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Einstein-Maxwell-dilaton theory is an interesting and well-motivated theoretical laboratory to
explore the impact of new fundamental degrees of freedom in the context of testing the no-hair
conjecture, due to the existence of hairy black hole solutions together with the propagation of scalar,
vector and tensor modes. In this paper we compute the quasinormal mode spectrum of static and
slowly rotating black holes for generic values of the dilaton coupling, within a weak electric charge
approximation. Our results suggest that these spacetimes are stable for generic values of the dilaton
coupling and the black hole charge. We also show that while gravitational modes are only weakly
affected by the coupling with the dilaton, the spectrum of electromagnetic modes exhibits a more
pronounced dilaton-dependent breaking of isospectrality between the axial and polar sectors. We
further show that the gravitational quasinormal modes are well approximated by the properties of
unstable null circular geodesics in those spacetimes, while the treatment of electromagnetic and
scalar modes can be simplified by a suitably modified Dudley-Finley scheme for the perturbed
equations.

I. Introduction

With the advent of gravitational-wave (GW) astron-
omy [1–6], we are now in a unique position to test Ein-
stein’s theory of General Relativity (GR) to unprece-
dented levels [7–11]. One of the most striking predictions
of GR is that the unique stationary and asymptotically
flat black hole (BH) solution in vacuum is described by
the Kerr geometry [12–15]. This remarkable fact implies
that, to a very good approximation, all BHs in the Uni-
verse are expected to be uniquely described by their mass
and spin. This result is commonly referred as the “no-
hair hypothesis” [16]. Similar no-hair theorems have been
obtained also in the context of modified gravity, most
notably in some classes of scalar-tensor theories [17, 18].
On the other hand, BHs do have hair in several extended
theories, such as Einstein-dilaton-Gauss-Bonnet gravity,
dynamical Chern-Simons gravity, massive (bi)gravity and
Lorentz violating gravity [7, 18–20].

Testing the validity of the no-hair hypothesis is one
of the most exciting prospects of future GW detec-
tors [11, 16]. When slightly perturbed, BHs relax down
to equilibrium through the emission of GWs described by
a set of exponentially damped sinusoids with specific fre-
quencies and damping times, the so-called quasinormal
modes (QNMs), which dominate the late stages of the
GW signal emitted from a binary BH merger [11, 21]. For
a Kerr BH in GR, the entire QNM spectrum is uniquely
determined by the BH’s spin and mass. Therefore the de-
tection of multiple QNM frequencies from the remnant of
a BH merger would allow us to perform null tests of the
no-hair hypothesis and possibly to detect deviations from
the Kerr geometry [11, 22–27].
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These experimental prospects call for a theoretical ef-
fort to compute the QNMs of BHs in alternative theo-
ries of gravity. This can be done both in a parametrized
theory-agnostic fashion [28, 29] or case by case for specific
examples of modified theories of gravity. Most notably,
QNM frequencies for BHs in theories beyond GR were
computed for spherically symmetric solutions in theo-
ries such as Einstein-Maxwell-dilaton [30, 31] (for a small
subset of the theory), in dynamical Chern-Simons grav-
ity [32], Einstein-dilaton-Gauss-Bonnet gravity [33–35]
and in massive (bi)gravity [36–38]. The extension to spin-
ning BHs, beyond the known QNMs of Kerr BHs in GR,
has been mostly hindered by the lack of known exact an-
alytical solutions in modified theories of gravity and by
the generic difficulty to separate the equations of motion
describing perturbations in those theories when dealing
with axisymmetric spacetimes. The only remarkable ex-
ception to this rule is the Kerr-Newman case in Einstein-
Maxwell theory, for which QNMs have only recently been
computed [39–42]. Due to these difficulties, most of the
estimates for spinning BHs have made use of the con-
nection between the light ring and QNMs [28, 34, 43].
However, this connection is formally valid only in the
eikonal limit and fails to fully describe all the properties
of the QNMs when non-minimal couplings to additional
degrees of freedom are present [31, 32, 34, 35]. In fact, un-
like static perturbations of Schwarzschild and Reissner-
Nordström BHs in GR, which have the remarkable prop-
erty that the axial and polar sectors are isospectral [44],
isospectrality is easily violated in alternative theories of
gravity [31, 32, 34, 35], a feature that is not predicted by
the light ring approximation.

In addition, jointly with the efforts to compute inspiral
waveforms [45–51] and with the recent first numerical
relativity simulations of binary BH mergers in theories
beyond GR [52–55], an accurate knowledge of the QNMs
in those theories is necessary for the long-term prospect
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of building accurate inspiral-merger-ringdown waveform
models in alternative theories of gravity, a missing piece
at our disposal that may be crucial to dig up very small
deviations from GR from the data.

Within this context, in this work we compute the
QNMs for non-spinning and slowly-spinning BH solutions
of Einstein-Maxwell-dilaton (EMD) theory, a theory that
has recently received a lot of interest. This theory is a
good proxy for studies of more generic theories of gravity,
mainly due to the fact that it admits hairy BH solutions
and the presence of scalar and vector modes, in addition
to the tensor (metric) modes. The dynamics of binary
BHs in EMD theories was recently studied both numeri-
cally [55] and in a post-Newtonian expansion [51], while
analytical estimates of the merger properties were given
in [43]. On the other hand, aside from the limiting case
of the Kerr-Newman and Reissner-Nordström solutions,
QNMs in this theory were only computed for static BHs
in a particular subset of the theory [30, 31]. The main
goal of this work is to extend this computation to a much
wider parameter space of EMD.

The action describing EMD that we will consider is
given by [56]

S =

∫
d4x

√
−g

16π

[
R− 2gab∇aΦ∇bΦ− e−2ηΦFabF

ab
]
,

(1)
where Φ is a real scalar field (the dilaton), while Fab =
∂aAb−∂bAa is the Maxwell tensor of the real electromag-
netic (EM) potential Aa (which does not need to coincide
with the photon field of the Standard Model of particle
physics)1. The action depends upon the parameter η,
the dilaton coupling. When η = 0, it reduces to the
Einstein-Maxwell action and the BH solutions reduce to
the Kerr-Newman family. The case η = 1, corresponds
to a low-energy limit of string theory, while η =

√
3 can

be obtained via a four-dimensional compactification of
the five-dimensional Kaluza-Klein theory [56, 57]. In the
following we will not restrict ourselves to any of these
values and instead consider η to be a free parameter of
the theory.

A. Executive summary

For the reader’s convenience, we summarize here the
structure of the paper and our main results.

In Sec. II we introduce the static and slowly rotating
BH solutions of EMD. We quantify the notion of “weak
electric charge” that we will use through this work, in

1The action (1) does not necessarily describe a modified theory
of gravity per se, since the vector and dilaton fields are minimally
coupled to gravity, however one can show that, through a conformal
transformation of the metric, this theory also admits an equivalent
Jordan frame where the dilaton couples non-minimally to gravity
(see e.g. [55]).

terms of the charge-to-mass ratio v = Q/M , with Q
the BH charge and M its mass, showing that the no-
tion breaks down above a given η: for each v, we are
limited in our approximation to a maximum value of η
where we expect our approximation to break down [cf.
Eq. (12)]. We derive the equations of motion (EOM)
describing generic small perturbations of the static BH
solutions. Besides gravitational and EM waves, already
present in ordinary Einstein-Maxwell theory, the dila-
ton induces also the propagation of scalar waves. De-
tails on the derivation are shown in Appendix A, where
we also elucidate some subtleties in the derivation, con-
nected with the weak-charge approximation.

Sec. III is devoted to the computation of the QNMs.
We first compute them analytically using the geodesic
correspondence [58] in Sec. III A, which provides rough
estimates of the leading gravitational modes in the weak
charge limit: in particular, we show that the modes de-
pend very weakly on η, in agreement with the numerical
results of [55]. In Sec. III B we numerically compute the
gravitational, EM and scalar QNMs for static BHs in
EMD, using Leaver’s continued fraction (CF) method.
In doing so, we extend the computation of QNMs in
EMD beyond the particular values η = 0 and η = 1,
the only cases treated generically in the literature so
far [31, 44, 59, 60], and the computation of Ref. [30] that
computed the QNMs for generic η but only for the axial
sector. We explore the multipoles l = 0, 1, 2, 3 without
finding any unstable mode. We confirm that both po-
lar and axial gravitational modes depend only weakly on
η and that they are nearly isospectral, the breaking of
isospectrality (ISO-breaking) being at most of the order
of the percent for v ≈ 0.6. On the other hand, isospec-
trality can be significantly broken for the EM modes. In
particular, we find that the ISO-breaking for EM modes
can reach absolute values of the order of 10%.

