Maximum likelihood estimation

Expectation-maximization (EM) algorithm (Dempster et al., 1977)
is often employed to perform maximum likelihood estimation

It maximizes the observed-data log-likelihood function ℓ(θ) relying on
the complete-data log-likelihood function ℓ∗(θ)

It alternates the following steps until convergence:

E-step: compute the conditional expected value of ℓ∗(θ) given the
value of the parameters at the previous step and the observed data

M-step: update the model parameters by maximizing the expected
value of ℓ∗(θ):

explicit solutions are available for πu and πu|ū

a Newton-Raphson algorithm is used for updating µ, α, β, and γ
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Penalized maximum likelihood approach

Motivation

When the available covariates do not fully explain the
heterogeneity between individuals, the support points αu may be
very large, leading to widely separated latent states

This may results in:

excessively higher relevance of one or more latent states than
others

reduced importance of the available covariates whose estimated
effects may become negligible and insignificant

instability of the estimates
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Penalized maximum likelihood approach

Penalization term

Proposed penalization term (aimed at reducing separation
among latent states):

A =
k∑

u=1

(αu − ᾱ)2,

where ᾱ = 1
k

∑k
u=1 αu

In matrix notation (computationally convenient):

A = α′
Jα,

where J = I − 1
k 11

′, I is the identity matrix, and 1 = (1, . . . , 1)′

Brusa · Bartolucci · Pennoni · Peruilh 9 / 23



Penalized maximum likelihood approach

Penalized maximum likelihood estimation

The proposed penalization term is applied to both the
observed-data log-likelihood ℓ(θ) and the complete-data
log-likelihood ℓ∗(θ):

ℓ̃(θ) = ℓ(θ)− λA and ℓ̃∗(θ) = ℓ∗(θ)− λA,

where λ ∈ R+ is a tuning parameter controlling the penalization

Penalized estimation is performed using the EM algorithm, where:

the E-step remains unaltered

the M-step requires to revise the Newton-Raphson iteration for α
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Simulation study

Simulation study

Different scenarios (32) to explore the performance of the proposal
with k = 3 hidden states: sample size (n = 250, 500), number of
time occasions (T = 10, 20), hidden state persistence (high or
low) and separation (four different behaviors: αj , j = 1, . . . , 4)

Four covariates also including the lagged response variable; the
corresponding vector of regression coefficients is β = (1,−1, 1, 1)′

Extensive Monte Carlo simulation study; for each scenario:

we randomly draw 50 samples

we estimate the HM model using both the standard approach and the
penalized approach with λ = 0.01 and λ = 0.05
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Simulation study

Comparison criteria

Percentage variation in the following quantities for both
procedures:

1 root mean squared relative error between true and estimated
model parameters defined as:

RMSRE =

√√√√ 1

M

M∑
m=1

(
θ̂m − θm

θm

)2

2 standard errors of the covariate regression parameters (β, γ),
obtained as minus the second derivative of the expected value of the
complete-data log-likelihood

3 computational time
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Simulation study

Results - RMSRE

In the majority of cases, both values of λ ensure a lower RMSRE
when using the penalized estimation method. This indicates that
the estimated parameters are closer to the true values (higher
estimation precision)

The fourth scenario (characterized by highly separated states) shows
the greatest improvement; the percentage decreases using penalized
estimation are often exceeding 90%

The penalization approach appears less effective in the first
scenario (characterized by closely spaced states) and in cases with a
high value of T (20 time occasions)

Only in two cases the penalized estimation method exhibits no
improvement with either value of λ, showing very slight increases in
the RMSRE value
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Simulation study

Other results

Standard errors:

In most cases, penalization reduces the estimated standard errors

The proposed approach is less effective under the first scenario

In all other cases, the percentage decrease is significant, often
reaching very high values

Computational time:

Estimation with the penalty approach often reduces the average
computational time

Benefits are particularly evident in the fourth scenario where hidden
states are widely separated
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Application

