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By working in a symplectically covariant real formulation of special Kähler geometry, we propose and 
give strong evidence for a canonical BPS partition function for AdS2 ×w M2 near–horizon geometries 
with arbitrary rotation and generic magnetic and electric charges. Here, M2 is either a two–sphere or 
a spindle. We also show that how the attractor equations and the Bekenstein–Hawking entropy can be 
obtained from an extremization principle.
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1. Introduction

String theory offers a valuable theoretical testing ground for 
exploring the quantum properties of black holes, thus helping us 
to address questions that would otherwise be insurmountable. In 
particular, Strominger and Vafa in their seminal work [1] demon-
strated the viability of string theory by providing a microscopic in-
terpretation for the Bekenstein–Hawking entropy of certain classes 
of BPS black holes in asymptotically Minkowski spacetimes. More 
recently, starting with [2], progress made towards understanding 
the entropy of asymptotically anti de Sitter (AdS) black holes mi-
croscopically (see [3] for a recent review). In this picture, black 
holes are thermodynamic ensembles of microstates in a holo-
graphic dual conformal field theory (CFT).

For a BPS black hole with angular momentum J and a set 
of conserved magnetic and electric charges (P I , Q I ) in N = 2
matter–coupled supergravity, the Bekenstein–Hawking area law 
formula SBH = A

4 ,1 where A is the area of the event horizon, 
may be encoded in an entropy functional that reduces the prob-
lem of computing the entropy into an extremization principle. This 
is equivalent to the attractor mechanism [4–6]: at the horizon 
the scalar fields approach an attractor point, the critical points 
of the entropy functional, associated to the black hole charges. 
The extremization principle identifies the entropy as a Legendre 
transform of a complex functional E(P I , ϕ I , ε) with respect to the 
electric and angular potentials (ϕ I , ε), and this suggests a thermo-
dynamic interpretation of the attractor mechanism. Note, that with 
respect to the magnetic charges P I one is therefore dealing with a 
microcanonical ensemble!

E-mail address: s.hosseini@imperial.ac.uk.
1 We use units where the Newton’s constant is fixed as GN = 1.
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For AdS black holes in string and M–theory, a unifying entropy 
functional based on gluing gravitational blocks was proposed in [7]
(see also [8–10]). Remarkably, the ‘mixed free energy’ E(P I , ϕ I , ε)

obtained in this way from the thermodynamic entropy matches 
precisely the logarithm of the partition function of the holographic 
dual field theory in the large N limit, when the latter is known. For 
other cases it provides a prediction for the logarithm of the mi-
crostate degeneracy up to terms that vanish in the large N limit. 
In the approach of [7] the magnetic and electric charges are not
treated on equal footing, and thus there is no manifest symplec-
tic covariance; a central feature of N = 2 theories based on vec-
tor multiplets (see for example [11]). One question that naturally 
comes to mind is: is there a way to maintain symplectic covari-
ance? This forms the main subject of this letter.

Consider AdS2 ×w M2 near–horizon geometries with arbitrary 
rotation and generic magnetic and electric charges. When M2 is 
either a two–sphere or a spindle (a two–sphere with conical sin-
gularities at the poles), we conjecture that in the limit of large 
charges

Zcan.(�,ε) ≈ eπ i H(�)
ε ,

where Zcan.(�, ε) is a fully canonical BPS partition function de-
pending on the symplectic vector of electric and magnetic po-
tentials � = {ϕ I ; χI }, and H(�) is the Hesse potential [12] of the 
scalar manifold, that is a symplectic function. Remarkably, H(�)

ε is 
related to the free energy E(P I , ϕ I , ε) via a Legendre transform, 
which replaces P I by χI as independent variables. Then, the black 
hole entropy is obtained by extremizing the entropy functional

I(�,ε) = log Zcan.(�,ε) − π i
(
ϕ I Q I − χI P I − iε J

)
,

with respect to the chemical potentials (�, ε), subject to a con-
straint that depends on the model, and evaluating it at its critical 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 
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points. We show that the extremal values of (�, ε) are completely 
determined by the values of the symplectic vector of scalars at the 
North Pole and the South Pole of M2 in the near–horizon region, 
thus providing an explicit realization of the attractor mechanism.

We note that a symplectically covariant entropy functional 
based on the Hesse potential has been put forward for static BPS 
black holes in ungauged four–dimensional N = 2 supergravity ear-
lier [13]. See [11] for a review and other related developments. We 
also notice strong similarities between our formalism and those 
based on Sen’s entropy functional [14,15].