To elucidate these results we employ the so-called
Dudley-Finley (DF) approximation in Sec. III C, which is
particularly appropriate when the backreaction of mat-
ter fields on the vacuum geometry is small. In its orig-
inal version, the DF approximation consists in perturb-
ing the dynamical fields independently from each other.
We devise a modified DF scheme adapted to EMD: in
our scheme, one perturbs the metric as an independent
field, but the vector and the dilaton fields are perturbed
together, keeping on their mutual coupling. We find a
good qualitative and quantitative agreement with the
fully coupled results of Sec. III B. Our DF scheme cap-
tures the essential physics behind ISO-breaking in the
EM sector, also providing a simpler way for its estima-
tion.

The DF approximation becomes particularly useful in
Sec. IIID, where we turn our attention to slowly rotat-
ing BHs. Indeed, the EOM for perturbed rotating BHs
are notoriously difficult to deal with, both at the analyt-
ical and at the numerical level. We compute the correc-
tions due to the BH spin to the axial gravitational QNMs
using the full perturbed equations, showing that they
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are consistent with the Kerr-Newman QNMs obtained in
Refs. [39–42] in the limit η = 0. Finally, we resort to the
DF approximation to compute the corrections to the EM
modes both in the axial and in the polar sector, finding
that our previous conclusions on ISO-breaking are left
substantially unchanged.

We use the mostly plus (− + ++) metric convention
and use G = c = 1 units. To facilitate comparison with
our results, we made many of our calculations available
online as Mathematica® notebooks [61].

II. Framework

Our starting point is the EMD action given in Eq. (1).
Varying this action with respect to the different degrees
of freedom leads to the EOM given by

S ≡ ∇a∇aΦ +
η

2
e−2ηΦFabF

ab = 0 , (2a)

Ja ≡ ∇b
(
e−2ηΦF ba

)
= 0 , (2b)

Eab ≡ Gab − TΦ
ab − TFab = 0 , (2c)

where Gab = Rab − gabR/2 is the Einstein tensor. The
scalar and EM stress-energy tensors are respectively

TΦ
ab = 2∇aΦ∇bΦ− (∇Φ)2gab , (3a)

TFab = e−2ηΦ

(
2FacF

c
b −

1

2
F 2gab

)
, (3b)

where we used the shorthand notations (∇Φ)2 =
gab∇aΦ∇bΦ and F 2 = FabF

ab.

A. Black holes in EMD theory

a. Static black holes. Static spherically symmetric
BH solutions were derived in [57, 62]; see also [56]. They
are electrically charged, and the scalar field presents a
secondary hair.2 The line element is specified by

ds2 = −F (r)dt2 +
dr2

F (r)
+ r2G(r)

(
dθ2 + sin2 θdφ2

)
,

(4a)

F (r) =

(
1− R+

r

)(
1− R−

r

)(1−η2)/(1+η2)

, (4b)

G(r) =

(
1− R−

r

)2η2/(1+η2)

. (4c)

2By secondary hair we mean that the scalar hair is not a new
independent charge, but it is a function of the mass M and the
electric charge Q [17, 63].

where R+ and R− are, respectively, the radii of the outer
and inner event horizons:

R+ = M
(

1 +
√

1− (1− η2) v2
)
, (5a)

R− = M

(
1 + η2

1− η2

)(
1−

√
1− (1− η2) v2

)
. (5b)

Here M is the asymptotic mass and v = Q/M is the
electric charge-to-mass ratio. Finally, the scalar field and
the vector potential are given by

Φ =
η

1 + η2
log

(
1− R−

r

)
, Aa dx

a =
Mv

r
dt . (6)

Notice that the EMD action is invariant under the
reparametrization

Aa → e−ηΦ0Aa , Φ→ Φ− Φ0 , (7)

where Φ0 is a constant. This implies that the scalar field
is specified up to a constant Φ0 and the electric charge
up to a factor e−ηΦ0 . For simplicity, we choose Φ0 so
that Φ = 0 at spatial infinity.

When η 6= 0, R− is a true singularity; moreover spheri-
cal sections of coordinate radius R− have vanishing area,
signaling a breakdown of the spacetime. In order to pre-
vent naked singularities we must impose the reality of R+

and R− and the inequality R− < R+, which result in an
upper bound on the value of the electric charge (in this
paper we exclude extremal BHs from our consideration):

v2 < 1 + η2. (8)

The bound applies also to the case η = 0, where R−
becomes the radius of the inner Cauchy horizon.

The vector potential Aa does not necessarily corre-
spond to the photon field of the Standard Model and
so standard arguments for the smallness of the electric
charge do not necessarily apply [64]3. However the ap-
proximation of small charge significantly simplifies the
perturbed equations, and in some cases it was the only
way we were able to compute the QNMs of these solu-
tions using standard numerical methods. Therefore we
will mostly work under this approximation.

Since the first corrections to the metric occur at second
order in the electric charge, we define the weak-charge
limit as the expansion to order O(v2). The approximate
solution at O(v2) reads

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2g(r)dΩ2 , (9a)

f(r) = 1− 2M

r
+

(1− η2)M2v2

r2
, (9b)

g(r) = 1− η2Mv2

r
(9c)

3On the other hand, if the vector potential is identified with
the photon field, one expects astrophysical BHs to have a small or
vanishing electric charge [65–67].
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for the line element, and

Φ = −ηM v2

2r
, Aa dx

a =
Mv

r
dt , (10)

for the matter fields. The approximate outer and inner
horizons are

R+ ' 2M

(
1− (1− η2)v2

4

)
, R− '

M(1 + η2)v2

2
.

(11)
An observation is in order: we see from Eqs. (4) and (6)
that what we are actually expanding are the v-terms in
R±/r. If we require that our expansion be valid in the
domain of outer communication, then it can fail at most
for r ∼M . From (5), this shows that the quantity |(1−
η2)v2| must be small enough in order for the expansion
to be consistent, as it is also clear from (9) and (11).
Therefore the small v expansion effectively induces an
upper limit on η. In practice, we will use the following
rule of thumb: for each v, we consider the expansion
meaningful if the inequality |(1− η2)v2| ≤ 0.5 holds, i.e.
if

0 ≤ η ≤
√

1 + 0.5/v2 . (12)

For example, when v = 0.5, (12) gives η ≤
√

3.

b. Slowly rotating black holes. Fully rotating BH so-
lutions in EMD theory have only been found for the par-
ticular case η =

√
3 [43, 56, 68]. On the other hand,

Ref. [56] derived a generic expression for slowly rotating
BHs with arbitrary values of η. The form of the metric
is

ds2 = ds2
static − 2aΩ(r) sin2 θ dtdφ+O(a2) , (13)

where

Ω(r) =
2M

r
+

[
rη2 − 3M(1− η2)

]
Mv2

3r2
+O(v3) . (14)

The slowly rotating vector potential is given by

Aa dx
a =

Mv

r

(
dt− a sin2 θ dφ

)
+O(a2) , (15)

while the dilaton field remains unchanged at linear order
in a. The constant a represents an “unphysical spin pa-
rameter” in the sense that it is not related to the angular
momentum J by the Kerr-Newman relation J = aM , but
rather as [56, Eq.(36)]

J = aM

(
1 +

η2 v2

6

)
+O(v3) . (16)

We therefore define a “physical spin parameter” aJ by

aJ = a

(
1 +

η2 v2

6

)
, (17)

such that J = aJM+O(v3). Finally, since in geometrized
units the parameter aJ has the dimension of a length, it
is useful to re-scale it as aJ = M ã , in such a way as to
isolate the universal mass scale M and deal with a pure
number ã in our approximation scheme.

