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Abstract
Cellular Automata have successfully been successfully applied to the modeling and simulation of pedestrian and crowd

dynamics. In particular, the investigated scenarios have often been focused on the evaluation of medium–high population

density situations, in which the motivation of pedestrians to reach a certain location overcomes their tendency to naturally

respect proxemic distances. The global COVID-19 outbreak, though, has shown that sometimes it is crucial to contemplate

how proxemic tendencies are emphasized and amplified by the affective state of the individuals involved in the scenario,

representing an important factor to take into consideration when investigating the behaviour of a crowd. In this paper we

present a research effort aimed at integrating results of quantitative analyses regarding the effects of affective states on the

perception of distances maintained by different types of pedestrians with the modeling of pedestrian movement choices in a

cellular automata framework.
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1 Introduction

The perception and evaluation of interpersonal distances,

especially mutual distances between different people, is a

relevant topic for many disciplines and decision making

activities, ranging from psychology, to crowd management,

to architectural design. In general, designing a model

regarding this particular aspect of interpersonal relations is

relevant and useful whenever it is needed to study and

understand the way pedestrians move throughout an envi-

ronment in situations where their comfort zones may be

threatened.

The concept of proxemic distances introduced by the

anthropologist and cross-cultural researcher Hall (1966)

describes how people perceive space differently when

interacting with others, with their behaviour heavily

influenced by internal (e.g., age, gender, emotions) and

external factors (e.g., the environment, culture, existing or

absent relationships with the other person or people

around).

And, among the afore-mentioned external factors, the

global pandemic of COVID-19 virus certainly contributed

to impact and change even more how people approach
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Università degli Studi di Milano-Bicocca, Viale Sarca 336,

20126 Milan, Italy

2 RCAST - Research Center for Advanced Science and

Technology, The University of Tokyo, Komaba Campus, 4-6-

1 Meguro-ku, Tokyo 153-8904, Japan

123

Natural Computing
https://doi.org/10.1007/s11047-023-09957-y(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-023-09957-y&amp;domain=pdf
https://doi.org/10.1007/s11047-023-09957-y


others, modifying the way distances are perceived not only

according to the different regulations that every country

implemented to deal with the outbreak, but also according

to the fear of being infected (interacting in a non trivial

way with regulations limiting the number of people in

indoor environments). The topic of proxemic distances has

become even more relevant for scientific investigation,

although typically pedestrian models are adopted and tai-

lored to situations in which medium-high densities are

quickly reached and easily accepted by pedestrians, since

their motivations and goals (e.g., the need to employ a

public transport facility in order to reach their workplace)

have a much heavier weight against what would be their

natural tendencies in maintaining their comfort.

Pedestrian dynamics, just as it happens for the study of

interpersonal distances, have always been of interest for

multiple disciplines, and they have been investigated from

different points of view throughout time. The Cellular

Automata(CA) modelling approach is one of these views,

where the spreading of emotions and the evaluation of

proxemics have also been investigated. Works concerning

the introduction of emotions and affects (Wang et al. 2022;

Li et al. 2017; Saifi et al. 2016; Bandini and Manzoni

2006) and proxemic distances (Was et al. 2006, 2012;

Bandini et al. 2020) in Cellular Automata models are

already present in the literature, but the majority of the

presented works tend to mainly involve established emo-

tional models coming from psychology (Ekman 1992;

Ortony et al. 1990; De Raad 2000), already presented

proxemic theories (Hall 1966) and well-grounded Cellular

Automata concepts (Burstedde et al. 2001), with changes

in the pedestrians’ behaviour that are only dictated by ad-

hoc formulas designed by the different researchers

approaching the problem, generally with the aim of fitting

fundamental diagrams from design manuals or experi-

mental observations (Schadschneider et al. 2009) or other

data about aggregated pedestrian dynamics typically at

medium-high levels of density. What is missing, in these

cases, is the utilization of information about actual mea-

surements regarding distances and their perception by the

individual, acquired through experiments carried out more

recently than the pioneering work of Hall and, more

importantly, with real people involved in different tasks

and situations. Moreover, considerations that can be

obtained from these times of global pandemic are also

important to be brought on board, since such conditions

influencing pedestrian behaviour and dynamics would have

been impossible to even conceive only a few years ago but

have now a practical relevance.

This is why, in the work here presented, we try focusing

our efforts on investigating the influence of affective states,

intended as states containing a measure indicating how a

person feels when faced with a particular situation,

influenced both by internal factors related to the person

himself/herself and external ones tied to the environment in

which the person is. In particular, this preliminary inves-

tigation involves pedestrian proxemic tendencies, basing

the modeling of these states on data collected from an

experiment performed with human subjects rather than

relying only on theories presented in the literature.

