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Abstract

Shape matching is a fundamental problem in computer graphics with many applications. Functional maps
translate the point-wise shape-matching problem into its functional counterpart and have inspired numerous
solutions over the last decade. Nearly all the solutions based on functional maps rely on the eigenfunctions
of the Laplace-Beltrami Operator (LB) to describe the functional spaces defined on the surfaces and then
convert the functional correspondences into point-wise correspondences. However, this final step is often
error-prone and inaccurate in tiny regions and protrusions, where the energy of LB does not uniformly cover
the surface. We propose a new functional basis Principal Components of a Dictionary (PCD) to address such
intrinsic limitation. PCD constructs an orthonormal basis from the Principal Component Analysis (PCA) of
a dictionary of functions defined over the shape. These dictionaries can target specific properties of the final
basis, such as achieving an even spreading of energy. Our experimental evaluation compares seven different
dictionaries on established benchmarks, showing that PCD is suited to target different shape-matching sce-
narios, resulting in more accurate point-wise maps than the LB basis when used in the same pipeline. This
evidence provides a promising alternative for improving correspondence estimation, confirming the power
and flexibility of functional maps.
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1. Introduction

Shape matching is a key problem in Computer
Graphics and Geometry Processing. From an intu-
itive point of view, its goal is to estimate correspon-
dences between points on a pair of 3D shapes, as
shown in Figure 1. Shape matching has a wide range
of applications, including texture and deformation
transfer [37, 46], object retrieval [14], and statisti-
cal shape analysis [4]. The problem is particularly
challenging when a non-rigid deformation occurs be-
tween the shapes in the pair, such as a pose varia-
tion in human bodies. In this case, the point-wise
correspondence estimation is an NP-hard quadratic
combinatorial problem in the number of points of the
shapes.

Functional maps, the seminal work of Ovs-

janikov et al. [34], represented a breakthrough in the
field. The key intuition behind functional maps is
that it is easier to establish a correspondence among
functions defined on the surfaces than directly find-
ing a point-wise map between shapes. More specif-
ically, functional maps builds upon a basis spanning
a subspace of the functional space of each 3D shape.
Then, functional correspondences can be described
by a linear basis transformation, thus by a small ma-
trix C, having dimensions equal to the number of ba-
sis functions in each shape. The matrix C is esti-
mated by solving an optimization problem exploit-
ing linear constraints. Therefore, functional maps
provides a compact representation for shape corre-
spondence and, at the same time, a convenient tool to
transfer functions from one shape to another. How-
ever, for many applications, it is necessary to recover
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(a) source (b) point-wise maps (c) geodesic error (d) discrimination power

Figure 1: Example of shape matching between the source man (a) and the target women (b) comparing PCD (ours with a dictionary
of Gaussian) and the standard basis Laplace Beltrami eigenfunctions (LB). (b) the obtained point-wise maps between the woman
and the man, encoded through color coding (correspondent points are depicted with the same color). (c) the respective geodesic
errors encoded by the colormap (white means perfect match while dark colors are larger errors). (d) shows the spatial distribution
of the energy of the basis. The energy of our basis is uniformly distributed on the mesh, which reflects in the error distribution.

a dense point-wise map [13], for instance, when we
want to collect data variations in statistical shape
analysis.

Recovering a point-wise map from a functional
map is far from being straightforward, and many
works, starting from the seminal paper [34], have
proposed different methods to accomplish this task.
Recently, a few works tried to improve point-wise
accuracy, focusing mainly on improving the esti-
mation of matrix C [33, 42, 26], or the algorithm
applied to convert functional maps into point-wise
maps [43, 13, 42, 35].

As a matter of fact, the choice of the basis turns
to be key in this point-wise conversion as it heavily
affects the final result. The vast majority of methods,
starting from [34], have adopted the eigenfunctions
of the Laplace-Beltrami operator (LB for brevity) to
define the functional bases. These eigenfunctions
are the equivalent of the harmonic basis [48] for
non-Euclidean surfaces. Therefore, the subset asso-
ciated with the eigenvalues having the smallest ab-
solute values is optimal for approximating smooth
functions with limited variations [1]. Nonetheless,
LB presents a significant limitation for the point-
wise conversion as LB functions do not uniformly
cover the mesh. In particular, the energy of LB
functions concentrates on the flat regions at the ex-
pense of narrower extremities and tiny protrusions.
In other words, LB’s capability of discriminating be-
tween vertices and providing them with a meaningful

representation is uneven across the surface.

In the same spirit of previous works [18, 31,
27], we propose an innovative framework to pro-
duce new bases for the functional spaces used in
functional map pipelines. More specifically, we first
generate a dictionary of informative functions on the
shape and then apply Principal Component Analysis
(PCA) to obtain a compact set of orthonormal gener-
ators. The atoms of our basis are the Principal Com-
ponents of a dictionary D, thus the name PCD. The
rationale behind PCD is that by minimizing the re-
construction error on the atoms in D, the PCA pro-
duces a basis of a compact subspace that reflects the
distribution of these functions in the initial dictio-
nary. With PCD, we can promote the resulting basis
to be, for example, evenly distributed on the surface,
which is difficult to achieve with LB. At the same
time, PCD is a compact set of orthonormal functions
ready to use in the functional maps framework.

We show that, for some of the dictionaries we
propose, our framework can generate a rich func-
tional representation for all the points of the surfaces.
Specifically, we assess the quality of such represen-
tation by the following properties: (1) the capabil-
ity of discriminating between different vertices and
(2) the preservation of vertex locality. We provide
a quantitative evaluation of such properties for the
most effective dictionaries we have investigated and
LB, showing a favorable comparison in this regard.
At the same time, independently from the dictionary
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adopted, our basis shares good properties with LB:
it is orthonormal and invariant to isometries by con-
struction and empirically exhibits a weak frequency
order in their components, thus being a suitable and
direct replacement for LB. These properties make
our representation ready to be combined with other
approaches proposed to improve the results achieved
by the standard LB, tackling other aspects of the
functional map framework and achieving significant
benefits.

Through numerous experiments on established
datasets, we show that the properties of our basis im-
prove the quality of the final point-wise map. The
similarity between our basis and LB enables us to di-
rectly compare them in the same setting. Thus, we
test PCD and LB when injected in different shape-
matching pipelines [33, 26] and also using functional
maps computed from ground-truth correspondence.
In these experiments, we see that our basis reaches
significantly higher values of point-wise accuracy in
all the analyzed settings. Our code is publicly avail-
able at https://github.com/michele-colombo/
PC-Gau_STAG2022.

This work extends the idea proposed in “PC-
GAU: PCA Basis of Scattered Gaussians for Shape
Matching via Functional Maps” [7], where this pro-
cedure was applied only to a dictionary consisting of
a collection of Gaussian functions scattered on the
surface. Our major extensions with respect to [7]
consists in generalizing the procedure and investigat-
ing different definitions of the initial dictionary (see
Section 6). Moreover, we assess the role and the ac-
tual dependence of PCD from its more relevant pa-
rameters (Section 7) and we provide additional quan-
titative evaluation by expanding the test sets and sce-
narios of our experiments.

2. Related work

In this Section, we briefly overview the exist-
ing shape matching methods that fall, similarly to
ours, into the functional map framework [34]. For
other approaches to shape matching, refer to the sur-
vey [49, 45].

The functional map framework was proposed
by Ovsjanikov et al. in [34]. Its core idea is first
to estimate the correspondence between functional

spaces defined on the meshes and then extract a
point-wise map from it. Given a basis for the func-
tional space, the functional correspondence is com-
pactly represented as a matrix C, which is estimated
by imposing linear functional constraints. These
constraints express correspondent landmarks, seg-
ments, and descriptors between the two shapes. The
most used descriptors in this context are invariant to
near-isometric deformations, like heat diffusion [47]
or quantum mechanical properties [3].