2. Gravity’s attractive blocks

To set the scene, we will review the extremization principle of 
[7] that captures the Bekenstein–Hawking entropy of AdS2 × S2

ε

near–horizon geometries, with magnetic and electric charges en-
coded in the symplectic vector � = {P I ; Q I } and angular momen-
tum J ,2 in the four–dimensional gauged N = 2 supergravity cou-
pled to nV = 3 abelian vector multiplets.3 The Lagrangian of the 
latter is completely determined by a single holomorphic function 
of the scalars, F (X I ), which is called the prepotential, and the sym-
plectic vector of gauging parameters G = {gI ; gI }. First, we define 
the gravitational block

B
(

X I
(σ ), ε(σ )

) ≡ 1

2i

F (X I
(σ ))

ε(σ )

, (1)

that depends on the scalars X I
(σ )

, I = 0, . . . , nV, evaluated at the 
North Pole (σ = +1) or the South Pole (σ = −1) of S2

ε , and 
the chemical potential ε for the angular momentum on S2

ε . Ob-
serve that the gravitational block (1) is not a symplectic func-
tion, but transforms in a rather complicated way. Let us formally
decompose X I

(σ ) into real and imaginary parts, X I
(σ ) = ϕ I

(σ ) +
iε(σ ) P I with ϕ I

(σ )
∈ C and ε(σ ) ∈ C, and introduce the functional 

EA/id(P I , ϕ I , ε) that is obtained by gluing gravitational blocks (1)4:

(i) A–gluing (supersymmetry on the S2
ε is realized with a topo-

logical A–twist):

EA(P I ,ϕ I , ε) ≡ 1

2i

[
F
(
ϕ I + iεP I

)
ε

+ F
(
ϕ I − iεP I

)
−ε

]
. (2)

(ii) Identity gluing (otherwise):

Eid(P I ,ϕ I , ε) ≡ 1

2i

[
F
(
ϕ I + iεP I

)
ε

+ F ∗( − ϕ I − iεP I
)

−ε

]
.

(3)

Here, F ∗(X I ) denotes the formal conjugate of the prepotential 
F (X I ) that is obtained by replacing any explicit factor of i with 
−i.

The functional EA/id(P I , ϕ I , ε) is defined within a mixed ensem-
ble, where the electric charges Q I and the angular momentum J
fluctuate, while the magnetic charges P I are kept fixed. Thus, the 

2 The magnetic charges are subject to a linear constraint (as imposed by the BPS 
equations) and the remaining conserved quantities obey some (non–)linear regu-
larity constraints that decrease the number of independent conserved charges for 
regular BPS black holes.

3 We will focus on the stu model where nV = 3, but the specific examples suggest 
that our method can be generalized to N = 2 supergravity models coupled to nV

vector multiplets and nH hypermultiplets.
4 The value of the R–symmetry magnetic flux distinguishes between two types of 

supersymmetry preserving backgrounds [28,29].
2

independent variables are the chemical potentials (ϕ I , ε) for the 
electric charges and rotation, and the magnetic charges P I . The 
Bekenstein–Hawking entropy is then obtained by extremizing the 
entropy functional

I(P I ,ϕ I , ε) ≡ π i
(
EA/id(P I ,ϕ I , ε) − ϕ I Q I + iε J

)
− λ

(
gIϕ

I − αε − 1
)

,
(4)

with respect to the chemical potentials (ϕ I , ε),

Q I + λgI = ∂EA/id

∂ϕ I
, I = 1, . . . ,nV ,

J − iαλ = ∂EA/id

∂ε
,

(5)

and evaluating it at its critical points, I(P I , ϕ I , ε)|(5) ≡ SBH(P I , Q I , J ). 
Here, we introduced the Lagrange multiplier λ ∈ C to impose the 
constraint

gIϕ
I − αε − 1 = 0 , (6)

where α is a model dependent constant. This constraint among 
chemical potentials is required by supersymmetry and the exis-
tence of a smooth black hole horizon. Observe, that eπ iEA/id(P I ,ϕ I ,ε)

has the natural interpretation of the black hole partition function, 
in the limit of large charges, in a mixed thermodynamic ensemble,

Zmixed(P I ,ϕ I , ε) =
∑
Q I , J

dmicro(P I , Q I , J )eπ i(ϕ I Q I −iε J ) ,

in which magnetic charges P I are fixed integers, while elec-
tric charges Q I and the angular momentum J are summed over 
weighted by the chemical potentials as eπ i(ϕ I Q I −iε J ) . Here, the 
number dmicro of black hole microstates with charges (P I , Q I , J )
is related to the mixed partition function through a Laplace trans-
form with respect to (ϕ I , ε),

dmicro(P I , Q I , J )

