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Contaminated Gibbs-Type Priors∗

Federico Camerlenghi†,‡, Riccardo Corradin§ and Andrea Ongaro†

Abstract. Gibbs-type priors are combinatorial processes widely used as key com-
ponents in several Bayesian nonparametric models. By virtue of their flexibility
and mathematical tractability, they turn out to be predominant priors in species
sampling problems and mixture modeling. We introduce a new family of processes
which extends the Gibbs-type one, by including a contaminant component in the
model to account for an excess of observations with frequency one. We first inves-
tigate the induced random partition, the associated predictive distribution, the
asymptotic behavior of the total number of blocks and the number of blocks with
a given frequency: all the results we obtain are in closed form and easily inter-
pretable. A remarkable aspect of contaminated Gibbs-type priors relies on their
predictive structure, compared to the one of the standard Gibbs-type family: it
depends on the additional sampling information on the number of observations
with frequency one out of the observed sample. As a noteworthy example we fo-
cus on the contaminated version of the Pitman-Yor process, which turns out to
be analytically tractable and computationally feasible. Finally we pinpoint the
advantage of our construction in different applications: we show how it helps to
improve predictive inference in a species-related dataset exhibiting a high number
of species with frequency one; we also discuss the use of the proposed construction
in mixture models to perform density estimation and outlier detection.

Keywords: Bayesian nonparametrics, Gibbs-type priors, species sampling
models, random partitions, mixture models.
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1 Introduction
The great success of the Dirichlet process within the Bayesian nonparametric framework
has paved the way for the definition and investigation of a large variety of random prob-
ability measures. Indeed, since the seminal paper by Ferguson (1973), several discrete
nonparametric priors have been proposed to accommodate for exchangeable observa-
tions, among these we mention: the Pitman-Yor process or two parameter Poisson-
Dirichlet process (Perman et al., 1992; Pitman, 1996); species sampling models (Pit-
man, 1996); priors based on normalization of completely random measures (Regazzini
et al., 2003; Lijoi and Prünster, 2010). Gibbs-type priors are another important class
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of Bayesian nonparametric models early introduced by (Gnedin and Pitman, 2005) and
recently investigated in (De Blasi et al., 2015). The Gibbs-type family has the advan-
tage to balance modeling flexibility and mathematical tractability. These processes have
been successfully used in several areas, just to mention a few examples: to face predic-
tion within species sampling framework (e.g. Lijoi et al., 2007a), as mixing measures in
mixture models (e.g. Ishwaran and James, 2001; Lijoi et al., 2007b), for survival analysis
(e.g. Jara et al., 2010), and for applications in linguistics and information retrieval (e.g.
Teh, 2006; Teh and Jordan, 2010). Heaukulani and Roy (2020) have recently discussed a
class of feature allocation models parametrized by Gibbs-type random probability mea-
sures. Although these priors have been widely employed in the Bayesian nonparametric
literature, sometimes a pure Gibbs-type prior may not be flexible enough in presence of
a large number of unique values or data contaminated by anomalous quantities. Such
a behaviour may occur in several applied fields: in taxonomic data (see Section 5.2),
where the species’ names can be miss-reported; in linguistics, where the author of a
manuscript can include many neologisms, and the words’ distribution may include a
large number of singletons (see, e.g., Harald, 2001); in genomics, where the technologies
are subject to sequencing errors (see, e.g., Stoler and Nekrutenko, 2021); in mixture
models, when data are contaminated by outliers (see Section 6.2).

In the present paper we introduce a new family of Bayesian nonparametric models
where a Gibbs-type prior is contaminated with an exogenous diffuse probability mea-
sure, called contaminant measure. More precisely, we define a new random probability
measure as a convex linear combination of a Gibbs-type prior q̃ and a diffuse probability
P0, i.e. we deal with p̃ = βq̃+(1−β)P0, where β ∈ [0, 1] is a weight which tunes the im-
pact of the contaminant measure. We refer to p̃ as a contaminated Gibbs-type prior (see
Definition 1) and its distribution is then used as a nonparametric prior in a Bayesian
context. Although this may seem a simple modification of an existing prior, the pro-
posed construction has a profound impact on the predictive structure of the model and
thus on posterior inference. Indeed p̃ is a random probability measure outside the Gibbs-
type family, whose predictive distribution has a remarkable advantage with respect to
the one induced by a standard Gibbs-type prior: it depends on the additional sam-
pling information on the number of observations with frequency one out of the observed
sample. As a consequence our construction allows to enrich the predictive structure of
Gibbs-type priors, still maintaining analytical tractability which is a peculiar aspect to
develop efficient sampling schemes to address posterior inference. Secondly the use of a
contaminant measure P0 accounts naturally for the presence of anomalies in the data
(observations which are under some respects singular). This is crucial when the main
inferential interest concerns modeling and predicting observations with frequency one,
but it is also of great relevance in other inferential contexts, as modeling such observa-
tions incorrectly may lead to wrong inferential conclusions. As a remarkable example,
in Section 5.1 we show that this induces a severe bias in estimating critical parameters
(such as the reinforcement parameter), which have a strong impact on predictive infer-
ence, such as the number of new distinct observations in an additional sample. We also
point out how contaminated Gibbs-type priors can be exploited for modeling discrete
data, when one needs to inflate the observations with frequency one. As an example,
in Section 5.2, we consider species detection data from the Global Biodiversity Infor-
mation Facility project (GBIF.org, 2021) with a high number of species detected only
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once. Within this framework, we show the advantage of our model with respect to the
traditional Pitman-Yor process, and we empirically prove how they lead to different
inferential conclusions. In Section 6 we also discuss the use of a contaminated random
probability measure in mixture models, when outliers appear in the data. The use of a
contaminated Gibbs type prior, instead of a standard model, results in smoother density
estimates and an efficient detection of outliers, which are captured by the contaminant
measure.

In order to describe the theoretical properties of the proposed model and develop
efficient sampling procedures, we first introduce and deeply investigate the random
partition structure induced by contaminated Gibbs-type priors. Moreover we also derive
predictive distributions and asymptotic results for the total number of clusters and the
number of clusters with a certain frequency. All the stated results are available in closed
form, they are simple and with a natural interpretation. The induced prediction rule
can be easily explained in terms of a new Chinese restaurant metaphor with a room
for social persons and one for loners. As a concrete example, throughout the paper
we focus on the contaminated version of the Pitman-Yor process, which exhibits more
tractable expressions for all the quantities of interest and to face prediction. With regard
to this last issue, we determine Bayesian estimators for functionals which depend on an
additional unobserved sample of arbitrary size, thus extending some of the results in
(Lijoi et al., 2007a; Favaro et al., 2009). As for the contaminated Pitman-Yor process,
we finally determine a Pólya urn representation of the updating mechanism.

To the best of our knowledge, the Bayesian nonparametric literature has never fo-
cused on Gibbs type priors contaminated with a diffuse measure to model the excess of
singular observations. In the past literature, early studies on contamination of random
probability measures have been faced by Quintana (2006), in a partially exchangeable
setting. The authors used a convex combination of a common discrete component, shared
among different groups, with group-specific random probability measures. Later, convex
linear combinations of a random probability measure with an atomic component have
been used in numerous Bayesian nonparametric models to define spike and slab priors.
See, e.g., Scarpa and Dunson (2009); Canale et al. (2017) and references therein. Here
we focus on a different convex combination in which we substitute the spike with a
diffuse probability measure P0, with a completely different goal. We also mention that
Beraha et al. (2021) have recently used a contamination of the Dirichlet process with a
diffuse measure to define the common base measure of a vector of hierarchical Dirichlet
processes. Thus, the model proposed by Beraha et al. (2021) is completely different with
respect to our proposal, and the aim is different as well: their goal is to define a vector of
Dirichlet processes having common, but also specific (i.e., not shared), random atoms.
On the contrary, in the present paper we focus on a different prior distribution, designed
for one group of observations, with the aim to obtain a richer predictive structure to
model singular observations. Models which include contamination have been considered
from a probabilistic viewpoint for discrete random structures, for example Kingman’s
paintbox representation (Kingman, 1978) with dust, coalescent with dust (see, e.g., Fre-
und and Möhle, 2017), and trait allocations with dust (Campbell et al., 2018). However,
to the best of our knowledge, these models have never been used in statistical applica-
tions. Finally, we mention that priors with a contaminant term have been analysed in
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Bayesian robustness (ε-contaminated priors, Berger and Berliner, 1986). While such a
construction is connected with our specification, where a model is contaminated by an
exogenous term, it has been used to study the robustness of Bayesian procedures when
the prior is perturbed.