Our aim is to investigate pedestrian dynamics with a

focus on the proxemic behaviours of people influenced by

different affective states, investigation carried on through

the modeling of a 1-dimensional and a 2-dimensional

Cellular Automata. In order to do this, data acquired from

an online experiment involving the perception of proxemic

distances in the COVID-19 era (Gasparini et al. 2021) are

analysed to gain knowledge about how pedestrians with

different affective characteristics handle distances from

others. Moreover, the work here presented concerns itself

with low density simulations, to effectively see how

pedestrians modify their behaviour given different affec-

tive factors without having crowding mechanics overpower

their natural proxemic tendencies as they move inside the

environment.

The following paper, which is an extension of a work

previously presented at the ACRI 2022 conference (Ban-

dini et al. 2022), is structured as such: Sect. 2 gives a brief

overview regarding the matter of pedestrian simulation as

addressed in Cellular Automata research; Sect. 3 shows

and explains the online experiment from which the data

used in the modeling came from; in Sects. 4 and 5 the

formal models of the 1D and 2D CA respectively are

presented, together with some preliminary results obtained

through simulations carried on with the NetLogo simula-

tion tool; lastly, Sect. 6 presents the conclusions drawn

from the work.

2 Background

Pedestrian dynamics have always been investigated from

different points of view and in different research areas, and

the Cellular Automata approach is surely widely used,

tackling different aspects of it.

The flow of pedestrians (Nowak and Schadschneider

2012), for example, has always been one of the main

focuses of this kind of research, with many different works

investigating crowd dynamics (Sirakoulis 2014; Lubas

et al. 2016; Feliciani and Nishinari 2016 with Cellular

Automata to study how pedestrians move, especially in

order to observe and study the high variety of collective

phenomena that usually manifest when considering

crowds (Schadschneider et al. 2002).

Multiple aspect of crowd dynamics are usually consid-

ered when studying pedestrians. An example can regard the
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trajectories (Lovreglio et al. 2015) pedestrians adopt when

moving around with a certain destination in mind, or how

groups organize themselves when moving (Crociani et al.

2018), since it very common for groups of pedestrians to be

present inside a much larger crowd and the way these

smaller groups behave and interact with the others as they

move influence the behaviour of the entire crowd. There

has also been interest in investigating particular crowd

dynamics, like the flow on bidirectional pedestrian walk-

ways (Blue and Adler 2001; Weifeng et al. 2003) or the

process of navigation during evacuation events (Lu et al.

2017; Guo and Huang 2008), in which the effects of con-

flicts for space between pedestrians have to be taken into

high consideration for the effects that friction and clogging

have on the evacuation itself (Kirchner et al. 2003).

When investigating pedestrian behaviour, also, individ-

ual differences are an important aspect to be taken into

consideration, since a crowd is composed of potentially a

lot of different individuals that are going to move and act

very differently to the same, presented circumstances. For

example, there is the possibility of people moving at dif-

ferent speeds (Bandini et al. 2017), having particular

interactions with vehicles (Li et al. 2012) and adopting

different proxemic behaviours when dealing with personal

space (Was et al. 2006, 2012; Ezaki et al. 2012; Bandini

et al. 2020).

Emotions and affects, nowadays, are also starting to get

more and more attention and consideration due to the

important part they play in people’s behaviour and actions,

leading to being introduced into these kinds of models.

Some works adopting a Cellular Automata approach to the

modeling of pedestrian dynamics show preliminary

attempts of integration of emotions and their implica-

tions (Wang et al. 2022; Li et al. 2017; Saifi et al. 2016),

mainly following the same theoretical approach. In fact, if

there are many example about how works on pedestrians

flow often find their base on fluid dynamics or on well-

grounded Cellular Automata concepts (Burstedde et al.

2001), with changes in the pedestrians’ behaviour dictated

by ad-hoc formulas, these works implementing emotions

and affects in Cellular Automata stem from notorious

emotion models and theories well illustrated in psychology

literature (Ekman 1992; Ortony et al. 1990; De Raad

2000).

3 Affective state design: data
from experiments

In order to parametrize affective states inside the CA

models according to real data, we first started working on

data coming from a previously executed online experiment.

The experiment was carried out with the aim of studying

how distances perceived as comfortable varied in COVID-

19 times, investigating both different types of people and

different circumstances in which proxemic distances could

be applied.

The experiment was made public through an Altervista

platform in the period between 27/12/2020 and 18/01/

2021,1 and it involved 80 Italian subjects whose only

requirement for the study was not to have previously

contracted COVID-19, so that we could analyse the

answers of participants that feared the virus without having

contracted it. The population age varied between 16 and 92

years old and, regarding demographics, 44 of them were

women and 25 of them were elderly (i.e., aged 65 and

older).

The designed procedure was composed of two main

phases, where the first one focused on questionnaires aimed

at gathering information about the participant while the

second one proposed the active part of the experimentation,

in which the subjects were involved in different instances

of a figure-stop activity inspired by previous studies (Dosey

and Meisels 1969).