Additional constraints can improve the estima-
tion of the matrix C. Commutativity of the functional
map with the LB operator, which forces the matrix C
to represent isometries, was firstly proposed in [34]
and then refined in [41]. In [33], the authors show
that imposing the preservation of point-wise prod-
ucts is an additional, beneficial constraint. In shape
with symmetries, the preferred maps do not mix up
symmetries. This property has been promoted by in-
troducing a new term in the optimization [42] or con-
sidering the complex counterpart of the functional
map [11]. An efficient method for converting a func-
tional map into a point-wise map by exploiting an
iterative closest point (ICP) as a form of refinement
was proposed in the original framework [34]. Sub-
sequent works have proposed alternative solutions
for extracting better point-wise maps from functional
maps [43], by considering a probabilistic model [44],
by introducing a smoothness prior on the point-
wise map [13], or by devising a complex refinement
scheme to promote continuity, coverage and bijec-
tivity of the obtained map [42]. ZoomOut [26] is
an iterative method for extending the size of an ini-
tial functional map estimated with few eigenvectors,
while improving the quality of the estimated corre-
spondence. Many recent algorithms build upon the
ZoomOut procedure [15, 39, 35, 40, 36], which al-
ternates conversions to point-wise maps and back to
functional maps of increased size. Despite pur-
suing the general goal of improving the quality of
shape-matching via functional maps, all these meth-
ods differ radically from our approach since they fo-
cus either on the estimation of C or on the process
of extracting the point-wise map from C. They all
make the implicit choice, ubiquitous since [34], of
using eigenfunctions of the Laplace-Beltrami oper-
ator [19, 48] as the functional basis, even though
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they are in principle agnostic to the basis adopted.
This fact makes our proposal complementary to most
methods in the literature, as they can be used in com-
bination with our basis. In perfect agreement with
our intuition, [32] and [21] showed that extending
the LB basis by adding point-wise products of atoms
provides excellent benefits to the resulting point-wise
maps. In principle, the same procedure can be ap-
plied to any basis, including ours.

A few other works followed an approach sim-
ilar to ours, proposing a new bases for the func-
tional space of a mesh. Some of them target specific
tasks, like the transfer of tessellation structure [24]
or step functions [23] from one mesh to another. The
method in [24] has also been used for shape match-
ing, showing specific improvements in parts of the
human body such as hands and feet. This solution,
however, requires the meshes in the pair to be in simi-
lar poses, severely limiting its use in the general con-
text. A different solution is pursued in [31], which
proposes a basis whose atoms have local support,
thus promoting the sparsity of C, but without improv-
ing the point-wise accuracy of the standard LB. Kov-
natsky et al. [18] built a coupled pair of bases by joint
diagonalization to overcome the instability of LB in
non-isometric pairs. Since the atoms of these cou-
pled bases approximately diagonalize the Laplace-
Beltrami operator, their energy will distribute sim-
ilarly to the one of LB. Furthermore, a functional
basis obtained with [18] also depends on the other
mesh in the pair and the landmarks used. With a pur-
pose more similar to ours, Melzi et al. [27] proposed
a basis that can extend LB and improve its expres-
sive powers in specific mesh regions. However, their
approach differs from ours: the atoms of their bases
localize in predefined areas, which must be provided
as input. This is a non-trivial information to be pro-
vided, as it requires the knowledge of at least coarse
correspondences between the two shapes. On the
contrary, our framework generally does not require
any input other than the mesh itself.

This work extends [7], which proposes to ex-
tract a new basis by PCA from a dictionary of Gaus-
sian functions scattered uniformly on the shape. In
this extended version, we improve the proposed pro-
cedure by considering a variety of dictionaries fea-
turing different properties. Furthermore, we extend

the analysis of the parameters of the method and
evaluate the pipeline by considering additional test
sets. Our novel contributions highlight the potential
of extracting basis by PCA from a redundant dictio-
nary in general. This paper aims to pave the way for
further exploration of novel bases to improve the ac-
curacy of the functional map framework.

3. Background

In this section, we introduce some background
notions and the notation we adopt in the following.

3.1. Discrete surfaces

In this paper, we refer to shapes as 2-
dimensional surfaces embedded in R3. In the con-
tinuous setting, we can represent these surfaces as a
compact and connected smooth 2-dimensional Rie-
mannian manifold M ⊂ R3. We refer to [10] for
the definitions of differential geometry that are nec-
essary to deal with this continuous representation of
M. In the discrete setting we representM as a trian-
gular mesh M = (VM, EM), where VM is the set of
n vertices and EM is the list of edges which means
that ex j ∈ EM ⇐⇒ exists an edge that connect x
and j,∀x, j ∈ VM. We store the 3D coordinates of
the vertices in VM in a matrix XM ∈ Rn×3. Each row
of XM corresponds to the position in the 3D space of
a vertex ofM.

3.2. Shape matching

The input of shape matching is usually com-
posed of two discrete meshesM and N , having sets
of vertices VM and VN , respectively. Here we con-
sider |VM| = |VN | = n for simplicity of notation, but
this is not a necessary assumption. We assume that
an unknown correspondence T : VN → VM between
M andN exists without specific requirements on the
function T . For instance, M can be a non-rigid de-
formation of N . We will refer to T as the ground
truth point-wise map and we represent it either as a
vector of vertex indices of size n or as an n × n ma-
trix Π such that Πi j = 1 if T (i) = j and 0 otherwise,
∀i ∈ VN and ∀ j ∈ VM.

The goal of shape matching is, givenM andN ,
to estimate the unknown map T . The estimated map
T̄ has to be as close as possible to T , which means
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that T̄ should assign to each vertex y ∈ VN a vertex
on M that is geodesically close, ideally coincident,
to the one associated by T . When the ground truth
map T is available, we assess the mapping error of
each vertex y ∈ VN as:

e(y) = GDM(T̄ (y),T (y)), (1)

where GDM is the geodesic distance on the surface
M. Figure 1b presents an example of two point-
wise maps rendered through color correspondence,
where we depicted correspondent points with the
same color. Moreover, in Figure 1c, we visualize
their respective geodesic errors, encoded by the col-
ormap where 0 error corresponds to white while dark
colors denote larger ones.

Some shape matching pipelines require a set
of input landmarks. A landmark is a couple of points
(y ∈ VN , x ∈ VM) in known correspondence, namely
T (y) = x. In some of the experiments in Section 7,
we will refer to landmarks, which are not required
to build the bases but only for the specific matching
pipelines.

3.3. Functional maps

In the discrete setting, a real-valued function f
onM is given by a vector that associates to each ver-
tex x ∈ VM a value f (x) ∈ R. We call F (M,R) the
space of such functions. A basis for F (M,R) is a
set of orthonormal functions belonging to F (M,R),
an example of basis is shown in Figure 2. Given
a pair of discrete surfaces M and N related by a
ground truth point-wise map T : VN → VM, the
functional map framework [34], instead of estimat-
ing T directly, searches for a correspondence among
functions defined onM andN . Then, once the func-
tional correspondence has been estimated, it extracts
the corresponding point-wise map.

Functional maps builds upon the observation
that a point-wise map T induces a linear operator
TF : F (M,R) → F (N ,R) that maps functions de-
fined on M to functions defined on N via the com-
position:

TF( f ) = f ◦ T ∀ f ∈ F (M,R) (2)

Given a pair of bases Φ = {φ}i and Ψ = {ψ} j for

Figure 2: Atoms of our basis (top) compared to LB basis (bot-
tom) atoms. Each element of the bases is a function defined on
the mesh, represented here through color. Positive values are
red, negative values are blue, and white corresponds to zero.

F (M,R) and F (N ,R), respectively, we can write

g = TF( f ) = TF

(∑
i

aiφi

)
=

∑
i

aiTF
(
φi

)
=

=
∑

i

ai

∑
j

c jiψ j =
∑

ji

aic jiψ j =
∑

j

b jψ j

where a = [ai] and b = [b j] are the projections of f
and g on Φ and Ψ respectively. c ji is the projection
of TF(φi) on ψ j and depends only on TF and the two
bases. Therefore TF is compactly represented by the
matrix C = [ci j] and b = C · a.

