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On the height and relational complexity of a finite permutation group

NICK GILL, BIANCA LODÁ and PABLO SPIGA

Abstract. Let G be a permutation group on a set Ω of size t. We say that

Λ ⊆ Ω is an independent set if its pointwise stabilizer is not equal to the

pointwise stabilizer of any proper subset of Λ. We define the height of G to be

the maximum size of an independent set, and we denote this quantity H(G).

In this paper we study H(G) for the case when G is primitive. Our main

result asserts that either H(G) < 9 log t, or else G is in a particular well-

studied family (the “primitive large–base groups”). An immediate corollary

of this result is a characterization of primitive permutation groups with large

“relational complexity”, the latter quantity being a statistic introduced by

Cherlin in his study of the model theory of permutation groups.

We also study I(G), the maximum length of an irredundant base of G,

in which case we prove that if G is primitive, then either I(G) < 7 log t or

else, again, G is in a particular family (which includes the primitive large–base

groups as well as some others).
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§1. Introduction

In this paper we study a number of different statistics pertaining to primitive permu-

tation groups. We are interested in understanding which families of primitive permutation

groups exhibit large values for these various statistics.

From here on, let G be a finite primitive permutation group on a set Ω of size t <∞.

The statistic of most interest to us is the relational complexity of a permutation group,

RC(G), a statistic that was first introduced in [CMS96]. We were motivated by a remark

in the same paper in which the authors suggest that it should be possible to classify those

primitive groups G for which RC(G) >
√
t. Our main result (more or less) yields this

classification; indeed it applies with the
√
t replaced by the asymptotically weaker 9 log t+1

(here, and everywhere, logarithms are base 2).

In the course of our investigations we were inspired by the following result of Liebeck

[Lie84] concerning the minimum base size, b(G), of the permutation group G. (The defini-

tion of this quantity is given below.)

Theorem 1.1. Let G be a finite primitive group of degree t. Then one of the following

holds:

1. G is a subgroup of Sym(m)oSym(r) containing (Alt(m))r, where the action of Sym (m)

is on k-subsets of {1, . . . ,m} and the wreath product has the product action of degree

t =
(
m
k

)r
;

2. b(G) < 9 log t.

Theorem 1.1 leads us to make the following definition.

Definition 1.2. The group G is a primitive large–base group if G is a subgroup of Sym(m)o
Sym(r) containing (Alt(m))r, where the action of Sym (m) is on k-subsets of {1, . . . ,m}
and the wreath product has the product action of degree t =

(
m
k

)r
.

In this paper we prove two results which are variants of the main result of Theorem 1.1;

in both, the family of primitive large–base groups appear in a similar way to Theorem 1.1,

in that they exhibit exceptional behaviour with respect to certain statistics. In order to

state these results we must first define the statistics of interest.1

1.1. Definition of statistics

For Λ = {ω1, . . . , ωk} ⊆ Ω, we write G(Λ) or Gω1,ω2,...,ωk for the pointwise stabilizer. If

G(Λ) = {1}, then we say that Λ is a base. The size of a smallest possible base is known as

the base size of G and is denoted b(G).

We say that a base is a minimal base if no proper subset of it is a base. We denote the

maximum size of a minimal base by B(G).

1There has been recent improvement on Liebeck’s result. We now know that if G is not a primitive
large-base group, then b(G) ≤ max{dlog te+ 1, 7}. [MRD].
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Given an ordered sequence of elements of Ω, [ω1, ω2, . . . , ωk], we can study the associated

stabilizer chain:

G ≥ Gω1 ≥ Gω1,ω2 ≥ Gω1,ω2,ω3 ≥ · · · ≥ Gω1,ω2,...,ωk

If all the inclusions given above are strict, then the stabilizer chain is called irredundant. If,

furthermore, the group Gω1,ω2,...,ωk is trivial, then the sequence [ω1, ω2, . . . , ωk] is called an

irredundant base. The size of the longest possible irredundant base is denoted I(G). Note

that an irredundant base is not a base (because it is an ordered sequence, not a set).

Finally, let Λ be any subset of Ω. We say that Λ is an independent set if its pointwise

stabilizer is not equal to the pointwise stabilizer of any proper subset of Λ. We define the

height of G to be the maximum size of an independent set, and we denote this quantity

H(G).

There is a basic connection between the four statistics we have defined so far:

b(G) ≤ B(G) ≤ H(G) ≤ I(G) ≤ b(G) log t. (1.1)

The proof of (1.1) goes as follows: The first inequality is obvious. For the second, suppose

that Λ = {ω1, . . . , ωk} is a minimal base; then observe that Λ is also an independent set.

For the third, suppose that Λ = {ω1, . . . , ωk} is an independent set; then observe that the

ordered list [ω1, . . . , ωk] can be extended to form an irredundant base.

The fourth inequality has been attributed to Blaha [Bla92] who, in turn, describes it

as an “observation of Babai” [Bab81]. Suppose that G has a base of size b = b(G). Then,

in particular |G| ≤ tb. On the other hand, any irredundant base has size at most log |G|.
We conclude that I(G) ≤ log(tb), and the result follows.

We have one more statistic to define. To start, suppose that r, n ∈ N with r ≤ n. If

I, J ∈ Ωn, then we write I∼r J , and say that I is r-equivalent to J with respect to the action

of G, if G contains elements that map every subtuple of size r in I to the corresponding

subtuple in J i.e.

for every k1, k2, . . . , kr ∈ {1, . . . , n}, there exists h ∈ G with Ihki = Jki , for every i ∈ {1, . . . , r}.

Here Ik denotes the kth element of tuple I and Ig denotes the image of I under the action

of g. Note that n-equivalence simply requires the existence of an element of G mapping I

to J .

The group G is said to be of relational complexity r if r is the smallest integer such

that, for all n ∈ N with n ≥ r and for all n-tuples I, J ∈ Ωn,

I∼r J =⇒ I∼n J.

In this case we write RC(G) = r. The fact that relational complexity is well-defined takes a

little proving. There is an equivalent definition of RC(G) in terms of relational structures:

RC(G) is the least k for which G can be viewed as an automorphism group acting naturally

on a homogeneous relational system whose relations are k-ary [Che16].

The relationship between relational complexity and the statistics defined above is given

by the following inequality (which is proved in §2):

RC(G) ≤ H(G) + 1. (1.2)

Note that in what follows, we may sometimes include the set on which we are acting

in our statistical notation, if this set is in any doubt. So, for instance, H(H) and H(H,∆)

both mean “the height of the permutation group H on a set ∆”.
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1.2. Main results

Our first main result is a Liebeck-type result for height.

Theorem 1.3. Let G be a finite primitive group of degree t. If G is not a primitive large–

base group, then

H(G) < 9 log t.

Equation (1.2) immediately yields the following corollary.

Corollary 1.4. Let G be a finite primitive group of degree t. If G is not a primitive

large–base group, then

RC(G) < 9 log t+ 1.

Corollary 1.4 yields the classification proposed in [CMS96] in a very strong form (since

our bound is logarithmic in t, whereas the original suggestion was for
√
t). Note, however,

that we do not assert that all of the primitive large–base groups genuinely violate the bound

in Corollary 1.4. A precise analysis of the relational complexity of the primitive large–base

groups was started in [CMS96] but, although a great deal of progress was made, much

remains to be done. Note, though, that [Che16, Theorem 2] implies that the family of

primitive large–base groups contain an infinite number of groups violating the bound in

Corollary 1.4 including, in particular, the alternating groups in their natural action. It is

clear that the same is true with respect to Theorem 1.3: both Alt(t) and Sym(t) in their

natural action violate the bound in Theorem 1.3 for t large enough. In future work we will

show that the same is true of Alt(t) and Sym(t) in their action on k-sets.

Equation (1.1) yields a second corollary.

Corollary 1.5. Let G be a finite primitive group of degree t. If G is not a primitive

large–base group, then

B(G) < 9 log t.

Of course, we could get yet another corollary by replacing B(G) by b(G) here, but this

would only reprise Theorem 1.1. What, then, of I(G)? Our main result concerning this

statistic is the following.

Theorem 1.6. Let G be a finite primitive group of degree t. Then one of the following

holds:

1. There exists an almost simple group A, with socle S, such that G is a subgroup of

A o Sym(r) containing Sr, the action of A is one of the following:

(a) the action of Sym (m) on k-subsets of {1, . . . ,m} (so degree s =
(
m
k

)
);

(b) the action of a classical group on a set of subspaces of the natural module, or on

a set of pairs of subspaces;

and the action of the wreath product has the product action of degree t = sr, where s

is the degree of the action of A.

2. I(G) < 7 log t.
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The listed possible actions of A are a subset of the so-called “standard actions” of

almost simple groups. In the second case, let V be a finite-dimensional vector space over

Fq; if S = PSL(V ), then such an action is on all subspaces of some fixed dimension k in V ;

if S = Cl(V ), one of the other classical groups defined on V , then such an action is either

on all non-degenerate subspaces of some fixed dimension k in V , or on totally-isotropic

subspaces of some fixed dimension k and of a given type in V .

Theorem 1.6 is not as strong as we would like – we would like to eliminate the groups

listed at item (1b), so that we end up with the same exceptional family as in the other main

results. Indeed we conjecture that something like Theorem 1.3 should hold for I(G) also:

Conjecture 1.7. There exists a constant C > 0 such that if G is a finite primitive group

of degree t that is not a primitive large–base group, then

I(G) < C log t.

1.3. Structure of the paper

Our proofs of Theorems 1.3 and 1.6 make use of the O’Nan–Scott Theorem which

divides the class of primitive permutation groups into various families. There are various

ways of stating the O’Nan–Scott Theorem; in this paper we make use of the division into

eight types which is described in [Pra90].

After proving some useful background lemmas in §2, the work in §§3, 4 and 5 when

combined with the O’Nan–Scott Theorem reduces the problem of proving Theorem 1.6 to

a question about almost simple groups. This question is addressed in §6 where the proof of

Theorem 1.6 is completed.

The work in §5, when combined with Theorem 1.6 reduces the problem of proving

Theorem 1.3 to a question about almost simple groups. This question is addressed in §7

where the proof of Theorem 1.3 is completed.

1.4. Acknowledgments

The results in this paper are based on the PhD thesis of the second author. The

authors would like to thank Colva Roney-Dougal and Dugald Macpherson who, in the

course of examining the thesis, made many useful remarks which have helped to improve

the current paper.

The first and third authors would like to acknowledge the support of EPSRC grant
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§2. Some background lemmas

In this section we collect together a number of lemmas, mostly about height, which

will be useful later. We also introduce one final statistic: for a group G, we define `(G) to

be the length of the longest subgroup chain in G. It is clear that `(G) is greater than or

equal to I(G) (and, hence, all of the other statistics defined in §1); it is equally clear that

`(G) ≤ log |G|.
We start with a proof of (1.2)

Lemma 2.1. RC(G) ≤ H(G) + 1.

Proof. Let h = H(G) and consider a pair (I, J) ∈ Ωn such that I∼r J with r = h+ 1.

We must show that I∼n J .
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SUBMIT

Observe that we can reorder the tuples without affecting their equivalence. Hence,

without loss of generality, we can assume that

GI1 > GI1,I2 > · · · > GI1,I2,...,I`

for some ` ≤ h and then this chain stabilizes, i.e.

GI1,...,I` = GI1,...,I`+j

for all 1 ≤ j ≤ n − `. From the assumption of (h+ 1)-equivalence it follows that there

exists an element g ∈ G such that Igi = Ji for all 1 ≤ i ≤ ` and observe that the set of all

such elements g forms a coset of GI1,...,I` .

The assumption of (h+ 1)-equivalence implies, moreover, that for all 1 ≤ j ≤ n − `
there exists gj ∈ G such that {

I
gj
i = Ji, for 1 ≤ i ≤ `;
I
gj
`+j = J`+j .

The set of all such elements gj forms a coset of GI1,...,I`,I`+j , which is, again, a coset of

GI1,...,I` . Indeed, since any coset of GI1,...,I` is defined by the image of the points I1, . . . , I`
under an element of the coset, we conclude that elements of the same coset of GI1,...,I` map

I`+j to J`+j for all 1 ≤ j ≤ n− `. In particular, I∼n J , as required.