In the figure-stop activities, subjects were presented an

avatar, chosen in respect of their indicated gender and age

group, positioned on the left side of an environment. They

were then asked to move their character along a line, which

presented a metric measurement just below it, and towards

another figure, of the opposite gender and age group,

positioned at the other side of the environment. Their

objective was to move closer to the other figure and stop

the second they sensed that shortening the distance even

more could make them uncomfortable, keeping the mea-

sure under the line as reference (Fig. 1).

This activity was proposed for a total of eight time

during the experiment, with changes regarding the envi-

ronment the participants had to move their avatar into (an

indoor one, a restaurant, and an outdoor one, a park) and

the presence or absence of masks on both the moving

figure and the still one, which led to the creation of four

different configurations where: (1) the subject’s avatar and

the other avatar both had a mask on, (2) only the subject’s

avatar had a mask on, (3) only the other avatar had a mask

on and (4) no avatar had a mask on.

This experiments allowed us to gather the following

interesting findings, directing our attention on which fac-

tors to take into consideration for the modeling:

• Women appear to choose larger distances in compar-

ison to men;

• Older people appear to choose larger distances in

comparison to younger people;

1 It is relevant to mention the precise period since the perception of

COVID-related risk changed significantly according to trend in the

number of infections.
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• The presence or absence of masks and fear of contagion

appear to highly influence the selected distance;

• Age appear directly correlated to the level of fear;

• Sociality levels appear inversely correlated to the level

of fear.

Given the information gathered from the trials, then, we

decided to include inside the CA modeling the parameters

that proved to be influencing the proxemic behaviour of the

considered population. Following the findings mentioned

above, then, the factors inluded in the modeling effort were

the following:

• Age. Referred to the age of the participants that were

divided into four groups: young, young-adult, adult and

elderly;

• Gender. Referred to the gender of the participants, the

questionnaire contemplated only the male and female

options;

• Mask condition. Referred to the usage or non-usage of

masks during the activities. In the modeling, both the

mask condition of the person and the mask condition of

the other person in range are involved;

• Internal and External Sociality. Referred to the sociality

levels of the participants inside and outside their homes.

The internal sociality indicates with how many people

the person lives, while the external sociality indicates

how many people the person usually meets when

outside;

• Fear of Contagion. Referred to the intensity of fear of

contagion the participants have, depending on how

much the virus and the possibility of becoming infected

scares them.

3.1 Mood parameter

As some parameters extracted from the experiment were

easier to directly insert inside the CA modeling, we decide

to pay particular attention to how to insert the data

regarding sociality and fear of contagion. Specifically, we

decided to combine the Internal Sociality (IS), External

Sociality (ES) and Fear of Contagion (CF) levels in one

single measure, defined as the person’s Mood.

In order to proceed with this integration, the following

procedure was followed.

Firstly, a mood measure created as a linear combination

of the three measures IS, ES and CF was proposed and

defined as:

moodMeasure ¼ a � ISþ b � ESþ c � CF ð1Þ

To obtain the proper coefficients of this combination, then,

a Particle Swarm Optimization (PSO) technique (Kennedy

and Eberhart 1995) was applied on the data coming from

the online experiment.

The chosen fitness function was the Pearson Correlation

Coefficient (PCC) between the distances chosen by the

subjects and the moodMeasure defined by Eq. (1), previ-

ously transformed using a polynomial monotonic function

to take into account the eventual non-linear mapping

between distances and the described factor composed of

fear and the two sociality variables. A threshold was then

applied to binarize the moodMeasure in order to obtain the

two levels for the person’s mood, neutral and scared,

whose calculation brought the former to be associated to

shorter adopted distances and the latter to longer adopted

distances.

Fig. 1 One of the figure-stop

activities performed by the

participants
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This process was executed two different times, in order

to address males and females separately because of the

experimental findings. Given how these two populations

expressed a relevant difference in how to approach prox-

emic distances, with females often choosing larger dis-

tances in comparison to man, such difference had to be

taken into consideration when investigating the correlation

of the aforementioned parameters with the selected

distances.

3.2 Hall’s space and distance parameters

After integrating the sociality and fear parameters, then, we

could shift our focus on another issue regarding how to

treat all of the different distances the participants recorded

while performing the figure-stop activities of the experi-

ments. Given the variety in the distances the subjects

chose, in order to have their recorded characteristics linked

to the adopted proxemic distance, it was decided to go and

map the acquired measures with their respective Hall’s

space (Hall 1966). This choice was taken in order not to

have a certain combination of parameters correspond to a

specific distance in meters.

In this case, the Hall’s Space for a certain person is

determined by looking at all the personal parameters we

cited before, such as gender, age, mask condition and

mood, together with the mask condition of the other person

in range. Sociality levels and fear of contagion are not

explicitly included in the process because they are already

present in this selection process since, as it was explained

in the previous subsection, the mood maintains information

about all three parameters that were used to calculate it.