=
∮

dϕdεδ
(

gIϕ
I − αε − 1

)
Zmixed(P I ,ϕ I , ε)e−π i

(
ϕ I Q I −iε J

)
,

where δ(x) is the Dirac delta function, dϕ ≡ ∏
I dϕ I , and the chem-

ical potentials (ϕ I , ε) are taken to be complex and integrated along 
a contour encircling the origin. Thus, in the limit of large charges, 
cf. (4),

log Zmixed(P I ,ϕ I , ε) ≈ π iEA/id(P I ,ϕ I , ε) , (7)

that is interpreted as the free energy of the black hole in the mixed 
ensemble. Here, ≈ means asymptotic equality in the limit of large 
charges.

The mixed ensemble is natural in the framework of equivariant 
localization as strongly suggested by (2) and (3). However, it has 
the disadvantage that the independent variables (P I , ϕ I ) do not 
constitute a symplectic vector, which obscures symplectic covari-
ance.

3. Hesse block and attractor mechanism

In this section we propose a unifying entropy functional that 
maintains manifest symplectic covariance. We consider AdS2 ×w

M2 near–horizon geometries with magnetic and electric charges 
(P I , Q I ) and angular momentum J , where M2 is either a two–
dimensional sphere S2

ε or a spindle  (a two–sphere with conical 
singularities at the poles).
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Let us assume that the special Kähler manifold parameterized 
by the scalar fields X I is a symmetric space, and introduce the 
quartic form I4 that is invariant under symplectic transformations. 
Define the Hesse block

H(�,ε) ≡ 2

ε
H(�) , (8)

where H(�) = √
I4(�) is the Hesse potential of the conical affine 

special Kähler manifold associated with the scalar moduli space 
[12]. The Hesse potential is homogeneous of degree two with re-
spect to the electric and magnetic potentials � = {ϕ I ; χI } (that are 
taken to be complex), and in the real formulation of special Käh-
ler geometry, it plays a role similar to that of the holomorphic 
prepotential F (X I ). The Hesse block is twice the Legendre trans-
form of the EA/id(P I , ϕ I , ε) functional with respect to the magnetic 
charges P I , thereby replacing P I by χI as independent variables,5

H(ϕ I ,χI , ε) = 2
(
EA/id(P I ,ϕ I , ε) − χI P I

)
, (9)

where χI = ∂EA/id/∂ P I . The latter expresses P I as a function of 
(ϕ I , χI , ε), locally, and inserting this expression in the right hand 
side of (9) yields (8).6

The entropy functional (4) is now replaced by

I(�,ε) ≡ π i

(
1

2
H(�,ε) − ϕ I Q I + χI P I + i Jε

)
− λ

(
gIϕ

I − gIχI − αε − 1
)

.

(10)

Indeed, extremization of (10) with respect to (�, ε) yields

P I = i

π
gIλ − 1

2

∂ H

∂χI
, Q I = i

π
gIλ + 1

2

∂ H

∂ϕ I
, (11)

for I = 1, . . . , nV, and

J = α

π
λ + i

2

∂ H

∂ε
. (12)

Substituting (11) and (12) into (10), and noting that the Hesse 
block H(�, ε) is homogeneous of degree one, we conjecture that

I(�,ε)

∣∣∣
(11) and (12)

= λ(P I , Q I , J ) ≡ SBH(P I , Q I , J ) . (13)

The requirement that (13) be real positive, as it should be for a 
physical black hole solution, then fixes

P I = −1

2
Re

(
∂ H

∂χI

)
, Q I = 1

2
Re

(
∂ H

∂ϕ I

)
,

J = −1

2
Im

(
∂ H

∂ε

)
,

(14)

that are just the attractor equations written in terms of the quan-
tities (ϕ I , χI , ε). Attractor phenomenon implies that at the hori-
zon the scalars X I

NP/SP take values that only depend on the black 
hole charges (P I , Q I , J ) and not on their asymptotically speci-
fied values. We shall see that the extremal values of the chem-
ical potentials (ϕ I , χI , ε) are completely determined by the val-
ues of the symplectic vector of scalars X = {X I ; F I (X I )}, where 
F I ≡ ∂ F (X I )/∂ X I are the holomorphic periods, at the North Pole 
and the South Pole of M2 in the near–horizon region.