The rest of the article is organized as follows. In Section 2 we introduce the family
of contaminated Gibbs-type priors. Section 3 presents the main results on the random
partition induced by a contaminated Gibbs-type prior, the predictive structure and
asymptotic results on the number of clusters. We further specialize such findings to the
contaminated Pitman-Yor process case (Section 4). Section 5.1 shows the flexibility and
the predictive ability of contaminated Gibbs-type priors through an extensive simulation
study. In Section 5.2 we apply the contaminated Pitman-Yor process to analyse the
GBIF dataset, showing the benefits of including a contaminant measure in the model
specification. In Section 6, contaminated Gibbs-type priors are employed as mixing
measures in mixture models for clustering problems and density estimation in presence
of outliers. Section 6.1 describes a detailed algorithm to perform posterior inference in
a mixture context, while an astronomical data example (Ibata et al., 2011) is presented
in Section 6.2. The paper ends with a discussion on the use of contaminated Gibbs-type
priors in other contexts (Section 7). Proofs and additional details are deferred to the
Supplementary Material (Camerlenghi et al., 2023).

2 Definition of contaminated Gibbs-type priors
Let {Xi}i≥1 be a sequence of observations taking values in a Polish space X, equipped
with its Borel σ-field X . In the Bayesian nonparametric setting X1, X2, . . . are typically
supposed to be exchangeable (de Finetti, 1937), which is tantamount to saying that there
exists a random probability measure p̃ such that Xi|p̃ iid∼ p̃, where the distribution of
p̃ works as a prior in the Bayesian nonparametric framework. The distribution of p̃,
indicated by Q, is called the de Finetti measure of the sequence X1, X2, . . ., and several
prior specifications Q are available in the Bayesian nonparametric literature. Among
these we mention the remarkable class of species sampling models (Pitman, 1996). We
recall that an exchangeable sequence of observations {Xi}i≥1 is called a species sampling
sequence if and only if it is governed by a distribution of the following type

p̃ =
∑
j≥1

pjδZj +

⎛
⎝1 −

∑
j≥1

pj

⎞
⎠P0, (1)

for a sequence of random weights {pj}j≥1 with pj ≥ 0 and
∑

j≥1 pj ≤ 1 almost surely,
and a sequence of random atoms {Zj}j≥1 i.i.d. from P0 independent of {pj}j≥1, where
P0 is assumed to be a diffuse probability measure on (X,X ). A random distribution
p̃ of the form in (1) is called a species sampling model. Further, a species sampling
model is termed proper if and only if

∑
j≥1 pj = 1 almost surely, and most of the

current Bayesian nonparametric literature focuses on proper species sampling models.
In this paper we discuss the case in which

∑
j≥1 pj < 1 with positive probability, and we

show how non-proper models are particularly suited to take into account contaminated
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observations or more generally observations with frequency one. It is worth mentioning
that the diffuse component P0 in (1) generates singleton blocks, which are called dust
in the probabilistic literature on random partitions.

Among the very general class of species sampling models we recover special sub-
classes of priors, which have been duly investigated in the literature, e.g., homogeneous
normalized random measures with independent increments (Regazzini et al., 2003) and
Gibbs-type priors (Gnedin and Pitman, 2005; De Blasi et al., 2015). Here we focus
on a contaminated version of Gibbs-type priors. For this reason, it is worth recalling
that Gibbs-type random probability measures are typically characterized in terms of
the exchangeable random partition (Pitman, 2006) induced by the data. More pre-
cisely, given a sample X1:n := (X1, . . . , Xn) from a species sampling model governed
by a random probability measure p̃, the n observations are naturally partitioned into
Kn = k groups of distinct values, denoted here as X∗

1 , . . . , X
∗
k , with corresponding

frequencies (Nn,1, . . . , Nn,Kn) = (n1, . . . , nk). The exchangeable partition probability
function (EPPF) corresponds to the probability of observing a specific partition of the
data into clusters of distinct values, and it can be formalized as

Π(n)
k (n1, . . . , nk) :=

∫
Xk

E

⎡
⎣ k∏
j=1

p̃nj (dx∗
j )

⎤
⎦ . (2)

The EPPF is essential for computational purposes: indeed, it is the basic building block
to derive suitable sampling schemes for posterior inference, also in the mixture model
case (see, e.g., Section 6).

Gibbs-type priors are proper species sampling models p̃ characterized by means of
their sequence of EPPFs {Π(n)

k : n ≥ 1, 1 ≤ k ≤ n}, which can be expressed in the
following form

Π(n)
k (n1, . . . , nk) = Vn,k

k∏
i=1

(1 − σ)ni−1, (3)

for all n ≥ 1, k ≤ n and positive integers n1, . . . , nk with
∑k

i=1 ni = n, where
(a)b = Γ(a + b)/Γ(a) in (3), for a, b > 0, denotes the Pochhammer symbol. The dis-
count parameter σ < 1 and the non-negative weights {Vn,k : n ≥ 1, 1 ≤ k ≤ n} must
satisfy the recurrence relation Vn,k = (n − σk)Vn+1,k + Vn+1,k+1 for all k = 1, . . . , n,
n ≥ 1, with the proviso V1,1 = 1 and V0,0 = 1. The sequence of weights Vn,ks can be
specified to recover prior processes commonly used in literature, such as the Dirichlet
process (Ferguson, 1973), the Pitman-Yor process (Pitman and Yor, 1997), the nor-
malized inverse-Gaussian process (Lijoi et al., 2005) and the normalized generalized
gamma process (see e.g. Lijoi et al., 2007b, and references therein). It is also apparent
from (3) that the discount parameter σ affects the distribution of a random partition
arising from a Gibbs-type prior: when σ grows, such a distribution favours partitions
with few large clusters and a considerable number of small clusters. On the other side,
when σ decreases, the EPPF (3) favours partitions with a large number of clusters with
substantial sizes. However, if we observe a sample where the frequencies of the common
species are properly modeled with a small value of σ, but the frequencies of the rarest
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species with a large value of σ (see, e.g., Section 5.2), a pure Gibbs-type prior as in (3)
does not have enough flexibility to fully describe the whole observed species. Building
upon Gibbs-type priors, we now introduce a new family of prior processes which account
for the possibility of contaminated observations.

Definition 1. Let q̃ be a Gibbs-type prior, specified by the sequence of weights {Vn,k :
n ≥ 1, 1 ≤ k ≤ n} and σ < 1. A contaminated Gibbs-type prior is a random probability
measure on (X,X ) defined as

p̃ = βq̃ + (1 − β)P0, β ∈ (0, 1), (4)

where Q0( · ) = E[q̃( · )] is the base measure of q̃, and Q0, P0 are diffuse probability
measures.

The prior p̃ in (4) is a convex linear combination of two components: an almost surely
discrete component q̃ which generates the data, and a diffuse probability measure P0
which accounts for contaminated observations. In the sequel we refer to P0 as the con-
taminant measure. Sampling from p̃ can be interpreted as sampling from a population
formed by two parts: the first one, representing a β fraction of the entire population, is
composed by a countable number of species each appearing with positive probability.
The second part (1 − β fraction) can be thought of as composed by a continuum of
individuals each belonging to a different species. Therefore any time we sample from
this second part a new species is obtained that cannot be re-observed. As stated above,
for simplicity we shall call contaminant this second part and contaminated the relative
observations. However, the diffuse part can be used more generally to account for any
population which displays unique elements (see Section 7) and/or to model a high num-
ber of generic singletons in the observations. Finally, in Definition 1, the contaminant
measure P0 may be different from the base measure Q0, thus p̃ in (4) may not be a
species sampling model. We finally note that in species problems, specific choices of P0
and Q0 are irrelevant, since one is typically interested in the frequencies of the species
rather than their labels (see e.g. Section 5.2). On the contrary, the additional flexibility
introduced by choosing P0 �= Q0 may be useful in model based clustering to deal with
outliers (see e.g. Section 6).

We first derive the expectation and the covariance structure of a contaminated
Gibbs-type prior in order to understand how the contaminant measure affects the dis-
tribution of p̃.

Proposition 1. Let p̃ be a contaminated Gibbs-type prior as in Definition 1. Let A,B ∈
X , then

E[p̃(A)] = βQ0(A) + (1 − β)P0(A),

cov
(
p̃(A), p̃(B)

)
= β2(1 − σ)V2,1

V1,1

[
Q0(A ∩B) −Q0(A)Q0(B)

]
= β2cov

(
q̃(A), q̃(B)

)
.

As consequence of Proposition 1, one has var
(
p̃(A)

)
= β2var

(
q̃(A)

)
, therefore the

diffuse probability measure P0 in (4) has the effect to shrink q̃(A) towards its expected
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value. From Proposition 1, one can observe that when β → 1 the covariance of the
contaminated model equals the covariance of the non-contaminated one, while as β → 0,
p̃ degenerates to P0 and the covariance vanishes. Further, the correlation is invariant
under contamination, with cor

(
p̃(A), p̃(B)

)
= cor

(
q̃(A), q̃(B)

)
. See Section A.1 of the

Supplementary Material for a proof of Proposition 1.