Every combination of the four aforementioned param-

eters leads to a different set of weights influencing the

probability of each Hall’s space being picked. The results

analysis of the online experiment, in fact, led to discover

how people seemed to choose every space with different

tendencies as those parameters were kept into considera-

tion, and thus such information was to be taken into

account when selecting a value for the selected Hall’s

space of the person. Once these weights have been iden-

tified, then, one of the Hall’s spaces is selected by weighted

choice.

As the Hall’s space is picked, then, another information

is obtained. Because every Hall’s space has a certain lower

and upper bound, in fact, choosing a certain space also

binds to a certain set of possible distances to be adopted. In

the particular case we describe, the person’s distance is

chosen at random between the upper and lower bound of

the selected Hall’s space.

4 Focusing on linear distance: 1D CA model

We are firstly going to describe the simplest CA that can be

used to model the experimental scenario described in sec-

tion 3 in the most natural way possible. In order to keep the

model as simple as possible, the affectivity has been

embedded into the local rules. As a matter of fact, intro-

ducing it inside the CA state set would have produced a too

complex design with respect to the considered scenario.

This approach leads us to have a family of different

Cellular Automata since the local rule depends on the value

m, which is the minimum distance the moving person can

have from the non-moving person in the environment. This

happens because the m value is derived from the affective

states of the two people involved in the situation described

by the CA. In particular, the moving person’s information

derived from the experiment and the other person’s mask

condition are used to select a Hall’s space with a certain

probability, which gives the upper and lower bound for the

m value to be randomly selected between them. The scale

of discretization is of course important: traditionally, CA

based pedestrian models employ 40 cm sided cells (Bur-

stedde et al. 2001) and we also considered this as a base-

line value for the model.

The involved one-dimensional CA are then triples

(S, r, f) where the set of states S ¼ f0; 1; 2g, the radius

r 2 N and the local rule f : S2rþ1 ! S are defined as

follows.

As far as any cell of the one-dimensional lattice is

concerned, states 0; 1; 2 correspond to an empty cell, a cell

containing a moving person and a cell containing a resting

person, respectively.

The radius r of the CA assumes the value of the ceiling

of m, the minimum distance we described before, and this

could lead us to two different CA classes.

When m is an integer, the CA radius is r ¼ m and the

local rule f is defined for any ða�r; . . .; a0; . . .; arÞ 2 S2rþ1

as follows:

• if a0 ¼ 2,

f ða�r; . . .; a0; . . .; arÞ ¼ a0;

• if a0 ¼ 1,

f ða�r; :::;arÞ ¼

0 if a1 ¼ :::¼ar¼0

0 if 90\i\r s.t. ðai¼1_ai¼2Þ^a�1 ¼0

a0 if ðar¼1_ar¼2Þ^a1 ¼ :::¼ar�1 ¼0

a0 if 90\i\r s.t. ðai¼1_ai¼2Þ^ða�1 ¼1_a�1 ¼2Þ

8
>>><

>>>:

;

• if a0 ¼ 0,
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f ða�r; :::; arÞ

¼

a0 if a�1 ¼ a1 ¼ 0

a0 if a1 ¼ 1 ^ a2 ¼ . . . ¼ ar ¼ 0

a0 if a�1 ¼ 1 ^ if 9 0\i\r s.t. ðai ¼ 1 _ ai ¼ 2Þ
1 if a�1 ¼ 1 ^ a1 ¼ ::: ¼ ar�1 ¼ 0

1 if 9 1\i\r s.t. ðai ¼ 1 _ ai ¼ 2Þ ^ a1 ¼ 1

8
>>>>>><

>>>>>>:

:

When m is not an integer, on the other hand, the CA radius

is r ¼ dme. The local rule f is defined for any

ða�r; . . .; a0; . . .; arÞ 2 S2rþ1 as specified before, except for

the following case:

• if a0 ¼ 1,

f ða�r; . . .; a0; . . .; arÞ
¼ 0 if ðar ¼ 1 _ ar ¼ 2Þ ^ a1 ¼ . . . ¼ ar�1 ¼ 0:

As usual, the lattice is a one-dimensional array of cells

where every cell is associated with a certain state from

S. Moreover, the state of each cell is updated at every

discreet time step by the local rule f on the basis of its own

state and the ones of both its r-neighbouring cells on the

left and on the right.

The second CA class we described causes an oscillatory

movement in the CA dynamics, since the moving person

finds himself/herself switching from a position where it is

still far enough from the other to a position where it is

already too close to the other, which is absent when the CA

with r ¼ m are considered.