B. Perturbed equations of motion

We now consider generic linear perturbations of the
BH solutions described above. For simplicity here we de-
scribe the derivation only for the static configuration. An
independent derivation of the perturbed equations, but
in a different gauge, was also partly presented in Ref. [69].
The generalization to the spinning case is straightfor-
ward. All the perturbed equations, including the ones
for the slowly rotating solution, are listed in a supple-
mental Mathematica® notebook [61].

We start by writing the perturbed metric as gab =

g
(0)
ab + δgab, where g

(0)
ab is given by the background line

element (4) and δgab is the perturbation. Similarly
Aa = A

(0)
a + δAa and Φ = Φ(0) + δΦ. In a spherically

symmetric background the field perturbations can be de-
composed in spherical harmonics with multipole number
l and azimuthal number m. This expansion naturally
separates the perturbations into “axial” [which acquire a
factor (−1)

l+1 under parity inversions] and “polar” [which
instead acquire a factor (−1)

l]. The EOM for the per-
turbed fields are then solved in the Fourier domain, with
complex frequency ω. The monopole l = 0 and the dipole
l = 1 require a separate, although simpler, treatment
with respect to the higher multipoles. Here we concen-
trate on l ≥ 2, while for l = 0 and l = 1 we just spell
below the final equations.

We expand the metric perturbations in tensor spherical
harmonics in the standard Regge-Wheeler gauge [70]

δgab = δgAab + δgPab , (18)

where hereafter superscripts A and P indicate axial and
polar components respectively. They read

δgAab =
∑
l,m

∫
dω e−iωt×

×


0 0 −h0(r)∂φY

m
l

sin θ h0(r) sin θ∂θY
m
l

∗ 0 −h1(r)∂φY
m
l

sin θ h1(r) sin θ∂θY
m
l

∗ ∗ 0 0
∗ ∗ ∗ 0

 , (19a)

δgPab =
∑
l,m

∫
dω e−iωtY ml ×

×


f(r)H0(r) H1(r) 0 0

∗ H2(r)
f(r) 0 0

∗ ∗ r2K(r) 0
∗ ∗ ∗ r2 sin2 θK(r)

 , (19b)

where Y ml ≡ Y ml (θ, φ) are the spherical harmonic func-
tions and asterisks denote symmetrization. Similarly, we
write the vector perturbations as

δAa = δAAa + δAPa , (20)
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with

δAAa =
∑
l,m

∫
dω e−iωt×

×
(

0, 0,−u4(r)∂φY
m
l

sin θ
, u4(r) sin θ∂θY

m
l

)
, (21a)

δAPa =
∑
l,m

∫
dω e−iωt

(
u1(r)Y ml

r
,
u2(r)Y ml
rf(r)

, 0, 0

)
,

(21b)

where we used the U(1) gauge freedom of the vector po-
tential to gauge out the angular components of δAPa .
Since the vector potential appears in the EOM only
through Fab, it is more convenient to work with the com-
ponents of the perturbed Maxwell tensor:

δFab = δFAab + δFPab , (22)

with

δFAab =
∑
l,m

∫
dωe−iωt×

×


0 0 − iωu4(r)∂φY

m
l

sin θ iωu4(r) sin θ∂θY
m
l

∗ 0
u′4(r)∂φY

m
l

sin θ −u′4(r) sin θ∂θY
m
l

∗ ∗ 0 l(l + 1)u4(r) sin θY ml
∗ ∗ ∗ 0

 , (23a)

δFPab =
∑
l,m

∫
dωe−iωt×

×

0 f01(r)Y ml f02(r)∂θY
m
l f02(r)∂φY

m
l

∗ 0 f12(r)∂θY
m
l f12(r)∂φY

m
l

∗ ∗ 0 0
∗ ∗ ∗ 0

 , (23b)

and the asterisks now denote anti-symmetrization. The
radial functions f01, f02 and f12 are expressed in terms

of u1 and u2 as

f01(r) =
ir ωu2(r) + f(r) (ru′1(r)− u1(r))

r2f(r)
, (24a)

f02(r) =
u1(r)

r
, (24b)

f12(r) =
u2(r)

rf(r)
. (24c)

They are not independent from each other, but they are
related by the Bianchi identity

f01(r) = iωf12(r) + f ′02(r) . (25)

Finally, we write the perturbation of the scalar field as

δΦ =
∑
l,m

∫
dωe−iωtz(r)Y ml . (26)

The derivation of the perturbed EOM is described in
Appendix A. They are separable into axial EOM and
polar EOM.

a. Axial EOM. The axial group can be reduced to a
system of two coupled second order differential equations,

“Maxwell equation”:[
d2

dr 2
?

+ ω2

]
Û(r) = VFF (r)Û(r) + VFK(r)Q̂(r) ,

(27a)

“Regge-Wheeler equation”:[
d2

dr 2
?

+ ω2

]
Q̂(r) = VKK(r)Q̂(r) + VKF (r)Û(r) ,

(27b)

where the functions Û and Q̂ are defined in Eq.(64) of
Appendix A, and the potentials VIJ ’s are presented in a
Mathematica® notebook [61]. Here r? is the tortoise
coordinate dr?/dr = 1/F (r), which is defined in the do-
main r? ∈ ]−∞,+∞[ for r ∈ ]r+,+∞[.

We here choose to name the equations according to
their limit when v → 0. In particular they reduce re-
spectively to the Maxwell equation (i.e. the equation
describing EM perturbations) and to the Regge-Wheeler
equation in the limit where the background reduces to
a Schwarzschild BH. Via a linear transformation of the
fields, Eqs. (27) can be put in the diagonal form[

d2

dr 2
?

+ ω2

]
ZAi (r) = V Ai (r)ZAi (r) i = 1, 2 (28)

where the axial potentials V A1,2 are given by
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V A1 (r) =
(2M − r)(6M − l(l + 1) r)

r4
+

+
Mv2

[
Mr

(
−27η2 +

(
7− 9η2

)
l(l + 1) + 4

)
+ r2

((
3η2 − 2

)
l(l + 1) + 4

)
+ 6

(
12η2 − 7

)
M2
]

3r5
+O(v4) , (29)

and

V A2 (r) =
l(l + 1)(r − 2M)

r3
+

+
Mv2

[
−Mr

(
15η2 + 9η2 l(l + 1) + l(l + 1)− 20

)
+ r2

(
3η2 +

(
3η2 + 2

)
l(l + 1)− 4

)
+ 6

(
3η2 − 4

)
M2
]

3r5
+O(v4) .

(30)

b. Polar EOM. The polar perturbed EOM reduce
to three coupled second order differential equations

“Maxwell equation”:[
d2

dr 2
?

+ ω2

]
F̂ (r) = VFF (r)F̂ (r) + VFS(r)Ŝ(r) + VFK(r)K̂(r) + UFK(r)

dK̂(r)

drT
,

(31a)

“Scalar equation”:[
d2

dr 2
?

+ ω2

]
Ŝ(r) = VSS(r)Ŝ(r) + VSF (r)F̂ (r) + USF (r)

dF̂ (r)

drT
,

(31b)

“Zerilli equation”:[
d2

dr 2
?

+ ω2

]
K̂(r) = VKK(r)K̂(r) + VKF (r)F̂ (r) + VKS(r)Ŝ(r) ,

(31c)

where the functions K̂, F̂ and Ŝ are defined in Eqs.(67)
and (71) of Appendix A, and again the potentials
VIJ ’s and UIJ ’s are presented in the Mathematica®

notebook [61]. The names of the equations are assigned
in analogy with the axial case; in particular, Eq.(31b)
reduces to the massless Klein-Gordon equation on a
Schwarzschild background when v → 0. Contrary to
the axial case, we were not able to find a simple way to
diagonalize the system (31).

c. Lower multipoles. When l = 0 the perturbed
EOM reduce to the single scalar equation[

d2

dr 2
?

+ ω2

]
Z0(r) = V 0(r)Z0(r) , (32)

where the potential V0 is given by4

V 0(r) =
2M(r − 2M)

r4

−
M2v2

(
6
[
2η2 − 1

)
M +

(
2− 5η2

)
r
]

r5
+O(v4) . (33)

For l = 1, the axial equation is[
d2

dr 2
?