In practice, we consider only the first k atoms
of the bases, truncating the previous series after the
first k coefficients. As a matter of fact, k is inde-
pendent of the number of vertices n of the meshes
and usually k � n. Therefore, matching two shapes
in the functional map framework boils down to the
estimation of a matrix C of size k × k. We can rep-
resent landmarks, corresponding segments, and de-
scriptors as functions defined onM and N and find
the functional map C that best preserves the func-
tional constraints (in the least square sense) intro-
duced by these corresponding functions. Note that,
in principle, we can truncate the basis of M and N
at a different number of atoms kM and kN , thus pro-
ducing a rectangular C ∈ RkN×kM . However, for the
sake of simplicity, we consider kM = kN = k in this
paper.

Embedding. Once we truncate a basis for F (M,R)
to size k, we can store it in a matrix ΦM, where
each column is a basis atom represented as a vec-
tor of real values. ΦM has thus size n × k, where
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n is the number of vertices and k is the number of
basis atoms considered. We call spectral embedding
(or simply embedding) of a vertex x ∈ M, the vec-
tor of values assumed by all the basis functions in x:
Emb(x) = [φi(x)] ∈ Rk. Emb(x) also corresponds to
the coefficients, in the basis ΦM, of a Delta function
centered in the vertex x. Thus ΦT

M
contains the coef-

ficients of all the Delta functions ofM (one for each
vertex) as column vectors.

3.4. Conversion to point-wise map

Functional maps estimates a mapping between
functional spaces built overM andN , and this needs
to be converted into a point-wise map T̄ : VN →
VM,. A simple solution, proposed in [34], consists
in finding, for each column of ΦT

N
, the nearest neigh-

bour in the columns of CΦT
M

. This procedure cor-
responds to transfer Delta functions, and thus em-
beddings of vertices, from M to N through C and
putting similar points in the embedding space in cor-
respondence.

Summarizing. The complete functional-map
pipeline for shape matching, as detailed in [34], is:
(1) find a truncated basis of size k on each mesh, (2)
find the C ∈ Rk×k that best preserves some functional
constraints, and (3) convert the functional map C to
a dense point-wise map T̄ . In Figure 3, we report an
illustration of the entire procedure, focusing on step
(1) since it is the one that our method addresses.

3.5. Standard basis from LB Operator

The Laplace-Beltrami operator ∆M :
F (M,R) → F (M,R) associates to each func-
tion f ∈ F (M,R) another function that is the
divergence of the gradient of f . For discrete
meshes, this operator corresponds to a n × n matrix
∆M and is usually computed using the cotangent
scheme [28, 38]. ∆M admits an eigendecomposi-
tion: ∆Mφi = λiφi, where Φ = {φ1, φ2, . . .} are its
eigenfunctions with corresponding real eigenvalues
Λ = {λ1 ≤ λ2 ≤ . . . }. Φ forms an orthonormal basis
for F (M,R), namely LB. LB atoms are ordered
in increasing frequencies which are encoded in the
corresponding eigenvalue. We depict this order
qualitatively in Figure 2 (bottom row) and quantita-
tively in Figure 4. Here, by frequency of a function

f ∈ F (M,R), we intend the Dirichlet energy of
f , which is a measure of its smoothness. LB is
considered as the mesh equivalent of the harmonic
basis [19, 48]. By selecting only the first k atoms we
obtain an optimal [1] low-pass filter approximation
of functions in F (M,R). From [34] on, LB has
been the standard choice of the functional basis on
meshes.

3.6. Motivation
Despite its many strengths, LB presents a sig-

nificant limitation: the basis energy is not evenly dis-
tributed on the mesh surface but is concentrated in
massive areas, leaving narrower extremities less cov-
ered. To define the energy of a basis, we consider two
properties in particular:

– discrimination power between different ver-
tices,

– locality preservation.

As we demonstrate through our experiments in Sec-
tion 5.3, the lack of these properties in some areas of
the mesh produces bad assignments in the point-wise
map, affecting its overall accuracy. Instead, the shape
matching task requires a functional basis whose en-
ergy is evenly distributed on the mesh, i.e., the value
of the previous two properties is similar across dif-
ferent mesh areas and better overall.

4. Proposed method

This section presents our core contribution
PCD, namely Principal Component of a Dictionary:
a new framework to build a basis for the functional
space defined on a triangular mesh. The produced
basis plays the role of the truncated basis in func-
tional maps pipelines for shape matching. In other
words, the output of PCD can be a replacement for
LB to obtain more accurate point-wise maps.

We first illustrate the proposed procedure to
build the basis starting from a given dictionary of
functions D. Then, in Section 5, we describe the
procedure to construct the dictionary exploited in [7]
and analyze the properties that directly arise from
its construction, paying particular attention to the
desiderata expressed in Section 3.6. Finally, in Sec-
tion 6, we propose six alternative dictionaries that
can be compared to LB and to the solution from [7].

6
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Algorithm 1 The PCD framework
1: input: D, AM, k, normalize
2: n = size(D, 1) = number of vertices
3: q = size(D, 2) = number of atoms
4: if normalize then
5: for i = {1, . . . , n}, j = {1, . . . q} do
6: Di j = Di j/

√
(D∗ j)T AMD∗ j

7: end for
8: end if
9: P = PCA

(
DT , variableWeights = AM

)
10: Pk = P(:,1:k)
11: output: Pk

4.1. Building procedure

Given a dictionary D composed of q ∈ N func-
tions, we perform dimensionality reduction through
Principal Component Analysis (PCA), producing an
orthogonal set of generators for the functional space
spanned by the atoms in D. Generators from PCA are
ordered according to their capability to approximate
the initial dictionary, therefore we select the only the
first components. In the following, we present the
pipeline to build our basis for any triangular mesh,
which is summarized in Algorithm 1. In Figure 3 we
report a scheme illustrating the entire pipeline, which
includes the construction of the dictionary of Gaus-
sians proposed in [7].

Input dictionary and first steps. Given a Mesh M
with n vertices, the input of our pipeline comprises
two main ingredients and two parameters. The first
ingredient is a dictionary D ∈ Rn×q, composed of q
functions defined on M. The second one is AM ∈
R

n×n, the mass matrix ofM, which is a diagonal ma-
trix whose entry AM(i, i) corresponds to the area el-
ements of the surface associated to the vertex i. The
necessary parameters are an integer k which sets the
dimension of the generated basis, and normalize, a
boolean variable which activates the normalization
step. D is a fundamental, and almost the only choice
in our pipeline. For this reason, we dedicate two sec-
tions to its definition, in which we show some possi-
bilities and their properties. For now, let us consider
a given, generic dictionary D, leaving deeper discus-
sion on its choice to the following sections.

The algorithm starts by extracting the dimen-

sionality of the mesh, n (line 2), and of the dictio-
nary, q (line3), from D. In lines 4-8, if the variable
normalize is set to true, we normalize each column
D∗ j of D by division with its norm, computed as∥∥∥D∗ j

∥∥∥
M

=
√

DT
∗ jAMD∗ j, where AM defines the in-

ner product on the functional space 〈 f , g〉F (M,R) =

f >AMg, ∀ f , g ∈ F (M,R).

Dimensionality reduction. We then compute the
PCA of DT (line 9), meaning that each atom in the
dictionary D is considered a sample and each vertex
of the mesh a variable. We do not centre the vari-
ables, but we weigh them for AM(i, i), the element
of area associated with each vertex. The result of
PCA is P, a set of q vectors of size n, called Principal
Components (PCs). We can interpret these vectors as
q generators of the functional space S spanned by the
atoms in D. Since q < n, S is a proper subspace of
F (M,R) and, if the atoms are linearly independent,
S has dimension q.

Finally, we select the first k PCs to form our
basis, and we store them in a matrix Pk of size n × k
(line 10). The columns of this matrix are a truncated
basis of F (M,R) or, equivalently, a basis of a k-
dimensional subspace R ⊂ S ⊂ F (M,R). In par-
ticular, PCA transform guarantees that the first k PCs
form the set of the k orthonormal generators with the
lowest approximation error on the initial samples [2]:

Pk = argmin
Pk∈R

n×k

 q∑
i=1

∥∥∥D∗i − PkPT
k AMD∗i

∥∥∥2

2

 (3)

s.t. PT
k AMPk = Ik

where D∗i is the i-th column of D, namely the i-th
atoms of the dictionary, and Ik is the identity matrix
of size k. Orthonormality and projection in (3) are
expressed with respect to the inner product defined
on the mesh 〈·, ·〉F (M,R). We remark that the truncated
basis Pk satisfies Equation (3), thus provides a good
approximation of D by the spanned subspace S .

