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Abstract. The cluster-weighted model (CWM) is a member of the family of
mixture of regression models and is also known as mixtures of regressions with
random covariates. CWMs refer to the framework of model-based clustering and
have their natural application when the research interest requires modeling the
relationship between a response variable and a set of covariates using a regression-
based approach such as a generalized linear model and the sample is suspected to
be composed by heterogeneous latent classes. Software for estimating these models
is not yet available in Stata. The aim of this article is to introduce the Stata pack-
age cwmglm, which allows fitting CWMs based on the most common generalized
linear models with random covariates. Moreover, cwmglm allows the estimation of
parsimonious models of Gaussian distributions, with the parametrization of the
variance-covariance matrix based on the eigenvalue decomposition. These features
are completely new for Stata users. The cwmglm package features goodness-of-fit,
bootstrapping and model selection tools. We illustrate the use of cwmglm with real
and simulated datasets.
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1 Introduction
The Cluster-Weighted Model (CWM) is a member of the family of mixtures of regression
models, and it is also known in the literature as mixture of regressions with random
covariates and as as saturated mixture regression model (Wedel 2002). The model has
been first proposed in the context of media technology under Gaussian assumptions
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2 CWM using Stata

(Gershenfeld 1997, 1999; Gershenfeld et al. 1999; Schöner 2000). In a sequence of
papers, starting from Ingrassia et al. (2012), the CWM was formulated in the statistical
framework and the main statistical properties were established.

CWMs refer to the framework of model-based clustering (McNicholas 2016) and have
their natural application when the research interest requires modeling the relationship
between a response variable Y and a set of covariates X = (X1, . . . , Xp)′ and the sam-
ple is suspected to be composed by heterogeneous latent (i.e., unobserved) classes. In
particular, CWM is a mixture approach modeling the joint probability of the response
variable and of the explanatory variables for data characterized by unobserved subpop-
ulations.

For the application context of CWMs, approaches based on a mixture of regressions
(FMR, McLachlan and Peel 2000; Früwirth-Schnatter 2005) or based on mixture of re-
gressions with concomitant variables (FMRC, Dayton and Macready 1988; Wedel 2002)
are also available: these models are estimable in Stata using fmm and concern mixtures
of conditional distributions of Y given X. The CWM is a very flexible model-based
clustering approach because it parametrically models the marginal distribution of the
covariates and the conditional distribution of the response given the covariates along
with latent heterogeneity. This means that, other than estimating latent class-specific
regression parameters like FMRs (i.e., the parameters of the conditional distributions),
the model estimates the parameters related to the marginal distributions of the covari-
ates (e.g., means and variances) in each latent class. In this framework, CWMs have
the advantage of overcoming the intrinsic limitation of FMRs and FMRCs that is the
assignment independence assumption which hypothesizes that the assignment of the
data to the latent classes in the sample is independent of the covariate distribution
(Hennig 2000). In other words, this means that the covariates values are assumed not
to affect the allocation of observations to the latent classes. This assumption might
be too restrictive or the allocation mechanism with respect to the covariates might not
be known in advance by the researcher and, thus, a more flexible and general model
would be necessary. On the contrary, CWMs assumes random covariates and allows
assignment dependence: the covariate distributions are assumed to vary between latent
classes and to affect the allocation of the data points to the latent classes themselves;
this results in better classification performance (Punzo 2014).

Therefore,the CWM is a more general approach than FMR and FMRC. As a matter
of fact, in Ingrassia et al. (2012), it is shown that under Gaussian assumptions, the
CWM includes mixtures of distributions, FMR and FMRC as special cases. A further
extension is proposed in Ingrassia et al. (2015) concerning a broad family of CWMs
to model discrete responses in which the component conditional densities are assumed
to belong to the exponential family and the covariates are allowed to be categorical or
numeric.

Flexibility of CWMs has been widely shown in literature. In the framework of of
health-care quality assessment, Berta et al. (2016) proposed a multilevel cluster-weighted
model for handling hierarchical data for the purpose of measuring the effectiveness of di-
agnostic procedures or specific treatment episodes with respect to healthcare outcomes.
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Very recently, in Berta et al. (2024) the CWM has been taken into consideration for
modeling unobserved heterogeneity related to COVID-19 in-hospital mortality during
the early stages of the pandemic in Italy (January 2020 to June 2020). In this context,
patients have been stratified into 3 classes using a CWM. Such classes differ in terms of
mortality (response variable), modeled with a logistic regression as a function of admis-
sion day, age, sex and comorbidities (covariates). Within each class, logistic regression
highlighted 3 different patterns of mortality risk during the evolution of the pandemic.
The first class had constant and low mortality over time, the second class had interme-
diate risk at baseline and reached its mortality peak around March 2020 and the third
class had the largest mortality at baseline but exhibited a declining pattern over time.
Concerning covariates, assignment to the latent groups depends on age, admission week
and presence of comorbidities. For instance, male and females have an equal probability
to belong to class 1, while male have a larger probabilities of being allocated to class 2.
Other recent applications of CWMs have included the analysis of administrative data
on hospital admissions in Italy (Berta and Vinciotti 2019), studies of Italian tourism
data (Soffritti 2021), sales of canned tuna (Diani et al. 2022) and detection of latent
classes in data about voles (Subedi et al. 2013).