+ ω2

]
Z1,A(r) = V 1,A(r)Z1,A(r) , (34)

4For completeness we also computed the potential V0 with-
out employing the small-charge approximation. The result can be
found in Appendix C.
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with

V 1,A(r) =
2(r − 2M)

r3

−
Mv2

[(
8− 6η2

)
M2 +

(
11η2 − 6

)
Mr − 3η2r2

]
r5

+O(v4) .

(35)

Finally, the l = 1 polar equations are a system of two
coupled differential equations[

d2

dr 2
?

+ ω2

]
F̂ 1(r) = V 1

FF (r)F̂ 1(r) + V 1
FS(r)Ŝ1(r) ,

(36a)[
d2

dr 2
?

+ ω2

]
Ŝ1(r) = V 1

SS(r)Ŝ(r) + V 1
SF (r)F̂ 1(r) .

(36b)

The explicit expressions for the l = 1 polar potentials are
again provided in a Mathematica® notebook [61].

III. QNMs of EMD Black Holes

The perturbation equations derived above can be nu-
merically solved with appropriate boundary conditions
to compute the QNMs of the BH solutions presented
in Sec. IIA. However, before doing so, let us first esti-
mate the expected QNMs using the geodesic correspon-
dence [58]. This approximation, commonly used in the
literature, allows us to get analytical estimates for the
QNM frequencies and is helpful to understand the behav-
ior of the QNM frequencies when varying the parameters
of the theory.

A. The light ring approximation

In the geodesic approximation, which is formally only
valid in the eikonal limit l� 1, the frequencies and decay
times of the QNMs can be derived from the properties of
unstable circular null geodesics of the BH geometry. This
connection was first explored in [71–73] in the context
of GR BHs and later formalized in [58] for generic BH
spacetimes. For EMD BHs it was applied in Ref. [43]
for the spinning BH solution when η =

√
3, and also for

Kerr-Newman BHs in [64, 73].
We focus our attention to light rays orbiting in the

equatorial plane θ = π/2 which, in the eikonal correspon-
dence, are related to the l = ±m � 1 QNMs (the plus
and minus signs stand for corotating and counterrotating
orbits respectively) [74]. Let then

ṙ2 = Vgeo(r) (37)

be the equation describing the motion of a general null
geodesic in the equatorial plane of the black hole (the dot

denotes derivative with respect to the affine parameter).
From (4) and (13) we get

Vgeo(r) = 1− F (r)L2

r2G(r)
∓ 2a

Ω(r)L

r2G(r)
. (38)

The equations of motion for the coordinates t and φ are

ṫ =
1

F (r)
∓ a Ω(r)L

r2F (r)G(r)
, (39a)

φ̇ = ± L

r2G(r)
+ a

Ω(r)

r2F (r)G(r)
. (39b)

The Killing angular momentum L and the radius rc of
the innermost unstable circular orbit are determined by
solving the system of the two equations Vgeo(rc) = 0 and
V ′geo(rc) = 0. Under small perturbations, unstable null
geodesics (for which V ′′geo(rc) > 0) decay with a principal
rate Γc. Then, in the limit l � 1, the BH QNMs are
given by [58]

ωn = ±lΩc − i
(
n+

1

2

)
Γc , (40)

where n is the overtone number, Ωc is the angular fre-
quency of the orbit and Γc is its dominant decay rate,
given by

Γc =

√
V ′′geo(rc)

2 ṫ2
. (41)

Despite the fact that the geodesic correspondence is for-
mally only valid in the eikonal limit l � 1, it gives sur-
prisingly accurate results even for low multipoles: in the
Kerr-Newman case, one can verify that the real parts of
the l = 2 and l = 3 fundamental gravitational modes are
predicted within a few percents of accuracy (see e.g. Ap-
pendix A of [64]). In particular, in the weakly charged
limit we find

MΩc =
1

3
√

3

(
1 +

v2

6

)
± 2

27
ã

(
1 +

v2

2

)
+O(v3, ã2) ,

(42a)

MΓc =
1

3
√

3

(
1 +

v2

18

)
± 2ã v2

243
+O(v3, ã2) , (42b)

where we have expressed the results in terms of the di-
mensionless spin parameter ã. These expressions do not
depend on η (cf. Ref. [73] where the same results were ob-
tained for Kerr-Newman). Therefore, using (40) and (42)
to estimate the gravitational QNMs at small l, we end
up with the prediction that they should depend very
weakly on η and that their value is very close to the
Kerr-Newman one.

This agrees with the estimates of Refs. [43] and the
numerical simulations of Ref. [55], which did not find
any deviation from isospectrality within the numerical
error. We shall see in Sec. III B 2, by exactly computing
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the QNMs, that indeed the static gravitational QNMs
depend very weakly on η and that isospectrality is only
mildly broken in the gravitational sector.

The estimates in Eq. (42) also show that the imaginary
part of the QNM frequency depends very weakly on the
spin, since we are expanding at both small v and small ã.
Again, we shall see in Sec. IIID that this holds when solv-
ing the perturbed EOM numerically. Moreover, we will
show that (42a) provides a good quantitative estimate of
the spin correction for the gravitational axial modes.

B. Computation of the static QNMs

We start by computing the QNMs in the static case.
The QNM spectrum is obtained by solving the perturbed
EOM with ingoing boundary conditions at the BH event
horizon and outgoing boundary conditions at spatial in-
finity, forming an eigenvalue problem for the complex fre-
quency ω. Both axial and polar potentials vanish at the
boundaries, implying that the generic wave function Z(r)
has the asymptotic behavior:

Z(r) ∼

{
e−iωr? ∼ (r −R+)−2µ iω for r → R+ ,

eiωr? ∼ e−iωrr2M iω for r → +∞ .
(43)

The constant µ can be obtained by integrating dr?/dr =
F−1(r) close to the horizon, and it is equal to

µ = M

(√
1 + (η2 − 1) v2 − η2

1− η2

)(η2−1)/(η2+1)

×

×

(√
1 + (η2 − 1) v2 + 1

2

)2/(η2+1)

. (44)

Therefore a convenient ansatz for the wave functions is
the following series expansion around the event horizon:

Z(r) = e−iω(r−R+) r2(M+µ) iω(r −R+)−2µ iω×

×
∞∑
k=0

ak

(
1− R+

r

)k
. (45)

At order O(v2), µ reduces simply to M , and the ansatz
becomes

Z(r) = e−iω(r−R+) r4M iω(r −R+)−2M iω×
∞∑
k=0

ak

(
1− R+

r

)k
. (46)

Since we work with coupled equations, we must define a
vectorial wave function ~Z(r), with corresponding ansatz

~Z(r) = e−iω(r−r+) r4M iω(r −R+)−2M iω×
∞∑
k=0

~ak

(
1− R+

r

)k
. (47)

The problem then reduces to find the coefficients ~ak and
the spectrum of the complex frequencies ω, and it can
be treated numerically with Leaver’s CF method [75, 76]
(see e.g. Ref. [77] for more details on how to apply this
method for a system of coupled differential equations).

1. Classification of the spectrum

From Eqs. (27) and (31) we can divide the QNM fre-
quencies in five families, by looking at their limit when
v → 0. In the axial case they can be divided in axial
gravitational modes ωAG,l (corresponding to the Regge-
Wheeler modes when v → 0) and axial EM modes ωAE,l
(corresponding to the Maxwell modes). Similarly, in the
polar case we divide them in polar gravitational modes
ωPG,l (corresponding to the Zerilli modes), polar EM
modes ωPE,l and polar scalar modes ωPS,l (correspond-
ing to the massless Klein-Gordon modes). We omitted
an additional subscript for the overtone n, because we
will restrict our analysis to the fundamental tone n = 0
only.