4.1 Implementation and results

After the formalization of the cellular automaton was

concluded, we then proceeded to try and simulate the

automaton transition function through the NetLogo plat-

form (Wilensky 1999), designing the interface that is

reported by Fig. 2. NetLogo represents a reasonable

choice, since it is sufficiently expressive to provide an

effective rapid prototype of a simulator based on the

introduced modeling approach, and achieve results to be

analysed in reasonable situations (in terms of size and

complexity) (Bandini et al. 2009).

The simulation allows the user to choose different

options for the setting, such as the environment of the

experiment, the gender and age of the main moving

pedestrian and the mask configuration for both the moving

and the resting person, basically following the specification

highlighted in the online experiment to obtain the same

condition in the in-vitro simulation involving the

automaton.

Since every parameter is easily set and visible

throughout the entire execution of the simulation, the

different colours are used to differentiate the two types of

pedestrians presented in the simulation: the one highlighted

in red on the left is the moving person, while the one

coloured in blue is the resting person. Just like it happened

in the online experiment, the moving person is always

setup to be on the left of the resting person, and the only

modification regards the place in which it gets set up: the

positions of both pedestrians are, in fact, randomly selected

before the simulation can be started, with each of them

being in one specific half of the environment.

Given how the simulation is built in order to feed on the

data and the information gathered from the experiment,

reproducing the same situations proposed during the online

trials performed by human participants, the CA behaviour

mirrors the one already observed. The conditions on the

moving and on the resting pedestrians are the same that

were implemented in the experiment, so that we could see

if the transition function of the CA worked to correctly

show what we were expecting after analysing those results.

The only notable difference from the online experiment

lies in how the moving person behaves in the case r ¼ dme,

regarding the oscillatory behaviour described in the for-

malization. This behaviour was not shown in the experi-

ment, given how space was treated differently, but it is well

described by the transition function defined for the CA.

The 1D CA model presented here represented both a

first step towards the more general 2D case that will be

described in the following, but it can also represent a

starting point for the estimation of the space required for

queues in situations (such as pandemic outbreaks) in which

pedestrians are not just ordered to stay at a distance but

they might also have an endogenous push to increase the

distance from the others.

5 Generalizing on planar environment: 2D
CA model

The two-dimensional CA we are going to introduce is

based on a rectangular lattice L ¼ f0; . . .;M � 1g �
f0; . . .;N � 1g representing the discretization of the real

space, where M and N are the horizontal and vertical sizes

respectively. Periodic boundary conditions are applied to

L so that it can be viewed as a two-dimensional discrete

torus.

For any cell x 2 L and any h, the h-radius Moore

neighborhood of x is defined as:

NhðxÞ ¼ fy 2 L : jjx� yjj1 � hg
where jj � jj1 is the usual infinity (or maximum) norm.

The set of states of the CA is

S ¼ DIR� AS� G� AG�M [ føg, where ø is the state

assigned to empty cells (i.e., in which there is no person)
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while a tuple from the cartesian product is the state

assigned to cells containing a person. The sets involved in

the cartesian product are defined as follows:

• DIR ¼ f0; 1; . . .; 8g is the set of the possible moving

directions for a person. Namely, numbers from DIR

refer to the following direction vectors: v0 ¼ ð0; 0Þ;
v1 ¼ ð1; 0Þ; v2 ¼ ð1; 1Þ; v3 ¼ ð0; 1Þ; v4 ¼ ð�1; 1Þ; v5 ¼
ð�1; 0Þ; v6 ¼ ð�1;�1Þ; v7 ¼ ð0;�1Þ; v8 ¼ ð1;�1Þ. In

this way, 0 concerns a resting person, while every other

value j 2 DIR with j 6¼ 0 refers to a person at a certain

position x 2 L with a moving direction vj;

• G ¼ fmale; femaleg is the set of the genders of a

person. Given the data that were collected, we only

involved the male and female options without including

more genders;

• AG ¼ fy; ya; a; eg is the set of age groups a person

could belong to (y = young, ya = young-adult, a = adult,

e = elderly);

• M ¼ fon; offg is the set of the possible settings for a

person as far as a mask is concerned, i.e., the values

specifying if the person wears a mask or not.

• IS ¼ f0; 1; 2; 3g is the set identifying the levels of

internal sociality of a person, related to the interactions

initiated when inside the house;

• ES ¼ f0; 1; 2; 3g is the set identifying the levels of

external sociality of a person, related to the interactions

initiated when outside of the house;

• FC ¼ f0; 1; . . .; 8g is the set of fear of contagion levels

a person could have, regarding the person’s fear of

COVID-19 and of the contraction of the disease;

• MD ¼ fneutral; scaredg is the set of the so-called

moods of a person, instantiated as previously described;

We point out that, unlike the case of the 1D CA model, the

affectivity details are now included inside the set of states

of the CA, since we want to model more complex situa-

tions contemplating people with different characteristics

moving together inside a two-dimensional environment.