The next two lemmas are little more than observations and require no proof.

Lemma 2.2. Let H ≤ G and let Λ ⊆ Ω be an independent set with respect to H. Then Λ

is an independent set with respect to G. In particular, H(H) ≤ H(G).

Lemma 2.3. Let Λ = {α1, . . . , αn}. Then Λ is independent if and only if

G(Λ) � G(Λ\{αi})

for all i = 1, . . . , n.

Lemma 2.4. Let Λ ⊆ Ω. Then there exists Γ ⊆ Λ such that Γ is independent and G(Λ) =

G(Γ).

Proof. If Λ is an independent set then the claim is trivially true. So assume it is not.

Then there exists a proper subset Λ0 ⊂ Λ such that G(Λ0) = G(Λ). If Λ0 is independent

then we are done, otherwise consider Λ0 and repeat the same argument.

The next three results give information about the behaviour of the statistics H(G),

I(G) and `(G) when the permutation group G is a direct product.

Lemma 2.5. Let A and B permutation groups on Ω1 and Ω2, then

H(A×B,Ω1 × Ω2) ≤ H(A,Ω1) + H(B,Ω2).
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Proof. Let πA : A × B → A be the projection onto A and observe that the kernel

of πA is {1} × B. Let Λ = {(α1, β1), . . . , (αk, βk)} be an independent set for A × B. Set

G := A×B and, for every j ∈ {1, . . . , k}, set Gj := G(α1,β1) ∩ · · · ∩G(αj ,βj).

Now consider the set Λ1 = {α1, . . . , αk} ⊆ Ω1. Observe that, a priori, this set may not

be independent. However, by Lemma 2.4, there exists a subset {j1, . . . , js} ⊆ {1, . . . , k}
such that the set ∆1 = {αj1 , . . . , αjs} is independent and A(∆1) = A(Λ1). After relabeling el-

ements, we can assume ∆1 = {α1, . . . , αs} and observe that A(∆1) = πA(Gs). In particular,

s ≤ H(A,Ω1).

Now let H := Gs. It is clear that the set {(αs+1, βs+1), . . . , (αk, βk)} is independent

with respect to H. Moreover, for all j ∈ {s+ 1, . . . , k}, we have

πA

(
k⋂

i=s+1

H(αi,βi)

)
= πA

 k⋂
i=s+1
i 6=j

H(αi,βi)


and this implies that

k⋂
i=s+1

H(αi,βi) ∩ ({1} ×B) �

 k⋂
i=s+1
i 6=j

H(αi,βi)

 ∩ ({1} ×B).

Therefore, by Lemma 2.3, the set ∆2 = {βs+1, . . . , βk} is an independent set for B ∩H
and hence k − s ≤ H(B ∩H,Ω2). As H(B ∩H,Ω2) ≤ H(B,Ω2), by Lemma 2.2, we have

k ≤ H(A,Ω1) + H(B,Ω2)

and we conclude that H(G,Ω1 × Ω2) ≤ H(A,Ω1) + H(B,Ω2).

Lemma 2.6. Let A and B be non-identity permutation groups on Ω1 and Ω2, then

I(A×B,Ω1 × Ω2) = I(A,Ω1) + I(B,Ω2)− 1.

Proof. Let [α1, . . . , αk] and [β1, . . . , βs] be irredundant bases for A and B acting on

Ω1 and on Ω2 and with k := I(A,Ω1) and s := I(B,Ω2). As A and B are not the identity,

s, k ≥ 1. Now consider the ordered sequence

[(α1, β1), (α1, β2), . . . , (α1, βs), (α2, βs), (α3, βs), . . . , (αk, βs)].

Using the fact that [α1, . . . , αk] and [β1, . . . , βs] are irredundant bases, it follows that this

sequence of elements of Ω1×Ω2 is an irredundant base for A×B acting on Ω1×Ω2. Thus

I(A×B,Ω1 × Ω2) ≥ s+ k − 1 = I(A,Ω1) + I(B,Ω2)− 1.

Now, let [(α1, β1), . . . , (αt, βt)] be an irredundant base for A × B acting on Ω1 × Ω2

with t = I(A × B,Ω1 × Ω2). Let SA := {i ∈ {2, . . . , t} | Aα1,...,αi−1 > Aα1,...,αi−1,αi} and

SB := {i ∈ {2, . . . , t} | Bβ1,...,βi−1
> Bβ1,...,βi−1,βi}. As, for each i ∈ {2, . . . , t}, we have

Aα1,...,αi−1 ×Bβ1,...,βi−1
=

i−1⋂
j=1

(A×B)(αj ,βj) >

i⋂
j=1

(A×B)(αj ,βj) = Aα1,...,αi ×Bβ1,...,βi ,
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we deduce SA∪SB = {2, . . . , t}. Moreover, if SA = {i1, i2, . . . , ir}, then [α1, αi1 , αi2 , . . . , αir ]

is an irredundant base for A acting on Ω1 and hence I(A,Ω1) ≥ |SA| + 1. Similarly,

I(B,Ω2) ≥ |SB|+ 1. Therefore,

I(A,Ω1) + I(B,Ω2) ≥ |SA|+ |SB|+ 2 ≥ |SA ∪ SB|+ 2 = |{2, . . . , t}|+ 2 = t+ 1

= I(A×B,Ω1 × Ω2) + 1.

Lemma 2.7. Let A and B be groups. Then `(A×B) ≤ `(A) + `(B).

Proof. Let G = A×B and let

Gκ < Gκ−1 < · · · < G1 < G0 = G

be a chain of subgroups of length κ. Let π : G→ B be the projection onto B. Let

I := {i ∈ {0, . . . , κ− 1} | π(Gi) > π(Gi+1)}

and let s := |I|. We may write I = {i1, . . . , is} with i1 < i2 < · · · < is. Now,

π(Gis+1) < π(Gis) < · · · < π(Gi2) < π(Gi1) ≤ B

is a strictly increasing chain of subgroups of B and hence s ≤ `(B).

Let j be an arbitrary element in {1, . . . , s− 1}. Define is+1 = κ. By definition

π(Gij+1) = · · · = π(Gij+3) = π(Gij+2) = π(Gij+1). (2.1)

Since, by assumption, we have the strictly increasing sequence

Gij+1 < · · · < Gij+3 < Gij+2 < Gij+1,

the first isomorphism theorem and (2.1) give

A ∩Gij+1 < · · · < A ∩Gij+3 < A ∩Gij+2 < A ∩Gij+1.

This increasing sequence consists of ij+1 − ij subgroups.

The argument in the previous paragraph can be applied for every j ∈ {1, . . . , s − 1}
and hence we obtain s chains of strictly increasing sequences of subgroups of A consisting

of i1− i2, i2− i3, . . . , is−1− is terms. By sticking these strictly increasing sequences together

we obtain a longer increasing sequence of subgroups of A of length κ. This longer increasing

sequence is not necessarily strictly increasing, however the only positions where an equality

can occur are the positions where we attach two strictly increasing chains, that is, in the

positions

A ∩Gij+1 ≤ A ∩Gij+1−1.

Since the number of these positions is s and since s ≤ `(B), we have a strictly increasing

chain in A of length κ− `(B). We conclude that κ− `(B) ≤ `(A), and the result follows.

Lemma 2.8. Let G ≤ Sym(Ω) and let N EG. Then

H(G) ≤ H(N) + `(G/N)

and

I(G) ≤ I(N) + `(G/N).
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Proof. Let {ω1, . . . , ωk} be an independent set for G in its action on Ω.

Let us consider the action of N on Ω. Observe that, a priori, the set {ω1, . . . , ωk}
is not independent for this action. However, by Lemma 2.4, there exists a subset J :=

{j1, . . . , js} ⊆ {1, . . . , k}, such that {ωj1 , . . . , ωjs} is independent for N on Ω and

N ∩

(
s⋂
i=1

Gωji

)
= N ∩

(
k⋂
i=1

Gωi

)
.

After relabeling elements, we can assume J = {1, . . . , s}. In particular, this yields that

s ≤ H(N,Ω).

Observe that, for all j ∈ {s, . . . , k}, we have

N ∩

(
s⋂
i=1

Gωi

)
= N ∩

(
j⋂
i=1

Gωi

)
(2.2)

Let π : G→ G/N be the natural projection and let I = {s, . . . , k}. Suppose that there

exist i1, i2 ∈ I, with i1 < i2, such that

π

 i1⋂
j=1

Gωj

 = π

 i2⋂
j=1

Gωj

 .

This equality, (2.2) and the first isomorphism theorem imply that

i1⋂
j=1

Gωj =

i2⋂
j=1

Gωj .

Therefore
k⋂
j=1

Gωj =

i2⋂
j=1

Gωj ∩
k⋂

j=i2+1

Gωj =

i1⋂
j=1

Gωj ∩
k⋂

j=i2+1

Gωj .

Since {1, . . . , i1} ∪ {i2 + 1, . . . , k} ( {1, . . . , k}, we have a contradiction with the indepen-

dence of {ω1, . . . , ωk} for the action of G on Ω. We conclude that, for i1, i2 ∈ I = {s, . . . , k},
with i1 < i2, we have

π

 i1⋂
j=1

Gωj

 < π

 i2⋂
j=1

Gωj

 .

We conclude that `(G/N) ≥ k − s = H(G)−H(N), as required.

We now prove that I(G) ≤ I(N) + `(G/N). Let [ω1, . . . , ωs] be an irredundant base for

G with s := I(G). Now, set G0 := G and, for i ∈ {1, . . . , t}, Gi := ∩ij=1Gωj . In particular,

we have a strictly decreasing chain

G0 > G1 > · · · > Gs−1 > Gs = 1.

Now, let S1 := {i ∈ {0, . . . , s−1} | GiN > Gi+1N} and S2 := {i ∈ {0, . . . , s−1} | Gi∩N >

Gi+1 ∩N}. We claim that S1 ∪ S2 = {0, . . . , s− 1}. We argue by contradiction and we let
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i ∈ {0, . . . , s − 1} \ (S1 ∪ S2). This means that GiN = Gi+1N and Gi ∩ N = Gi+1 ∩ N .

Let g ∈ Gi ⊆ Gi+1N . Then, there exist h ∈ Gi+1 and n ∈ N with g = hn. Thus

h−1g = n ∈ Gi ∩N = Gi+1 ∩N . As h ∈ Gi+1, this yields g ∈ Gi+1. Therefore Gi = Gi+1,

which is clearly a contradiction.

We have |S1| ≤ `(G/N). Now, let S2 = {i1, i2, . . . , ir} with i1 < i2 < . . . < ir
and consider the sequence [ωi1+1, ωi2+1, . . . , ωir+1]. We claim that this is an irredundant

sequence for N , from which it follows that I(N) ≥ r = |S2|. Suppose, by contradiction,

that

Nωi1+1 ∩ · · · ∩Nωij+1 = Nωi1+1 ∩ · · · ∩Nωij+1 ∩Nωij+1+1 .

This gives

Gωi1+1 ∩ · · · ∩Gωij+1 ∩N = Gωi1+1 ∩ · · · ∩Gωij+1 ∩Gωij+1+1 ∩N.

We now intersect both sides of this equality with Gij+1 =
⋂ij+1

u=1 Gωu and we obtain

Gij+1 ∩N = (Gij+1 ∩Gαij+1+1) ∩N = Gij+1+1 ∩N,

contradicting the fact that ij+1 ∈ S2.

Summing up,

I(N) + `(G/N) ≥ |S1|+ |S2| ≥ |S1 ∪ S2| = |{0, . . . , s− 1}| = s = I(G).

§3. Groups with a regular normal subgroup

In this section we prove Theorem 1.6 under the supposition that G contains a regular

normal subgroup. In fact here we use a general argument, which also holds in the case of

imprimitive groups containing a regular normal subgroup. The primitive groups containing

a regular normal subgroup are the groups of type HA, TW, HS or HC in the language of

[Pra90].

The main result of this section is the following.