3 Random partition, prediction and asymptotic
properties

Having introduced all the modeling assumptions in Section 2, we now study the parti-
tion structure induced by a sample of observations from the random probability mea-
sure in (4), we further derive a closed form expression for predictive distributions and
asymptotic properties for the number of clusters. We first focus on the random parti-
tion induced by a sequence of exchangeable observations governed by a contaminated
Gibbs-type prior, deriving the EPPF.
Theorem 1. Let p̃ be a contaminated Gibbs-type prior as in (4), with P0 and Q0 two
diffuse probability measures on (X,X ). Suppose that Xi|p̃ iid∼ p̃, as i ≥ 1, then the prob-
ability that n observations X1:n are partitioned into Kn = k clusters of distinct values
X∗

1 , . . . , X
∗
k with corresponding frequencies (Nn,1, . . . , Nn,Kn) = (n1, . . . , nk) equals

Π(n)
k (n1, . . . , nk) = EM̄m1

[
Vn−M̄m1 ,k−M̄m1

]
βn−m1

k∏
i=1

(1 − σ)ni−1 (5)

where M̄m1 ∼ Binom(m1, 1 − β) and m1 = #{i : ni = 1} denotes the number of
singletons (i.e. observations with frequency one) out of the sample of size n.

See Section A.2 of the Supplementary Material for a proof of Theorem 1. From the
expected value in (5), it is apparent that the use of the contaminant measure P0 in (4)
acts on observations with frequency one and, as expected, they play a central role in
the expression of the EPPF. In order to fix the terminology we call singletons the obser-
vations with frequency one, while the structural singletons are those values generated
from the contaminant measure P0, whose number equals the latent quantity M̄m1 . Note
that the term structural refers to the fact that these values cannot be observed twice
and this statistic could be of potential interest in certain applied problems, as it will be
discussed in Section 7.

We now get a glimpse of the probabilistic implications of the random partition (5) in-
duced by contaminated Gibbs-type priors as compared to pure Gibbs-type priors. In or-
der to do this, we denote by (n1, . . . , nk) and (n′

1, . . . , n
′
k) two distinct compositions hav-

ing the same number of distinct values k and corresponding to two samples with the same
size n; the probability ratio between the EPPFs corresponding to the two compositions
will be denoted by R(n1, . . . nk;n′

1, . . . n
′
k;n, k) := Π(n)

k (n1, . . . , nk)/Π(n)
k (n′

1, . . . , n
′
k). In

Proposition 1 (Section A.3 of the Supplementary Material) we compare the probability
ratio R when Π(n)

k is a Gibbs-type EPPF (3) and when it equals the EPPF of a con-
taminated Gibbs-type prior (5). Proposition 1 of the Supplementary Material clarifies
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that if the two compositions have the same number of singletons, the ratio is the same
for the contaminated and non-contaminated model. On the other side, if the number of
singletons out of the composition (n1, . . . , nk) is bigger w.r.t. the number of singletons
out of (n′

1, . . . , n
′
k), the relative ratio increases in the contaminated model. Thus, in rel-

ative terms and given the number k of distinct values, the contaminated Gibbs model
modifies the probabilities of compositions only when a different number of singletons is
involved, favouring compositions with a higher number of these elements.

For computational convenience, we can equivalently describe the EPPF (5) intro-
ducing a set of suitable latent variables on an augmented probability space. Indeed, we
can denote by J1, . . . , Jn Bernoulli random variables, where the generic Ji indicates if
the ith observation is generated from the contaminant measure P0 (Ji = 0), or from the
a.s. discrete component q̃ (Ji = 1). Thus, the introduction of latent elements J1, . . . , Jn
leads us to deal with the following augmented model

Xi|p̃, Ji iid∼ Jiq̃ + (1 − Ji)P0

Ji
ind∼ Bern(β),

(6)

from which we may recover the marginal model by integrating (6) with respect to Ji.
Furthermore, Ji = 1 in (6) if the corresponding observation Xi has been recorded at
least twice in the sample: indeed if an observation Xi is generated from P0, it does not
appear again in the sample with probability 1. Thus, the non-degenerate Jis are those
values referring to singletons out of the sample X1:n. Without loss of generality we can
assume that these singletons are the first m1 observations X1, . . . , Xm1 . Based upon
this augmentation, the random variable M̄m1 in (5) equals

∑m1
i=1(1 − Ji) which repre-

sents the number of structural singletons and it could be of potential interest in many
application areas, as discussed in Section 7. It is worth mentioning that we can perform
inference on M̄m1 by introducing the latent variables J1, . . . , Jn in the computational
strategy, used to face posterior inference. The goal of inferring the value of M̄m1 can be
achieved by providing a point estimate of the subset of observations associated with the
contaminant measure using a decisional strategy based on the variation of information
loss function (Wade and Ghahramani, 2018; Rastelli and Friel, 2018). We now describe
the predictive distribution of the next observation Xn+1, conditionally given X1:n and
the latent variables J1:m1 = (J1, . . . , Jm1).
Proposition 2. Let p̃ be a contaminated Gibbs-type prior as in (4), with P0 and Q0

two diffuse probability measures on (X,X ). Assume that Xi|p̃ iid∼ p̃, as i ≥ 1, and
consider a sample X1:n which displays Kn = k distinct values, denoted as X∗

1 , . . . , X
∗
k ,

with respective frequencies (Nn,1, . . . , Nn,Kn) = (n1, . . . , nk), and the first m1 values
X∗

1 , . . . , X
∗
m1

are singletons. Then

P(Xn+1 ∈ dx∗|X1:n, J1:m1) = (1 − β)P0(dx∗) + β
Vn−M̄m1+1,k−M̄m1+1

Vn−M̄m1 ,k−M̄m1

Q0(dx∗)

+ β
Vn−M̄m1+1,k−M̄m1

Vn−M̄m1 ,k−M̄m1

(
m1∑
i=1

Ji(1 − σ)δX∗
i
(dx∗) +

k∑
i=m1+1

(ni − σ)δX∗
i
(dx∗)

)
,

(7)

where M̄m1 =
∑m1

i=1(1 − Ji) represents the latent number of structural singletons.
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From the sampling mechanism dictated by the predictive distribution (7), it is ap-
parent that those values sampled from the contaminant measure P0 cannot be observed
twice; moreover, at each sampling step, the probability of sampling a contaminated ob-
servation equals 1 − β and does not depend on n. Note also that the sample without
the M̄m1 structural singletons is characterized by the usual predictive mechanism of
Gibbs-type priors. Finally, it is worth mentioning that the prediction rule has a nice in-
terpretation in terms of a modified Chinese restaurant metaphor. Consider a restaurant
with two rooms, one for social people and one for loners. The first customer arrives and
chooses a table either in the social room with probability β or in the loners’ room with
probability (1−β), the customer also chooses a dish which is shared by all the customers
that will join the same table. The nth customer arrives and first selects either the social
room with probability β or the loners’ room with probability (1 − β). In the former
case the customer can either sits at a new table or at an occupied table according to
the traditional Chinese restaurant metaphor, while in the latter case the customer sits
alone at a new table eating a new dish.

If we further assume that P0 = Q0, which corresponds to a proper species sampling
model, we can derive an explicit form of the predictive distribution integrating over
J1:m1 as shown in the following result.

Proposition 3. Under the setting of Proposition 2, with P0 = Q0, we have

P(Xn+1 ∈ dx∗|X1:n) =
(

(1 − β) + β
EM̄m1

[
Vn−M̄m1+1,k−M̄m1+1

]
EM̄m1

[
Vn−M̄m1 ,k−M̄m1

]
)
P0(dx∗)

+ 1
m1

m1∑
i=1

β(1 − σ)
EM̄m1

[
(m1 − M̄m1)Vn−M̄m1+1,k−M̄m1

]
EM̄m1

[
Vn−M̄m1 ,k−M̄m1

] δX∗
i
(dx∗) (8)

+
k∑

i=m1+1
β(ni − σ)

EM̄m1

[
Vn−M̄m1+1,k−M̄m1

]
EM̄m1

[
Vn−M̄m1 ,k−M̄m1

] δX∗
i
(dx∗),

where M̄m1 ∼ Binom(m1, 1 − β).