Some results on the expected behavior of the QNMs
have already been discussed in the literature so let us
summarize them here. Ref. [55] numerically simulated
the collision and ringdown of static, weakly charged
(Q ∼ 10−3) BHs in EMD for a wide range of η. The
waveform extraction analysis was limited to the leading
gravitational mode l = 2 and scalar dipole mode l = 1,
finding that (i) for small charges the frequency does not
depend sensitively on η and (ii) there is no ISO-breaking
for the gravitational modes within the numerical error.
Ref. [31], restricting to η = 1, showed that the presence
of the dilaton actually induces some ISO-breaking and
that, as should expected, the deviation increases with
the charge v. In Ref. [30] the QNMs were computed for
generic η but only for the axial sector, finding that the
frequency spectrum depends weakly on the dilaton cou-
pling. These results show that ISO-breaking is not so
pronounced in the gravitational modes, while it appears
more evidently in the EM sector, although for the small
electric charges considered in Ref. [55] the ISO-breaking
is below the numerical error.

As we show below, our results agree with the conclu-
sions of [30, 31, 55] when the parameter space overlaps.
However, we are able, for the first time, to monitor how
the properties of the QNMs vary with both v and η for
both the polar and axial sectors. The most important
outcome is that, while it is true that gravitational modes
do not allow to distinguish appreciably between different
values of η, the dilaton coupling has a clear impact on
the EM modes, in particular on the polar QNMs. Indeed
we show that the degree of the EM ISO-breaking varies
considerably with η, thus furnishing a clear signature of
the dilaton coupling.
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Figure 1: Real (left) and imaginary (right) parts of the axial gravitational QNMs, MωAG,l, as a function of the
dilaton coupling η, for l = 2 (top) and l = 3 (bottom) for different BH’s charge-to-mass ratios v, computed using the

O(v2) equations.

2. The gravitational modes

The gravitational modes exist for l ≥ 2. In the
limit v → 0, the least-damped modes are the l = 2
and l = 3 fundamental tones, given respectively by
MωAG,2 = MωPG,2 = 0.3737 − i 0.0890 and MωAG,3 =
MωPG,3 = 0.5994 − i 0.0927 [21]. In Fig. 1 we show the
real and imaginary parts of the axial QNM frequencies
for l = 2 and l = 3 as a function of the dilaton coupling
η, for different values of v. One can see that the frequen-
cies depend very weakly on eta: the relative difference
between the maximum and the minimum for the curves
shown in Fig. 1 remains below 0.6%, for both real and
imaginary parts.

The corresponding polar modes are analogous qualita-
tively and quantitatively, as we show in Fig. 2 where we
plot the relative percentage difference

∆Re (ωG,l) = 100× Re (ωPG,l)− Re (ωAG,l)

|Re (ωAG,l)|
(48)

and similarly for the imaginary part. We see that ISO-
breaking grows only moderately with v, being almost
negligible at small v ≤ 0.2 and becoming of the order
of the percent for v = 0.6. Therefore we observe a very
weak ISO-breaking in the gravitational sector, in agree-
ment with [31, 55].

Approximation error. It is useful to estimate the per-
centage error made in working with the O(v2) approxi-
mation. To this aim, we derived the exact form of the

axial perturbed EOM at all orders in v and we compared
the l = 2 axial gravitational modes with the ones from
the O(v2) EOM (see Appendix B). We find that the error
remains at the order of ∼ 1% in the parameter space we
consider (cf. Fig. 11). In particular, we note that this
error is comparable to the amount of ISO-breaking that
we find in the gravitational sector.

3. The electromagnetic modes

The EM modes exist for l ≥ 1. As shown in
Refs. [64, 78–80], these modes can become significant
for the radiation emitted by the merger of charged BHs.
In particular, Refs. [78, 79] numerically studied head-
on BH collisions in Einstein-Maxwell theory (η = 0)
for equal [78] and opposite [79] charge-to-mass ratio,
while Ref. [80] simulated the inspiral of weakly charged
Reissner-Nordström BHs for different initial configura-
tions. A generic prediction of these studies is that the
process is always accompanied by the emission of both
EM waves and GWs, with the ringdown part being de-
scribed by a superposition of both EM and GW QNM
frequencies. In addition, for the head-on collisions, it was
shown that while for equal charges the EM wave emis-
sion is always subdominant with respect to GWs [78], for
opposite charges, l = 1 EM waves become the dominant
channel of radiation emission already for moderate val-
ues of |v| ≥ 0.37 [79]. Therefore, depending on the initial
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Figure 2: ISO-breaking [cf. Eq. (48)] between the polar and axial gravitational QNMs for l = 2 (top) and l = 3
(bottom).

binary parameters, EM wave emission and EM QNMs
can constitute a non-negligible part of the radiation and
their study can be relevant for the purposes of BH spec-
troscopy.

For concreteness, we focus on the axial and polar
EM modes for l = 1 and l = 2. Our results, for
0.1 ≤ v ≤ 0.6, are shown in Fig. 3 (for l = 1) and
Fig. 4 (for l = 2). In the limit v → 0, these QNMs coin-
cide with the fundamental EM modes on a Schwarzschild
background, i.e. MωAE,1 = MωPE,1 = 0.2483− i 0.0925
and MωAE,2 = MωPE,2 = 0.4576 − i 0.0950 [21]. As
can be easily seen already at a qualitative level, there
is a marked difference between the axial and the polar
modes for sufficiently high η. In particular, the polar
QNMs have a much stronger dependence on η which can
be understood from the fact that the dilaton only couples
directly to the polar EOM.

This difference is more easily seen in Fig. 5 where we
show the percentage of ISO-breaking, evaluated as in
Eq. (48). The difference between polar and axial modes
is very small for η ∼ 0 but grows monotonically with η
and v.5 Isospectrality of the real part of the polar and
axial frequencies is broken up to ∼ 15% for l = 1 and
∼ 8% for l = 2, while for the imaginary part the effect is

5We note that the difference should be exactly zero for η =
0 because of the known isospectrality of the Reissner-Nordström
QNMs [44]. The very small departure from zero at large v can be
ascribed to the small charge approximation that we employed.

smaller, but still more pronounced than in the gravita-
tional sector. Therefore ISO-breaking in the EM sector
provides a clear signature to distinguish EMD BHs in the
(v, η) plane. In fact, in Sec. III C we shall see that the
EM ISO-breaking is rooted in the coupling between the
vector field and the dilaton.

4. The scalar modes

Unless η = 0, the dilaton perturbations couple dynam-
ically to the other fields, therefore inducing the presence
of scalar modes. From the action (1), one expects that
the importance of the scalar radiation grows with η, being
almost negligible when η � 1 [55]. This is already visible
in the above analysis of EM QNMs, where we saw that
larger values of η are also accompanied by an increasing
of EM ISO-breaking.

A possible consequence of the presence of the dilaton
is the possibility that it could induce instabilities in this
BH spacetime. In fact, it was argued in Ref. [55] that the
presence of the dilaton could induce tachyonic-like insta-
bilities for sufficiently large coupling constant η. We did
not find any evidence for an instability when comput-
ing the scalar QNMs. In particular, in Fig. 6 we show
the scalar QNM for l = 0, where it can be seen that
the imaginary part is always negative, thus indicating
that these modes always decay and are therefore sta-
ble (the same conclusion remains valid for l = 1 and
l = 2). For reference, we note that the fundamental
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Figure 3: Real (top) and imaginary (bottom) parts of the EM axial QNMs (left), MωAE,l, and polar QNMs (right),
MωAP,l, for l = 1, computed using the O(v2) equations.

Klein-Gordon mode on a Schwarzschild background is
given by MωPS,0 = 0.1105− i 0.1049.

Scanning the parameter space we were unable to find
evidence for an unstable mode. In fact, by evaluating
numerically the potential (33) for generic values of η
and v, i.e. with no small-charge approximation (see Ap-
pendix C), we find that the potential is always positive
definite for any value of η and v. This fact is a proof
that the l = 0 modes do not suffer from instabilities [44].
We believe that this discrepancy might be due to the fact
that for the values of η for which Ref. [55] finds an in-
stability, the small-charge approximation they employ is
not valid, as we argued in Sec. II.

In AppendixC we clarify this point for a specific exam-
ple: we consider the l = 0 potential in the limit η →∞,
without any restriction on the magnitude of v. In this
limit, according to [55], the spacetime should be unstable
for arbitrarily small values of v. However, we find that
the potential is always positive outside the event horizon.
Moreover, we repeat the same analysis by perturbing the
dilaton on the background (4) – (6) while keeping the
vector field fixed, which is closer to the spirit of the cal-
culation done in Ref. [55]. In this case we do find the
occurrence of an instability.