Proposition 3.1. Let G be a permutation group on a finite set Ω of size t. If G contains

a regular normal subgroup, then

I(G) ≤ log t+ 1.

Proof. Suppose that G has a regular normal subgroup N and fix ω0 ∈ Ω. The action

of G on Ω is permutation isomorphic to the “affine” action of G on N , where the group N

acts on N via translations and the group Gω0 acts by group conjugation. In particular, if

n, v ∈ N and x ∈ Gω, then

vxn = vx · n = x−1vx · n.

In what follows, we identify Ω with N . We let [ω1, . . . , ωk] be an irredundant base and

we set H := Gω0 . We may assume, without loss of generality, that ω1 = 1 ∈ N . Now,

Hω2 = CH(ω2) fixes ω2 and hence it fixes each element of 〈ω2〉. Similarly,

Hω2,ω3 = CH(ω2) ∩ CH(ω3) = CH(〈ω2, ω3〉).

Continuing in this way, we obtain a chain of subgroups of H,

H ≥ Hω2 = CH(ω2) ≥ Hω2,ω3 = CH(〈ω2, ω3〉) ≥ · · · (3.1)

· · · ≥ Hω2,ω3,...,ωk = CH(〈ω2, ω3, · · · , ωk〉),
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and a chain of subgroups of N ,

〈1〉 ≤ 〈ω2〉 ≤ · · · ≤ 〈ω2, . . . , ωk〉 ≤ N. (3.2)

Since [ω1, . . . , ωk] is an irredundant base, the inequalities in (3.1) are strict inequalities.

This yields that the inequalities in (3.2) must also be strict. In particular,

k ≤ log |N |+ 1.

§4. Diagonal action

In this section we prove Theorem 1.6 under the supposition that G is a primitive group

of type SD, see [Pra90]. Our main result is the following.

Proposition 4.1. Let G be a primitive permutation group on a finite set Ω of size t. If G

is of type SD, then

I(G) ≤ log t.

We start by reviewing the structure of primitive groups of diagonal type, this will also

help us to set some notation.

Let T be a non-abelian simple group, let m be a positive integer with m ≥ 2 and let

S := Tm be the Cartesian product of m copies of T . We denote by D := {(t, . . . , t) | t ∈ T}
the diagonal subgroup of S and we set

Ω := [D : S]

the set of right cosets of D in S. Each element of Ω has a distinguished coset representative,

that is, an element whose first coordinate begins with a 1. In other words,

D(t1, t2, . . . , tm) = D(1, t−1
1 t2, · · · , t−1

1 tm).

In particular, Ω is in one-to-one correspondence with the elements of Tm−1 and hence

log |Ω| = (m− 1) log |T |. (4.1)

Observe, first, that the elements of S act on Ω by coset multiplication, that is, for every

D(t1, . . . , tm) ∈ Ω and (x1, . . . , xm) ∈ S we have

D(t1, . . . , tm)(x1,...,xm) = D(t1x1, . . . , tmxm).

Observe, second, that the elements of Aut(T ) act on Ω “componentwise”, that is, for every

D(t1, . . . , tm) ∈ Ω and ϕ ∈ Aut(T ) we have

D(t1, . . . , tm)ϕ = D(tϕ1 , . . . , t
ϕ
m).

Two comments are in order. First, this does indeed define an action of Aut(T ) on Ω

because D is Aut(T )-invariant. Second, the inner automorphisms of Aut(T ) induce on Ω

permutations appearing in S. (Let us denote by ιx the inner-automorphism of T defined

by x ∈ T .) Indeed, for every D(t1, . . . , tm) ∈ Ω and x ∈ T , we have

D(t1, . . . , tm)ιx = D(tx1 , . . . , t
x
m) = D(x−1t1x, . . . , x

−1tmx)

= D(t1x, . . . , tmx) = D(t1, . . . , tm)(x,...,x).
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Therefore, ιx and (x, . . . , x) induce the same permutation on Ω.

Observe, third, that Sym(m) acts on Ω by permuting the coordinates. Again, this

action is well defined because D is Sym(m)-invariant. It is easy to see that Aut(T ) and

Sym(m) centralize each other and they normalize S. We define

W := S(Aut(T )× Sym(m)) ∼= Tm · (Out(T )× Sym(m)).

The group W acts primitively on Ω and any subgroup G of W containing the socle

S and projecting primitively on Sym(m) is said to be a primitive group of diagonal type.

With the notation just established we have the following.

Lemma 4.2. Let G be a primitive group of SD type with socle Tm, for some non-abelian

simple group T and for some integer m ≥ 2. Then

I(G) ≤

{
3m
2 + log |Aut(T )|, when m ≥ 3,

log |T |, when m = 2.

Proof. By Lemma 2.2, we can assume G = W . Set ω := D(1, . . . , 1). A computation

shows that

Wω = Aut(T )× Sym(m).

Suppose first that m ≥ 3. Lemma 2.7 implies that

`(Wω) ≤ `(Aut(T )) + `(Sym(m)).

By [CST89], we know that `(Sym(m)) ≤ 3m
2 . On the other hand `(Aut(T )) ≤ log |Aut(T )|−

1, where the −1 accounts for the fact that |T | is divisible by at least two distinct odd primes.

We conclude that

I(G) ≤ `(Wω) + 1 ≤ 3m

2
+ log |Aut(T )|. (4.2)

Suppose next that m = 2. We identify Ω with T . Set H := T 2 · Out(T ) and observe

that H has a regular normal subgroup and that |W : H| = 2. Arguing as in the proof of

Proposition 3.1, we deduce that

I(H) ≤ ω(|T |) + 1,

where ω(|T |) is the number of prime divisors of |T |. Write |T | = 2vo, where v, o ∈ N and o is

odd. If o ≥ 43, we have log3(o) ≤ log(o)−2 and hence ω(|T |) ≤ log(2v) log3(o) ≤ log |T |−2

and hence I(H) ≤ log |T | − 1. If o < 43, then T has a Sylow 2-subgroup of index at most

41 in T and hence T admits a faithful primitive permutation representation of degree at

most 41. Thus we have only a finite number of simple groups satisfying this property. A

direct analysis yields that T is either Alt(5) or PSL3(2). When T = PSL3(2), we have

ω(|T |) = 5 < log |T | − 2 and hence we obtain again I(H) ≤ log |T | − 1. Therefore, except

when T = Alt(5), as |G : H| = 2, we have I(G) ≤ I(H) + 1 ≤ log |T |. When T = Alt(5), we

have checked that I(G) = 5 ≤ log |T |.

Proof of Proposition 4.1. When m = 2, the proof follows immediately from Lemma 4.2.

Assume that m ≥ 3. Lemma 4.2 and (4.1) imply that it is sufficient to prove that

3m

2
+ log |Aut(T )| ≤ (m− 1) log |T |.
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We argue by contradiction and we suppose that this inequality does not hold.

In [Qui04, Lemma 2.2] it is shown that, for a non-abelian simple group T

|T |
|Out(T )|

≥ 30.

Now, for a centerless group, we have |Aut(T )| = |Out(T )||T |, hence |Aut(T )| ≤ 1
30 |T |

2.

Thus
3m

2
+ log |Aut(T )| ≤ 3m

2
+ 2 log |T | − log 30.

Therefore,

(m− 1) log |T | < 3m

2
+ 2 log |T | − log 30.

Rearranging the terms and dividing by log |T |, we obtain

m− 3 <
3m

2 log |T |
− log 30

log |T |
.

An easy computation (using |T | ≥ 60) shows that this is never satisfied.

§5. Product actions

In the break-down described in [Pra90] there are three classes of groups left to deal

with to prove Theorems 1.6 and 1.3. In this section we deal with groups of type CD or

PA. Note that our result for type CD wil be definitive, whereas our result for type PA will

involve input from groups of type AS – and these will be dealt with in the remainder of the

paper.

Note, furthermore, that we will need a result for groups of type PA that is specific to

I(G), and another that is specific to H(G). In all cases we let H be a primitive non-regular

group on ∆ of type AS or SD and let n be a positive integer with n ≥ 2. We define

W := Hwr Sym(m) endowed with its primitive product action on the Cartesian product

Ω := ∆m, that is, for every (h1 . . . , hm)σ ∈W and (δ1, . . . , δm) ∈ Ω we have

(δ1, . . . , δm)(h1,...,hm)σ =
(
δh1

1 , . . . , δhmm

)σ
=

(
δ
h

1σ
−1

1σ−1 , . . . , δ
h
mσ
−1

mσ−1

)
.

Let t := |Ω| = |∆|m and let π : W → Sym(m) be the natural projection. Observe that the

kernel of π is the base group of W , that is, Hm.

With the notation just established, the result we need is the following.

Proposition 5.1. Let G be a primitive permutation group on a finite set, Ω = ∆m, of size

t.

1. If H is of type SD, then I(G) < 2 log t.

2. If H is of type AS and I(H,∆) < C log |∆|, then I(G) < (C + 3
2 log |∆|) log t.

3. If H is of type AS and H(H,∆) < C log |∆|, then H(G) < (C + 3
2 log |∆|) log t.
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Proof. We use, once again, the fact that a subgroup chain in Sym(m) has length at

most 3
2m, i.e. `(Sym(m)) ≤ 3

2m [CST89].

We start with (1): From Lemma 2.8, we have

I(W,Ω) ≤ I(Hm,∆m) + `(W/Hm) = I(Hm,∆m) + `(Sym(m)) ≤ I(Hm,∆m) +
3m

2
.

Now, Lemma 2.6 yields I(G,Ω) ≤ mI(H,∆) + 3m/2. Thus

I(W,Ω) ≤ mI(H,∆) +
3

2
m. (5.1)

Let G ≤W be primitive. Then we obtain that

I(G,Ω) ≤ mI(H,∆) +
3m

2
.

If H is of type SD, then Proposition 4.1 implies that I(H,∆) ≤ log |∆| and hence

I(G) ≤ m log |∆|+ 3

2
m < 2m log |∆| = 2 log t,

where the second inequality follows with a computation using |∆| ≥ 60.

For (2) and (3), recall that if H is of type AS, then G is of type PA. Now, for item

(2) we know, by supposition, that I(H) < C log t. This fact combined with (5.1) yields

the result. For item (3) the argument is the same, provided all occurrences of I(X,Y ) are

replaced with H(X,Y ) (for varying X and Y ) and replacing Lemma 2.6 with Lemma 2.5.

§6. Almost simple groups: Bounds for I(G)

Here we deal with groups “of type AS” in the language of [Pra90]; in other words, we

study almost simple primitive permutation groups. The main result of this section is the

following.

Proposition 6.1. Let G be a primitive almost simple permutation group on a set, Ω, of

size t. Either I(G) ≤ 6 log t or else G is one of the groups listed at (1) in Theorem 1.6.

The proof of Proposition 6.1 splits into several parts. To start with we use well-known

results bounding b(G) to deal with so-called “non-standard actions”. The terminology

below follows [Bur07].

Definition 6.2. Let G be a classical group with socle G0, and associated natural module V .

A subgroup H of G not containing G0 is a subspace subgroup if for each maximal subgroup

M of G0 containing H ∩G0 one of the following holds:

1. M is the stabilizer in G0 of a proper non-zero subspace U of V , where U is totally

singular, non-degenerate or, if G0 is orthogonal and p = 2, a non-singular 1-space (U

can be any subspace if G0 = PSL(V )).

2. G0 = Sp2m(q), p = 2 and M = O±2m(q).

A subspace action of the classical group G is the action of G on the coset space [G : H],

where H is a subspace subgroup of G.
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Note that the definition above amounts precisely to this: a maximal subgroup of G is a

subspace subgroup if it lies in any C1 class, or is the even–characteristic symplectic case in

the C8 class. This definition requires that we follow [KL90] in labeling the classes C1 − C8.

A small extra collection of maximal subgroups arises when G0 = Sp4(2a) and G contains

a graph automorphism, or if G0 = PΩ+
8 (q) and G contains a triality graph automorphism.

We note that [KL90] explicitly exclude these cases.