5 When J = 0, the Hesse potential H(�) is related to the prepotential F (X I ) by a 
Legendre transformation that replaces Im(X I ) with Re(F I ) as an independent field 
[30]. Here, F I ≡ ∂ F (X I )/∂ X I are the holomorphic periods.

6 χI = ∂EA/id/∂ P I in general gives complex values for P I . The real part of this 
expression reproduces the physical charges.
3

To make the connection with microstate degeneracies dmicro(P I ,

Q I , J ), let us define the black hole partition function in the canon-
ical ensemble

Zcan.(ϕ
I ,χI , ε) =

∑
P I ,Q I , J

dmicro(P I , Q I , J )eπ i(ϕ I Q I −χI P I −iε J ) ,

which is invariant under the various duality symmetries, only if 
the chemical potentials (ϕ I , χ I ) transform as a symplectic vec-
tor. Then, dmicro can be retrieved by the following inverse Laplace 
transform

dmicro(P I , Q I , J ) =
∮

dϕdχ dεδ
(

gIϕ
I − gIχI − αε − 1

)
× Zcan.(ϕ

I ,χI , ε)e−π i
(
ϕ I Q I −χI P I −iε J

)
,

where dϕ ≡ ∏
I dϕ I and dχ ≡ ∏

I dχI . Thus, in the limit of large 
charges, cf. (10),

log Zcan.(ϕ
I ,χI , ε) ≈ π i

2
H(ϕ I ,χI , ε) , (15)

that is interpreted as the free energy of the black hole in the 
canonical ensemble.

To illustrate how the formalism works we will discuss several 
explicit examples in the following. All these models admit an uplift 
on either S7 to M–theory or on S5 to type IIB string theory. In the 
latter case g0 = 0, and the AdS2 ×w M2 near–horizon geometry 
arises upon considering a specific circle reduction (i.e. a quotient 
of AdS3 geometry).

4. Twisted AdS4 black holes [16]

One class of BPS black holes are specified with non–zero mag-
netic charge for the R–symmetry and near–horizon AdS2 × S2

ε . They 
are solutions of the stu model with prepotential

F (X I ) = 2i
√

X0 X1 X2 X3 , (16)

and a purely electric gauging, i.e. gI ≡ g and gI = 0 (I = 0, . . . , 3). 
We further set g = 1, hence fixing the AdS4 scale l2AdS4

= 1
2 . The 

quartic invariant I4 for this model is given by [17]

I4(�) = −
(
ϕ0χ0 − ϕ1χ1 − ϕ2χ2 − ϕ3χ3

)2

+ 4
(
ϕ1ϕ2χ1χ2 + ϕ1ϕ3χ1χ3

+ ϕ2ϕ3χ2χ3 + ϕ0ϕ1ϕ2ϕ3 + χ0χ1χ2χ3
)
.

(17)

For later convenience we define the following symplectic functions 
of the charges

F2 ≡
∑
I �= J

(
P I P J + 2Q I Q J

)
−

∑
I

(P I )2 ,

F3 ≡ −
∑

I

P I Q I

(
2P I −

∑
I

P I
)

+ 1

3

∑
I �= J �=K

Q I Q J Q K ,

� ≡ F 2
2 − 16I4(�) .

(18)

The magnetic charges of the black hole satisfy the twisting con-
dition

∑
I P I = −1. Moreover, to ensure regularity of the solution 

one must impose that 
∑

I Q I = 0 and F3 = 0. Thus, we are left 
with a six–parameter family of solutions, labeled for instance by 
(P 0, P 1, P 2, Q 0, Q 1, J ). The entropy is determined by the area law

SBH(P I , Q I , J ) = π√
√

F2 +
√

� − (4 J )2 . (19)

2 2
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For this class of black holes we have α = 0, and therefore the 
constraint (6) simplifies to 

∑
I ϕ

I − 1 = 0. Let us denote by (�̊, ε̊)

the critical points of the entropy functional (10). Then, the attrac-
tor equations (14) read7

� = − 1

2ε̊
Re (XNP −XSP) , �̊ = − i

2
(XNP +XSP) . (20)

We verified that inserting (�̊, ε̊) into (10) yields the entropy (19).