Hypotension during spinal anesthesia

Data1 refer to 375 patients undergoing spinal anesthesia during a
surgery; they cover the period from January 2008 to January 2011

Measurements are taken 8 times, at equally spaced intervals over a
period of 40 minutes

For each patient-time observation, a binary variable indicates whether
or not the patient has experienced hypotension (decrease in mean
systolic blood pressure)

Approximately 25% (n = 94) of patients recorded at least one
hypotensive status

1Data are freely available at https://peerj.com/articles/648/.
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Application

Covariates

Time-fixed covariates: age, gender, type of surgical hospital unit
(general surgery, urology, obstetrics and gynecology), position of the
patient during the surgery (lithotomy, supine), electrocardiography
status (normal, abnormal), and doses of medication in the blood
(Marcain-heavy, chirocaine, fentanyl and midazolam)

Time-varying covariates: diastolic blood pressure, and patient pulse
rate

Lagged response variable to relax the conditional independence
assumption and measure state dependence
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Application

Estimated conditional hypotension probability

Patients in the first hidden state (α̂1 = −0.827) have an almost
negligible probability of hypotension during the surgery

Patients in the second hidden state (α̂2 = 3.147) experience a low
probability of hypotension, ranging approximately from 0.10 to 0.20

Patients in the third hidden state (α̂3 = 7.359) have a high
probability of hypotension during surgery, ranging from 0.54 to 0.68
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Application

Estimated regression coefficients

Covariate β̂ ŝe p-value

Intercept 3.597∗∗ 3.485 0.000

Gender (Female) 1.541∗ 2.032 0.042

Position (Supine) 0.813 1.597 0.110

Operation (Urogoly) 0.363 0.338 0.735

Operation (General surgery) -0.061 -0.068 0.946

ECG (Normal) -0.878 -0.978 0.328

Age (year) 0.037∗ 1.967 0.049

DBP -0.167∗∗ -7.642 0.000

Pulse rate -0.002 -0.216 0.829

Marcain-heavy -0.049 -1.235 0.217

Midazolam 0.243∗ 2.104 0.035

Chirocaine -0.049 -1.346 0.178

Fentanyl 1.215 0.515 0.607

Hypotension (t − 1) 2.675∗∗ 10.289 0.000

Gender (female) has a significant positive effect on the response
variable, indicating that the conditional probability of
experimenting hypotension given the latent state is higher for
females
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Application

Estimated regression coefficients

Covariate β̂ ŝe p-value

Intercept 3.597∗∗ 3.485 0.000

Gender (Female) 1.541∗ 2.032 0.042

Position (Supine) 0.813 1.597 0.110

Operation (Urogoly) 0.363 0.338 0.735

Operation (General surgery) -0.061 -0.068 0.946

ECG (Normal) -0.878 -0.978 0.328

Age (year) 0.037∗ 1.967 0.049

DBP -0.167∗∗ -7.642 0.000

Pulse rate -0.002 -0.216 0.829

Marcain-heavy -0.049 -1.235 0.217

Midazolam 0.243∗ 2.104 0.035

Chirocaine -0.049 -1.346 0.178

Fentanyl 1.215 0.515 0.607

Hypotension (t − 1) 2.675∗∗ 10.289 0.000

Older individuals exhibit higher log-odds of being diagnosed with
hypotension compared to younger individuals
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Application

Estimated regression coefficients

Covariate β̂ ŝe p-value

Intercept 3.597∗∗ 3.485 0.000

Gender (Female) 1.541∗ 2.032 0.042

Position (Supine) 0.813 1.597 0.110

Operation (Urogoly) 0.363 0.338 0.735

Operation (General surgery) -0.061 -0.068 0.946

ECG (Normal) -0.878 -0.978 0.328

Age (year) 0.037∗ 1.967 0.049

DBP -0.167∗∗ -7.642 0.000

Pulse rate -0.002 -0.216 0.829

Marcain-heavy -0.049 -1.235 0.217

Midazolam 0.243∗ 2.104 0.035

Chirocaine -0.049 -1.346 0.178

Fentanyl 1.215 0.515 0.607

Hypotension (t − 1) 2.675∗∗ 10.289 0.000

Diastolic blood pressure has a significant negative effect on the
log-odds of hypotension: lower pressure is associated with higher
probabilities of experiencing hypotension
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Application