Definition 6.3. A transitive action of G on a set Ω is said to be standard if, up to

equivalence of actions, one of the following holds:

1. G0 = Alt(m) and Ω is an orbit of subsets or uniform partitions of {1, . . . ,m}.

2. G is a classical group in a subspace action.

For an almost simple primitive permutation group in a non-standard action, the base

size is bounded by an absolute constant. This was conjectured by Cameron and Kantor

([Cam92],[CK97]) and then settled in the affirmative by Liebeck and Shalev in [LS99, Theo-

rem 1.3]. The constant was then made explicit in subsequent work [BGS11, Bur07, BOW10,

BLS09]. The following theorem summarizes these results.

Theorem 6.4. Let G be a finite almost simple group in a primitive faithful non-standard

action. Then b(G) ≤ 7, with equality if and only if G is the Mathieu group M24 in its

natural action of degree 24.

Theorem 6.4 and (1.1) immediately yield Proposition 6.1 for non-standard actions.

Lemma 6.5. Let G be a finite almost simple permutation group on a set Ω of size t, in a

non-standard action. Then

I(G) ≤ 6 log t.

One can compute that I(M24) = 8 (where we consider the natural action of M24 on 24

points), hence we have a constant “6” in the statement of Lemma 6.5 rather than “7”.

6.1. Standard actions of An and Sn
Let G be Sym(n) or Alt (n). We must prove Theorem 1.6 for the action of G on

partitions of n. Let n = ab for some positive integers a, b with a ≥ 2 and b ≥ 2. We denote

by Ωb
a the set of all uniform partitions of n, with a parts of size b. Let t = |Ωb

a|, then

t =
(ab)!

a!(b!)a
.

We consider the action of G on Ωb
a. We have the following result:

Lemma 6.6. Let G be an almost simple group with socle Alt(n) acting on Ω = Ωb
a. Then

I(G) < 2 log t.

Proof. By [GMPS15, Lemma 5.6] we know that if a ≥ 2, b ≥ 2 and n ≥ 17 then

(ab)!

(b!)a(a!)
≥ 3ab/2.
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Hence

log t ≥ log(3)

2
ab. (6.1)

Once again, we use the fact that `(Sym(n)) ≤ 3
2n = 3

2ab. As 3/2 < log(3) for n ≥ 17,

we have

I(G) ≤ `(G) ≤ 3

2
ab < log(3)ab ≤ 2 log t

and the result follows. If n < 17, we check directly that 3
2ab < 2 log t, unless

(a, b) ∈ {(2, 3), (3, 2), (4, 2), (5, 2), (6, 2)}.

For these remaining cases, we have computed explicitly the value of Sym(n) acting on

partitions of {1, . . . , n} in b parts of cardinality a and we have verified that in each case

I(G) < 2 log t.

6.2. The symplectic/ orthogonal case

In this section we will deal with the actions listed at item (2) of Definition 6.2. In

particular G is almost simple with socle G0 = Sp2m(q), q a power of 2. Consulting [BHR13,

KL90], it is clear that if H is a maximal subgroup of G not containing G0, and H ∩G0 is

a subgroup of M = O±2m(q), then H ∩ G0 = M . In light of this the result that we need is

the following.

Lemma 6.7. Let G be almost simple with socle G0 = Sp2m(q), q a power of 2. Let H be a

subgroup of G such that H ∩ Sp2m(q) = O±2m(q), let Ω be the set of cosets of H in G, and

write t = |Ω|. Then

I(G,Ω) <
11

3
log t.

The treatment that follows is inspired by [DM96, §7.7], where the case of Sp2m(2) is

considered. Let e and m be positive integers, let q := 2e, let Fq be the finite field with q

elements, and let V := F2m
q be the 2m-dimensional vector space of row vectors over Fq. To

start with we adjust notation slightly, and assume that G is simple: let G := Sp2m(q) be

the symplectic group defined by the symmetric matrix

f :=

(
0 I
I 0

)
,

where 0 and I are the zero and identity m ×m-matrices, respectively. In particular, G is

the group of invertible matrices preserving the bilinear form ϕ : V × V → Fq defined by

ϕ(u, v) := ufvT ,

for every u, v ∈ V , that is

G =
{
g ∈ GL2m(q) | gfgT = f

}
.

Note that the bilinear form ϕ is alternating, i.e. for all u ∈ V , we have

ϕ(u, u) = 0. (6.2)
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Moreover, since Fq is of characteristic 2, the form ϕ is symmetric, i.e. for all u, v ∈ V ,we

have

ϕ(u, v) = ϕ(v, u). (6.3)

Now we let Ω be the set of quadratic forms θ : V → Fq polarising to ϕ. Recall that this

means that θ : V → Fq is a function satisfying

• θ(u+ v)− θ(u)− θ(v) = ϕ(u, v), for every u, v ∈ V , and

• θ(cu) = c2u, for every c ∈ Fq and u ∈ V .

Next, consider the matrix

e :=

(
0 I
0 0

)
and the quadratic form θ0 : V → Fq defined by

θ0(u) := ueuT ,

for every u ∈ V . For every u, v ∈ V , we have

θ0(u+ v)− θ0(u)− θ0(v) := (u+ v)e(u+ v)T − ueuT − vevT

= ueuT + vevT + uevT + veuT − ueuT − vevT

= uevT + veuT = uevT + ueT vT = u(e+ eT )vT = ufvT

= ϕ(u, v).

(6.4)

In particular, θ0 is a quadratic form whose polarisation is the symplectic form ϕ and

hence θ0 ∈ Ω.

Let θ ∈ Ω and define λ := θ − θ0. We have

λ(u+ v) =θ(u+ v)− θ0(u+ v) = θ(u) + θ(v) + ϕ(u, v)− θ0(u)− θ0(v)− ϕ(u, v)

=λ(u) + λ(v),

λ(cu) =θ(cu)− θ0(cu) = c2θ(u)− c2θ0(u) = c2λ(u),

for every u, v ∈ V and for every c ∈ Fq. Therefore, since Fq is of characteristic 2, the function

λ : V → Fq is semilinear and hence there exists a unique b ∈ V such that λ(u) = (u · bT )2,

for every u ∈ V (see Lemma 7.3 for a precise statement). Since f is an invertible matrix,

there exists a unique a ∈ V with b = af and hence

λ(u) = (ufaT )2 = ϕ(u, a)2,

for every u ∈ V . Summing up, we have shown that an arbitrary element of Ω is of the form

u 7→ θ0(u) + ϕ(u, a)2,

where a ∈ V . We denote this element of Ω simply by θa. Thus

θa(u) = θ0(u) + ϕ(u, a)2, for every u ∈ V. (6.5)

In particular, the elements of Ω are parametrised by the vectors of V . Moreover, if θa = θa′

for some a, a′ ∈ V , then θa(u) = θa′(u) for every u ∈ V and this implies ϕ(u, a) = ϕ(u, a′)

for every u ∈ V . Since ϕ is non-degenerate, we obtain a = a′. Hence, the set Ω is in

one-to-one correspondence with V . This, in particular, yields that |Ω| = q2m.
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Lemma 6.8. The group G acts on the set Ω.

Proof. First, we show that for every x ∈ G and for every θ ∈ Ω, the mapping

θx : V → Fq
u 7→ θ(ux−1)

(6.6)

gives rise to an element of Ω. For every u, v ∈ V , we have

θx(u+ v) = θ((u+ v)x−1) = θ(ux−1 + vx−1) = θ(ux−1) + θ(vx−1) + ϕ(ux−1, vx−1)

= θ(ux−1) + θ(vx−1) + ϕ(u, v) = θx(u) + θx(v) + ϕ(u, v).

(Observe that in the fourth equality we used the fact that x ∈ G and hence x preserves the

bilinear form ϕ.) Moreover,

θx(cu) = θ((cu)x−1) = θ(c(ux−1)) = c2θ(ux−1) = c2θx(u).

Therefore, θx ∈ Ω. Finally, for every x, y ∈ G, θ ∈ Ω and u ∈ V , we have

(θx)y(u) = θx(uy−1) = θ((uy−1)x−1) = θ(u(xy)−1) = θxy(u).

Therefore, (θx)y = θxy and hence G defines a genuine right action on Ω.

Before continuing our discussion, we gather some information on G. Let a ∈ V , we

define the mapping

ta : V → V

u 7→ u+ ϕ(u, a)a.
(6.7)

Such a function is called a transvection. For every u, v ∈ V and c ∈ Fq we have

(u+ v)ta = (u+ v) + ϕ(u+ v, a)a = (u+ ϕ(u, a)a) + (v + ϕ(v, a)a) = (u)ta + (v)ta;

(cu)ta = cu+ ϕ(cu, a)a = c(u+ ϕ(u, a)a) = c(u)ta.

Hence ta is linear. Moreover, for every u ∈ V we have

(u)t2a = (u+ ϕ(u, a)a)ta = u+ ϕ(u, a)a+ ϕ(u+ ϕ(u, a)a, a)a

= u+ ϕ(u, a)a+ ϕ(u, a)a+ ϕ(u, a)ϕ(a, a)a = u+ 2ϕ(u, a)a+ ϕ(u, a)ϕ(a, a)a

= u+ ϕ(u, a)ϕ(a, a)a =
(6.2)

u,

where in the second-last equality we use the fact that the characteristic of Fq is 2. This

shows that ta is an involution. Finally, for every u, v ∈ V , we have

ϕ((u)ta, (v)ta) = ϕ(u+ ϕ(u, a)a, v + ϕ(v, a)a)

= ϕ(u, v) + ϕ(v, a)ϕ(u, a) + ϕ(u, a)ϕ(a, v) + ϕ(u, a)ϕ(v, a)ϕ(a, a)

=
(6.3)

ϕ(u, v) + 2ϕ(v, a)ϕ(u, a) + ϕ(u, a)ϕ(v, a)ϕ(a, a)

= ϕ(u, v) + ϕ(u, a)ϕ(v, a)ϕ(a, a)

=
(6.2)

ϕ(u, v).
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Therefore ta preserves ϕ and hence lies in the symplectic group G.

We are now interested in computing the image of θa under the transvection tc. First

recall that, in a field of characteristic 2, since x = −x for every x ∈ Fq, the square root√
· : Fq → Fq is a well-defined map. Moreover, for every a, b, x, y ∈ Fq such that x = a2 and

y = b2 we have (
√
x+
√
y)2 = (a+ b)2 = a2 + b2 = x+ y, which implies

√
x+
√
y =
√
x+ y.

Moreover, recall that θa is a quadratic form polarising to ϕ and that ta is an involution, in

particular tc = t−1
c . By using these facts, given v ∈ V , we have

θtca (u) =
(6.6)

θa(ut
−1
c ) = θa(utc) =

(6.7)
θa(u+ ϕ(u, c)c)

= θa(u) + θa(ϕ(u, c)c) + ϕ(u, ϕ(u, c)c)

= θa(u) + ϕ(u, c)2θa(c) + ϕ(u, c)2

= θa(u) + (θa(c) + 1)ϕ(u, c)2 = θa(u) + (
√
θa(c) + 1ϕ(u, c))2

= θa(u) + ϕ(u, (
√
θa(c) + 1)c)2 =

(6.5)
θ0(u) + ϕ(u, a)2 + ϕ(u, (

√
θa(c) + 1)c)2

= θ0(u) + ϕ(u, a+ (
√
θa(c) + 1)c)2

=
(6.5)

θ
a+(
√
θa(c)+1)c

(u).

From this, we deduce

θtca = θ
a+(
√
θa(c)+1)c

. (6.8)

We now recall some facts about Galois theory. For a reference see [Lan02, Chapter VI].

The Frobenius mapping φ : x 7→ x2 from Fq to itself is a generator of the Galois group of Fq
over F2. There exists a well-defined F2-linear trace mapping Tr : Fq → F2. In what follows,

we need only two basic facts about Tr: first, Tr is surjective and second, from Hilbert’s 90

Theorem, the kernel of Tr consists of the set {x2 + x | x ∈ Fq} and has cardinality q/2.

Define

Ω+ := {θa | Tr(θ0(a)) = 0},
Ω− := {θa | Tr(θ0(a)) = 1}.