With an abuse of notation, for any state s 2 S and any

i 2 f1; . . .; 8g, si will denote the i-th component of s

whenever s 6¼ ø.

This way, the CA configuration is a map c : L ! S

associating every cell x 2 L with a state cðxÞ 2 S. There-

after, regarding the dynamical evolution of the CA, for

every t 2 N, any x 2 L and every i 2 f1; . . .; 5g, ct, ctðxÞ
and ctiðxÞ will denote the CA configuration at time t, the

state of the cell x inside ct, and the ðctðxÞÞi, i.e., the i-th

component of ctðxÞ, respectively. The radius of the CA, on

the other hand, is the value r 2 N defining the largest set

NrðxÞ of positions that a person located in any cell x 2 L is

able to detect and observe around himself/herself.

Regarding its evolution, the considered CA is non

deterministic. Because of this, in order to describe its

dynamical evolution fctgt2N starting from any initial

configuration c0 2 SL, we will illustrate how the configu-

ration ct at time t is transformed by the CA into the con-

figuration ctþ1 at time t þ 1.

Before proceeding we point out that, in our model, one

time step corresponds to 0.33 s which, in addition to also

considering 40 cm sided cells, leads to a walking speed of

about 1.2 metres per second, which is in line with typically

Fig. 2 The user interface of the NetLogo model used for the 1D CA

simulation. The parameters introduced in Sect. 3 that proved to be

influencing the proxemic behaviour can be controlled by the NetLogo

interface. In particular, the parameters regulating the environment,

pedestrian’s sex, pedestrian’s age and the masks for both the moving

and the non-moving person are the ones influencing the setup of the

simulation
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observed values (Gorrini et al. 2016). Moreover, each time

step consists of three different stages.

During the first one, for any time t 2 N the configura-

tion ct is transformed into the intermediate configuration dt

in such a way that 8x 2 L, 8i 6¼ 1, dtiðxÞ ¼ ctiðxÞ. In other

words, only the direction of every cell x containing a

person may change during this stage.

For any cell x 2 L with ctðxÞ 6¼ ø, the value dt1ðxÞis
computed as follows. Firstly, the cells

y 2 NrðxÞ s.t. ctðyÞ 6¼ ø, i.e., containing a moving or rest-

ing person, are identified. Then, according to the values

ctiðyÞ with i 2 f2; . . .; 8g (i.e., the components of the state

of the neighboring people previously detected), the mini-

mum possible distances between the person at cell x and

each of them is determined through an appropriate func-

tion. Such distances are computed taking into account the

affective information of the person in cell x and the mask

condition for the person in cell y. These information are

used to designate a probabilistic distribution weighting the

selection of a certain Hall’s space, then proceeding to

randomly select an m distance between the upper and lower

bound of the drafted space as we previously described for

the 1D CA.

This process results in a subset DðxÞ � f1; . . .; 8g of

possible directions the person at x could adopt for their next

movement. Namely, j 2 DðxÞ if and only if the person,

moving alongside the direction vj, is not going to get nearer

to the other people in cells y 2 NrðxÞ that are already at a

smaller distance than or on the edge of the distance m

computed between them and the person at x. Once D(x) has

been computed, we have two different cases; in the first

one, when DðxÞ ¼ ;, it holds that dt1ðxÞ ¼ 0, corresponding

to the person at cell x not move; in the second one, when

DðxÞ 6¼ ;, dt1ðxÞ gets randomly chosen from D(x), corre-

sponding to the person standing at x moving in the selected

direction. In this way, dtðxÞ has been defined.

Then, the second stage manages possible conflicts. In

fact, it may happen that, referring to the configuration dt,

for a certain empty cell x there exist at least two non-empty

cells y1 and y2 belonging to its neighborhood N1ðxÞ where

there are non-null dt1 y1ð Þ ¼ k1 and dt1 y2ð Þ ¼ k2 with

k1; k2 2 DIR such that x ¼ y1 þ vk1 ¼ y2 þ vk2 . In other

words, there are two people in two distinct cells whose

directions dt1 y1ð Þ and dt1 y2ð Þ would move them into the

same empty cell x. The configuration dt is then transformed

into another intermediate configuration et. When a conflict

is found, every person involved in it, with the exception of

a randomly chosen one, has their direction set to 0,

blocking their movement.

Finally, the third stage allows getting ctþ1 from et.

Namely, this step describes the movement of each moving

person from a cell x towards the adjacent one identified by

the moving direction of the person in et1ðxÞ. This behaviour

is formally expressed as:

– if etðxÞ ¼ ø,

ctþ1ðxÞ ¼
etðyÞ if 9 y 2 N1ðxÞ s.t. x ¼ yþ vk with k ¼ et1ðyÞ
etðxÞ otherwise

�

;

– if etðxÞ 6¼ ø,

ctþ1ðxÞ ¼
ø if et1ðxÞ 6¼ 0

etðxÞ otherwise

�

:

5.1 Implementation

Just as it was done for the 1D CA model, the implemen-

tation for the 2D CA model was carried out employing

NetLogo.