5. Kerr–Newman–AdS4 black holes [18,19]

Let us now consider the five-parameter family of BPS black 
holes with vanishing magnetic charge for the R–symmetry and 
near–horizon AdS2 × S2

ε . This model also belongs to the stu model 
with the prepotential (16) and a purely electric gauging. The mag-
netic charges are subject to the constraints P 0 = −P 1 and 

∑
I P I =

0, which corresponds to the absence of a topological twist. More-
over, the absence of closed time–like curves imposes the following 
non–linear constraint among the charges

0 = 4S4
BH − π2(F2 + 1)S2

BH + π4
(

I4(�) + J 2
)

, (21)

where the entropy as a function of charges is given by

SBH(P I , Q I , J ) = π√
2

√
F3 + J∑3

I=0 Q I

. (22)

For this class of black holes we have α = i, and thus the con-
straint (6) reads 

∑
I ϕ

I − iε − 1 = 0, that is a reflection of the non–
linear constraint (21) among the conserved charges (P I , Q I , J ). We 
find that the attractor equations (14) are given by

� = 1

2ε̊
Re

(
XNP −X SP

)
, �̊ = i

2

(
XNP +X SP

)
, (23)

where X SP denotes the complex conjugate of the symplectic vec-
tor of scalars evaluated at the South Pole of S2

ε . Furthermore, we 
checked that I(�̊, ε̊) matches precisely the entropy (22).

6. AdS2 ×w � solutions in the F = −iX0 X1 model

Let us now look at BPS black holes with near–horizon geometry 
AdS2 ×w , where  is a bad orbifold of S2 called the spindle. They 
are solutions of the U(1)2 gauged N = 2 supergravity coupled to 
one vector multiplet, with prepotential F (X I ) = −iX0 X1, and the 
purely electric gauging G = {0, 0; 1, 1}. The Hesse potential I4 for 
this model is given by H(�) = −(ϕ0ϕ1 + χ0χ1) [20]. The solution 
has conical singularities with deficit angles 2π

n1
and 2π

n2
at the poles 

of 8

pSP = −
(

4(P 0 P 1 + Q 0 Q 1) + 1
2n1n2

)(
1 − 2

n1

J
F3

)
4(P 0 P 1 + Q 0 Q 1) + 1

n1n2

,

pNP =
(

4(P 0 P 1 + Q 0 Q 1) + 1
2n1n2

)(
1 − 2

n2

J
F3

)
4(P 0 P 1 + Q 0 Q 1) + 1

n1n2

,

7 We inherit from [16] an unfavorable choice of sign for the prepotential (16) that 
leads to ambiguities when comparing with the literature. To remedy this situation, 
we have chosen to work with the negative determination for the square root in 
EA(P I , ϕ I , ε), see (2).

8 The angular momentum J evaluated at the horizon depends crucially on the 
choice of pure gauge that can be added to the electric gauge fields. We work in 
the gauge AI |SP/NP = ∓P I dφ for I = 0, 1, where φ is the angular coordinate on the 
spindle with period 2π .
4

respectively, where (n1, n2) are arbitrary coprime positive integers 
with n1 < n2. F3 is given in (18) when we set P 3 = P 1, P 2 = P 0, 
Q 3 = Q 1, and Q 2 = Q 0. Magnetic charges satisfy the anti–twist
condition P 0 + P 1 = 1

2 ( 1
n1

− 1
n2

), therefore, there is a non–zero 
magnetic flux for the R–symmetry gauge field through the spin-
dle [21]. Moreover, to ensure regularity the conserved charges are 
subject to the following non–linear constraint

J = −1

4
(Q 0 + Q 1)

(
χ −

√
16(P 0 P 1 + Q 0 Q 1) + χ2

)
,

where χ = 1
n1

+ 1
n2

is the Euler number of the spindle . The en-
tropy can be compactly written as

SBH(P I , Q I , J ) = π
J

Q 0 + Q 1
. (24)

For this class of black holes we set α = − i
2 χ , and thus the con-

straint (6) reads 
∑

I ϕ
I + i

2 χε − 1 = 0. We find that the attractor 
equations (14) read

� = − 1

2ε̊
Re

(
XNP pNP +X SP pSP

)
,

�̊ = − i

2

(
XNP pNP −X SP pSP

)
.

(25)

We checked that inserting the above values into (10) reproduces 
the entropy (24).