We refer to Section A.5 of the Supplementary Material for a proof of Proposition 3.
The predictive distribution (8) clearly shows that the probability that Xn+1 does not
belong to {X∗

1 , . . . , X
∗
k} depends on the initial sample through the sample size n, the

number of distinct values k and the number of singletons m1. This is a remarkable
addition w.r.t. the Gibbs-type family, in which such a probability does not depend on
m1 (Bacallado et al., 2017). Moreover the probability that Xn+1 equals a previously ob-
served value X∗

i , with i = 1, . . . , k, not only depends on n, ni and k, as in the Gibbs-type
framework, but also on m1. As a consequence contaminated models allow to enrich the
predictive structure of an exchangeable model, though the inclusion of the additional
sampling information on the number of singletons out of the observable sample, but they
maintain the analytic tractability that characterizes Gibbs-type priors. In Section A.6
we study the re-sampling mechanism induced by contaminated Gibbs-type prior in com-
parison with standard Gibbs-type priors. More precisely we show that the contaminant
measure mainly acts on singletons by decreasing their re-sampling probabilities w.r.t.
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observations with higher frequencies. On the other side, for observations with frequency
larger than one, we preserve the same reinforcement as the discrete term of the model,
and the parameter σ exhibits the same interpretation as in the Gibbs-type case.

We conclude this section with some considerations on distributional properties of
the number of clusters with a given frequency in a sample of size n: this helps us to
better understand the advantage of contaminated Gibbs-type priors. To fix the notation,
we consider a sample X1:n from a contaminated Gibbs-type prior, and we denote by
Mn,r the random number of elements observed r times out of the sample. In the sequel,
if V is a statistic depending on the sample X1:n, we write V (β) to make explicit the
dependence on the parameter β of the contaminated prior (4). The following proposition
clarifies the effect of the contaminant component with respect to the Gibbs-type model
in terms of stochastic dominance and asymptotic properties.
Proposition 4. If β1 < β2, then Kn(β1) (resp. Mn,1(β1)) stochastically dominates
Kn(β2) (resp. Mn,1(β2)). Moreover, as n → +∞, we have

Kn

n

a.s.→ 1 − β,
Mn,1

n

a.s.→ 1 − β and Mn,r

nσ

a.s.→ σ(1 − σ)r−1

r! Sσβ
σ,

where Sσ denotes the σ-diversity random variable (Pitman, 2006).

The first part of Proposition 4 is a result of first order stochastic dominance and
it clarifies the effect of the contaminant measure in the model (4). As β decreases,
the number of distinct values and the number of singletons out of X1:n increases. By
noticing that the case β = 1 corresponds to a Gibbs-type prior, it is now apparent
that our model has the advantage to increase (in mean) the number of distinct values
and the number of singletons: the smaller beta, the higher E

[
Kn(β)

]
and E

[
Mn,1(β)

]
.

The second part of Proposition 4 tells us that the number of distinct values Kn and
the number of unique values scale linearly with n: this is a remarkable difference with
respect to Gibbs-type priors. Indeed, as n → +∞, for Gibbs-type priors both Kn and
Mn,1 grow as nσ (Pitman, 2006). This linear behavior may be a realistic assumption in
some applications, such as the number of mutation in genome sequencing with a constant
rate of mutations or the number of outliers (but further examples will be discussed in
Section 7). Also, the asymptotic behavior of Mn,r remains unchanged with respect to
Gibbs-type priors, apart for the presence of the factor βσ. This asymptotic behavior
clarifies the role of the contaminant measure P0 in (4), which produces an inflation of
the number of singletons, and consequentially of the number of unique elements, but it
is not acting on higher frequencies values.

4 The contaminated Pitman-Yor process case
We now focus on a noteworthy example: the contaminated Pitman-Yor process. We
specialize all the results of Section 3 for this choice and we detail its peculiar features.
The contaminated Pitman-Yor process can be recovered by selecting q̃ in (4) to be a
Pitman-Yor process. In such a case we recall that

Vn,k =
∏k−1

i=1 (ϑ + iσ)
(ϑ + 1)n−1

, (9)



F. Camerlenghi, R. Corradin, and A. Ongaro 11

with σ ∈ [0, 1) and ϑ > −σ. In particular, by setting σ = 0 we recover the Dirichlet
process. We may find an explicit expression for the EPPF starting from (5) and by
substituting the weights Vn,ks with the expression in (9). Thus, we get

Π(n)
k (n1, . . . , nk) =

k∏
i=1

(1 − σ)ni−1

m1∑
m̄1=0

(
m1

m̄1

)
βn−m̄1(1 − β)m̄1

σk−m̄1(ϑ/σ)k−m̄1

(ϑ)n−m̄1

. (10)

See Section B.1 of the Supplementary Material for details. The expression of the EPPF
(10) plays a central role to carry out posterior inference in applications, indeed all the
algorithms we have developed (see Section D of the Supplementary Material) are based
on this expression.

We can further derive an explicit form of the predictive distribution (7) for the
contaminated Pitman-Yor model, conditionally on the latent variables:

P(Xn+1 ∈ dx|X1:n, J1:m1) = (1 − β)P0(dx) + β
ϑ + (k − M̄m1)σ
ϑ + n− M̄m1

Q0(dx)

+
m1∑
i=1

Jiβ
1 − σ

ϑ + n− M̄m1

δX∗
i
(dx) +

k∑
i=m1+1

β
ni − σ

ϑ + n− M̄m1

δX∗
i
(dx).

(11)

An important appealing property of the predictive distribution, when the latent vari-
ables are integrated out, is that the probability of sampling a new value has monotone
behavior as a function of the number of distinct values m1. Such a relation results in a
richer predictive structure w.r.t. the Pitman-Yor case, where m1 does not appear in the
probability of sampling a new value. See Section B.2 of the Supplementary Material for
a detailed proof. We only mention that the dependence on m1 is always increasing in
the Dirichlet process case (σ = 0), whereas it is always decreasing in the stable process
one (ϑ = 0).

4.1 Pólya urn representation

From the predictive distribution (11) we can describe the sampling structure of a con-
taminated Pitman-Yor process in terms of a generalization of the urn scheme by Zabell
(1997), defining a strip-and-solid generalized Pólya urn. To do this, we now assume that
the prior distribution for the parameter β is a beta with parameters (ϑ, α). Thus, it is
easy to check that the distribution of β, conditionally on X1:n, J1:m1 is again a beta with
parameters (ϑ+ n− M̄m1 , α+ M̄m1), as one can realize from the augmented version of
the EPPF (10) with the inclusion of the latent element M̄m1 . By integrating (11) with
respect to the conditional distribution of β, we obtain

P(Xn+1 ∈ dx|X1:n, J1:m1) = M̄m1 + α

α + ϑ + n
P0(dx) + ϑ + (k − M̄m1)σ

α + ϑ + n
Q0(dx)

+
m1∑
i=1

Ji
1 − σ

ϑ + α + n
δX∗

i
(dx) +

k∑
i=m1+1

ni − σ

ϑ + α + n
δX∗

i
(dx).

(12)
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The predictive distribution (12) can be now described through a Pólya-Eggenberger urn
scheme (Eggenberger and Pólya, 1923). The main difference from usual urn schemes is
that here we assume the urn is composed by two types of balls: strip and solid balls,
where strip balls correspond to elements associated with the contaminant measure while
solid balls can be interpreted as elements associated with the discrete term of the model.
Initially the urn is composed by a weight α of strip colored balls and a weight ϑ of black
solid balls. We want to sample an exchangeable sequence from the urn in such a way
that the updating rule is (12), and the balls are sampled proportionally to their weight.
At the first sampling step, if a strip colored ball is drawn from the urn, then we return
the ball in the urn with an additional strip colored ball of a new color. On the other side
if we draw a black solid ball, then we return a black ball in the urn with an additional
weight σ and a solid ball of a new color with weight 1− σ. At the generic ith step, one
can sample a strip ball of an arbitrary color, a black solid ball or a colored solid ball.
Thus, the updating mechanism of the urn works as follows: i) if we sample a strip ball,
we return the strip ball in the urn with another strip ball of a new color having unitary
weight; ii) if we sample a black solid ball, we return the solid ball in the urn with a new
black solid ball of weight σ and a solid ball of a new color having weight 1−σ; iii) if we
sample a colored solid ball, we return the ball in the urn with an additional new solid
ball of the same color having weight 1.

We finally underline that, by introducing a suitable sequence of random variables
J1, J2, . . . , where the generic Ji = 1 if the ith sampled ball is solid, and Ji = 0 otherwise,
as in the standard theory of Pólya urn schemes we have

lim
n→∞

1
n

n∑
i=1

Ji = Z with Z ∼ Beta(ϑ, α), (13)

where the limit has to be intended in the almost sure sense. Note that if we initialize the
urn without strip balls, we recover the urn of Zabell (1997), and the limiting distribution
in (13) degenerates to a point mass at 1. On the other side, if we initialize the urn
without solid ball, the urn is producing a sequence of strip balls of different colors, and
the limiting distribution in (13) degenerates to a point mass 0.