Observe that the above definition is a generalization of the definition of Ω+ and Ω− in

[DM96, Corollary 7.7 A]. Indeed, if q = 2, then the Galois group is the trivial group and

hence the trace map is the identity.

Let N := 〈ta | a ∈ V 〉 be the subgroup of G generated by the transvections. Observe

that, for all a, u ∈ V and x ∈ G, we have

(u)x−1tax = (ux−1 + ϕ(ux−1, a)a)x = u+ ϕ(u, ax)ax = (u)tax.

In particular, this shows that N EG.

Lemma 6.9. The sets Ω+ and Ω− are N -orbits on Ω, with

|Ω+| = qm(qm + 1)

2
, |Ω−| = qm(qm − 1)

2
.

These are also orbits for G.
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Proof. We first prove that

|Ω+| = qm(qm + 1)

2
, |Ω−| = qm(qm − 1)

2
.

Clearly, it suffices to prove the first equality because the second follows from the equality

|Ω−| = |Ω| − |Ω+| = q2m − |Ω+|.

By definition, θ0(a) = aeaT . Moreover, by using the canonical basis of V , we have

Tr

(
θ0

(
2m∑
i=1

aiei

))
= Tr

(
m∑
i=1

aiai+m

)
=

m∑
i=1

Tr(aiai+m).

Using this equation we may compute the cardinality of |Ω+| arguing inductively on m.

When m = 1, we have Tr(a1a2) = 0. When a1 = 0, we have q solutions for a2; however, for

every a1 ∈ Fq \ {0}, we have q/2 solutions for a2. Therefore when m = 1, we have

q + (q − 1)
q

2
=
q2

2
+
q

2
=
q(q + 1)

2

solutions to the equation Tr(a1a2) = 0 and we have q(q−1)
2 solutions to the equation

Tr(a1a2) = 1. Arguing inductively, we may assume that

m−1∑
i=1

Tr(aiai+m)

is equal to 0 for qm−1(qm−1+1)/2 choices of (a1, . . . , am−1) and is equal to 1 for qm−1(qm−1−
1)/2 choices of a1, . . . , am−1. Now,

m∑
i=1

Tr(aiai+m) =
m−1∑
i=1

Tr(aiai+m) + Tr(ama2m)

has value 0 if and only if
∑m−1

i=1 Tr(aiai+m) and Tr(ama2m) have the same value. Therefore

altogether the number of solutions of
∑m

i=1 Tr(aiai+m) = 0 is

qm−1(qm−1 + 1)

2

q(q + 1)

2
+
qm−1(qm−1 − 1)

2

q(q − 1)

2
=
qm(qm + 1)

2
.

Next, we prove that Ω+ and Ω− are N -orbits. We start by considering Ω+. We first

prove that Ω+ is N -invariant. To this end, it suffices to show that if θa ∈ Ω+ and c ∈ V , then

θtca ∈ Ω+. In other words, using (6.8), if Tr(θ0(a)) = 0, then Tr(θ0(a+ (
√
θa(c) + 1)c)) = 0.

So let Tr(θ0(a)) = 0 and recall that Tr is a linear map. We have

Tr(θ0(a+ (
√
θa(c) + 1)c)) =

(6.4)
Tr
(
θ0(a) + θ0((

√
θa(c) + 1)c) + ϕ(a, (

√
θa(c) + 1)c)

)
= Tr (θ0(a)) + Tr

(
θ0((

√
θa(c) + 1)c)

)
+ Tr

(
ϕ(a, (

√
θa(c) + 1)c)

)
= Tr

(
θ0((

√
θa(c) + 1)c)

)
+ Tr

(
ϕ(a, (

√
θa(c) + 1)c)

)
= Tr

(
(
√
θa(c) + 1)2θ0(c)

)
+ Tr

(
ϕ(a, (

√
θa(c) + 1)c)

)
= Tr ((θa(c) + 1)θ0(c)) + Tr

(
(
√
θa(c) + 1)ϕ(a, c)

)
= Tr (θa(c)θ0(c)) + Tr (θ0(c)) + Tr(

√
θa(c)ϕ(a, c)) + Tr(ϕ(a, c)).

(6.9)
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Using θa(c) = θ0(c) + ϕ(a, c)2 and Tr(x2) = Tr(x) for every x ∈ Fq, we obtain

Tr (θa(c)θ0(c)) = Tr(θ0(c)2) + Tr(ϕ(a, c)2θ0(c))

= Tr(θ0(c)) + Tr(ϕ(a, c)2θ0(c)),
(6.10)

Tr(
√
θa(c)ϕ(a, c)) = Tr(

√
θ0(c)ϕ(a, c)) + Tr(ϕ(a, c)2)

= Tr(
√
θ0(c)ϕ(a, c)) + Tr(ϕ(a, c)).

(6.11)

Putting (6.10) and (6.11) into (6.9), we obtain

Tr(θ0(a+ (
√
θa(c) + 1)c)) = Tr(θ0(c)) + Tr(ϕ(a, c)2θ0(c)) + Tr (θ0(c))

+ Tr(
√
θ0(c)ϕ(a, c)) + Tr(ϕ(a, c)) + Tr(ϕ(a, c))

= 0.

As Ω− = Ω \ Ω+, we obtain that Ω− is also N -invariant.

Next, we show that Ω+ is an N -orbit. Actually, we prove something stronger, we show

that

Ω+ = {θtc0 | c ∈ V }.

For every a ∈ V with Tr(θ0(a)) = 0, we need to show that there exists c ∈ V such that

θa = θtc0 . (6.12)

If θ0(a) = 0, then we may take c := a and (6.8) yields

θta0 = θ
0+(
√
θ0(a)+1)a

= θa

and we are finished. Suppose θ0(a) 6= 0. Since Tr(θ0(a)) = 0, from Hilbert’s 90 theorem,

there exists x ∈ Fq with θ0(a) = x+ x2. Since θ0(a) 6= 0, we have x 6= 0. Let y ∈ Fq \ {0}
with y2 = x and set c := y−1a. Thus√

θ0(c) + 1 =
√
θ0(y−1a) + 1 =

√
y−2θ0(a) + 1 = y−1

√
θ0(a) + 1

= y−1
√
x+ x2 + 1 = y−1(y + y2) + 1 = y.

From (6.8), we have

θtc0 = θ
0+(
√
θ0(c)+1)c

= θyc = θyy−1a = θa.

Next, we show that Ω− is an N -orbit. Actually, we prove something stronger, we show

that

Ω− = {θtcε | c ∈ V }.

First, we select a distinguished element of Ω−. Let ε ∈ Fq with Tr(ε) = 1 and set ε :=

εe1 + em+1, where (ei)i∈{1,...,2m} is the standard basis of V . Since θ0(εe1) = 0 = θ0(em+1),

we have

θ0(ε) = θ0(εe1) + θ0(em+1) + ϕ(εe1, em+1) = εϕ(e1, em+1) = ε

and hence Tr(θ0(ε)) = Tr(ε) = 1. Therefore, θε ∈ Ω−.
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For every a ∈ V with Tr(θ0(a)) = 1, we need to show that there exists c ∈ V such that

θa = θtcε . (6.13)

If θε(a+ ε) = 0, then we may take c := a+ ε and (6.8) yields

θtcε = θ
ε+(
√
θε(c)+1)c

= θε+c = θa

and we are finished. Suppose θε(a+ ε) 6= 0. We have

θε(a+ ε) =
(6.5)

θ0(a+ ε) + ϕ(a+ ε, ε)2 = θ0(a+ ε) + ϕ(a, ε)2 + ϕ(ε, ε)2

=
(6.2)

θ0(a+ ε) + ϕ(a, ε)2

=
(6.4)

θ0(a) + θ0(ε) + ϕ(a, ε) + ϕ(a, ε)2.

Since Tr(θ0(a)) = 1 = Tr(θ0(ε)), by using the previous equality, we deduce that

Tr(θε(a+ ε)) = 0.

From Hilbert’s 90 theorem, there exists x ∈ Fq with θε(a+ ε) = x+x2. Since θε(a+ ε) 6= 0,

we have x 6= 0. Let y ∈ Fq \ {0} with y2 = x and set c := y−1(a+ ε). Thus√
θε(c) + 1 =

√
θε(y−1(a+ ε)) + 1 =

√
y−2θε(a+ ε) + 1 = y−1

√
θε(a+ ε) + 1

= y−1
√
x+ x2 + 1 = y−1(y + y2) + 1 = y.

From (6.8), we have

θtcε = θ
ε+(
√
θε(c)+1)c

= θε+yc = θε+yy−1(a+ε) = θa.

The fact that Ω− and Ω+ are also G-orbits follows from the fact that N E G and

|Ω+| 6= |Ω−|.

We now compute the maximum length of a stabilizer chain in these two actions. Let

ε ∈ {+,−} (we deal simultaneously with both cases). Let {θa1 , θa2 , . . . , θak} be a subset of

Ωε such that the corresponding chain of stabilizers is strictly decreasing. Without loss of

generality, we may suppose that a1 = 0 when ε = + and a1 = ε when ε = −. (Recall that

ε is an element of V for which θε is a distinguished element of Ω−; the definition of ε was

given in the proof of the previous lemma.)

Let us define

CGθa1
(a1 + ai) = {x ∈ Gθa1

| (a1 + ai)x = a1 + ai},

that is the set of matrices in Gθa1 fixing the vector a1 + ai ∈ V .

Lemma 6.10. For every i ∈ {2, . . . , k},

Gθa1
∩Gθai = CGθa1

(a1 + ai), (6.14)
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Proof. First observe that, given j ∈ {1, . . . , k}, x ∈ Gθaj if and only if for every u ∈ V
we have

θ0(ux−1) + ϕ(ux−1, aj)
2 = θ0(u) + ϕ(u, aj)

2. (6.15)

Fix i ∈ {2, . . . , k} and let x ∈ Gθa1
∩Gθai . Then, by applying (6.15) with j := 1 and with

j := i and by using the fact that the characteristic of Fq is 2, we obtain that, for every

u ∈ V ,

ϕ(ux−1, a1 + ai)
2 = ϕ(u, a1 + ai)

2.

Since ϕ is G-invariant, then ϕ(ux−1, a1 + ai)
2 = ϕ(u, (a1 + ai)x)2. Therefore, as ϕ is

non-degenerate, (a1 + ai)x = a1 + ai and hence x ∈ CGθa1
(a1 + ai).

Conversely, let x ∈ CGθa1
(a1 + ai). Then x ∈ Gθa1

and (a1 + ai)x = a1 + ai. We need

to show that x ∈ Gθai . Note that (6.15) applied with j = 1 and the fact that we are in

characteristic 2 imply that

θ0(ux−1) = θ0(u) + ϕ(u, a1)2 + ϕ(ux−1, a1)2. (6.16)

For every u ∈ V we have:

θxai(u) =
(6.6)

θai(ux
−1) =

(6.5)
θ0(ux−1) + ϕ(ux−1, ai)

2

=
(6.16)

θ0(u) + ϕ(ux−1, a1)2 + ϕ(u, a1)2 + ϕ(ux−1, ai)
2

= θ0(u) + ϕ(ux−1, a1 + ai)
2 + ϕ(u, a1)2

= θ0(u) + ϕ(u, (a1 + ai)x)2 + ϕ(u, ai)
2

= θ0(u) + ϕ(u, a1 + ai)
2 + ϕ(u, a1)2

= θ0(u) + ϕ(u, a1)2 + ϕ(u, ai)
2 + ϕ(u, a1)2

= θ0(u) + 2ϕ(u, a1)2 + ϕ(u, ai)
2

= θ0(u) + ϕ(u, ai)
2 =

(6.5)
θai(u).

Observe that in the sixth and seventh equalities we use, respectively, the fact that x pre-

serves ϕ and the fact that x fixes the vector (a1 + ai). Hence x ∈ Gθai and therefore

x ∈ Gθa1
∩Gθai .