5. The dictionary of Gaussians

In [7], we consider a single choice of dic-
tionary D, which we construct by taking inspira-
tion from the signal processing literature [9]. More

7
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Figure 3: Complete shape matching pipeline with functional maps: (1) definition of a functional basis, (2) estimation of C and
(3) conversion to a point-wise map. Here, step (1) shows the building procedure proposed in [7]: selection of a subset of vertices
(orange box), construction of the dictionary of Gaussian functions (green box) and dimensionality reduction through PCA (blue
box).

specifically, we consider a dictionary D composed of
a collection of Gaussian functions centred in a sub-
set of vertices that uniformly cover the surface of
the input mesh. Despite its simplicity, this basis en-
joys many desirable properties for devising accurate
shape correspondences via functional maps. Indeed,
we show through a broad set of quantitative evalu-
ations that the obtained basis is evenly distributed
on the mesh surface and guarantees excellent dis-
crimination power and locality preservation. In this
section, we describe the procedure to define the dic-
tionary of Gaussians and then analyze the properties
that give rise to its superior accuracy in shape match-
ing.

5.1. Design of the dictionary of Gaussians
In the following, we present the steps required

to construct the dictionary of Gaussians for a mesh
M = (VM, EM) with n vertices. In Algorithm 2, we
report in a compact format the proposed procedure
which we represent visually on the left of Figure 3
(1).

Subset of vertices. We start by selecting a subset
Q ⊆ VM of q vertices on the mesh with Farthest Point
Sampling [30] (line 2), using Euclidean distance for
efficiency reasons. Thus is not the only viable crit-
era, as discussed in Section 7.1. The orange box in

Algorithm 2 Construction of the dictionary of Gaus-
sians

1: input:M, VM, σ, q
2: Q = FPS(M, q)
3: for i ∈ VM, j ∈ Q do
4: Gi j = GDM(i, j)
5: Di j = exp

(
−G2

i j/σ
)

6: end for
7: output: D

Figure 3 shows that the sampled points evenly cover
the mesh surface. The idea is to obtain an even distri-
bution of basis energy by controlling the uniformity
of scattering of the Gaussians in the dictionary, since
uniform sampling is rather easy to enforce.

Gaussian computation. We compute q Gaussian
functions, each one centered in a vertex of Q. To
do so, for each vertex j ∈ Q (line 3) we compute the
geodesic distance Gi j = GDM(i, j) to any other ver-
tex i ∈ VM (line 4) and then define the value of the
Gaussian Di j (line 5) as:

Di j= exp


−G2

i j

σ

 . (4)
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We approximate the geodesic distance as the length
of the shortest path on the edges of the mesh [29].
The parameter σ is arbitrarily chosen and sets
the amplitude of the Gaussians. We store the
q Gaussian functions as columns of the matrix
D = [D∗1,D∗2, . . . ,D∗q], of size n × q. In the green
box in Figure 3, we report some examples of the re-
sulting Gaussian functions. In all the experiments
we use q = 1000, σ = 0.05 and we apply normaliza-
tion. In Section 7.5, we analyze the impact of these
two parameters on the accuracy of the point-to-point
correspondence computed by our complete pipeline.
These experiments were not included in [7] and val-
idate our choices. Once we have the dictionary D,
we can apply the steps described in Section 4 to ob-
tain a basis of dimension k for the functional space
F (M,R). Coherently with [7], we refer to this basis
as PC-Gau or ours.

5.2. Properties of PC-Gau

The basis obtained in such a way shares many
of the good properties of LB, which makes PC-Gau
a suitable replacement for LB in existing functional
map pipelines.

Figure 4: Comparison between the Dirichlet energy (frequency)
of atoms of our basis and LB, computed for an example mesh
from FAUST. Atoms of PC-Gau are approximately ordered by
increasing frequency.

5.2.1. Frequency ordering
Figure 4 compares the Dirichlet energy of the

atoms of PC-Gau and LB. The Dirichlet energy mea-
sures the smoothness of a function and can be inter-
preted as its frequency. We observe that, although

not perfectly, atoms of ours are approximately or-
dered in frequency. Even if not explicitly imposed,
this order arises naturally in our basis as we empiri-
cally observe. We can also evaluate this qualitatively
in the example atoms shown in Figure 2. Frequency
ordering means that, similarly to LB, we operate
a low-pass filter approximation when we project a
function on our truncated basis. We consider sorting
our atoms with respect to their frequency as an inter-
esting research direction. Still, we believe that their
natural order is sufficient for our goal, and we leave
its explicit constraint as future work.

5.2.2. Orthonormality
PC-Gau, like LB, is an orthonormal basis. We

say that a basis Φ is orthonormal according to the
inner product of the functional space F (M,R) if
ΦT AMΦ = Ik, where AM is the mass matrix and Ik

is the identity matrix of size k. We can project a
function f on an orthonormal basis ΦM simply by
matrix multiplication: a = ΦT

M
AM f . Similarly, we

can recover the function from its projection through
f = Φa. This is useful, in particular, when convert-
ing a given point-wise map Π : N →M (represented
here as a matrix) to a functional map C, which boils
down to:

C = ΦT
NAMΠΦM. (5)

5.2.3. Isometry-invariance
Two meshesM and N are isometric if the un-

derlying correspondence T : VN → VM is an isom-
etry, which means that it preserves the geodesic dis-
tance of any pair of vertices on N :

GDM(T (x),T (y)) = GDN (x, y) ∀x, y ∈ VN . (6)

Since we construct our basis purely on geodesic dis-
tances, under the assumption of equal distribution of
the sample points, then our basis will be isometry-
invariant. As for the LB, when shapes are isomet-
ric, the functional map is a diagonal matrix with +1
or −1 on the diagonal. Most often, the energy of C
is funnel-shaped, approaching diagonal as the rela-
tion between M and N gets closer to isometry. In
Figure 5, we show a qualitative comparison of the
structure of the functional map computed with LB
(left) and with PC-Gau (right) for a near-isometric
(top row: two poses of the same human subject) and

9
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Figure 5: Example of functional maps in case of a near-isometric pair (top) and a non-isometric pair (bottom), computed using
the ground-truth correspondence. By comparing the structure of the matrix for PC-Gau (left) and LB (right), we can see that their
behaviour with respect to isometry is similar.

a non-isometric pair (bottom row: a woman and a
gorilla in different poses). We remark that both bases
in the two settings generate a matrix C with a similar
shape: close to diagonal for the near-isometric pair
and a funnel shape for the non-isometric one. Their
similarity further support our claim that the PC-Gau
exhibits an invariance to isometry similar to the one
of LB.

5.3. Spatial distribution of basis energy

We now consider the spatial distribution of the
energy of the basis on the mesh surface. Intuitively,
by basis energy in a vertex x, we mean the expres-
sive power and the quality of the embedding space in
a neighborhood of x. More precisely, as we stated in
Section 3.6, we introduce two quantities to assess the
quality of the embedding space: (1) the discrimina-
tion power and (2) the preservation of locality.

5.3.1. Discrimination power
We define the discrimination power as the ca-

pability of a basis to assign sufficiently different em-
beddings to different vertices. For each vertex x ∈

VM, we measure it with the following metric:

Dis(x) =
‖Emb(x) − Emb(yx)‖2

GDM (x, yx)
, (7)

where yx= argmin
z∈VM\{x}

(‖Emb(z) − Emb(x)‖2) (8)

Here, yx is the vertex having the closest embedding to
Emb(x) measured through Euclidean distance. The
normalization makes the metric independent of ver-
tex density and rewards geodesic proximity between
x and yx. According to the continuous nature of the
surface, it is reasonable to require that geodesically
close points have similar embeddings. For this rea-
son, we penalize a vertex having as the nearest point
in the embedding a vertex that is geodesically far.