4.2 Probabilistic investigation of the random partition

We conclude this section with a probabilistic investigation of the random partition
induced by a contaminated Pitman-Yor process, both a priori and a posteriori. All the
details and additional formulas are deferred to the Supplementary Material. First, we
evaluate the expected value of Mn,r and Kn. In particular one obtains:

E[Mn,1] = n(1 − β) + nβE
[
(βB1 + (1 − β))n−1],

E[Mn,r] = (1 − σ)r−1

(ϑ + 1)r−1

(
n

r

)
βrE

[
(Brβ + 1 − β)n−r

]
, if r ≥ 2,

E[Kn] = ϑ

σ
E
[
(B1β + 1 − β)n

]
+ nβ

σ
E
[
B1(B1β + 1 − β)n−1]− ϑ

σ
+ n(1 − β),
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Figure 1: Curves of E[Kn], E[Mn,1] and E[Mn,2] as n increases, for the contaminated
Pitman-Yor model with β = 0.9 (filled line with circles), the contaminated Pitman-Yor
model with β = 0.95 (dashed line with triangles), and the Pitman-Yor model (dashed
line with squares). The parameters are ϑ = 100 and σ = 0.2.

where Br is a beta random variable with parameters (ϑ + σ, r − σ), as r ≥ 1. See
Section B.3 of the Supplementary Material for further details. In Figure 1, we compare
the behavior of the expected values of the statistics Kn, Mn,1 and Mn,2 in the Pitman-
Yor case with the same quantities for the contaminated model. It is apparent that for
the latter model the two curves of E[Kn] and E[Mn,1] grow faster as function of n, with
respect to the Pitman-Yor model. We finally underline that, resorting to the results by
Favaro et al. (2013), one may face prediction for a large number of statistics arising
in species sampling models. Indeed, in Section B.3 of the Supplementary Material, we
evaluated the posterior expected value of the following meaningful statistics: i) K

(n)
m ,

which denotes the number of distinct observations out a future sample Xn+1:n+m =
(Xn+1, . . . , Xn+m) not yet observed in the initial sample X1:n; ii) N

(n)
m,r, which denotes

the number of new and distinct observations recorded with frequency r out of the
additional sample Xn+1:n+m, hitherto unobserved in the initial sample of size n. All
these posterior expected values display closed form expressions (see Section B.3 for
details), which depend not only on n and k, as for all the class of Gibbs-type priors
(as a consequence of the characterizations by Bacallado et al. (2017)), but also on
the number of singletons m1. Thus it is now apparent how the contaminated model
improves the flexibility of the Pitman-Yor process with the inclusion of the additional
sampling information on m1. We refer to Section C of the Supplementary Material for
an illustration of the predictive properties of the contaminated Pitman-Yor process,
compared to a Pitman-Yor process without contamination.

5 Illustrations
In this section we illustrate the use of the contaminated Pitman-Yor process through a
set of simulation studies and on a real dataset, exhibiting a high number of observations
with frequency one. Posterior inference for the urn scheme induced by a contaminated
Pitman-Yor process can be done exploiting the representation of the EPPF provided
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Posterior estimates
Data Model Data parameters ϑ̂ σ̂ β̂
DP cPY (ϑ = 100) 97.33 0.00 1.0
DP PY (ϑ = 100) 98.06 0.00 -
DP DP (ϑ = 100) 99.82 - -
PY cPY (ϑ = 100, σ = 0.2) 107.31 0.18 1.0
PY PY (ϑ = 100, σ = 0.2) 101.57 0.20 -
PY DP (ϑ = 100, σ = 0.2) 240.48 - -
cPY cPY (ϑ = 100, σ = 0.6, β = 0.9) 100.60 0.60 0.9
cPY PY (ϑ = 100, σ = 0.6, β = 0.9) 28.35 0.77 -
cPY DP (ϑ = 100, σ = 0.6, β = 0.9) 4510.80 - -
cZIPF cPY (ζ = 1000, α = 0.25, β = 0.9) 233.64 0.00 0.9
cZIPF PY (ζ = 1000, α = 0.25, β = 0.9) 6.95 0.75 -
cZIPF DP (ζ = 1000, α = 0.25, β = 0.9) 1766.37 - -

Table 1: Summaries of the simulation study. First column: data generating process.
Second column: model used to analyze the data. Third column: parameters of the data
generating process. Fourth to sixth columns: posterior mean of the main parameters of
the models. The results are averaged over 100 replications.

in (10), as described in Section D of the Supplementary Material.

5.1 Simulation studies

We investigate the use of contaminated models in discrete scenarios, where the obser-
vations are simulated from the urn scheme induced by the Dirichlet process (DP), the
Pitman-Yor (PY) Process, the contaminated Pitman-Yor (cPY) process of Section 4
and the contaminated Zipf (cZIPF) distribution with ζ species (see Section E of the
Supplementary Material). The true parameters for each model are selected as follows:
i) ϑ = 100 for the Dirichlet process; ii) ϑ = 100 and σ = 0.2 for the Pitman-Yor pro-
cess; iii) ϑ = 100, σ = 0.6 and β = 0.9 for the contaminated Pitman-Yor process; iv)
ζ = 1000, α = 0.25 and β = 0.9 for the contaminated Zipf case. For each modelling
choice, we have generated a sample of size n = 50 000. We have then estimated the
model parameters using three different prior specifications: the urn scheme induced by
a contaminated Pitman-Yor, by a Pitman-Yor and by a Dirichlet process. The posterior
estimates are reported in Table 1, averaged over 100 replications. We can appreciate how
the Dirichlet model is an adequate choice when the reinforcement of the data generating
process is also driven by a Dirichlet process. However, when the true generating process
is the urn scheme associated to a Pitman-Yor, a contaminated Pitman-Yor or a contam-
inated Zipf model, the Dirichlet model is not flexible enough to capture the behavior
of the data. When the data generating process is not contaminated, the Pitman-Yor
model provides good posterior estimates of the parameters, but when we inflate the
number of singletons, the Pitman-Yor model overestimates the discount parameter σ.
By recalling that the ordered pjs in (1) are asymptotically equivalent to Zj−1/σ for a
positive random variable Z as j → +∞ (Mano, 2018, Chapter 2), the overestimation
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of σ is probably due to fact that the Pitman-Yor tries to capture the singletons by
making heavier the tail of the pjs. Finally, we can appreciate how the contaminated
Pitman-Yor model provides reasonable posterior estimates in all the scenarios where it
is covering the data generating process, but it is also providing good estimates of β in
the contaminated Zipf case.

Under the same scenarios as above, we perform predictive inference, in order to
do this we consider a sample (X1, . . . , Xn) of size n = 50 000 and we try to estimate
different statistics which depend on an additional unobserved sample of size m = 25 000.
For a statistic V

(n)
m depending on both the two samples, we define the prediction error

as the square root of the mean squared error, i.e.√
E[(V (n)

m − V̂
(n)
m )2|X1, . . . , Xn],

where V̂
(n)
m represents the Bayes estimator under a squared loss function, i.e., the pos-

terior mean. Such a prediction error, in practice, may be estimated by a Monte Carlo
integration over replicates of additional samples generated from the true model. For
each replicate, we obtained an estimate of the true value V

(n)
m by sampling 1 000 dis-

tinct additional samples of size m. Table 2 shows the estimated prediction errors for
three predictive quantities calculated over the replicates, namely: the number of new
distinct observations with frequency one out of the observed sample N

(n)
m,1; the number

of new distinct observations with frequency two N
(n)
m,2; the number of new distinct obser-

vations K(n)
m detected in an additional sample of size m. Note that the Bayes estimators

of these statistics, particularly relevant in species sampling problems, are available in
closed form (see Section B of the Supplementary Material). From the results reported
in Table 2, it is apparent that the contaminated Pitman-Yor model produces smaller
or comparable prediction errors, with respect to the ones of the urn scheme induced by
a Dirichlet process for all the scenarios considered in the study. Moreover the perfor-
mance of the contaminated Pitman-Yor model is always better or similar to the one of
the Pitman-Yor model. In particular, when the data generating process has a contam-
inant component, predictive inference based on the contaminated Pitman-Yor model
outperforms the competitors, for both N

(n)
m,1 and K

(n)
m .