For simplicity, for each i ∈ {1, . . . , k}, write Gi := Gθa1
∩ · · · ∩ Gθai and, for each

i ∈ {2, . . . , k}, write bi := a1 + ai. From (6.14), the strictly decreasing sequence

G1 > G2 > · · · > Gk−1 > Gk.

equals

G1 >CG1(b2) = CG1(〈b2〉Fq) > CG1(b2, b3) = CG1(〈b2, b3〉Fq) > · · ·

>CG1(b2, . . . , bk−1) = CG1(〈b2, . . . , bk−1〉Fq) > CG1(b2, . . . , bk) = CG1(〈b2, . . . , bk〉Fq).

Here, if v1, . . . , vj ∈ V , then we write 〈v1, . . . , vj〉Fq to denote the Fq-vector space generated

by the v1, . . . , vj . We obtain that

0 < 〈b2〉Fq < 〈b2, b3〉Fq < · · · < 〈b2, . . . , bk〉Fq ≤ V.

Observe that a strict inclusion in the above chain implies that the dimension has to

go down by at least one at each step. Therefore k ≤ 1 + 2m. Thus, we have proved the

following lemma.
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Lemma 6.11. Let G := Sp2m(q) act on Ωε, where ε ∈ {+,−}. Then I(G,Ωε) ≤ 1 + 2m.

We are now able to prove Lemma 6.7 for m ≥ 3. The proof is virtually identical when

m = 2, however to avoid annoying details, we will use the fact that when m = 2 the result

follows from Lemma 6.12 which we prove in a moment.

Proof of Lemma 6.7 for m ≥ 3. Let q = 2e. Since m ≥ 3,

Sp2m(q) EG ≤ ΓSp2m(q) = Sp2m(q)o Ce.

Since a strictly descending chain of subgroups of Ce has length at most log e, we conclude

that

I(ΓSp2m(q),Ωε) ≤ 2m+ 1 + log e.

Suppose 2m+ 1 + log e ≥ 2 log tε. (Recall the cardinality of Ωε from Lemma 6.9.) Then

22m+1 · e ≥ (tε)2 = 22em−2 (2em + ε1)2 ≥ 22em−2 (2em − 1)2 .

When e ≥ 2, with an easy computation we obtain a contradiction. When e = 1, we have

22m+1 ≥ 22m−2(2m − 1)2, which implies 23 ≥ (2m − 1)2. Again this is a contradiction,

because m ≥ 3.

Putting these things together, we obtain that I(G,Ωε) < 2 log tε.

6.3. Cases involving graph automorphisms

We remarked after Definition 6.2 that the almost simple groups with socle Sp4(2a)

or PΩ+
8 (q) containing a graph automorphism or a triality graph automorphism were not

covered by the definition. We briefly deal with these groups here.

Lemma 6.12. Let G be an almost simple group with socle G0 = Sp4(2a)′, and let G act

faithfully and primitively on Ω, a set of size t. Then

I(G,Ω) <
11

3
log t.

Proof. If a = 1, then G ≤ PΓL2(9). It is not hard to verify that the longest strictly

increasing chain of subgroups of PΓL2(9) has length 6. Thus I(G) ≤ 6. On the other hand

t ≥ 6 and so the result follows. Assume, then, that a > 2. Note that

G0 ≤ G ≤ Aut(Sp4(2a)) = ΓSp4(2a).〈γ〉,

where γ is a graph automorphism of order 2a. We obtain that

|G| ≤ |Aut(Sp4(2a))| = |Sp4(2a)| · 2 · a
= 24a(22a − 1)(24a − 1) · 2 · a ≤ 211a.

(6.17)

On the other hand [KL90, Theorem 5.2.2] implies that

t ≥ 24a − 1

2a − 1
= 23a + 22a + 2a + 1 > 23a. (6.18)

Then (6.17) and (6.18) yield

I(G) ≤ log 211a = log(23a)
11
3 =

11

3
log 23a <

11

3
log t.
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Lemma 6.13. Let G be an almost simple group with socle G0 = PΩ+
8 (q), where q = pf for

some prime p and positive integer f , and let G act primitively on Ω, a set of size t. Then

I(G,Ω) <
16

3
log t.

Proof. Note that

G0 ≤ G ≤ Aut(PΩ+
8 (q)) = PΓO+

8 (q).〈τ〉,

with τ a triality graph automorphism of order 3. Now, using the fact that 6f < q4, and

recalling that

|G0| =
1

d
q12(q4 − 1)

3∏
i=1

(q2i − 1),

|Out(G0)| = 6df,

where d = (4, q4 − 1), we obtain that

|G| ≤ |Aut(G0)| = |G0| · |Out(G0)|

= 6df · 1

d
q12(q4 − 1)(q2 − 1)(q4 − 1)(q6 − 1)

< 6fq28 < q32.

(6.19)

On the other hand [KL90, §5.2] implies that{
t ≥ (q4−1)(q3+1)

(q−1) = (q3 + q2 + q + 1)(q3 + 1) > q6, for q > 2 ;

t ≥ 23(24 − 1) > 26, for q = 2.
(6.20)

Then, (6.19) and (6.20) yield

I(G) ≤ log q32 = log(q6)
32
6 <

16

3
log t.

Now Proposition 6.1 is a consequence of Lemmas 6.5, 6.6, 6.7, 6.12 and 6.13. Simi-

larly, Theorem 1.6 is a consequence of Propositions 3.1, 4.1, 5.1 and 6.1 (observe that in

Proposition 5.1 we are using the fact that |∆| ≥ 5 and hence 3/(2 log |∆|) < 1).

§7. Almost simple groups: Bounds on H(G)

Now that Theorem 1.6 is proved, we turn our attention to the proof of Theorem 1.3. In

light of Theorem 1.6 and Proposition 5.1, all that is required is that we deal with the almost

simple groups listed at item (1)(b) of Theorem 1.6 – we must show that these conform to

the bound given in Theorem 1.3. Thus the result that we need is the following.

Proposition 7.1. Let G be an almost simple group with socle, G0, a simple classical group.

Let V be the associated natural module, of dimension n over a field Fq, let m be an integer

with 0 < m < n, let Ω be a set of m-dimensional subspaces of V on which G acts primitively

and let t = |Ω|. Then

H(G) <
17

2
log t.
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7.1. G0 = PSLn(q) and elements of Ω are m-spaces

In this case we suppose that G0 = PSLn(q), and that Ω is the set of all m-dimensional

subspaces of V , where V is the natural n-dimensional module for G0 over Fq. Note that G

is transitive on Ω. We prove the following result.

Lemma 7.2. Let G be an almost simple group with socle PSLn(q) acting on Ω, the set of

all m-spaces in V . Then

H(G) <
11

2
log t.

Moreover, if q = pf with p a prime number and G ≤ PΓLn(q), then

H(G) < 2 min(m,n−m)n+ log logp q. (7.1)

Using the fact that duality conjugates m-space stabilizers to (n−m)-space stabilizers,

in what follows we may suppose that m ≤ n/2. Two notes concerning the actions considered

in Lemma 7.2. First, it is easy to check that

t > qm(n−m). (7.2)

Second, we note that if m < n
2 , then G ≤ PΓLn(q). If m = n

2 , then we must allow for the

possibility that G contains a graph automorphism of PSLn(q).

7.2. Some preliminaries

Let V and W be finite-dimensional vector spaces over Fq. We denote by EndsFq(V ) the

set of all semilinear transformations V → V . Moreover, we write HomFq(V,W ) for the set

of all linear maps V →W and Homs
Fq(V,W ) for the set of all semilinear maps V →W .

If n = dim(V ), then we write Mn(q) to denote the set of linear transformations V → V ;

where a basis has been chosen, we also allow M = Mn(q) to denote the set of all n-by-n

matrices over Fq. If W1, . . . ,Wk ≤ V , then we define

MW1,...,Wk
= {g ∈M |Wig ≤Wi for all i = 1, . . . , k}.

Using this definition, it is natural to extend the concept of base, irredundant base and

independent set in the context of the algebra M = Mn(q). For instance, given a set

Λ := {W1, . . . ,Wk} of subspaces of V , we say that Λ is an independent set for M = Mn(q)

if, for each i ∈ {1, . . . , k}, we have

MW1,...,Wk
< MW1,...,Wi−1,Wi+1,...,Wk

.

Recall that any element of Aut(Fq) induces an automorphism of V : we first fix a basis

for V and then act coordinate-wise. The following lemma is standard, but we include it for

completeness.

Lemma 7.3. Let g ∈ Homs
Fq(V,W ), g 6= 0. Then:

(a) there exists a unique σ ∈ Aut(Fq) such that g is σ-semilinear. We say that σ is the

associated automorphism of g;

(b) if σ is the associated automorphism of g, then gσ−1 ∈ HomFq(V,W );

(c) there exists a unique h ∈ HomFq(V,W ) such that g = hσ.
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Proof.

(a) Assume that there exist σ1, σ2 ∈ Aut(Fq) such that g is σ1-semilinear and σ2-semilinear.

Hence for any v ∈ V and k ∈ Fq we have (kv)g = kσ1(vg) = kσ2(vg). In particular, as

g 6= 0, there exists v0 ∈ V such that (v0)g 6= 0. Therefore kσ1(v0g) = kσ2(v0g), which

implies kσ1 = kσ2 , for any k ∈ Aut (Fq), and so σ1 = σ2.

(b) Let v1, v2 ∈ V and k ∈ Fq, then

– (v1 + v2)gσ−1 = (v1)gσ−1 + (v2)gσ−1;

– (kv1)gσ−1 = (kσ(v1g))σ−1 = k((v1)gσ−1).

Hence gσ−1 is linear.

(c) From (b) it follows that there exists h ∈ HomFq(V,W ) such that gσ−1 = h. Hence

g = hσ. Assume that there exist h1, h2 ∈ HomFq(V,W ) such that g = h1σ = h2σ.

Then for any v ∈ V we have (v)h1σ = (v)h2σ, which implies that (v)h1 = (v)h2. So,

we conclude that h1 = h2.

Now let V = W ⊕X for some W,X ≤ V . Then every v ∈ V can be written uniquely

as v = w + x, for some w ∈ W and x ∈ X. Let fW ∈ EndsFq(W ) and fX ∈ EndsFq(X). We

define fW ⊕ fX ∈ EndsFq(V ) as v(fW ⊕ fX) = wfW + xfX .

Remark 7.4. Let V = W ⊕ X for some W,X ≤ V . Let g ∈ EndsFq(V ). Then g can be

written as g = g|W ⊕ g|X , provided g(W ) ≤W and g(X) ≤ X.

Finally, if v1, . . . , vk ∈ V , then we write 〈v1, . . . , vk〉Fq to denote the Fq-span of v1, . . . , vk.

7.3. G ≤ PGLn(q)

Let V be n-dimensional over Fq. In what follows we write Mn(q) for the set of all

linear transformations V → V . Note that it will be convenient to swap between thinking

of GLn(q) or PGLn(q), depending on context – this makes no difference to the calculations

in question, as the center of SLn(q) is the kernel of the action on Ω.

The following lemma is crucial.

Lemma 7.5. Let SLn(q) ≤ G ⊂ GLn(q) act on Ω. Let Λ = {W1, . . . ,W`} ⊆ Ω be an

independent set for the action of G on Ω, of maximal size. Then

dim 〈W1, . . . ,W`〉Fq > n−m.

Proof. Let W = 〈W1, . . . ,W`〉Fq and suppose, first, that k = dimW = n −m. Then

we can assume, by transitivity, that W = 〈e1, . . . , en−m〉Fq .
Hence

G(Λ) ≤
{(

A 0

B C

)
| A ∈ Mn−m(q), B ∈ Mm,n−m(q), C ∈ Mm(q)

}
.

Now we add to Λ the following m-subspace

X = 〈en−m+1, . . . , en〉Fq ,
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and we denote Λ̄ = Λ ∪ {X}. Hence, by the maximality of Λ, we get

G(Λ̄) = G(∆̄),

for some ∆̄ ⊆ Λ̄.

We distinguish three cases:

Case I : if ∆̄ = Λ, then G(Λ̄) = G(Λ). Now

G(Λ̄) ≤
{(

A 0

0 C

)
| A ∈ Mn−m(q), C ∈ Mm(q)

}
,

but

G(Λ) ≥
{(

I 0

B I

)
| B ∈ Mm,n−m(q), B 6= 0

}
,

and this is a contradiction.