The model allows the user to set the preferred envi-

ronment to observe during the simulation (indoor or out-

door, as presented in the online experiment) and to set the

initial density for both the moving people and the non-

moving ones. The maximum density that can be set for

both type of people is 10%, so that the total population

density in the environment will never exceed 20%. This is

aligned with our intention of utilizing low densities for

these trials.

The moving pedestrians inside the simulation have been

modeled to roam inside the environment by random walk,

using a built-in NetLogo function to randomly select one of

their allowed directions to plan their next step. Also, given

that the data acquired through the experiment pointed how

the distances selected by the participants were not only

influenced by their personal parameters but also by the

mask condition of the other person they had to get close to,

every pedestrian computes two different preferred dis-

tances: one to be maintained from masked people, and the

other to be maintained from non-masked people.

Monitors allow the user to have under control the

quantities of the pedestrians on screen together with the

indication of the current automaton range considered and

of how many times a moving person found himself/herself

unable to move around due to it being surrounded too

closely by others. For an easier visualization, the moving

people are represented by circles and the non-moving ones

by squares. With the same purpose, masked pedestrians are

identified by the color white while the non-masked

pedestrians are shown with the color red, as it is shown in

Fig. 3.

Regarding possible conflicts and collisions, a clarifica-

tion needs to be made: in our specific case, as this is only a

preliminary simulation of the model, it is not contemplated

that two moving pedestrians could find themselves walking
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to and standing on the same patch. This is given by the fact

that, as it was mentioned before, we intended to work with

low crowd density inside the environment and, moreover,

because the behavioural rules we implemented actively

keep the pedestrians far from each other. They move

around, but always keeping into consideration that they

have to avoid others in order to remain comfortable. The

combination of these two factors lead the pedestrians to

remain at a distance from others and never actually occu-

pying the same space out of necessity, for example. A

generalization of the model here proposed, without the

clear limitations introduced regarding density and pedes-

trians’ behaviour, should then be able to properly address

conflicts for space and avoid collisions. There are already

some approaches, in the literature, that could be adopted in

order to deal with this issue, like the one presented in

Kirchner et al. (2003) regarding friction.

5.2 Preliminary results

Tables 1 and 2 show some preliminary results obtained by

making the 2D simulation run for 500 timesteps at a time,

each time with different pedestrian densities as initial

configurations, contemplating both an outdoor and an

indoor environment. The main objective of the performed

simulation was to observe the crowd movements around a

limitless environment, with no goal or destination to

pursue.

A note about the pedestrians and bystanders number has

to be given: it was previously shown how the densities of

moving people and non-moving people inside the simula-

tion can be set separately, in order to set them differently

for different trials, but in this case we kept them equal so

that, summed up, they could reach the densities that are

reported into the table. Nevertheless, it can be seen how the

moving and still people numbers recorded in the various

Fig. 3 The user interface of the NetLogo model used for the 2D CA simulation. This time, the parameters regulating the environment and the

densities of moving and non-moving pedestrians are the ones influencing the setup of the simulation
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experiments are different: this happens because they are

derived from the way the environment itself is set up, since

every empty patch randomly chooses a number than, if

smaller than the density set through the slider, allows them

to spawn a turtle representing a person.

As we can see from the data, as the pedestrian density

inside the environment grows, the number of events

recording how a moving person find himself/herself stuck

grows rather quickly, a detail that is clearly visible when

looking at the percentage indicating the mean of moving

people recorded as still per timestep. The percentage values

reached even with a density of only 20%, which is still not

considered a high population density in terms of crowding

of a space, indicates how, despite the environment not

being too cramped up for people to move around into, the

distances set by the affective state of every person are held

in high regard and prevent the pedestrians from moving

around when others are perceived too close to allow

movement.

Another interesting information about the results, more

clearly seen in Table 3, is that there are very few differ-

ences in percentages of people stuck per timestep when

looking at these values and comparing the two analysed

environments, indoor and outdoor. As the percentage deltas

show, in fact, the values recorded for the outdoor and

indoor simulations only slightly vary as the population

density grows, something that highlights how people do not

seem to have adopted radically different behaviours and

distances at the environment change. However, this could

be due to the fact that the data we based our models on

come from an online experiment, in which the environ-

mental change was not as felt as it could have been in an

in-vivo experiment.