To assess the quality of PC-Gau embedding
with respect to LB, we compare the distribution of
their discrimination power over the mesh. Moreover,
we investigate the relation between discrimination
power and the average geodesic error, when the mesh
is matched to another. On the left of Figure 6, we
report the average distribution of Dis(x) on meshes
obtained across 40 human meshes from SHREC19
(top row) and three cat meshes from TOSCA (bot-
tom row). On the right of Figure 6, we visualize the

10
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Figure 6: Spatial distribution of discrimination power of the
basis and geodesic error. Comparison between ours and LB.
We visualize the average results across 40 human meshes from
SHREC19 (top) and three cat meshes from TOSCA (bottom).
Darker is worse in all cases. The similarity between distri-
butions suggests a correlation between the error and the local
quality of the embedding space.

average distribution of the geodesic error on the cor-
responding datasets matched using LB and PC-Gau
as described in Section 7.1. We observe that:

1. LB has a much lower discrimination power on
narrow extremities (arms, feet, paws, and tail),
while ours presents a uniform discrimination
power similar to the best level achieved by LB.

2. The error for LB is coherently localized in nar-
row extremities, while our diffuses uniformly on
the surface.

These observations support our claim that the errors
in point-wise correspondence localize in the areas
where the basis provides a less discriminative em-
bedding. This result suggests that through PC-Gau,
we can improve such correspondences by making the
quality of the embedding space more uniform on the
mesh.

5.3.2. Locality preservation
We define the following two metrics to quanti-

tatively asses locality preservation of a given embed-
ding space.

Embedding/Geodesic Distance Correlation (EGDC).
For each vertex x, we select the set S of s ∈ N ver-
tices having the embedding closest to Emb(x), and
estimate the correlation (ρ) between the Euclidean
distances of the embeddings and their geodesic dis-
tances from x:

EGDC(x) = ρ
(

GDM(x, y), ‖Emb(x) − Emb(y)‖2
)

y∈S
(9)

This measure evaluates how much an embedding
space preserves the neighborhood of x in the
geodesic sense. The higher EGDC, the better. In
our experiments we assess EGDC(x) using s = 80
vertices.

Mean Geodesic Distance (MGD). For each vertex x,
we define the set R of the t ∈ N vertices having the
lowest embedding distance to Emb(x), and the set
R̄ of the t vertices having the lowest geodesic dis-
tance from x. Then, we compute the ratio between
the mean geodesic distance of the vertices in R and
R̄:

MGD(x) =
Avgy∈R {GDM(x, y)}

Avgz∈R̄ {GDM(x, z)}
(10)

The more the embedding preserves the distance
of the geodesic neighbor, the lower the value of
MGD(x), which approaches 1. Therefore, the lower
MGD(x) the better. In the evaluation we used t = 10.

We analyze the locality preservation of PC-
Gau, compared to LB exploiting EGDC and MGD.
We claim that point-wise embedding designed for
shape matching should encode the neighbor infor-
mation, preserving the relation of nearest and po-
tentially similar points. Figure 7 shows the value
of these metrics averaged on the same shapes from
SHREC19 (top) and TOSCA (bottom) involved in
Figure 6. The spatial distribution measured with
EGDC and MGD for LB closely mimics the distri-
bution of discrimination power (see Figure 6, first
column). The three similar distributions observed
in these results support the choice of these measures
to evaluate the quality of the embedding in differ-
ent regions of the surfaces. In Table 1, we present
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Figure 7: Spatial distribution of EGDC and MGD. Compari-
son between ours and LB on average on human shapes from
SHREC19 (top) and cats from TOSCA (bottom). Darker is
worse in all cases. LB presents low locality preservation on
the extremities (arms, feet, paws, and tail).

the overall value for EGDC and MGD (computed
as the average on the vertices of each mesh) for dif-
ferent datasets that we introduce in the next section.
These results support our claim: a more even distri-
bution of the energy of a basis, as exhibited by the
one we propose, increases the overall quality of the
embedding space. PC-Gau inherits these properties
from the Gaussian dictionary we propose. Provid-
ing a good approximation of the dictionary, and thus
of the subspace S , and satisfying (3), our truncated
basis Pk implicitly preserves the uniform distribution
owned by the Gaussian functions.

6. Alternative Dictionaries

Even if the PC-Gau basis from [7] already
achieves the desired performance as a replacement
for the LB in the functional map framework, the new
PCD framework is more general and applies to any
dictionary D constructed on a triangular mesh. In
this section, we propose six alternative dictionaries,
motivated both by the previous literature in geome-
try processing and by the properties analyzed in the

dataset EGDC MGD
ours LB ours LB
×10−2 ×10−2

FAUST 79,7 73,8 1,11 1,34
MWG 83,8 78,1 1,12 1,36
TOSCA 84,1 79,0 1,12 1,40
SHREC19 81,9 68,8 1,14 1,86

Table 1: Overall values of EGDC and MGD averaged on the
meshes of different datasets.

previous section, that we showed to be relevant to
improve the estimation of point-to-point correspon-
dences. We briefly introduce each of them and refer
the interested reader to the related literature for more
details on each derivation.

Adaptative Gaussians (ADAPT). To define the
Gaussian functions for PC-Gau, we fix the value of σ
and define for all the samples in Q a Gaussian having
the same covariance. Due to the diverse local struc-
ture of different regions on the surface, this choice
can be suboptimal. For this reason, we define a pro-
cedure to vary the value of σ on the surface to adapt
the definition of each Gaussian to the local geometry
in the neighborhood of its vertex.

We proceed as follows:

1. We compute the error of reconstruction of the
geometry (RECerr) provided by an LB basis
composed of 60 eigenfunctions that is:

RECerr = ‖XM − ΦMΦ
†

M
XM‖2, (11)

where XM are the vectors containing the 3D co-
ordinates of the vertices of M. RECerr is a
function that encodes, for each vertex, the er-
ror in the reconstruction given by the selected
LB basis. The larger the value of RECerr, the
larger the error in the reconstruction.

2. We normalize RECerr within the interval [0, 1].

3. We define and adaptive σ̃(x) at each sample x ∈
M as:

σ̃(x) = σ(1 − (
2
5

RECerr)). (12)
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This formula restricts the value of the adaptive σ̃
in the interval [ 3

5σ,σ]. More specifically, σ̃(x) is
smaller when the reconstruction error is larger. So
we want to reduce the amplitude of the Gaussian in
the regions where the representation provided by LB
is worse. As for all our experiments, we set σ = 0.05
and refer to this dictionary as ADAPT. This is not
the only viable solution to produce an adaptive dic-
tionary. In our procedure, we have tested different
definitions varying the formula to compute RECerr,
the size of the LB basis, and the value of 2

5 in the last
formula. A comprehensive exploration of the adap-
tive dictionary in our pipeline is out of the scope of
our analysis, and we leave this task to future explo-
ration.

Heat Gaussians (HEAT). We consider the heat dif-
fusion and, in particular, the heat kernel, which en-
codes for each pair of points x, y ∈ M the amount of
heat transferred from x to y in a time t given a unit
heat source in x. This quantity is a function of the LB
eigenvalues and eigenfunctions, and thus, it is fast to
compute as described in [47]:

ht(x, y) =

k∑
`=1

e−tλ`φ`(x)φ`(y). (13)

With this equation, we can define a dictionary D
where the j-th atom, ∀ j ∈ Q, is equal to ht( j, ∗).
ht( j, ∗) is a function that ∀y ∈ M has value ht( j, y),
i.e. the amount of heat transferred from j to y in time
t starting from a unit heat source in j at time 0. We
set t = 1 × 10−2 to obtain a heat diffusion with an
amplitude similar to the one of the Gaussians in PC-
Gau. Being fully determined by the LB, the heat ker-
nel is an isometric-invariant quantity and is strictly
related to the geodesic distance [8]. The dictionary
we build from the heat kernel, namely HEAT, in-
herits all these properties and the ones given by the
uniform sampling of the Q subset of vertices we use
to define it.