Estimated regression coefficients

Covariate β̂ ŝe p-value

Intercept 3.597∗∗ 3.485 0.000

Gender (Female) 1.541∗ 2.032 0.042

Position (Supine) 0.813 1.597 0.110

Operation (Urogoly) 0.363 0.338 0.735

Operation (General surgery) -0.061 -0.068 0.946

ECG (Normal) -0.878 -0.978 0.328

Age (year) 0.037∗ 1.967 0.049

DBP -0.167∗∗ -7.642 0.000

Pulse rate -0.002 -0.216 0.829

Marcain-heavy -0.049 -1.235 0.217

Midazolam 0.243∗ 2.104 0.035

Chirocaine -0.049 -1.346 0.178

Fentanyl 1.215 0.515 0.607

Hypotension (t − 1) 2.675∗∗ 10.289 0.000

Midazolam has a significant positive effect, indicating that higher
concentration of this drug in the blood is associated with increased
odds of experiencing hypotension during surgery. For the other drugs,
the estimated coefficients are not significant
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Application

Estimated regression coefficients

Covariate β̂ ŝe p-value

Intercept 3.597∗∗ 3.485 0.000

Gender (Female) 1.541∗ 2.032 0.042

Position (Supine) 0.813 1.597 0.110

Operation (Urogoly) 0.363 0.338 0.735

Operation (General surgery) -0.061 -0.068 0.946

ECG (Normal) -0.878 -0.978 0.328

Age (year) 0.037∗ 1.967 0.049

DBP -0.167∗∗ -7.642 0.000

Pulse rate -0.002 -0.216 0.829

Marcain-heavy -0.049 -1.235 0.217

Midazolam 0.243∗ 2.104 0.035

Chirocaine -0.049 -1.346 0.178

Fentanyl 1.215 0.515 0.607

Hypotension (t − 1) 2.675∗∗ 10.289 0.000

The lagged response has a significant positive effect on
hypotension indicating serial correlation
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Cross-validated log-likelihood

A cross-validation approach is employed to jointly select the
penalization parameter λ and the number of states k of the
hidden chain

We consider M partitions of the data D: (D\Sm, Sm)m=1,...,M

For the m-th partition:

the model is estimated on the data subset D\Sm, providing parameters
estimates θ̂(k,λ)(D\Sm)

ℓ
(
θ̂(k,λ)(D\Sm) | Sm

)
denotes the (possibly penalized) log-likelihood

function where the model parameters are estimated on the training
data D\Sm but the log-likelihood is evaluated on the test data Sm

the cross-validated likelihood is defined as

ℓcv =
1

M

M∑
m=1

ℓ
(
θ(k,λ)(D\Sm) | Sm

)
.
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Estimation settings

We use a cross-validation approach to jointly select the number of
hidden states (k = 1, . . . , 4) and the roughness of the penalty
(λ = 0.00, 0.01, 0.05)

To mitigate the risk of convergence to local maxima, the estimation
of each HM model is repeated 25 times, employing both
deterministic and random initialization methods

The results indicate that k = 3 hidden states and a penalization
parameter of λ = 0.01 are optimal
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Limitations and future works

Implementation in C++ to improve computational speed,
particularly for datasets with a large number of repeated
measurements and/or a large sample size

Evaluation of the model’s predictive performance and comparison
with machine learning methods, also in connection with the use of
HM models as early warning systems

Development of feature selection techniques to identify relevant
covariates, especially when many are available

Investigation of methods to achieve scalability, such as parallel
computation and dimension reduction, essential for handling large
datasets efficiently
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