Although restricted to the limit η → ∞, these results
highlight what is probably a general lesson: when pushed
beyond a consistent weak-field limit, a background anal-
ysis of the dilaton perturbations can lead to misleading
results and must be validated against an exact treatment.

More details are provided in Appendix C.

C. The Dudley-Finley approximation

In Refs. [81, 82] an approximate approach to com-
pute the perturbation equations was introduced by Dud-
ley and Finley, motivated by the difficulty of separating
radial and angular perturbations in the Kerr-Newman
spacetime. In the DF approximation the metric and
the matter fields are perturbed separately. This method
should be valid as long as the matter fields do not induce
large deviations from vacuum GR, i.e. when the effects
of matter are already weak at the background level. In
the case of the Reissner-Nordström black hole this expec-
tation was confirmed in [39], where the DF QNMs were
found in good agreement with the exact ones for v . 0.5.
It is reasonable to expect that a similar agreement re-
mains valid in the more general case of EMD theory.

The original DF method consists in perturbing each
field independently from the others. We have seen that,
while the gravitational modes are only weakly sensitive
to the presence of the dilaton, EM modes are quite sensi-
tive to the coupling to the dilaton. It is then reasonable
to employ a modified DF scheme in which (i) the gravi-
tational field is varied independently and (ii) the vector
and scalar fields are varied together but independently
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Figure 4: Same as Fig. 3 but for l = 2.

from the metric.6
Using the DF approximation, we computed the l = 1

EOM at O(v2) for the system of coupled scalar and EM
fields and computed their QNM spectrum7. In Fig. 7 we
plot the relative percentage difference for the real part of
the l = 1 EM QNM frequencies between the DF approxi-
mation and the exact QNMs (similar results also hold for
the imaginary part). The error due to DF approximation
is almost negligible for small v and remains quite accu-
rate even for v ≈ 0.6, i.e. when we already expect the DF
approximation to break down. Moreover, the difference
is not very sensitive to the particular value of η. Simi-
lar results also hold for the gravitational and EM l = 2
QNMs.

In Fig. 8 we show the ISO-breaking for the real part
of the QNM for l = 1, as estimated using the DF ap-
proximation. By comparison with Fig. 5, we can see
that the DF prediction remains quite accurate even for
v ≈ 0.6. We thus conclude that the DF approximation
captures the main qualitative and quantitative features
of the QNM spectrum of EMD BHs, under the approx-

6Notice that, in the DF approach, metric or matter perturba-
tions are turned off from the very beginning when one derives the
perturbed EOM. An alternative approach could be to turn off the
degrees of freedom at the end, once the EOM have already been ob-
tained. For a discussion and a comparison of these two approaches
see [83].

7The EOM can be found in a supplemental Mathematica®

notebook [61].

imation of weak charge. In particular, it allows a com-
putationally simpler study of ISO-breaking in the EM
channel. In the next subsection we will therefore rely
on the DF approximation to compute EM QNMs in the
presence of slow rotation.

D. Inclusion of slow rotation

To derive the perturbed EOM for slowly rotating BHs
we follow the procedure described in [36, 39, 77, 84]. In
Ref. [84] it was shown that, at linear order in the spin,
the radial and angular components of the perturbations
are separable, axial and polar modes decouple and the
couplings between different multipoles do not affect the
QNM frequencies. The resulting equations, which can
be found in the supplemental Mathematica® note-
book [61], are sufficiently similar to the static ones to
be addressed with the same techniques. The computa-
tion of the QNMs thus proceeds along the same lines of
Sec. III B, the only difference being that the asymptotic
behavior of the wave functions reads [40, 84]

Z(r) ∼

{
eiω r? for r →∞ ,

e−i(ω−mΩH) r? for r → R+ .
(49)

Here m is the azimuthal number of the spherical har-
monics and ΩH is the angular velocity of the BH event
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Figure 5: ISO-breaking [cf. Eq. (48)] of the EM QNMs for l = 1 (top) and l = 2 (bottom).
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Figure 6: Real (left) and imaginary (right) part of the scalar QNM, MωPS,l, for l = 0.

horizon

ΩH = − gtφ
gφφ

∣∣∣∣
r=rH

=
aΩ(R+)

R2
+ g(R+)

= ã

(
2 + v2

8M

)
+O(v3) .

(50)
At first order in the spin we can expand the QNM fre-
quencies ωl,m in ãm [84]:

ωl,m = ω
(0)
l + ãmω

(1)
l +O(ã2) , (51)

where ω(0)
l is the frequency of the static BH, while ω(1)

l
is the first order correction to the QNM frequency due to
the BH spin. The quantity ω(1)

l only depends on the mul-
tipole number l, the dilaton coupling η, and on the BH
mass and electric charge, while the dependence on ã and

m factors out at first order. Therefore the computation
of the slow-rotation QNMs reduces to the determination
of ω(1)

l .
This approximation was used in Ref. [84] to compute

the EM QNMs in a slowly rotating Kerr BH background,
while Refs. [39, 40] used it to compute the QNMs of Kerr-
Newman BHs. In particular, they found that the O(a)
approximation predicts QNM frequencies that deviate
from their exact values by less than 1% for a . 0.3 and
3% when a . 0.5. Within this error, they also showed
that axial and polar sectors are still isospectral even when
including spin.

Here we extend these computations for the slowly-
rotating EMD BHs described by the metric (13), al-
though limiting our analysis to the weak-charge limit.



14

v=0.1
v=0.2
v=0.3
v=0.4
v=0.5
v=0.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

η

v=0.1
v=0.2
v=0.3
v=0.4
v=0.5
v=0.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
-1

0

1

2

3

4

η

Figure 7: Percentage deviation of QNM frequencies for the real part of the axial (left) and polar (right) EM QNMs
for l = 1, as derived from the O(v2) true equations compared to the QNMs computed using the DF approximation.

As expected, the DF approximation works better when v → 0.
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Figure 8: ISO-breaking for l = 1 EM modes as derived
from the DF approximate equations (cf. top left panel

of Fig. 5).

When v . 0.6 and η = 0, the results of [39, 40] coincide
with ours. For concreteness let us focus on the gravi-
tational and the EM modes since the behavior for the
scalar QNMs is completely analogous.

Gravitational modes. We start by computing the ax-
ial gravitational QNMs for l = 2 (similar results apply to
l > 2). In Fig. 9 we show the real part of ω(1)

2 . When
η = 0, these results are in good agreement with the ones
plotted in Fig.1 of Ref. [39] where the QNMs of Kerr-
Newman were computed within the slowly-rotating ap-
proximation but without any approximation for the BH
charge. As in the static case, the dependence on η is weak
and the modes are very close to those of a Kerr-Newman
BH in Einstein-Maxwell.

It is instructive to compare the results of Fig. 9 with
the light ring approximation (42). As we already ob-
served, Eq. (42) is in agreement with the fact that the
correction to the imaginary part of the QNM frequency
depends very weakly on the spin in the small-charge ap-
proximation. Moreover, we also see that the leading-
order correction due to ã for the real part of the QNM

ranges from 0.074 for v = 0.1 to 0.087 for v = 0.6, yield-
ing quite accurate results when compared with Fig. 9.
Overall we find that Eq. (42) predicts the l = 2 grav-
itational QNM complex frequencies with relative errors
always smaller than ∼ 5% for the real part and ∼ 8%
for the imaginary part, within the parameter space we
consider.

The polar equations are rather cumbersome to treat.
However, guided by the intuition of the static case and
the results in Refs. [39, 40], we expect that the difference
with the axial modes will be small.

Electromagnetic modes. It is perhaps more interest-
ing to investigate the difference between axial and polar
modes in the EM spectrum, to see how our conclusions
in Sec. III B 3 are modified. To this aim, we simplify the
problem using the DF scheme, as explained in Sec. III C.
We concentrate on the real part of the QNMs because it
displays the larger effects. Fig. 10 shows the EM ISO-
breaking for l = 1, ã = 0.2 and m = ±1 (when m = 0,
Eq.(51) implies that the spectrum is unchanged). It is
clear from a comparison with Fig. 5 that the spin does
not substantially change the degree of ISO-breaking.