5.2 The North America Ranidae dataset
As a real data example, we consider a set of species detection data, from the Global
Biodiversity Information Facility project (GBIF.org, 2021), where the inclusion of ad-
ditional information in the predictive structure of the model plays a crucial role. The
project is an extensive database consisting in record of species found across the world,
where for each individual is reported the taxonomy, location and possibly other relevant
information. Our sample consists of n = 131 204 observations belonging to k = 619 dis-
tinct species of the Ranidae family observed in North America, and identified by their
scientific name. Among the k = 619 species, m1 = 296 species were observed only once
in the sample, creating a possible inflation of the number of elements with frequency one.
Such inflation might be caused by miss reported scientific name of the observed animals.
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Prediction errors
Data Model Data parameters N

(n)
m,1 N

(n)
m,2 K

(n)
m

DP cPY (ϑ = 100) 61.70 44.49 508.78
DP PY (ϑ = 100) 66.08 44.32 513.33
DP DP (ϑ = 100) 66.81 44.42 514.16
PY cPY (ϑ = 100, σ = 0.2) 169.35 103.83 857.85
PY PY (ϑ = 100, σ = 0.2) 176.17 103.01 863.74
PY DP (ϑ = 100, σ = 0.2) 225.06 107.04 917.19
cPY cPY (ϑ = 100, σ = 0.6, β = 0.9) 197.91 309.45 1437.38
cPY PY (ϑ = 100, σ = 0.6, β = 0.9) 344.55 303.39 1541.89
cPY DP (ϑ = 100, σ = 0.6, β = 0.9) 2922.29 271.95 4014.26
cZIPF cPY (ζ = 1000, α = 0.25, β = 0.9) 208.98 12.88 678.00
cZIPF PY (ζ = 1000, α = 0.25, β = 0.9) 219.38 85.11 1019.58
cZIPF DP (ζ = 1000, α = 0.25, β = 0.9) 1674.75 93.67 2453.99

Table 2: Prediction errors of the simulation study. First column: data generating process.
Second column: model used to analyze the data. Third column: parameters of the data
generating process. Fourth to sixth columns: prediction errors for N (n)

m,1, N
(n)
m,2 and K

(n)
m .

The results are averaged over 100 replications.

We aim to investigate the benefit of including a contaminant measure in the prior model
specification by comparing posterior inference when we use the urn scheme induced by
a contaminated and a pure Pitman-Yor process. We choose non-informative prior spec-
ifications for the parameters, namely ϑ ∼ Gamma(2, 0.02) and σ, β ∼ Unif(0, 1). We
carried out posterior inference by exploiting Algorithm 1 described in Section D of the
Supplementary Material, and similarly for the standard model. Refer to Section G for
diagnostic summaries and algorithmic details.

Figure 2 clarifies how the presence of a large number of species observed only once
leverages the estimation of the parameters in the Pitman-Yor model, while the use
of a contamination component helps to obtain a much more suitable modeling of the
data. Indeed, in the latter case, some of the observations with frequency 1 are assigned
to the diffuse component. As consequence of the excessive number of singletons, the
estimated posterior distribution of the frequency spectrum is remarkably different on
small values of the support, as emphasized in the left panel of Figure 2. Furthermore,
both the probability of sampling a new species and the posterior distribution of σ in
the Pitman-Yor case are translated with respect to the contaminated model. Additional
posteriors summaries are reported in the Supplementary Material.

We finally consider the task of predicting the number of new species and the number
of new species observed with a given frequency in a follow-up sample, given an initial
training sample. We have retained the 80% of the n data for purposes of training, and
the remaining m data points are used as a test set. We focused on estimation of: i)
K

(n−m)
m , the distinct number of new species in a follow-up sample hitherto unobserved

in the initial training sample of size n − m; ii) N
(n−m)
m,1 , the number of new species

observed with frequency one in an additional sample of size m, hitherto unobserved in
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Figure 2: Posterior summaries for contaminated Pitman-Yor model (green) and Pitman-
Yor model (orange). Left panel: frequency spectrum of the first non-empty frequencies,
with the posterior expectation of the discrete part of the two models, shaded bands
represent 90% posterior credible intervals; the dashed line corresponds to the inflation
of the diffuse component. Right-top panel: posterior probability of sampling a new
species. Right-bottom: posterior distribution of σ.

the training dataset. The posterior expectations of K(n−m)
m and N

(n−m)
m,1 are evaluated

using the corresponding closed-form expressions, reported in Equations (S25) and (S20)
of the Supplementary Material respectively, for the contaminated Pitman-Yor model.
The predicted values are compared with the true ones, obtained by extrapolating to
the remaining m data. We repeated the experiment 1 000 times in order to asses vari-
ability. Figure 3 shows the cross-validated distributions of the posterior expectation of
K

(n−m)
m and N

(n−m)
m,1 when we exploit the contaminated Pitman-Yor model in compar-

ison with the predicted values obtained by using the Pitman-Yor model. The average
true value is represented with a dashed black line. From Figure 3, it is apparent how
the contaminant measure in the model specification can be crucial also for its predic-
tive properties. Indeed the cross-validated distributions of the posterior expectations of
N

(n−m)
m,1 and K

(n−m)
m for the contaminated model, conditionally on an observed sample,

shrink to the corresponding average of the observed values (black dashed line), while
the distributions for the model without a contaminant term provides a systematic error
in prediction. Such behavior is also confirmed by the prediction errors, as shown in
Table 3. From Table 3 we observe that the inclusion of a contaminant measure in the
model specification is helpful to decrease the prediction errors for both N

(n−m)
m,1 and

K
(n−m)
m . Note that the posterior expected values of N

(n−m)
m,1 and K

(n−m)
m under the

contaminated Pitman-Yor model, found in Section B of the Supplementary Material,
depend on the additional sampling information on the number of distinct values with
frequency one out of the observed sample. This is a remarkable difference with respect
to the posterior expectations of the same quantities under a Pitman-Yor prior, which do
not depend on this sampling information. Thus our results underline how the use of this
additional sampling information is crucial to decrease the prediction errors. We refer to
Section G.1 of the Supplementary Material for further details on the cross-validation
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Figure 3: Cross-validated distributions of the posterior expectation of K
(n−m)
m and

N
(n−m)
m,1 , for the contaminated Pitman-Yor model (green) and the Pitman-Yor model

(orange). The black dashed lines correspond to the true values.

study. Finally we stress that this example highlights the strong lack of robustness of the
pure Pitman-Yor model. Indeed, drastically erroneous inferential conclusions are caused
by relatively few singletons (m1 = 296) compared to the total number of observations
(n = 131 204).

Prediction errors
Model N

(n−m)
m,1 K

(n−m)
m

cPY 8.61 8.69
PY 20.58 19.25

Table 3: Prediction errors of N (n−m)
m,1 and K

(n−m)
m under the contaminated Pitman-Yor

(cPY) and Pitman-Yor model (PY). The results are averaged over 1 000 cross-validated
samples.

6 Mixtures of contaminated Gibbs-type priors
Contaminated Gibbs-type priors are not restricted only to species sampling models,
but they can be also convoluted with a kernel function to build contaminated mixture
models. Such a modelling strategy can be exploited to face simultaneously model based
clustering and density estimation in presence of outliers, by inflating the number of
structural singletons through the contaminant measure. As we will show in Section 6.2,
the inclusion of a contaminant measure has the effect to smooth the density estimates,
rather than producing spikes in correspondence of outliers. Since there is no gold stan-
dard definition of outliers in presence of clusters, here the term outlier generically refers
to an observation which markedly deviates from the rest of the data/clusters. As a
consequence we recognize an observation as an outlier if it belongs to a cluster with
frequency one.

Mixture models in Bayesian nonparametrics were early introduced by Lo (1984) for
the Dirichlet process mixtures of univariate Gaussian distribution case, and later ex-
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tended in several directions. Remarkable examples that have been studied with different
kernel functions are the Dirichlet process mixture of multivariate Gaussian distributions
(Müller et al., 1996) for multivariate continuous data, the Dirichlet process mixture of
Poisson distributions (Krnjajić et al., 2008) for counting data, and the Dirichlet pro-
cess mixture of Gaussian processes (Bigelow and Dunson, 2009) for functional data.
The seminal work of Lo (1984) has been also extended by considering mixing distri-
butions different from the Dirichlet process, such as the Pitman-Yor process (Ishwaran
and James, 2001), the normalized generalized gamma process (Lijoi et al., 2007a), the
normalized inverse-Gaussian process (Lijoi et al., 2005), and more in general Gibbs-type
priors (e.g. De Blasi et al., 2015). See also Frühwirth-Schnatter et al. (2019) for an ex-
tensive review on mixture models. The standard general framework can be described as
follows. It is assumed that observations are Y-valued random elements generated from
a random density f̃(y) =

∫
Ξ K(y; ξ)p(dξ), where K(y; ξ) : Y × Ξ → R+ is a kernel and

Y,Ξ are general Polish spaces. Furthermore, the mixing measure p is usually assumed
to belong to a specific class of discrete random probability measures. If one denotes by
ξ1, . . . , ξn the latent variables corresponding to a sample of size n from p, the standard
mixture model may be expressed in the following hierarchical form

Yi|ξi ind∼ K( · ; ξi), ξi|p iid∼ p (14)

for any i = 1, . . . , n. We remark that the model (14) describes a general formulation of a
mixture model. Nowadays it is an established opinion in the applied statistics framework
that mixture models are flexible tools for density estimation and model-based clustering
analysis (Frühwirth-Schnatter et al., 2019).