Spectral Gaussians (SPEC). We take inspiration
from [5] and [23] for a different definition of the dic-
tionary of Gaussian functions. We define a Gaussian
filter on the frequency domain and interpret them as a
set of coefficients to linearly combine the LB eigen-
functions obtaining a Gaussian function in the space

domain (i.e. on the surface). Following [23], we can
define these coefficients as:

ĝ(λ`) = e−αλ` , ∀` ∈ {1, . . . , k}, (14)

where α ∈ R controls the amplitude of the Gaus-
sians (we fix the parameter α = 1 × 10−4). Then, to
reconstruct the value gα, j(y),∀y ∈ M of the Gaussian
centered at j ∈ Q ⊆ M we compute:

gα, j(y) =

k∑
`=1

ĝ(λ`)φ`( j)φ`(y). (15)

We refer to this dictionary in which atoms corre-
spond to gα, j∀ j ∈ Q, as SPEC. Being linear combi-
nations of the LB eigenfunctions, the atoms of SPEC
are invariant to isometries. Furthermore, the gener-
ated basis respects the same prior given by the even
distribution of the samples in Q.

Wave Kernel Signature (WKS). As described in
Section 3, it is possible to optimize a functional map
by imposing functional constraints to preserve some
point-wise descriptor. In our experiments, we adopt
the method NO17 [33], which exploits the wave ker-
nel signature [3] (WKS) to produce such constraints.
WKS is a multiscale descriptor based on the solution
of the wave equation on a non-Euclidean domain. As
described in [33], as for the heat diffusion, it is pos-
sible to approximate the wave diffusion through the
eigenfunctions and the eigenvalues of the LB. This
approximation is fast to compute and makes this de-
scriptor invariant to isometries. For these reasons, it
is reasonable to consider the different scales of WKS
as atoms of a dictionary. We compute WKS with
the same parameters from [33], and we refer to [3]
for more details. With this choice, we force the or-
thonormal bases produced by our method to improve
the representation of the functions which define the
optimization constraints. We refer to the dictionary
composed by only the WKS as WKS. Additionally,
we consider a dictionary, which contains both Gaus-
sian functions, computed as in Section 5, and the
wave kernel signature. We refer to this dictionary as
WKS+PC-Gau. Note that in this case we are con-
sidering a dictionary composed by functions from
different families. This is perfectly possible, as our
framework does not pose any kind of constraint on
the composition of the initial dictionary.
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dataset ↓ PC-Gau ADAPT HEAT SPEC WKS WKS+PC-Gau WAVE LB

G
T

FAUST 1:1 8,4 7,8 15,0 19,6 42,6 7,2 27,1 13,6
FAUST 15,7 15,3 20,2 23,6 56,2 14,5 28,1 19,7
MWG 20,8 20,1 24,7 31,7 94,2 18,4 30,4 24,7
MWG iso 13,5 13,1 17,3 25,8 99,0 11,7 24,7 17,3
TOSCA 6,3 6,3 9,8 13,0 92,1 5,8 16,6 9,9
TOSCA cat 12,8 12,5 19,7 22,9 41,0 12,0 21,3 19,8
SHREC19 24,5 24,0 28,6 31,2 88,6 36,7 34,3 28,4

N
O

17

FAUST 1:1 16,4 15,9 28,3 313,8 451,6 14,9 38,4 29,9
FAUST 28,0 28,8 29,8 346,4 387,6 26,2 41,3 30,6
MWG 61,3 61,2 59,7 295,6 473,1 55,2 87,4 60,6
MWG iso 26,0 27,7 27,9 202,1 471,6 18,8 44,8 27,5
TOSCA 12,9 13,1 18,1 409,8 462,4 13,9 46,7 19,9
TOSCA cat 29,2 29,8 35,4 295,0 374,4 28,6 60,6 34,7
SHREC19 43,3 44,5 66,6 404,0 486,0 47,8 118,7 65,9

Z
oo

m
O

ut

FAUST 1:1 13,8 13,5 24,0 36,3 235,2 26,3 33,7 31,3
FAUST 24,6 24,4 26,5 30,5 241,8 23,1 33,5 26,0
MWG 49,6 49,5 70,0 72,6 311,4 59,7 85,2 67,9
MWG iso 18,6 19,9 30,7 34,6 281,7 22,9 33,2 27,4
TOSCA 10,9 11,1 18,8 19,7 215,4 12,5 22,3 18,0
TOSCA cat 26,1 25,5 35,1 36,3 164,8 28,8 39,7 35,7
SHREC19 35,7 35,1 38,0 44,9 312,9 39,5 42,8 39,2

Table 2: Comparison on the Average Geodesic Error (AGE) of point-wise maps estimated from a functional map and representing
the functional spaces with LB or with the proposed approach considering seven different input dictionaries (one for each column).
We divide the rows of the table into three parts, which correspond to different computations of the functional maps, from top to
bottom: computed from ground-truth correspondence, estimated with [33], and estimated with ZoomOut [26]. In each row, we
consider a different test set. For each dataset (row), we depict the AGE value of the best, second best and third best, respectively,
in red, green and blue to highlight the distribution of the more accurate solutions. All the results reported in the table must be
multiplied by a factor equal to 10−3.

Wavelets (WAVE). Taking inspiration from the sig-
nal processing literature, we replace Gaussians by
considering wavelet functions centered in the same
set of sampled vertices Q ⊂ VM as atoms of our dic-
tionary. The main motivation is that wavelets should
provide a more informative representation of the re-
gion around each sample. To define the wavelets,
we adopt the procedure proposed in [17] for its effi-
ciency and relation with heat diffusion and we exploit
the code provided in [17]. We refer to the obtained
dictionary as WAVE.

7. Experimental Evaluation

The purpose of PCD is to improve the qual-
ity of the estimated point-wise map when employed
in a functional maps pipeline for shape-matching.

Therefore, the primary evaluation criteria consists in
assessing the accuracy of point-wise maps between
pairs of meshes. In the following, we compare the
results between PCD and LB in different settings and
for different choices of the dictionary D. Since PCD
and LB can be interchangeably used in the func-
tional maps framework, it is easy to set up the same
pipeline and compare the final results obtained in the
same conditions.

Metrics. We evaluate the overall accuracy of a point-
wise map T̄ : VN → VM by the average geodesic
error:

AGE(T̄ ) = Avg
x∈VN
{e(x)}, (16)

where e(x) = GDM(T̄ (x),T (x)) is computed with re-
spect to the ground-truth correspondence T provided
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by the dataset for evaluation. Since our goal is to im-
prove the performance compared to LB, we can also
consider the Relative Error of PCD with respect to
LB to make the accuracy gain more explicit:

RE(T̄ours, T̄LB) =
AGE(T̄ours) − AGE(T̄LB)

AGE(T̄LB)
. (17)

To evaluate the overall performance on a dataset, we
can compute the mean of AGE and RE over all the
pairs considered in the dataset. A negative value of
MRE (Mean Relative Error) indicates that, on aver-
age, PCD is performing better than LB on the given
dataset. Note that MRE does not coincide with the
relative difference of the mean AGE, and the assess-
ment provided by RE is less dependent on the abso-
lute complexity of the pairs considered.

Datasets. As test sets, we generate random pairs of
meshes taken from standard datasets. We normalize
all the meshes to the unitary area, which is a standard
unsupervised practice to compare the errors among
different datasets.

– FAUST 1:1 [4] is a dataset composed of 10 hu-
man subjects in 10 poses each. All the shapes
in this dataset share a fixed template that pro-
vides a 1:1 correspondence among their ver-
tices. We additionally consider a version of this
dataset, namely FAUST, in which all the shapes
have been independently remeshed to avoid the
implicit use of additional knowledge about the
meshes. We used 200 random pairs for both
FAUST 1:1 and FAUST.

– MWG contains 25 meshes representing a man,
a woman, or a gorilla, in different poses and
with different connectivities. We indicate with
MWG iso the dataset containing only the man
and woman meshes. We used 200 random pairs
form MWG and 120 from MWG iso.

– TOSCA [6] is a benchmark of 3D shapes di-
vided in different classes. Meshes are high reso-
lution (∼50K vertices), isometric, and with ver-
tices in 1:1 correspondence in each class. We
limit our quantitative analysis to 20 pairs involv-
ing five meshes from the class Michael (one of

the human subjects) in different poses. More-
over, in quantitative and qualitative evaluations,
we consider pairs composed only of different
poses from the cat class. We refer to this test
set as TOSCA cat.

