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Abstract Lp–quantiles generalise quantiles and expectiles to account for the whole
distribution of the random variable of interest. In this paper, we introduce the Lp–
quantile regression model, we propose a collapsed Gibbs–sampler algorithm to
make Bayesian inference on the regression parameters. We also provide some theo-
retical results concerning the posterior distribution of the regression parameters.
Abstract Gli Lp quantili generalizzano i quantili e gli espettili allo scopo di consid-
erare tutta la distribuzione della variabile casuale di interesse. In questo paper, in-
troduciamo il modello di regressione Lp quantilica, proponiamo un algoritmo Gibbs
sampler collassato per l’inferenza bayesiana sui parametri di regressione. Proponi-
amo in aggiunta risultati teorici sulla distribuzione a posteriori dei parametri.

Key words: Bayesian quantile regression, Skew Exponential Power distribution,
MCMC.

1 Introduction

Since the seminal paper of Koenker and Bassett (1978) quantile regression has been
gaining a lot of consideration in the statistic and econometric literature because of its
ability to model a given quantile of a response variable as function of a set of covari-
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ates with minimal assumptions on the error term, see also Koenker (2005). Despite
its usefulness in handling heteroskedastic, skewed and leptokurtic data, quantile re-
gression inherits the main drawback of quantiles being order statistics that do not
keep into consideration the whole distribution of observables beyond the modelled
quantile. Expectiles generalises quantiles in order to account for the whole distri-
bution of the quantity of interest. Although expectiles have become popular as risk
measures only in the very recent literature, they were already well known in the sta-
tistical literature. In fact they were introduced byAigner et al. (1976) and Newey and
Powell (1987) named them expectiles, to emphasise that their loss function is ob-
tained as a generalisation of the loss function of the expectation and of the quantiles.
More specifically, let Y be a continuous random variable, expectiles are defined by
Newey and Powell (1987) as the unique minimiser of an asymmetric squared func-
tion

µτ (Y ) = argmin
m∈R

E
[∣∣τ−1(−∞,0) (Y −m)

∣∣(Y −m)2] , (1)

where τ ∈ (0,1) is the expectile confidence level. Obviously, for τ = 1/2, µ1/2 (Y ) =
E(Y ). Similarly to Yu and Moyeed (2001), De Rossi and Harvey (2009) showed that
the minimisation problem in equation (1) is equivalent to maximising the following
Asymmetric Gaussian Distribution (AGD)

fAGD (y | τ,µ) = 2
[√

π

|τ−1|
+

√
π

τ

]−1

exp
(
−
∣∣τ−1(−∞,0)

∣∣(y−µ)2
)
, (2)

for τ ∈ (0,1). This opens the way of performing classial, likelihood–based and
Bayesian inference on expectile parametric and non–parametric models, see, e.g.,
Gerlach and Chen (2014).

In the present contribution we consider the class of Lp–quantiles introduced
by Chen (1996). Lp–quantiles belong to the class of generalised quantiles, also
investigated in Bellini et al. (2014) and share many important properties of the
quantiles. For a random variable Y with cumulative distribution function FY the
Lp–quantile at level τ is defined as

ρτ,p (Y ) = argmin
m∈R

E
[
|τ−1(−∞,0)|(Y −m)p] , (3)

for all τ ∈ (0,1), p ∈ N \ {0}. As for quantiles and expectiles the minimisation
problem in equation (3) is exactly equivalent to maximising the following Skew
Exponential Power (SEP) distribution introduced by Zhu and Zinde-Walsh (2009)
and Komunjer (2007)

fSEP (y | α,µ, p,σ) =


1
σ

K (p)exp
(
− 1

p

∣∣ y−µ

2ασ

∣∣p) , if y≤ µ

1
σ

K (p)exp
(
− 1

p

∣∣∣ y−µ

2(1−α)σ

∣∣∣p) , if y > µ,
(4)

where α ∈ (0,1), σ > 0, p > 0 and K (p) is the normalising constant which de-
pends only on p. The SEP distribution defined in equation (4) forms the basis for
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the Bayesian inferential procedure for Lp–quantile regression models developed in
the next sessions. The next proposition provides the link between the definition of
Lp–quantiles, as minimisers of the loss function defined in equation (3), and the
optimisation of the SEP probability density function.

Proposition 1. The expected scoring function obtained from the kernel of the SEP
with parameter (α,µ, p,1) has as unique minimiser the Lp–quantile at level τ =

α p

α p+(1−α)p .