Here we propose to extend such framework by choosing as mixing measure p the
contaminated Gibbs-type prior p̃. Thanks to the definition of p̃, which is a linear convex
combination of two elements, we can decompose the mixture in two terms, a first term
corresponding to the discrete part of p̃ and a second term which corresponds to the
diffuse component,

f̃(y) = β

∞∑
j=1

pjK(y;Zj) + (1 − β)
∫

Ξ
K(y; ξ)P0(dξ) (15)

where the last equality holds in force of the almost sure discreteness of q̃ =
∑

j≥1 pjδZj .
The first term on the r.h.s. of Equation (15) describes the standard random mixture
components of the model, while the second term corresponds to a different probabilis-
tic mechanism contaminating the mixture, typically over-disperse, which is particularly
suited to model outliers in the data. Outlier detection is a crucial problem in Statis-
tics and similar convex constructions are available also in classical setting, see, e.g.,
Bouveyron et al. (2019) for an account. In the Bayesian framework, some contributions
are available and rely on the use of traditional Dirichlet process. Quintana and Igle-
sias (2003); Quintana (2006) focus on product partition models, and they develop a
decision-theoretic approach that allows selecting a partition with the purpose of outlier
detection in regression problems. Shotwell and Slate (2011) identify an outlier detection
criterion based on the Bayes factor, where they compare a partition containing outliers
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against a partition with fewer or no outliers. As a remarkable addition with respect to
the current literature, our prior process contemplates a specific component in the model,
i.e. the contaminant measure P0, which has two effects in the model specification: i) it
accounts for the presence of outliers, which could follow a different generating process
with respect to the other observations; ii) in presence of these outliers, the contaminant
component allows to inflate the tails of the mixture model with respect to a model
with only local components, thus producing smoother density estimates. In particu-
lar, the contaminated Pitman-Yor model accommodates for outliers by increasing the
weight of the over-disperse contaminant component, instead of generating specific local
and peaked components for them, which is a typical behavior observed for Pitman-Yor
mixture models.

We also point out that the choice of P0 and Q0 is a fundamental aspect in the mixture
model case. By allowing Q0 �= P0, further flexibility is added to the model. In this case
the contaminant measure P0 can be determined according to the specific information
related to the problem under study. If our prior opinion on contaminated observations
is restricted to a particular subset of the sample space Y, we can shrink P0 to induce a
relevant mass on it, thereby forcing the model to expect more structural singletons on a
specific part of the support. As an example, we could restrict the support of P0 on the
basis of an observed sample. However, such a specification may turn out detrimental, as
the truncated support of P0 might be unable to account for contaminant observations in
an additional sample. On the other hand, in absence of specific information, we may aim
to model possible contaminated observations over the entire sample space. In this case,
we can specify P0 to produce an over-dispersed predictive distribution (possibly with
heavy tails) with respect to the predictive distribution induced by Q0. Furthermore,
the measure Q0 can be elicitated by resorting to an empirical Bayes initialization. See,
e.g., Section 6.2. Finally, any prior knowledge on the expected rate of contaminant
observations, and more generally on their distribution, can be used to specify the prior
distribution on β, otherwise it can be elicitated in a vague manner.

6.1 Posterior inference for mixtures of contaminated Pitman-Yor
process

Thanks to the predictive distribution (12), posterior inference in mixture models can be
performed by exploiting an augmented marginal sampling strategy, in the spirit of Esco-
bar (1988); Escobar and West (1995). We denote by S1, . . . , Sn the variables describing
the latent group allocations in the mixture, with Si = j if the ith observation belongs to
the jth group of the mixture, with the proviso Si = 0 if the ith observation comes from
the diffuse component. Further, we denote by A1:n := (A1, . . . , An) a generic vector of
n elements, where A(i) is denoting the vector A1:n with the ith element removed. Here
we provide the algorithm to face posterior inference by sampling R realizations from
an MCMC scheme. To clarify the notation used in Algorithm 1, the quantities reported
with a tilde refer to observations allocated to the discrete component of the model.

In Algorithm 1, the acceleration step [2.1] is not mandatory, but it improves the
mixing performances of the algorithm. The integral in the predictive distribution of
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Algorithm 1 Sampling scheme for contaminated Pitman-Yor mixture model.
[0] At time r = 0, set the initial values S

(0)
1:n, ξ(0)

1:n, σ(0), ϑ(0), β(0)

for r = 1, . . . , R do
for i = 1, . . . , n do

[1.1] Update the cluster allocation of the ith element at time r, generating S
(r)
i

from:

P(Si = j | Yi, S(i), ξ(i)) ∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − β)
∫
Ξ K(Yi; ξ)P0(dξ) if j = 0

β
ñj−σ

ϑ+n−m̄1(i)−1K(Yi; ξ̃j) if j=1, . . . , k̃(i)

β
ϑ+k̃(i)σ

ϑ+n−m̄1(i)−1
∫
Ξ K(Yi; ξ)Q0(dξ) if j = k̃(i) + 1

where ξ̃1, . . . , ξ̃k̃(i)
denote the unique values in {ξ�,(i) : S�,(i) �= 0}n−1

�=1 with
frequencies ñ1, . . . , ñk̃(i)

, where ñj =
∑

��=i 1{j}(S�), k̃(i) represents the number
of distinct unique latent parameters associated with the discrete component of
the model, and m̄1(i) =

∑
��=i 1{0}(S�)

Let ñ1, . . . , ñk̃ denote the frequencies of the unique values ξ̃1, . . . , ξ̃k̃ out of {ξi :
Si �= 0}ni=1, with k̃ denoting the number of distinct unique latent parameters of the
discrete component.

for j = 1, . . . , k̃ do
[2.1] Generate ξ̃

(r)
j at time r from the full conditional distribution

L(ξ̃j | Y1:n, S1:n) ∝ Q0(ξ̃j)
∏

{i:Si=j}
K(Yi; ξ̃j);

[3] Generate the updated values of the parameters σ(r), θ(r) and β(r) according to
steps [1-3] of Algorithm 1 in Section D of the Supplementary Material.

step [1] can be easily solved for suitable choices of the kernel function and the measures
P0 and Q0, leading to a closed form expression for the predictive distribution. Otherwise
such integral can be approximated via Monte Carlo methods, in the spirit of Algorithm 8
in Neal (2000). Furthermore, we have tested the capability of the contaminated Pitman-
Yor mixture model with a sampling strategy as in Algorithm 1 to identify outliers by
performing an extensive simulation study in Section F of the Supplementary Material.
From these numerical experiments, one can observe that the pure Pitman-Yor mixture
model fails to detect contaminant observations, while the contaminated Pitman-Yor
mixture model is able to identify such observations. Moreover, when the data are not
contaminated, we have empirically shown that the contaminated Pitman-Yor mixture
model and the pure Pitman-Yor mixture model with P0 �= Q0 have similar performances,
consistently with the specification of P0 and Q0 that we used in the simulation study.
We conclude the present section with an application of the mixture model when the
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mixing measure is a contaminated Pitman-Yor process.