– SHREC19 [25] contains 40 human bodies.
These meshes largely differ in the number of
vertices, type of tessellation, and model style,
making it a challenging dataset. We used 200
random pairs.

In MWG we only have a sparse set of ground truth
correspondences (around 1K correspondences). We
have a complete ground truth correspondence for all
the other datasets. In other words, there is always one
point on the target that corresponds to each vertex of
the source shape.

Implementation. We implemented the procedure to
build PCD and the entire experimental setting in
Matlab. We adopt the code available online for
ZoomOut [26] and [33] provided by the authors. In
all the following experiments, we fix the number of
atoms k = 60 and the specific parameters required by
each dictionary selected as described in the previous
Sections.

7.1. Functional maps computed from ground-truth
correspondence
To evaluate our basis independently of the

quality of the estimation of the functional map, we
start by computing C from the ground truth corre-
spondence provided by each dataset. In this case, C
is computed as in Equation 5 and can be considered
the best possible functional correspondence in the
given bases ΦM and ΦN . For the conversion to point-
wise map, we adopt the original algorithm proposed
in [34] and presented in Section 3.4. The first seven
rows of Table 2 show the results on the different
datasets. In this Table, for each dataset (row), we de-
pict the AGE value of the best, second best and third
best, respectively, in red, green and blue to highlight
the distribution of the more accurate solutions. We
observe that PCD provides substantially more accu-
rate conversions. Among the different dictionaries,
WKS+PC-Gau achieves the best result in six of the
seven test sets failing only on the SHREC19 dataset.
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Figure 8: An example of four atoms for each considered dictionary, represented on a random pairM (top), N (bottom) taken from
MWG. In the middle row, obtained point-wise maps and the corresponding geodesic error are shown. The map is computed from a
ground-truth C. Note that, even if atoms with the same indices betweenM and N are visualized, their localization on the mesh is
not the same. This is because the points in QM and QN are selected independently.

Even if not so accurate, PC-Gau and ADAPT are
competitive and outperform the LB. The other four
solutions are pretty far from the best results. In Fig-
ure 8, we show a qualitative comparison for a ran-
dom pair from the MWG dataset among the different
dictionaries in shape matching estimated through the
functional framework from the ground truth corre-
spondence. For each dictionary, we show some of
the atoms that compose the dictionary on the two
shapes (respectively on top and bottom). In the mid-
dle, we report the color coding of the matching and
the geodesic error represented by the colors. White
points have a 0 error, while the darker the color, the
larger the error).

7.2. Functional maps estimated with product preser-
vation

In a real-world setting, we cannot compute C
from the ground-truth correspondence, but we need
to estimate it. The second block of seven rows in Ta-
ble 2 presents the results when C is estimated using
product preservation as functional constraints [33],
namely NO17. In these tests, we used functional
constraints based on six landmarks (placed on the ex-
tremities like feet, hands, head, and chest for human)
and the WKS descriptor [3]. PCD produces better re-
sults than LB. Only on MWG and MWG iso LB ob-

tain the third best score. The comparison among the
different dictionaries is similar to the ground-truth
case, with WKS+PC-Gau being the best one, but
presenting some difficulties in targeting SHREC19.
The difference among WKS+PC-Gau, PC-Gau and
WKS reveals that having WKS in the dictionary is
useful but only if supported by an evenly distributed
set of atoms like the Gaussians from PC-Gau.

7.3. Functional maps estimated with ZoomOut

Finally, we tested our basis with the iterative
refinement introduced in [26]. The last block of
rows in Table 2 contains these results. This tech-
nique heavily takes advantage of the conversions
from functional to point-wise maps and vice-versa.
The results show that PCD outperforms LB. In these
experiments, we used an initial map of size kini =

16, estimated with [33] with the same constraints
as in Section 7.2. We then adopt the same pa-
rameters from [26], increasing the size of the func-
tional map to kfinal = 60 with step equal to 2. The
great performance achieved by our basis, when com-
bined with ZoomOut, confirms that PCD is better
suited to represent point-wise correspondences in the
functional paradigm. Moreover, with ZoomOut, our
method seems more stable also in the presence of
non-isometries. The comparison among the differ-
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ent dictionaries behaves similarly to the other cases
even if with ZoomOut PC-Gau and ADAPT perform
better than WKS+PC-Gau, with a little gap which
favours ADAPT.

A comprehensive assessment of the results
in Table 2 highlights that PC-Gau, ADAPT and
WKS+PC-Gau are not only comparable to LB’s per-
formance but even superior. The other dictionar-
ies, which do not involve Gaussians defined through
geodesic distances, give rise to less accurate cor-
respondences. WKS, the only solution not based
on the sampling strategy and the generation of lo-
calized functions, is the worst dictionary and con-
firms the goodness of the sampling strategy adopted
in [7]. Moreover, the atoms of WKS do not dis-
cern the symmetric points because, being entirely in-
trinsic, they are quasi-symmetric. Due to this prop-
erty, the representation obtained from WKS with our
pipeline can give rise to some errors in symmetric
shapes. On the contrary, HEAT and SPEC, which
arise from the sampling strategy and the definition
of local Gaussians, do not perform well compared
to the solutions that exploit the geodesic distances.
The spectral Gaussians and the heat kernel are more
sensitive to the slight variation in the intrinsic geom-
etry. They do not provide a point representation that
permits the correct matching of the corresponding
points. The WAVE dictionary, which produces less
precise maps, does not adopt the geodesic distances
to define its atoms. Furthermore, for the WAVE
solution, we select the efficient and recent solution
from [17], maintaining the parameters provided by
the authors. A more accurate analysis to select the
parameters that define the wave functions is neces-
sary to build a more informative dictionary of waves.

7.4. Direct comparison between PC-Gau and LB

The previous quantitative comparison does not
establish a clear champion among the candidate dic-
tionaries, even if it clearly shows that PC-Gau,
ADAPT and WKS+PC-Gau well exceed the accu-
racy of LB. WKS+PC-Gau is probably the best can-
didate with both ground-truth and NO17 estimation,
but it does not perform well with the ZoomOut re-
finement that is currently the most selected method
to estimate functional map. ADAPT works well with
ZoomOut, but its performance is similar to the one of

PC-Gau, which does not require additional computa-
tion to produce an adaptive σ. For these reasons, we
consider PC-Gau as our representative choice and
leave further exploration to strengthen PCD by defin-
ing more appropriate dictionaries as an intriguing fu-
ture direction.

Focusing on PC-Gau, we perform a direct
comparison to LB that we report in Table 3, adding
the RE for each test set. We consider again the same
three estimations of the functional maps, now orga-
nized as three blocks on the columns of Table 3. In
the first three columns, we observe that PC-Gau pro-
vides substantially more accurate conversions with
the ground-truth functional maps. Results in terms of
MRE are consistent with the average geodesic error.
The right part of Figure 6 shows the average spatial
distribution of the error on the considered pairs from
SHREC19 and cats from TOSCA.

Following the protocol proposed in [16], Fig-
ure 9 shows the curves of the cumulative geodesic
error for each dataset (more details in the caption).
Note that the percentage of vertices with a low
geodesic error is similar between PC-Gau and LB,
but PC-Gau has a considerably lower percentage of
vertices with a large error. This result is consistent
with our analysis: the embedding space of LB is not
poor in general but only in specific areas of the mesh.
The vertices in the weakly-represented regions have
a large geodesic error when using LB, while the qual-
ity of point-wise maps is similar between PC-Gau
and LB in the well-covered areas.

With NO17 [33] (columns 4,5, and 6), PC-Gau
still gets better results than LB, except in MWG. Re-
moving the gorilla meshes from the dataset brings
the advantage back (see row MWG iso), suggesting
that PC-Gau is more susceptible to the error raised
by non-isometries when we compute the C adopting
NO17 and WKS as descriptors. In all the cases, even
for all the tests with the Zoomout refinement, MRE,
which is less sensitive to the single pair challenges,
is always negative, confirming that our basis outper-
forms LB.