Despite being gathered from a preliminary 2D simula-

tion based on data coming from an experiment in a 1D

environment, the results here reported can be already

regarded as quite promising in terms of observing how

affective states modify pedestrian behaviour. The affective

state we modeled inside the CA effectively influences the

pedestrians’ choices, driving them to get farther from

people too close to them and making them stop the moment

every choice regarding direction they could take would

only make them uncomfortable. Of course, the present

model has limits: on the one hand, any discrete modeling

approach presents an intrinsic discretization error, and this

is proportional to the size of cells. Nonetheless, if we

consider the fact that we are naturally investigating situa-

tions in which density is limited, both by the regulations

and by the endogenous tendencies of pedestrians, the

results are already useful for estimations of the implica-

tions of affective states in situations similar to the COVID-

19 outbreak, especially in outdoor situations or in large

premises (e.g. transport stations). Discrete models adopting

finer discretization scales exist (see, e.g., Fu et al. (2016))

and their adoption could be investigated in smaller scale

scenarios, without altering deeply the adopted approach.

Table 1 Table showing the

percentage of pedestrians

remaining stuck for each

timestep in simulation

performed with different initial

densities in the outdoor

environment

Outdoor environment

Population density (%) Moving Still Pedestrians stuck per timestep (mean)

1% 12.22 11.80 0.07 (0.60%)

5% 63.56 65.02 21.46 (33.76%)

10% 123.07 129.77 75.99 (61.74%)

15% 179.26 194.08 135.86 (75.79%)

20% 233.91 260.89 191.89 (82.04%)

Table 2 Table showing the

percentage of pedestrians

remaining stuck for each

timestep in simulation

performed with different initial

densities in the indoor

environment

Indoor environment

Population density (%) Moving Still Pedestrians stuck per timestep (mean)

1% 12.13 12.98 0.07 (0.58%)

5% 63.02 65.61 21.03 (33.38%)

10% 124.01 132.32 76.85 (61.97%)

15% 177.48 194.81 132.27 (74.52%)

20% 236.28 260.03 192.23 (81.36%)
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6 Concluding remarks

In the work hereby presented, an extension of our previous

work (Bandini et al. 2022), we describe the approach we

took in order to tackle the problem of introducing affective

states inside Cellular Automata modeling by starting from

realistic data, coming from experiment performed with a

human population, rather than starting from theoretical

frameworks and emotional paradigms already studied in

the literature of both psychology and pedestrian simulation.

We proceeded to show the 1D and 2D Cellular Auto-

mata models we designed in order to address the matter,

illustrating how data coming from a previously executed

online experiment was used in order to insert the concept of

affective states inside the models. Simulations showing

both of the models through NetLogo were then presented,

together with results deriving from some preliminary

simulations that highlighted the effects of affective states

influencing proxemic distances on pedestrians’ behaviour.

The obtained results already show how the approach has

promise, although in need for further investigation and

validation in order to understand if the models, especially

the 2D one, provide a correct generalization of real crowd

phenomena.

With this being a preliminary approach to the matter of

introducing affective states into a modeling effort, there are

numerous directions in which to pursue this work.

For example, a direction could regard the investigation

of more experiments performed to study pedestrian beha-

viour, in order to see if it is possible to also use other types

of data to model the affective states to be introduced in the

models. Moreover, more experiments could also be the

source of investigations regarding more types of pedestrian

interaction: in this work, in fact, only the pedestrian-

pedestrian interaction was taken into consideration, but

vehicles and obstacles can also be found while walking

inside an environment. Because of this, pedestrian-obstacle

and pedestrian-vehicle interactions can be studied in order

to gather more insight on pedestrian behaviour in those

particular instances.

Moreover, another road to take into consideration would

be the one proposing the experiment here presented to

other populations, also in other countries, in order to gather

more data to better generalize the obtained results and to

further analyze differences between people derived, for

example, from culture.

Then, a transition towards agent modeling is also to be

contemplated, as we started to do in another works (Ban-

dini et al. 2022; Gasparini et al. 2021): with the 2D CA

model, in fact, as other works in this same research area,

we focused on the behavioural rule for the single cell rather

than on the local rule used for the 1D model, which is a

method near to the concepts of agent modeling. Shifting

towards this approach would also help us manage more

easily the heterogeneity intrinsically present in the simu-

lation. Moreover, it would be interesting to evaluate the

practical possibility to employ Reinforcement Learning

approaches embedding results on affective states and their

implications, for instance in the state and reward function,

to learn the rules of pedestrian behaviour rather than coding

them (an approach investigated, for instance, in Vizzari and

Cecconello (2023)).

One aspect to be carefully considered in the evolution of

this research is the potential tension between the recon-

ciliation among measurements that can be quite precise and

the presence of a discretization, which intrinsically intro-

duces limits to the possibility to fine tune distances among

pedestrians. On the one hand, results presented here rep-

resent a useful baseline, on the other approaches adopting

finer discretization scales (see, e.g., Fu et al. 2016) should

be investigated to understand if the current scale of dis-

cretization represents a real limit.

Author contributions The involved authors contributed equally to the

composition, the drafting and the revision of this paper.

Funding Open access funding provided by Università degli Studi di
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