Case II : if ∆̄ ⊂ Λ, then G(Λ) ≤ G(∆̄). On the other hand, G(∆̄) = G(Λ̄) ≤ G(Λ), which implies

G(Λ) = G(∆̄), and hence a contradiction of the independence of Λ.

Case III : if ∆̄ ( Λ, then X ∈ ∆̄ and we denote ∆ = ∆̄ \ {X}. It is sufficient to prove that

G(Λ) = G(∆), as this leads to a contradiction. Observe that V = W ⊕X and so for

any g ∈ EndFq(V ) we can define

πW : EndFq(V )→ HomFq(W,V )

g 7→ g|W
and

πX : EndFq(V )→ HomFq(X,V )

g 7→ g|X .

Now, if g ∈ G(Λ̄) or if g ∈ G(∆̄), then g|W ∈ EndFq(W ) and g|X ∈ EndFq(X), which,

by Remark 7.4, imply that g = g|W ⊕ g|X . Therefore, we have that

g ∈ G(Λ̄) ⇔

{
g|W ∈ πW (G(Λ))

g|X(X) = X

and

g ∈ G(∆̄) ⇔

{
g|W ∈ πW (G(∆))

g|X(X) = X.

Hence G(Λ̄) = G(∆̄) implies

πW (G(Λ)) = πW (G(∆)). (7.3)

On the other hand

g ∈ G(Λ) ⇔ g|W ∈ πW (G(Λ))

and

g ∈ G(∆) ⇔ g|W ∈ πW (G(∆)).

Therefore, by (7.3), we get G(Λ) = G(∆).
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Finally, if k < n−m, then we can assume, by transitivity, that W = 〈e1, . . . , ek〉Fq and

consider V0 = 〈e1, . . . , ek+m〉Fq ≤ V . Let X = 〈ek+1, . . . , ek+m〉Fq . Hence we can apply to

V0 the same argument as before, which leads to a contradiction.

The next lemma yields Lemma 7.2 provided G ≤ PGLn(q).

Lemma 7.6. Let G be an almost simple group with socle PSLn(q), such that PSLn(q)EG ≤
PGLn(q), acting on Ω, the set of all m-spaces in V . Then

H(G) < 4 log t.

Moreover,

H(G) < 2 min(m,n−m)n.

Proof. As usual, we may suppose m ≤ n/2 and G = PGLn(q). Moreover, from the

opening paragraph of Section 7.3, we may work with the linear group GLn(q) and hence

we may suppose G = GLn(q). Let Λ be an independent set for the action of G on Ω, of

maximal size. The previous lemma allows us to order Λ = {W1, . . . ,Wk, . . . } so that

dim 〈W1, . . . ,Wj〉Fq > dim 〈W1, . . . ,Wj−1〉Fq

for j ≤ k, where dim (Λ) = dim(〈W1, . . . ,Wk〉Fq) > n−m. Now Λ is an independent set for

M = Mn(q) (see Section 7.2 for the definition of independent set for the algebra of n-by-n

matrices over the finite field Fq). Consider the following iterated process for i ≤ k:

Step 1 Let W1 ∈ Ω. We define W = W1. We recall that we may assume, without loss of

generality, that W = 〈e1, . . . , em〉Fq and that

MW =

{(
A 0

B C

)
| A ∈ Mm(q), B ∈ Mn−m,m(q), C ∈ Mn−m(q)

}
.

Step i We have W1, . . . ,Wi−1 and we define W = 〈W1, . . . ,Wi−1〉Fq . Let dimW = h and

assume, without loss of generality, that W = 〈e1, . . . , eh〉Fq . Since we have chosen a

specific ordering, we have that Wi satisfies

dim 〈W1, . . . ,Wi〉Fq > dimW.

Consider V/W and (Wi + W )/W ∼= Wi/(Wi ∩W ). Now let dim(Wi + W )/W = j,

observe that j ∈ {1, . . . ,m}. Then we may assume

Wi = 〈v1, . . . , vm−j , eh+1, . . . , eh+j〉Fq ,

for some v1, . . . , vm−j ∈W and eh+1, . . . , eh+j /∈W .

Hence dim (W ∩Wi) = m− j and we can write

Wi = (W ∩Wi)⊕ 〈eh+1, . . . , eh+j〉Fq .

Let r ∈ {h + 1, . . . , h + j} and let g ∈ MW1,...,Wi ; observe that egr ∈ Wi. Hence

egr = u1 + u2, for some u1 ∈W ∩Wi and u2 ∈ 〈eh+1, . . . , eh+j〉Fq . Therefore, we have

dim 〈{ egr | g ∈MW1,...,Wi }〉Fq ≤ m, for all r = h+ 1, . . . , h+ j.
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This iteration will end after k steps and hence

dimMW1,...,Wk
≤ m(n− s) + ns,

where s := n−dim〈W1, . . . ,Wk〉. We conclude that |Λ| ≤ k+m(n−s)+ns and so we have

H(G) ≤ k +m(n− s) + ns.

Now observe that k is maximum when j = 1 at each step, in which case k = n −m − s.
Hence

H(G) ≤ (n−m− s) + ns+m(n− s). (7.4)

By Lemma 7.5, we have s ≤ m − 1. We conclude that the right-hand-side of (7.4) is

maximized when s = m− 1. Then

H(G) ≤ 2mn−m2 −m+ 1,

and, as m ≥ 1 implies m2 +m− 1 > 0, we conclude that

H(G) < 2mn.

Now, observe that
mn

m(n−m)
≤ 2⇔ m ≤ n

2
.

Then, as log q ≥ 1, we have
mn

m(n−m)
≤ 2 ≤ 2 log q.

This implies that

2mn ≤ 4 log qm(n−m)

Hence, using (7.2), we obtain

H(G) < 2mn < 4 log t.

Note that, in the second author’s thesis, a precise version of Lemma 7.6 is given for

the case m = 1. It turns out that, for PSLn(q) EG ≤ PGLn(q) acting on Ω, the set of all

1-spaces in V , we have

H(G,Ω) =

{
n, if q = 2;

2n− 2, if q > 2.

7.4. G 6≤ PGLn(q)

We can finally prove Lemma 7.2.

Proof of Lemma 7.2. Let q = pf . Suppose, first, that

PSLn(q) EG ≤ PΓLn(q) = PGLn(q)o Cf .

Now Lemma 2.8 implies that

H(G) ≤ H(PGLn(q)) + `(Cf ),
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where `(Cf ) is the maximum length of a strictly descending chain of subgroups in Cf . Since

`(Cf ) ≤ log f = log logp q, we obtain

H(G) < H(PGLn(q)) + log logp q.

From Lemma 7.6, we immediately deduce (7.1) when m < n/2 and we also get

H(G) < 4 log t+ log logp q.

By (7.2), we easily conclude log logp q < log t and hence

H(G) < 5 log t.

We must deal with the possibility thatG 6≤ PΓLn(q), i.e. G contains a graph-automorphism.

In this case n ≥ 4, m = n
2 and G contains a subgroup, H, of index 2 that lies in PΓLn(q).

By the argument above, we know that

H(H) < 5 log t.

Now Lemma 2.8 implies that

H(G) < 5 log t+ 1 <
11

2
log t.

We remark that in Lemma 7.6 we chose a particular ordering of our independent set

Λ when we came to study the associated stabilizer chain. We can do this because we are

studying H(G) rather than I(G) – it is precisely this ordering step which has prevented us

from proving a strong enough version of Theorem 1.6 to confirm Conjecture 1.7.

7.5. G0 = PSLn(q) and elements of Ω are pairs of subspaces

In this section we will consider the primitive subspace actions of those almost simple

groups with socle PSLn(q) that contain an automorphism of the Dynkin diagram.

Let n ≥ 3, and fix m, an integer satisfying 1 ≤ m < n
2 . We denote by Ωm the set of all

m-subspaces of V . We consider the action of G on Ω(i), for i = 1, 2, where

Ω(1) =
{
{U,W} | U,W ≤ V,dimU = m,dimW = n−m with m <

n

2
and U ⊕W = V

}
,

Ω(2) =
{
{U,W} | U,W ≤ V,dimU = m,dimW = n−m with m <

n

2
and U < W

}
.

The main result of this section is the following.

Lemma 7.7. Let G be an almost simple group with socle PSLn(q) acting on Ω(1) or Ω(2).

Then

H(G) <
17

2
log t.

We set t(i) := |Ω(i)|, for i = 1, 2. Then we have

t(1) =
qm(n−m)

∏n
i=1 (qi − 1)∏m

i=1 (qi − 1)
∏n−m
i=1 (qi − 1)

and t(2) =

∏n
i=1 (qi − 1)∏m

i=1 (qi − 1)2
∏n−2m
i=1 (qi − 1)

.
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We saw already, in (7.2), that |Ωm| > qm(n−m). We obtain immediately that

t(i) ≥ qm(n−m). (7.5)

For the time being, for various technical reasons, we consider G ≤ PΓLn(q) (although

the corresponding actions are not primitive any longer). We simultaneously study the action

of G on Ω(1) and Ω(2). Let Λ ⊂ Ω(i) be an independent set for the action of G on Ω(i), with

k := |Λ|. We define

U = {U ∈ Ωm | there exists W ∈ Ωn−m with {U,W} ∈ Λ}; (7.6)

W = {W ∈ Ωn−m | there exists U ∈ Ωm with {U,W} ∈ Λ}. (7.7)

Let kU := |U| and kW := |W|. Clearly, kU , kW ≤ |Λ| = k.

Notice that, since G ≤ PΓLn(q), G acts naturally on Ωm and Ωn−m however observe

that, a priori, the independence of Λ does not imply the independence of ΛU and ΛW . The

result that we need is the following.

Lemma 7.8. k ≤ H(G,Ωm) + H(G,Ωn−m).

In order to prove Lemma 7.8 we first need to define a graph Γ associated with Λ in the

following way: Γ = (V,Λ) where V = U ∪W is the vertex set and the edge set is Λ.

From here, we will first prove a general fact about the length of paths in the graph Γ,

and we will then split our proof of Lemma 7.8 into two steps: the first is a special case

which illustrates the general case; this general case will come second.

Lemma 7.9. The graph Γ can only have paths of length at most 2.

Proof. Assume that in Γ we have a path of length at least 3. Then, relabelling if

necessary, we have

Ui

Ui+1

Wj

Wj+1

for some 1 ≤ i < kU , 1 ≤ j < kW . As G ≤ PΓLn(q), G preserves the two parts ΛU and ΛW
of the natural bipartition of Γ. Hence

G{Ui,Wj},{Ui+1,Wj+1} = GUi ∩GWj ∩GUi+1 ∩GWj+1 = G{Ui,Wj},{Ui,Wj+1},{Ui+1,Wj+1}.

As {Ui,Wj}, {Ui,Wj+1}, {Ui+1,Wj+1} are elements in Λ, this contradicts the independence

of Λ.

7.6. Suppose that Γ is a complete matching

In other words we suppose Γ has no paths of length 2. This case will illustrate the

general argument very well.

In this case Λ = {{U1,W1}, . . . , {Uk,Wk}}. Let us consider the action of G on Ωm. By

Lemma 2.4, there exists I ⊂ {1, . . . , k}, say I = {i1, . . . , is}, such that {Ui1 , . . . , Uis} is an

independent set and
k⋂
j=1

GUi =
s⋂
j=1

GUij .
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After relabelling elements, we can assume I = {1, . . . , s}. This yields

s ≤ H(G,Ωm).

Let

H :=
s⋂
i=1

(GUi ∩GWi)

and consider its action on Ω(i), for i ∈ {1, 2}. Recall that, by Lemma 2.2, the set

∆ = {{Us+1,Ws+1}, . . . , {Uk,Wk}}

is independent with respect to H. Now consider the action of H on Ωn−m.

Lemma 7.10. The set {Ws+1, . . . ,Wk} is independent with respect to the action of H on

Ωn−m.

Proof. Assume, for contradiction, that the set {Ws+1, . . . ,Wk} is not independent with

respect to H. Then, by Lemma 2.3, there would exist j ∈ {s+ 1, . . . k} such that

k⋂
i=s+1

HWi =
k⋂

i=s+1
i 6=j

HWi .