6.2 Analysis of the NGC 2419 data

We consider a set of data composed by n = 139 stars, possibly belonging to the globular
cluster NG 2419 and sharing the same galactic center. The data were early introduced
and studied by Ibata et al. (2011) and early analyzed by Arbel et al. (2021). For each
observation we have measurements of d = 4 different variables: the two-dimensional
projection on the plane of the position of the star (D1, D2), the line of sight veloc-
ity V on a logarithmic scale, and the metallicity of the star [Fe/H] on a logarithmic
scale, which is a measure of the abundance of iron relative to hydrogen. We denote
by Yi = (D1,i, D2,i, Vi, [Fe/H]i) the ith observed vector. A crucial problem for the
astronomical community is to identify which stars belong to the globular cluster, and
which stars are contaminants (or outliers), to properly study the dynamic of a group
of stars. To this aims, we consider a contaminated Pitman-Yor mixture model, speci-
fied with a multivariate Gaussian kernel function K( · ; (μ,Σ)), with expectation μ and
covariance matrix Σ. We further assume a base measure conjugate to the kernel func-
tion, i.e., Q0 ≡ NIW(μ0, κ0, ν0,S0) is a Normal-Inverse-Wishart distribution, where by
NIW(a, b, c,D) we mean that μ | Σ ∼ N(a,Σ/b) and Σ ∼ IW (D, c). We also assume
P0 ≡ NIW(μ1, κ1, ν1,S1). We specify the base measure of the discrete component Q0 by
setting μ0 equal to the sample mean of the data, κ0 = 1, ν0 = d+ 3 = 7, and S0 equals
to the diagonal of the sample variance of the data. We further specify the parameters of
the contaminant measure as follows: μ1 equals the sample mean of the data, κ1 = 0.1,
ν1 = d + 3 = 7, and S1 matches the sample variance of the data, in order to force an
over-disperse contaminant measure with respect to the base measure. We complete the
model specification assuming vague priors for the parameters of the mixing measure,
ϑ ∼ Gamma(2, 0.02) and σ, β ∼ Unif(0, 1). Posterior inference is carried out by using
the sampling scheme described in Section 6.1, see also Section H for diagnostics. We ex-
ploit the decisional approach based on the variation of information loss function (Wade
and Ghahramani, 2018; Rastelli and Friel, 2018) to provide an optimal posterior point
estimate of the latent partition induced by the data. Relying on our outlier definition
(see beginning of Section 6) we recognize an observation as an outlier if it belongs to a
cluster with frequency one, regardless if this is associated with the contaminant measure
or the discrete term of the model.

The results of the point estimate of the latent partition in the data are summa-
rized in Table 4, in comparison with the previous clusters identified by Ibata et al.
(2011). Within the 16 stars identified as contaminants, 4 belongs to the globular cluster
identified by Ibata et al. (2011), 5 stars to the likely globular cluster group, and 7 to
the contaminants. Most of the stars of the main estimated cluster, denoted by A in
Table 4, belong to the globular cluster of Ibata et al. (2011). We have also recovered
two additional clusters: a cluster of stars mainly belonging to the globular cluster in
(Ibata et al., 2011), and a cluster with two contaminant stars. Our findings are coherent
with respect to the previous literature, but they provide a more conservative detection
of the contaminant stars. We can further compare our findings with the latent parti-
tion obtained using a Pitman-Yor mixture model, as described in Section H.1 of the
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CPY partition
Singletons A B C

total 16 115 4 4

Ibata et al. (2011)
globular cluster 118 4 109 3 2
likely globular cluster 12 5 6 1 0
contaminants 9 7 0 0 2

Table 4: Comparison between the partition described in Ibata et al. (2011) and optimal
partition estimated using a contaminated Pitman-Yor mixture model.

Figure 4: Posterior expectation of the random density and optimal partition of the NGC
2419 data. Red lines: mean of the posterior random density with the contaminated
Pitman-Yor mixture model of Gaussian distributions. Black dashed lines: mean of the
posterior random density with the Pitman-Yor mixture model of Gaussian distributions.
The points are colored according to the point estimate of the latent partition of the data
with a contaminated Pitman-Yor mixture model of Gaussian distributions.

Supplementary Material: the optimal latent partition recovered with the contaminated
Pitman-Yor prior is characterized by a larger main globular cluster but also a higher
number of singletons.

Figure 4 shows the point estimate of the latent partition of the data under the
contaminated Pitman-Yor mixture model. The red lines represent the contour lines
of the mean of the posterior density under the contaminated prior, while the contour
lines estimated under the standard Pitman-Yor mixture model correspond to the black
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dashed lines. Note that the inclusion of a diffuse component results in smoothed contour
lines, thus in smoothed density estimates, indeed the contour lines corresponding to
the standard Pitman-Yor mixture model exhibit some peaks in correspondence of the
contaminants. We further compare the mean of the posterior random densities, for both
the contaminated Pitman-Yor mixture model and the Pitman-Yor mixture model, with
a benchmark density f0. This benchmark density corresponds to the kernel density
estimate on the basis of a trimmed version of data, including only the observations
identified as non-contaminants by Ibata et al. (2011). The estimated density f̂n =
E[f̃ | Y1, . . . , Yn] under the two models is then compared with f0 by evaluating the
symmetrised Kullback-Leibler divergence S−KL(f̂n, f0) = KL

(
f̂n | f0

)
+KL

(
f0 | f̂n

)
,

where KL(g | h) =
∫
X
g(x) log

(
g(x)/h(x)

)
dx for the generic densities g, h.

S −KL(f̂n, f0)
cPY versus KDE 0.38
PY versus KDE 0.51

Table 5: Symmetrised Kullback-Leibler divergence for the mean of the posterior random
densities f̂n, for both the contaminated Pitman-Yor mixture model (cPY) and the
Pitman-Yor mixture model (PY), with the kernel density estimate obtained with the
trimmed data (KDE).

Table 5 shows the symmetrised Kullback-Leibler divergence when f̂n is estimated
under the Pitman-Yor and the contaminated Pitman-Yor model. We can appreciate that
the inclusion of a contaminant term in the mixing measure specification is producing a
posterior random density with mean closer to the benchmark density. Such a behavior
is due to the fact that the contaminant measure inflates the tails of the distribution in
presence of outliers, instead of generating specific components for them.

7 Discussion
We introduced a new family of priors outside the Gibbs-type one which are still tractable
from an analytical and computational viewpoint. According to the characterization by
Bacallado et al. (2017), the predictive probability weights of Gibbs-type priors cannot
depend on the number of observations recorded with frequency one Mn,1 in the ini-
tial sample. Our prior choice has the advantage to enrich the predictive structure of
Gibbs-type priors with the inclusion of the additional sampling information on Mn,1,
retaining interpretability of the reinforcement mechanism. Moreover we discussed the
benefits of contaminated Gibbs-type priors in two situations: i) for discrete data in
presence of an excess of ones; ii) in mixture models to account for outliers, showing the
importance of their increased flexibility. In particular, our simulation studies highlight
that a correct modeling of singletons is of paramount importance to prevent undesir-
able inferential conclusions both in terms of prediction of relevant quantities and for
estimating densities or parameters. Nevertheless, the use of contaminated Gibbs-type
priors is not restricted to the scenarios presented in this manuscript, but they can be
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relevant in other applications, where the presence of elements with frequency one is a
key inferential interest.

Firstly, contaminated Gibbs-type priors could be of potential interest in the analysis
of disclosure risk for microdata. Microdata files typically contain two types of categorical
information about individuals: identifying and sensitive information. Before releasing a
dataset, statistical agencies estimate different measures of disclosure risk, which are
typically based on the number of sample records which have a unique combination of
the categorical variables and that are not shared with any element of the entire popu-
lation. See, e.g., Bethlehem et al. (1990a); Skinner and Elliot (2002); Bethlehem et al.
(1990b) for possible definitions and estimators of disclosure indexes. In the disclosure
risk framework, the random variable M̄m1 appearing in our model represents a measure
of disclosure, i.e., the number of records that contain a unique element both in the
sample and in the whole population. Notice that, as mentioned in section 3, the latent
variable M̄m1 can be estimated through a suitable posterior computational strategy.

Language modeling constitutes another application area when one is interested to
estimate the number of hapax legomena in a corpus of documents. An hapax legomena is
indeed a word that occurs only once in the entire production of an author. These unique
words are particularly important since they have been recognized as peculiar usage of
words by specific authors, and they represent an interesting problem to study from
a statistical perspective. See e.g. Baayen (2001) for further details on word frequency
distributions. In such a framework, one may use a contaminated Gibbs-type prior to
estimate the number of hapax legomena on the basis of the latent quantity M̄m1 .

Finally, contaminated Gibbs-type models can be extended in several directions. For
example, they can be exploited to test the presence of contaminated observations in a
set of data by selecting a spike and slab prior (Mitchell and Beauchamp, 1988) for the
parameter β in (4). More precisely one may specify a prior for β which assigns positive
mass to the point β = 1. Another interesting direction of research is the generalization
of contaminated species sampling models to a contaminated version of feature allocation
models (see, e.g., Ghahramani et al., 2007; Broderick et al., 2013). Work on these points
is ongoing.

Supplementary Material
Supplementary material for “Contaminated Gibbs-type priors”
(DOI: 10.1214/22-BA1358SUPP; .pdf). Section A provides all the proofs of the results
presented in the paper. Section B contains results for the contaminated Pitman-Yor
case. Section C describes numerical illustrations on the predictive structure of contami-
nated Gibbs-type priors. The algorithms for the discrete case is presented in Section D.
Details on the contaminated Zipf distribution are deferred to Section E. Section F con-
tains the summaries of the simulation studies for the contaminated Pitman-Yor mixture
model. Sections G and H provide further insights on the North America Ranidae dataset
analysis and the NGC 2419 globular cluster dataset, respectively.

https://doi.org/10.1214/22-BA1358SUPP
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