IV. Conclusions

In this paper we studied the QNMs of weakly charged
static and slowly-rotating black holes in EMD. We con-
sidered generic values of the dilaton coupling η, thus ex-
tending the analysis of [31], which was restricted to static
BHs and the particular case η = 1 and of [30] who only
studied the axial QNMs of static solutions with generic
η.

We have shown that, within the parameter space we
considered, the gravitational QNMs are very weakly de-
pendent on η, in agreement with the results of [30, 55].
On the other hand, the EM QNMs exhibit a clear depen-
dence on η, mainly visible in the fact that the isospec-
trality between the polar and the axial sectors can be
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Figure 9: Real (left) and imaginary (right) part of the leading-order spin corrections, Mω
(1)
l , for the l = 2 axial

gravitational QNMs. Similar results can be obtained for l > 2.
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Figure 10: ISO-breaking of the real part of the EM QNMs for l = 1, m = 1 (left), m = −1 (right) and ã = 0.2 [cf.
top left panel of Fig. 5].

significantly broken for large enough η, unlike the grav-
itational QNMs. By using an approximate treatment of
the perturbed equations, inspired by the Dudley-Finley
approach, we have shown that this is due to the interac-
tion between the dilaton and the EM field.

We also compared the above results with the light ring
approximation. In electrovacuum GR, it is known that
the dominant gravitational QNMs can be estimated from
the properties of unstable light rings, with a surprisingly
good accuracy. While this approach does not capture
all the expected properties in generic modified theories
of gravity, it should still provide reliable estimates when
the deviations from Kerr are parametrized by small per-
turbative quantities [28]. Indeed, we found that, in the
weak-charge approximation, the light ring approximation
captures the main qualitative features of the gravita-
tional QNMs, also providing a quite accurate quantita-
tive estimate of both the static contribution and the slow-
rotation corrections. On the other hand, it does not ac-
curately describe the spectrum of EM and scalar modes,
mainly due to the coupling of the EM sector with the
dilaton. Our results therefore highlight what is possibly
a generic limitation of this approach in theories beyond
GR, namely the fact that (i) it fails to predict the ex-
istence of new families of QNMs when non-gravitational
degrees of freedom are present in the theory, and (ii)

it fails to predict the ISO-breaking of axial and polar
QNMs. However, at least in the present case, we showed
that it is still possible to account for these properties in a
simplified way, by means of an hybrid approach in which
one (i) estimates the gravitational modes using the light
ring correspondence and (ii) treats the matter perturba-
tions in a suitable approximation scheme, neglecting the
effect of the metric backreaction.

This work can be improved in several fronts. An ob-
vious extension would be to relax our small charge ap-
proximation, to allow for generic BH charges. We ex-
pect this to be a rather cumbersome calculation since
the perturbation equations become easily intractable for
generic BH charge; however some estimates could per-
haps be obtained by extending the numerical simulations
of Ref. [55] to large charges. The other obvious extension
would be to relax the small spin approximation. Since ex-
act spinning solutions are only known for the particular
case η =

√
3 [43, 56, 68], obtaining the QNM spectrum

for generic η and BH spins is most likely only doable with
numerical relativity simulations. For the exact spinning
solution when η =

√
3, we expect that one could obtain

the QNM spectrum with no approximations by extend-
ing the results obtained in Ref. [42] for the Kerr-Newman
case.

Finally, although we focused on Einstein-Maxwell-
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dilaton BHs, spinning BH solutions are also known in
more generic alternative theories of gravity (see e.g. [85]).
The methods used in Refs. [36, 39, 77, 84] and in this pa-
per could be easily extended to compute QNMs for spin-
ning BHs in any theory where exact or slowly-rotating
solutions are known. We therefore hope that this paper
will stimulate further work in these directions.
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Appendix A Derivation of the perturbed EOM

In this Appendix we describe the derivation of the per-
turbed EOM (27) and (31). The linearized EOM separate
naturally into three groups (see for example [36, 39, 84]).
The first group, or “scalar group”, includes

δE(I) = A
(I)
l Y ml = 0 , I = 0, 1, 2, 3 (52a)

δJ(I) = A
(I)
l Y ml = 0 , I = 4, 5 (52b)

δS = A
(6)
l Y ml = 0 , (52c)

where I = 0, 1, 2, 3, 4, 5 is a shorthand notation for (tt),
(tr), (rr), (+), (t) and (r) respectively, and we defined

δE(+) = δEθθ +
δEφφ

sin2 θ
. (53)

The second group, or “vector group” is given by

δE(Lθ) = α
(L)
l ∂θY

m
l − β

(L)
l

∂φY
m
l

sin θ
= 0 , L = 0, 1

(54a)
δE(Lφ)

sin θ
= β

(L)
l ∂θY

m
l + α

(L)
l

∂φY
m
l

sin θ
= 0 , L = 0, 1

(54b)

where L = 0, 1 stand for (t) and (r) respectively, and by

δJθ = α
(2)
l ∂θY

m
l − β

(2)
l

∂φY
m
l

sin θ
= 0 , (55a)

δJφ
sin θ

= β
(2)
l ∂θY

m
l + α

(2)
l

∂φY
m
l

sin θ
= 0 . (55b)

Finally the third group, or “tensor group”, consists of

δEθφ
sin θ

= sl
X l

sin θ
+ tlW

l = 0 , (56a)

δE(−) = −tl
X l

sin θ
+ slW

l = 0 , (56b)

where we defined

δE(−) = δEθθ +
δEφφ

sin2 θ
, (57)

and

X l = 2∂φ(∂θY
m
l − cot θY ml ) , (58a)

W l = ∂2
θY

m
l − cot θ∂θY

m
l −

∂2
φY

m
l

sin2 θ
. (58b)

The functions A(I)
l , α(L)

l , β(L)
l , sl and tl are purely radial

functions of the linearized perturbation fields. The angu-
lar dependence of the linearized EOM can be separated
using the orthogonality properties of the scalar, vector
and tensor spherical harmonics. The result is:

A
(I)
l = 0 , I = 0, . . . , 6 (59a)

α
(L)
l = β

(L)
l = 0 , L = 0, 1, 2 (59b)

sl = tl = 0 . (59c)

Moreover, axial and polar perturbations decouple as

Axial =

{
β

(L)
l = 0 L = 0, 1, 2

tl = 0
(60)

Polar =


A

(I)
l = 0 I = 0, . . . , 6

α
(L)
l = 0 L = 0, 1, 2

sl = 0

(61)

We consider the two cases separately.

a Axial perturbed equations. The axial EOM (60)
can be reduced to two second order differential equations.
We briefly describe the procedure. From (19) and (21),
the axial perturbation fields are h0(r), h1(r) and u4(r).
It is convenient to make the redefinitions

h1(r) =
Q1(r)

f(r)
, u4(r) =

i

ω
U4(r) . (62)

From tl = 0 we get h0(r) = if Q′1(r)/ω, thus eliminating
h0(r) from the system (60). β(0)

l = 0 is implied by β(1)
l =

0 and β
(2)
l = 0, which thus are the only two remaining

independent equations. The system is further simplified
by replacing β(2)

l = 0 with the linear combination

β
(2)
l +

(
2Mv f(r)

r2ω

)
β

(1)
l = 0 . (63)

Next, solving the system forQ′′1(r) and U ′′4 (r) and making
the further change of variables

Q1(r) = r
√
g(r) Q̂(r) , U4(r) =

√
g(r) Û(r) (64)

we obtain the system[
d2

dr 2
?

+ ω2

](
Q̂(r)

Û(r)

)
= VA

(
Q̂(r)

Û(r)

)
, (65)

where VA is a nondiagonal 2 × 2 matrix. The system
(65) can be diagonalized by an r-independent linear
transformation, thus reducing to (28).