2 The Lp quantile regression model

Let y=(y1,y2, . . . ,yT ) be a random sample of T observations, xt =(1,x1,t ,x2,t , . . . ,xq,t)
′

the associated set of q covariates for t = 1,2, . . . ,T , we consider the following gen-
eralised Lp quantile regression model

yt = x′tβ τ,p + εt , t = 1,2, . . . ,T, (5)

where βτ,p =
(

β
p
τ,0,β

p
τ,1, . . . ,β

p
τ,q

)′
is a vector of dimension (q+1)× 1 unknown

regression parameters which may depend on the both the p parameter and the quan-
tile confidence level τ ∈ (0,1). In the basic framework, the stochastic terms εt , for
any t = 1,2, . . . ,T , are assumed to be independent identically distributed random
variables with zero τ–th generalised quantile and constant variance which implies
that the regression function x′tβτ,p is the τ–th level quantile of the response variable
yt conditional to the set of exogenous covariates xt . The likelihood function for the
model (5) based on the SEP definition (4) can be written as

L (y,βτ,p,σ | x) ∝
1

σT e−
1
p ∑

T
t=1(

µt−yt
2τσ )

p

1(yt≤µt )e
− 1

p ∑
T
t=1

(
yt−µt

2(1−τ)σ

)p

1(yt>µt ), (6)

where µt = x′tβτ,p and x = (x1,x2, . . . ,xT ).
The Bayesian inferential procedure requires the specification of the prior distri-

bution for the unknown vector of parameters Ξ = (βτ,p,σ). Since in our framework,
the shape parameter p is an intervention parameter that selects the generalised quan-
tile of interest, and it is fixed and known, we can consider the following bijective
reparameterisation of the SEP parameters Ξ ∗ = (βτ,p, σ̃) = (βτ,p,σ

p). In principle
non informative priors can be specified for the vector of regression parameters, i.e.,
π (βτ,p) ∝ 1. The following theorems prove the existence of the posterior normal-
ising constant of the regression parameters βτ,p of the linear generalised quantile
regression model under improper diffuse prior. Alternatively, the usual Normal–
Inverse Gamma prior can be specified for regression and scale parameters, respec-
tively, i.e., π (βτ,p)∼N

(
µβ ,Σβ

)
and π (σ̃)∼I G (λσ ,ησ ).

Theorem 1. Let y = (y1,y2, . . . ,yT ) be a sample of i.i.d. observations generated
by the generalised quantile regression model with q > 1, under the assumption of
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improper diffuse prior for the regressor parameters, i.e., π (β ) ∝ 1, then

0 <
∫
β

L (y | β )π (β )dβ < ∞.

Here, we present the theoretical results concerning Bayesian estimation of gener-
alised quantile regression models.

Lemma 1. Let (Y1,Y2, . . . ,YT ) be a sequence of independent observations of a uni-
variate response variable and let (X1,X2, . . . ,XT ) be one–dimensional non–random
covariates. P0,i denotes the true and unknown probability distribution of Yi, with the
true τ–level generalised quantile of order p ∈N+ given by Qα

τ (Yi | Xi) = δ0 +β0Xi,
for τ ∈ (0,1). Suppose that the misspecified model for Yi is S E P (·,µτ

i ,σ ,α,τ)
with µτ

i = δ +βXi. Then if the condition

EP0

[
log
(

P0,i (Yi)

Pτ,α
i (Yi | δ0,β0,σ0 = 1)

)]
<+∞, (7)

we have

inf
δ ,β

EP0

[
log
(

P0,i (Yi)

Pτ,α
i (Yi | δ ,β ,σ0 = 1)

)]
≥ EP0

[
log
(

P0,i (Yi)

Pτ,α
i (Yi | δ0,β0,σ = 1)

)]
, (8)

for fixed τ and α .

The next proposition guarantees the week consistency of the posterior distribution
of generalised quantile regression parameters.

Proposition 2. The weak consistency of the posterior follows from the Schwartz
(1965) theorem, since any Kullback–Leibler neighbourhood of the true density has
positive probability using Lemma (1).