7. Twisted AdS5 × S5 black strings [22]

Let us consider the stu model with prepotential

F (X I ) = X1 X2 X3

X0
, (26)

and a purely electric gauging, i.e. G = {0; 0, g}. We also set g = 1, 
thus fixing the AdS5 length scale lAdS5 = √

2.9 The quartic invariant 
I4 is determined by [23]

I4(�) = −
(
ϕ0χ0 + ϕ1χ1 + ϕ2χ2 + ϕ3χ3

)2

+ 4
(
ϕ1ϕ2ϕ3χ0 + 4ϕ1ϕ2χ1χ2

+ 4ϕ1ϕ3χ1χ3 + 4ϕ2ϕ3χ2χ3 − 4ϕ0χ1χ2χ3
)
.

(27)

The stu model described above may be viewed as the circle com-
pactification of U(1)3 truncation of AdS5 × S5. There is a black 
string solution of the latter that is characterized by a non–zero
magnetic charge for the R–symmetry and near–horizon BTZ ×S2

ε . 
Upon compactification on the BTZ circle, one obtains a four–
dimensional black hole with angular momentum J , and the sym-
plectic vector of magnetic and electric charges � = {0, P i; Q I } (I =
0, . . . , 3). Here, Q 0 labels the momentum around the BTZ circle 
and, as is familiar in Kaluza–Klein (KK) reduction, a KK momentum 
becomes a conserved charge in lower dimension. The magnetic 
charges are restricted to satisfy 

∑
i P i = −1, and there is a further 

constraint among charges 
∑

i P i Q i
(
2P i − ∑

j P j
) = 0. We are thus 

left with a six–parameter family of solutions, labeled for instance 
by (P 0, P 1, Q 0, Q 1, Q 2, J ). The Bekenstein–Hawking entropy as a 
function of charges is given by

SBH(P i, Q I , J ) = π

√
I4(�) + J 2

−∑
i(P i)2 + ∑

i �= j P i P j
.

9 We follow the conventions used in [25, Sect. 2.2].
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We set α = 0 in (6), hence, the constraint among the chemical 
potentials reads

∑
i ϕ

i − 1 = 0. We find that the attractor equa-
tions (20) remain valid also in this case. Moreover, we verified that 
I(�̊, ε̊) ≡ SBH(P i, Q I , J ).

8. Black spindles in AdS5 × S5 [24–26]

Amazingly enough, one can find near–horizon geometries BTZ 
×w × S5 that are specified with the R–symmetry flux 1

2π

∫


F R =
1
2 ( 1

n1
− 1

n2
) through the spindle . This model also belongs to the 

stu model with the prepotential (26) and a purely electric gauging. 
The most general family of such black holes, with magnetic and 
electric charges � = {0, P i; Q I } and angular momentum J , has not 
been written yet. Two family of black holes, with either Q i = 0
or P i = 1

6 ( 1
n1

− 1
n2

) for i = 1, 2, 3, was found in [25]. There is a 
constraint on the magnetic charges 

∑
i P i = 1

2 ( 1
n1

− 1
n2

), which cor-
responds to the fact that the theory is anti–twisted along , and a 
further constraint involving the electric charges and angular mo-
mentum χ

2 J = − 
∑

i P i Q i
(
2P i − ∑

j P j
)
, that is reflected in the 

constraint (6) with α = − i
2 χ . Organizing the flavor symmetries in 

the basis K1 = Q 1 − Q 3, K2 = Q 2 − Q 3, and K3 = − J − 1
2 χ Q 3, the 

entropy of the most general black hole is expected to be given by 
the charged Cardy formula [27]

SBH(P i, Q I , J ) = π

√
cCFT(P i)

3
√

2
Q̃ 0 , (28)

where cCFT(P i) is the exact central charge of the holographic dual 
N = (0, 2) CFT

cCFT(P i) = 48
√

2 P 1 P 2 P 3

χ2 − 4
(∑

i(P i)2 − ∑
i �= j P i P j

) .

We also defined Q̃ 0 ≡ Q 0 − 1
2
√

2

∑
A,B K A(k−1)AB K B , where kAB is 

the matrix of the levels of the abelian symmetries

kAB =

⎛⎜⎜⎝
√

2P 2 P 1+P 2−P 3√
2

χ

2
√

2
P 2

P 1+P 2−P 3√
2

√
2P 1 χ

2
√

2
P 1

χ

2
√

2
P 2 χ

2
√

2
P 1 −√

2P 1 P 2 P 3

⎞⎟⎟⎠ .

We checked that, setting either Q i = 0 or P i = 1
6 ( 1

n1
− 1

n2
) for 

i = 1, 2, 3, the attractor equations (25) hold true and the on–shell 
value of the entropy functional (10) matches the entropy (28), and 
are thus confident that the result is valid in general.
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