Observe that
s⋂
i=1

GUi =

k⋂
i=1

GUi =

k⋂
i=1
i 6=j

GUi .

Therefore we have

G(Λ) = H ∩
k⋂

i=s+1

GWi =
k⋂

i=s+1

HWi =
k⋂

i=s+1
i 6=j

HWi

= H ∩

 k⋂
i=s+1
i 6=j

GWi

 =

(
s⋂
i=1

GUi ∩
s⋂
i=1

GWi

)
∩

 k⋂
i=s+1
i 6=j

GWi


=

 k⋂
i=1
i 6=j

GUi

 ∩
 k⋂
i=1
i 6=j

GWi

 =

k⋂
i=1
i 6=j

(GUi ∩GWi)

= G(Λ\{{Uj ,Wj}}).

This contradicts the independence of Λ.

The previous lemma implies that

k − s ≤ H(H,Ωn−m).

Now, by Lemma 2.2, we have H(H,Ωn−m) ≤ H(G,Ωn−m). Putting these things together

yields that

k ≤ H(G,Ωm) + H(G,Ωn−m),

and Lemma 7.8 is proved in this special case.
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U1

Ua

Ua+1

Ua+b

Ua+1,1

Ua+1,s1

Ua+c,1

Ua+c,sc

W1

Wa

Wa+1,1

Wa+1,`1

Wa+b,1

Wa+b,`b

Wa+1

Wa+c

Figure 1: The graph Γ in the general case.

7.7. Suppose that Γ is not a complete matching

The general argument is very similar but requires some more notation. After reordering

the vertices of Γ and using a suitable labelling, the fact that Γ has no paths of length 3

implies that Γ is isomorphic to the graph in Figure 1, where `1, . . . , `b, s1, . . . , sc ≥ 2.

Observe that, by definition, we have kU vertices on the left, kW vertices on the right

and k edges, because these are the elements of Λ. Let us consider the action of G on Ωm,

that is we focus on the action of G on the vertices on the left-hand side of the graph. By

Lemma 2.4, there exists a subset U1 of U , such that U1 is an independent set and⋂
U∈U

GU =
⋂
U∈U1

GU . (7.8)

Let s := |U1|. We reorder the vertices on the left-hand side of the graph so that the elements

of U1 occur in the top s positions. Simultaneously, we take to the top exactly one edge,

chosen arbitrarily, having one end in U , for each U ∈ U1. Note that here we allow crossings

between edges. Observe that Lemma 7.9 implies that this operation is well-defined. We
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have

s ≤ H(G,Ωm).

Let ΛU1 ⊂ Λ be the set of those chosen edges and note that |ΛU1 | = s. We define

W1 = {W ∈ W |W is an end-point for an edge in ΛU1}
W2 =W \W1.

Observe that |W1| ≤ s.

Lemma 7.11. Let H := G(ΛU1
). Let λ ∈ Λ \ ΛU1 and let Uλ and Wλ be, respectively, its

left-hand end-point and right-hand end-point. Then we have that

1. the function

f : Λ \ ΛU1 →W2

λ 7→Wλ

is a bijection. In particular, |W2| = |Λ \ ΛU1 | = k − s;

2. G(Λ) = H(W2).

Proof. To prove claim (1), we first prove that f is well-defined. We claim that Wλ ∈
W2. Indeed, if Wλ ∈ W1, then

G(ΛU1
) =

⋂
U∈U1
W∈W1

(GU ∩GW )

=

 ⋂
U∈U1∪{Uλ}

GU

 ∩
 ⋂
W∈W1

GW


= G(ΛU1

∪{λ}),

which contradicts the independence of Λ. This fact implies that f is well-defined. Moreover,

it is onto by definition. Finally, we prove that f is one-to-one. Assume that there exist two

distinct edges λ, µ ∈ Λ \ ΛU1 such that Wλ = Wµ. Then, by using (7.8), we have

G(ΛU1
∪{λ,µ}) =

⋂
U∈U1
W∈W1

(GU ∩GW ) ∩ (GUλ ∩GWλ
) ∩
(
GUµ ∩GWµ

)

=

 ⋂
U∈U1∪{Uλ}∪{Uµ}

GU

 ∩
 ⋂
W∈W1∪{Wλ}

GW


=

 ⋂
U∈U1∪{Uλ}

GU

 ∩
 ⋂
W∈W1∪{Wλ}

GW


= G(ΛU1

∪{λ}),

which is a contradiction. Hence f is a bijection, in particular |W2| = |Λ \ ΛU1 | = k − s.
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For part (2), by using the previous result and (7.8), we have

G(Λ) = G(ΛU1
) ∩G(Λ\ΛU1

) = H ∩G(Λ\ΛU1
)

= H ∩

 ⋂
λ∈Λ\ΛU1

GUλ ∩GWλ


=

H ∩ ⋂
λ∈Λ\ΛU1

GUλ

 ∩
H ∩ ⋂

λ∈Λ\ΛU1

GWλ


= H ∩

 ⋂
W∈W2

GW

 = H(W2).

Now consider the action of H on Ωn−m, namely we focus on the vertices on the right-

hand side of the graph. As a consequence of the previous lemma, we obtain the following

corollary.

Corollary 7.12. The set W2 is independent for the action of H on Ωn−m.

Proof. Assume not, then there would exist λ ∈ Λ \ ΛU1 such that

H(W2) =
⋂

W∈W2

HW =
⋂

W∈W2
W 6=Wλ

HW .

If Uλ ∈ U1, then there exists µ ∈ ΛU1 such that Uλ = Uµ. If Uλ 6∈ U1, then
⋂
U∈U

GU =⋂
U∈U ,U 6=Uλ

GU .

In either case, this, along with (7.8) and part (2) of the previous lemma, implies that

G(Λ\{λ}) =

(⋂
U∈U

GU

)
∩

 ⋂
W∈W
W 6=Wλ

GW



=

 ⋂
U∈U1

GU ∩
⋂

W∈W1

GW

 ∩
 ⋂
W∈W2
W 6=Wλ

GW


= H ∩

⋂
W∈W2
W 6=Wλ

GW

=
⋂

W∈W2
W 6=Wλ

HW = H(W2) = G(Λ).

This contradicts the independence of Λ.

The previous lemma implies that

k − s ≤ H(H,Ωn−m).
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Now, by Lemma 2.2, we have H(H,Ωn−m) ≤ H(G,Ωn−m). Putting these things together

yields that

k ≤ H(G,Ωm) + H(G,Ωn−m),

and Lemma 7.8 is proved in the general case. We are ready to prove Lemma 7.7.

Proof of Lemma 7.7. Suppose, first that G ≤ PΓLn(q). Recall that the actions of G

on Ωm and Ωn−m are permutation isomorphic. Thus, Lemma 7.8 and (7.1) imply that

H(G,Ω(i)) < 4mn+ 2 log logp q.

(Here we are tacitly assuming that m < n/2 because, for instance, (7.1) does use the

hypothesis that m < n/2. However, this is not a restriction because the duality conjugates

the m-space stabilisers in (n−m)-space stabilisers.)

Now let G � PΓLn(q), that is G contains the inverse transpose automorphism. Let

H = G∩PΓLn(q). Then H is a normal subgroup of G of index 2. Then, by Lemma 2.8 we

have

H(G,Ω(i)) ≤ H(H,Ω(i)) + 1,

and therefore

H(G,Ω(i)) < 4mn+ 2 log logp q + 1. (7.9)

In view of (7.5), to prove the result it is sufficient to check that

4mn+ 2 log logp q + 1 <
17

2
log(qm(n−m)).

The result follows directly.

7.8. The other classical groups

In this subsection we suppose that G0 = Cl(V ) is one of the other classical groups

defined on a vector space V of dimension n over Fq. In this case, m is an integer such

that 0 < m < n and Ω is a G-orbit on the set of totally isotropic/ totally singular/ non-

degenerate subspaces of dimension m in V . As usual we set t = |Ω|.
The result that we need is the following.

Lemma 7.13. Let G be an almost simple group with socle Cln(q), and consider G as a

permutation group in a subspace action. Then

H(G) <
17

2
log t.

In [BG16, Table 4.1.2] we find a list of the degrees of all such actions and, using the

notation just established, one can easily verify the following fact.

Lemma 7.14. Either G0
∼= PΩ+

n (q) and m = n
2 or t > q

1
2
m(n−m).

Proof. The proof of this lemma is rather tedious: it is simply a case-by-case analysis

of the cases described in Table 4.1.2 of [BG16].

We make a couple of brief remarks about the proof and leave the details to the reader.

Observe, first, that for a number of the cases (III, X with q odd, XI with q odd, XIII, XV,

XVI), t is divisible by q
1
2
m(n−m) and so the result follows immediately.
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For the rest, one must demonstrate the bound directly. To illustrate we consider Case

VI which is where the exception occurs; in this case G0
∼= PΩ+

n (q) and m ≤ n
2 . Then we

have

t =
(qn/2 − 1)(q(n−2m)/2 + 1)

∏(n−2m)/2+(m−1)
i=(n−2m)/2+1 (q2i − 1)∏m

i=1(qi − 1)

=
(qn/2 − 1)(q(n−2m)/2 + 1)

qm − 1
·
m−1∏
i=1

(
qn−2m+2i − 1

qi − 1

)

>
(qn/2 − 1)(q(n−2m)/2 + 1)

qm − 1
·
m−1∏
i=1

qn−2m+i

> qn/2−m+n/2−m · q(n−2m)(m−1)+ 1
2

(m−1)m

= qnm−
3
2
m2−m.

Now it is easy to check that the bound is satisfied if and only if m < n
2 , as required.

We are ready to prove Lemma 7.13.

Proof of Lemma 7.13. Observe first that G ≤ PΓLn(q) and that the action we are

studying is an action on Γ, the set of m-spaces. Then Lemma 2.2 implies that

H(G,Ω) ≤ H(PΓLn(q),Γ).

In Lemma 7.2 we give an upper bound for H(PΓLn(q),Γ):

H(G) < 2 min(m,n−m)n+ log logp q.

Thus, in light of Lemma 7.14, provided we do not have (G0,m) = (PΩ+
n (q), n2 ) it is enough

to prove that

2 min(m,n−m)n+ log logp q <
17

2
log(q

1
2
m(n−m)).

This is easily verified. Assume that (G0,m) = (PΩ+
n (q), n2 ). In this case t ≥ q

n2

8
−n

4 .

Lemma 6.13 implies that we can assume that n ≥ 10 and thus

|G| ≤ 2fqn(n−2)/4(qn/2 − 1)

n/2−1∏
i=1

(q2i − 1) < 2fq
n2

2
−n

2 ≤ q
n2

2
−n

2
+1.

Now observe that

H(G) ≤ log |G| < log(q
n2

2
−n

2
+1) < 5 log(q

n2

8
−n

4 ) < 5 log t,

and we are done.

Proposition 7.1 is a consequence of Lemmas 7.2, 7.7 and 7.13.

Proof of Theorem 1.3. Observe that 17/2 + 3/(2x) < 9, as long as x > 3 (so |∆| > 8).

With this remark, the proof follows from Theorem 1.6, and Propositions 5.1 and 7.1, except

when G is a primitive group of PA type with G ≤ H oSym(`) and the domain of G is Ω = ∆`

and |∆| ≤ 8. If H = Alt(∆) or H = Sym(∆), then G is a large-base group and hence we

may omit these cases for the rest of the proof. As H is a primitive group of degree 5, 6, 7

or 8 and as H is neither Alt(∆) nor Sym(∆), we deduce that one of the following holds
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• |∆| = 6 and H = PSL2(5) or H = PGL2(5) in its natural action on the projective

line,

• |∆| = 7 and H = PSL3(2) in its natural action on the projective plane,

• |∆| = 8 and H = PSL2(7) or H = PGL2(7) in its natural action on the projective

line.

In each of these groups, we have H(H) ≤ 3 and hence from (5.1) we have H(G) ≤ 3`+3`/2 =

9`/2. As 9`/2 < 9 log(t), the proof is completed.
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