17

b Polar perturbed equations. The treatment of the
polar perturbation equations (61) is more complicated.
The polar perturbation fields are H0(r), H1(r), H2(r),
K(r), f01(r), f01(r), f12(r) and z(r). It is convenient to
make the redefinitions

f12(r) =
iω g(r)F1(r)

f(r)
, H1(r) = ωR1(r) . (66)

The equations sl = 0, α(2)
l = 0 and A

(5)
l = 0 can be

used to eliminate H0(r), f02(r) and f01(r) respectively.
Using the Bianchi identity (25) we obtain the Maxwell
equation, a second order differential equation for F1(r).
A

(6)
l = 0 is the scalar equation, a second order differential

equation for z(r).
Among the remaining equations, the only independent

ones are A(1)
l = 0, A(2)

l = 0, α(0)
l = 0 and α(1)

l = 0. They
are first order differential equations in the gravitational
and matter perturbations. Following Zerilli [86, 87], we
solve the system {A(1)

l = 0, α
(0)
l = 0, α

(1)
l = 0} for

{K ′(r), R′1(r), H ′2(r)}, we plug the solution into A(2)
l = 0

and we solve for H2(r), thus eliminating H2(r) from the
system.

We are left with two coupled first order differential
equations for K(r) and R1(r). As shown by Zerilli
[86, 87], they can be reduced to a single second order
differential equation. To this purpose we introduce two
new gravitational variables K̂(r) and R̂(r), related to the
original ones by a linear transformation:

K(r) = α(r)K̂(r) + β(r)R̂(r) , (67a)

R1(r) = γ(r)K̂(r) + λ(r)R̂(r) . (67b)

The procedure consists of choosing the functions
α(r), β(r), γ(r) and λ(r) such that the gravitational per-
turbation equations assume the form

dK̂(r)

dr?
= R̂(r) + (matter couplings) , (68a)

dR̂(r)

dr?
+ ω2K̂(r) = VK(r)K̂(r) + (matter couplings) ,

(68b)

where VK(r) is a potential, and the matter couplings refer
to terms linear in F1(r), z(r) and their first derivatives.
Eqs. (68a) and (68b) can then be combined into a single
second order equation,[

d2

dr 2
?

+ ω2

]
K̂(r) = VK(r)K̂(r) + (matter couplings) .

(69)

In practice, the procedure translates into three algebraic
and one differential equations. The three algebraic equa-
tions allow us to express α(r), γ(r) and λ(r) as linear
functions of β(r). The differential equation is a first or-
der differential equation for β(r).

The algebraic equations must be treated carefully. In-
deed, since we are working at O(v2), we cannot restrict
to exact solutions, but we must also allow for solutions
valid at O(v2), thus enlarging the space of the admitted
solutions. In fact, we find that we must use appropri-
ate linear combinations of the exact solutions. We de-
rived the correct coefficients working in the special cases
η = 0, 1,

√
3, for which we were able to derive the ex-

pressions for α(r),γ(r) and λ(r) at all orders in v. Since
the coefficients are independent of η, we assumed their
validity for generic values of η and verified a posteriori
that we obtain a consistent O(v2) solution for α(r), β(r),
γ(r) and λ(r) for all η. In particular

β(r) = 1− η2Mv2

r
≡ g(r) . (70)

We can now write the Maxwell, scalar and gravitational
EOM. The Maxwell and scalar EOM are more conve-
niently expressed in the new variables F̂ (r) and Ŝ(r) de-
fined by

F1(r) = F̂ (r)/
√
g(r) , (71a)

z(r) = Ŝ(r) +
2 ηMv

r
F̂ (r) . (71b)

The final result is the system of coupled equations (31).

Appendix B Approximation error at O(v2)

Following the same procedure as in Appendix A, we
derived the axial perturbed EOM at all orders in v in a
diagonalized form for the static BH. They have the same
form of Eqs.(27), but the potentials are now given by

V A1,2(r) =
(r −R+)

(
1− R−

r

)−4η2/(η2+1)

2 (η2 + 1)
2
r6

(Xη(r)∓ Yη(r)) ,

(72)
where the functions Xη(r) and Yη(r) are

Yη(r) =
(
η2 + 1

)
r (r −R−)

√
2 (η2 + 1)R+R− (−3η2 + 8l(l + 1)− 7) + 9 (η2 + 1)

2
R2

+ + (η2 − 3)
2
R2
− (73)
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Figure 11: Real (left) and imaginary (right) part of δ ωAG for l = 2, as defined in Eq. (75), as a function of the BH’s
charge-to-mass-ratio, v, for different values of η.

and

Xη(r) = 2
(
η2 + 1

)2
l(l + 1)r2(r −R−)−

(
η2 + 1

)
r2
[
3
(
η2 + 1

)
R+ +

(
3− 5η2

)
R−
]

+

+ r R−
[(
−3η4 + 8η2 + 11

)
R+ +

(
η4 − 2η2 + 3

)
R−
]
− 2

(
η2 + 4

)
R+R

2
− . (74)

Notice that the exact axial potentials depend on v only
through its square v2. The superscripts 1 and 2 refer to
the Regge-Wheeler and to the Maxwell equations respec-
tively.

As explained at the end of Sec.III B 2, we use the exact
Regge-Wheeler equation to estimate the error due to the
O(v2) approximation. For concreteness we focus on the
values η = 0, 1 and

√
3, and we restrict to v ≤ 0.8. In

Fig.11 we plot the relative percentage difference

δRe(ω) = 100×
∣∣∣∣Re(ωFULL)− Re(ωSMALL)

Re(ωFULL)

∣∣∣∣ (75)

and similarly for the imaginary part, where ωFULL corre-

sponds to the QNM frequency computed without any ap-
proximation and ωSMALL the QNM frequency computed
at O(v2). We see that for the real part the error remains
below 0.2% for v ≤ 0.6, while it becomes of the order of
half a percent for the imaginary part. It is reasonable to
expect that similar errors will occur also in the EM and
scalar sectors.

Appendix C Instability of the dilaton in the large
coupling limit.

The potential V 0(r) in (32), without restricting to
weak charges, has the rather lengthy expression

V 0(r) =

(
1− R+

r

)(
1− R−

r

)−4η2

η2+1 1

(η2 + 1)
2
r5 [r(1 + η2)−R−]

2

{(
η2 + 1

)3
r4
[
(1 + η2)R+ − (η2 − 1)R−

]
+
(
η2 + 1

)2
r3R−

[(
2η2 − 5

) (
η2 + 1

)
R+ − 3R−

]
+
(
η2 + 1

)
r2R2

−
[(

2η4 + η2 + 3
)
R− −

(
η2 + 1

) (
2η4 + η2 − 9

)
R+

]
−rR3

−
[(

2η2 + 7
) (
η2 + 1

)
R+ +R−

]
+
(
η2 + 2

)
R+R

4
−
}
, (76)

where R± are given in (5). In the limit η →∞, it reduces
to

V 0(r)→
(

1− R+

r

)(
1− R−

r

)−4

×

×
[
r2(R+ −R−) + 2R+R−(r −R−)

]
r5

, (77)

from which it is clear that V 0(r) > 0 everywhere for
r > R+. One may note that, formally, R± diverge in the
limit η → ∞. However, this can be fixed by rescaling
v → σ/η. With this rescaling one has

R± = M
(√

1 + σ2 ± 1
)
, (78)

and (79) is positive for any value of σ.
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The same computation can be repeated by only per-
turbing the dilaton field while keeping the vector field
fixed, similarly to what was done in Ref. [55]. In this
case the potential V 0

back(r), whose general expression
is presented in a supplemental Mathematica® note-
book [61], in the limit η →∞ reduces to

V 0
back(r)→

(
1− R+

r

)(
1− R−

r

)−4

×

×
[
r2(R+ −R−)− 2R+R−(r −R−)

]
r5

, (79)

and it can be easily checked that this expression is not
always positive for r > R+. Indeed, using (78), one can
easily see that the factor r2(R+−R−)−2R+R−(r−R−)

can be negative for σ > 2
√

2. Moreover, a numerical
inspection reveals that the integral

I =

∫ ∞
R+

V(r)dr , (80)

becomes negative for σ & 3.08, where V = V 0
back/F (r).

The negativity of I is a sufficient criterion for the oc-
currence of instabilities [88, 89]. Therefore we conclude
that this approximation wrongly predicts unstable EMD
BHs.
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