3 The Collapsed Gibbs sampler

Using the likelihood associated to the SEP distribution and the data–augmentation
approach we can implement a partially collapsed Gibbs sampler algorithm. As-
suming the same prior structure as before, we obtain the following full conditional
posterior distributions. The full conditional distribution of the completion variable
u = (u1,u2, . . .uT ) is proportional to π (u | y,x,βτ,p, σ̃) ∝ ∏

T
t=1 π (u | yt ,xt ,βτ,p, σ̃)

where

π (ut | yt ,xt ,βτ,p, σ̃) ∝


e−

ut
p 1(

ut>
(x′t βτ,p−yt )

p

(2τ)pσ̃

) (yt) , if yt ≤ x′tβτ,p

e−
ut
p 1(

ut>
(yt−x′t βτ,p)

p

(2(1−τ))pσ̃

) (yt) , if yt > x′tβτ,p,
(9)



Bayesian inference for Lp–quantile regression models 5

which is proportional to a truncated exponential distribution with shape parame-
ter p. Simulation from the truncated exponential distribution can be easily per-
formed by inverting the corresponding cumulative density function. The full con-
dition distribution of the scale parameter σ can be obtained by marginalising
out the the latent factor, and it is proportional to an Inverse Gamma distribution
π (σ̃ | y,x,βτ,p) ∝ I G

(
λ̃σ , η̃σ

)
, with

η̃σ = ησ +
1
p

[
T

∑
t=1

(
x′tβτ,p− yt

2τ

)p

1(yt≤x′t βτ,p) +
T

∑
t=1

(
yt −x′tβτ,p

2(1− τ)

)p

1(yt>x′t βτ,p)

]

λ̃σ = λσ +
T
p
.

The last step of the Gibbs sampler requires the simulation of the set regressors βτ,p
form the corresponding full conditional distribution. Observe that, conditional to the
latent factor u, the full conditional of βτ,p is proportional to

π (βτ,p | y,x,u, σ̃) ∝ π (βτ,p)
T

∏
t=1

1(β t ,β t)
(βτ,p) , (10)

where π (βτ,p) is the prior distribution and β
t
= εt−2(1− τ) σ̃u

1
p
t , β t = εt +2τσ̃u

1
p
t

with εt = yt−β ′τ,pxt . Under the Gaussian prior assumption for the regression param-
eters βτ,p, the complete set of full conditional distributions becomes

β
( j)
τ,p | y,x,u,β

(− j)
τ,p , σ̃ ∼N

(
µ̃
( j)
β

, σ̃
( j)
β

)
1(

β j ,β j

)(β
( j)
τ,p

)
, (11)

for j = 1,2, . . . ,q+1, where β
( j)
τ,p denotes the j–th element of the vector βτ,p, and

µ̃
( j)
β

= µ
( j)
β

+Σ
( j,− j)
β

Σ
(− j,− j)
β

−1(
β
(− j)
τ,p −µ

(− j)
β

)
(12)

σ̃
( j)
β

= Σ
( j, j)
β
−Σ

( j,− j)
β

Σ
(− j,− j)
β

−1
Σ
(− j, j)
β

, (13)

where β
(− j)
τ,p denotes the vector of regressors with the j–th element removed,

and Σ
(−m,−n)
β

denotes the sub–matrix obtained from Σβ by removing the m–th

row and the n–th column. Here β
1
= maxt=1,2,...,T

{
εt −2(1− τ)(σ̃ut)

1
p
}

, β 1 =

mint=1,2,...,T

{
εt +2τ (σ̃ut)

1
p
}

, β
j
=maxt=1,2,...,T,3x j,t 6=0

{
ε j,t−2(1−τ)(σ̃ut )

1
p

x j,t

}
and β j =

mint=1,2,...,T,3x j,t 6=0

{
ε j,t+2τ(σ̃ut )

1
p

x j,t

}
, for j = 2, . . . ,q+1, with ε j,t = yt−β

(− j)
τ,p

′
x(− j)

t

and x(− j) denotes the vector xt with the j–th element removed. Sampling from the
joint full conditional distribution of the regression parameters subject to the trun-
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cation defined in equation (10), is not easy since it requires simulation from the
complete set of full conditionals defined in equation (11), as suggested by Robert
(1995).

The ordering of the full conditional simulation ensures that the posterior distri-
bution is the stationary distribution of the generated Markov chain since the combi-
nation of steps above essentially ensures draws from the conditional posterior dis-
tribution π (σ̃ ,u | y,x,βτ,p,) and the resulting partially collapsed Gibbs sampler is
a blocked version of the ordinary Gibbs sampler, see, e.g., Dyk and Park (2008) and
Bernardi et al. (2015).
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