Random sampling of Q. The quality of our basis
does not depend on the exact composition of the sub-
set of points where the Gaussians are initially com-
puted, as far as the scattering of vertices in Q is
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dataset GT NO17 ZoomOut
ours LB MRE ours LB MRE ours LB MRE
×10−3 ×10−3 ×10−2 ×10−3 ×10−3 ×10−2 ×10−3 ×10−3 ×10−2

FAUST 1:1 8,4 13,6 -37,8 16,4 29,9 -33,0 13,8 31,3 -43,5
FAUST 15,7 19,7 -20,3 28,0 30,6 -4,9 24,6 26,0 -5,4
MWG 20,8 24,7 -19,8 61,3 60,6 -4,9 49,6 67,9 -27,6
MWG iso 13,5 17,3 -25,6 26,0 27,5 -9,4 18,6 27,4 -29,7
TOSCA 6,3 9,9 -39,1 12,9 19,9 -39,0 10,9 18,0 -43,7
TOSCA cat 12,8 19,8 -35,9 29,2 34,7 -17,5 26,1 35,7 -28,8
SHREC19 24,5 28,4 -14,0 43,3 65,9 -15,4 35,7 39,2 -7,1

Table 3: Average Geodesic Error (both absolute and relative) of point-wise maps converted from a C (from left to right): computed
from ground-truth correspondence, estimated with [33], and estimated with ZoomOut [26].

(a) FAUST (b) TOSCA

(c) MWG (d) SHREC19

Figure 9: Curves of the cumulative geodesic error of point-wise
maps converted from ground-truth C for the four datasets. For
each curve point, the y-axis represents the percentage of ver-
tices with a geodesic error lower than the error threshold corre-
sponding to the x-axis: the higher the curve, the more precise
the estimated correspondence.

sufficiently uniform on the mesh surface. To ver-
ify this claim, we build PC-Gau by randomly select-
ing Q (without replacement) instead of using Far-
thest Point Sampling [30], as described in 5. Fig-
ure 10 compares the bases obtained with the two
methods regarding both discrimination power and
accuracy of the final point-wise map. Discrimina-
tion power shows a similar distribution between the
two, with PC-Gau computed from FPS being slightly
more uniform over the surface (look at the differ-
ence in value between chest and feet, for instance).
This difference, however, does not impact the point-
wise maps obtained, which show almost identical
geodesic errors. Therefore, PC-Gau is robust to the
algorithm for selecting Q. We still prefer using FPS
over random sampling, because this makes the basis
less dependent on vertex density and ensures uniform
scattering also when q is low.

7.5. Parameter selection

As we showed in Section 5, PC-Gau compu-
tation requires two parameters, namely the number
q and the amplitude σ of the Gaussian functions. In
this Section, we analyze the impact of such parame-
ters on the accuracy of the final point-wise map, and
we show that we can exploit the metrics presented in
Section 5.3.1 and 5.3.2 to select appropriate values
for σ and q, without any knowledge of the ground-
truth correspondence.

7.5.1. Amplitude of Gaussian functions σ
As shown in Section 5, the parameter σ sets

the amplitude of the Gaussian functions: the lower
18
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(a) discrimination power (b) geodesic error

Figure 10: Comparison between random sampling and FPS for
the selection of Q on the FAUST dataset. (a) shows the av-
erage distribution of the discrimination power of the obtained
bases. (b) shows the distribution and the overall value of the
geodesic error for point-wise maps obtained from the two bases.
We compute C exploiting the provided ground-truth correspon-
dence.

(a) error (GT C) (b) error (NO17 C) (c) locality preserva-
tion

Figure 11: Comparison of point-wise error (a) (ground-truth),
(b) (NO17), and locality preservation (c) for different values of
σ. MGD is an indicator of the error at test time, thus, we can
exploit it to select the best value of σ.

the value of σ and the more the Gaussian function is
localized around its center point.

Figure 11a and 11b present the average
geodesic error of point-wise maps (y-axis) obtained
using different values of σ (x-axis). For each value
of σ PC-Gau is computed and then tested both esti-
mating C using the ground-truth correspondence, as
done in Section 7.1, and using product preservation
method [33], as done in Section 7.2. The plots show
that values of σ that are too large and too small re-
sult in a sensible decrease in accuracy in the maps
obtained. Therefore it is important to choose a value
of σ near the mean. Figure 11c shows the value of
MGD obtained by our basis computed with differ-
ent values of σ. We can see that the value of σ that

(a) error (GT C) (b) error (NO17 C) (c) locality preserva-
tion

Figure 12: Comparison of point-wise error (a) (ground-truth),
(b) (NO17), and locality preservation (c) among different values
of q. Average on 30 pairs from FAUST and MWG datasets.

minimizes MGD is also optimal or nearly optimal
for the point-wise error. Since we compute MGD
for every single mesh and, thus, without any knowl-
edge about the ground truth correspondence, we can
adopt this analysis in real scenarios where the cor-
respondence between different meshes is unknown.
Here, we only consider MGD, but we obtain similar
results with EGDC and Dis, which behave similarly
to MGD.

7.5.2. Number of Gaussian functions q

The parameter q determines the number of
points selected on the mesh surface and, thus, the
number of Gaussian functions. Similarly to the pre-
vious paragraph, Figure 12 shows both the point-
wise error and the value of MGD for PC-Gau (y-
axis) computed using different values of q (x-axis).
We can still observe a strong relationship between
the metric and the error obtained, thus allowing us to
use MGD also for this parameter. We remark that the
error decreases as q increases, with less noticeable
effects after q = 1000. However, the time needed to
compute our basis increases more than linearly with
q. Therefore, q = 1000, i.e. the value used in our
experiments, represents a good trade-off between ac-
curacy and efficiency.

Note, at last, that the predictive power of the
metrics defined in Section 5.3.1 and 5.3.2 on the
point-wise error is an additional confirmation of their
relevance. This relationship means that they assess
the properties of the embedding space relevant to the
conversion to point-wise maps.
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8. Conclusions

We presented the procedure to build a new ba-
sis for the space of real-valued functions defined on
a mesh. Our framework, namely PCD, starts by se-
lecting a dictionary of informative functions for the
mesh and then extracts an orthonormal basis by ap-
plying the principal component analysis. The output
of PCD can replace LB at no cost in virtually any
functional map pipeline to target the shape matching
task. In particular, we focused on PC-Gau, the ba-
sis obtained by selecting a dictionary of Gaussians,
which are easy to compute and give rise to desirable
properties. Compared to the eigenfunctions of the
Laplace-Beltrami operator, which are the standard
basis for functional maps, the energy of PC-Gauis
distributed more uniformly on the mesh. The result-
ing embedding space for the vertices is overall more
amenable to point-wise conversion. We extended our
analyses to different compositions of the initial dic-
tionary, evaluating their performances on several es-
tablished datasets and using different methods for es-
timating the functional map. We showed that substi-
tuting LB with PCD, for some specific choices of the
initial dictionary, leads to far superior results in the
accuracy of the obtained point-wise map. We also
analyzed the dependency of the matching accuracy
on the value of the parameters required by PC-Gau,
showing a simple method to choose them in real-case
scenarios.

Although the results are pretty impressive, we
experienced that PCD has some limitations: i) it suf-
fers when there are significant errors in the estima-
tion of the functional map; ii) the entire framework
has been defined for meshes, while we did not ex-
plore its applicability to point clouds, neither consid-
ering meshes extracted from dense point clouds nor
directly working on 3D points without connectivity;
iii) we believe that even if the embedding from PC-
Gau is uniform, this is not optimal and could be im-
proved by explicitly enforcing this property.

A first interesting direction to explore in the
future is to test the ability of our basis to repre-
sent different signals defined on the surfaces as done
in [26], to evaluate if the functional representation
can also benefit from the more uniform distribution
of the energy of our basis. A second direction we

only partially addressed is to evaluate other possi-
ble dictionary compositions as inputs of our proce-
dure. We saw that some alternatives could provide
better results compared to PC-Gau, even if only on
some test sets. Finally, we would investigate how
it is possible to integrate PCD in data-driven pro-
cedures inspired by the functional maps framework,
such as [20, 12, 22].
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and M. Ovsjanikov. Zoomout: Spectral upsampling for
efficient shape correspondence. ACM Transactions on
Graphics (TOG), 38(6):155:1–155:14, Nov. 2019.
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