From the software point of view, Mazza et al. (2018) underlined the scarcity of pack-
ages to estimate CWMs; the same authors developed flexcwm for R. To our knowledge
no other software is currently available. The official Stata command (fmm) can be used
to fit FMRs; however, it is not capable of estimating CWMs, as it does not model ran-
dom covariates. Other community-contributed packages (Hernández Alava and Wailoo
2015; Gray and Alava 2018; Jenkins and Rios-Avila 2023; Huismans et al. 2022) address
model-based clustering and mixture of regressions under different perspectives but there
are no commands able to estimate CWMs.

Hence, the aim of this article is to address the above lack of software availability by
introducing cwmglm, a Stata package focused on CWMs. Our package is based on the
framework of Ingrassia et al. (2012), Ingrassia et al. (2015), Ingrassia and Punzo (2020)
and Di Mari et al. (2023) and allows fitting CWMs as mixtures of regressions based on
generalized linear models (GLMs) with random covariates. The supported families are
Gaussian, Poisson and binomial, while the allowed marginalizations for the covariates
are multivariate Gaussian, multinomial, binomial, and Poisson. Multivariate Gaussian
models are addressed using the parsimonious mixtures related to the eigenvalue de-
composition of the variance-covariance matrix (Banfield and Raftery 1993; Celeux and
Govaert 1995), which is currently not estimable in Stata. Other than extending the
possibility estimating CWMs to Stata users, cwmglm introduces new internal validity
measures based on the generalized coefficient of determination and on the three-term
decompositions of the total sum of squares and of the total deviance (Di Mari et al.
2023; Ingrassia and Punzo 2020), model selection and bootstrap-based inference. These
features are not available in other software estimating CWMs.

The rest of the article is organized as follows. Section 2 outlines the theoretical
foundations of our package, section 3 describes cwmglm, sections 4 illustrates the use
of cwmglm in practice, with examples using both real data (Covid-19 admissions and
students) and simulated data. Section 5 concludes.
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2 Statistical framework
Assume we are provided with a sample of size n (x1, y1), . . . , (xn, yn) concerning a
response variable Y and a set of p covariates X = (X1, . . . , Xp)′ coming from a het-
erogeneous population formed by K homogeneous latent classes. In the framework of
Ingrassia et al. (2012) and Ingrassia et al. (2015), the CWM models the distribution of
(X, Y ) is as follows:

f(x, y;θ) =
K∑

j=1
πjp(y|x; ζj)q(x;ψj) (1)

Here, πj is the mixing proportion of the latent classes, p(y|x; ζj) is the class j-specific
conditional density of the response variable and q(x;ψj) is the marginal density of
X in class j. Vector θ includes all the parameters of the conditional density and
of the marginal density, which are vectors ζj and ψj (∀j = 1, . . . , K), respectively.
These parameters are to be estimated. The identifiability of the model is established in
Ingrassia et al. (2015).

Models are usually selected according to metrics like the Bayesian information cri-
terion (BIC) and the Akaike information criterion (AIC). The optimal model is the
one corresponding to the minimum value of AIC or BIC, depending on the adopted
criterion. To select among different models, the expression for the most general log-
likelihood should be used for the nested model. For instance, comparing a CWM with
a FMR would require that the log-likelihood of the FMR is recalculated considering the
FMR as a CWM with group-invariant parameters of the covariates; the same applies
to FMRC. In cwmglm, users can do these comparisons using with the postestimation
command cwmcompare.

2.1 Models for the conditional density

In our framework, the conditional density belongs to the exponential family and it is
modeled as a generalized linear model (GLM, McCullagh and Nelder 2019). In cwmglm,
the conditional density of the CWM to be modeled can be selected according to the
Gaussian, binomial, or Poisson distribution. For example, in the Gaussian case we set
ζj = (β, σ) and y|x ∼ N (xβ′

g, σ2
g). Thus, the conditional density p(y|x; ζj) is as

follows:
p(y|x; ζj) = p(y|x;βj ; σj) = ϕ(y,xβ′

j , σ2
j ) (2)

In the binomial case, the response variable is binary (i.e., Y ∈ {0, 1}) and it is
assumed that the conditional probability p(y|x; ζj) is characterized by regression coef-
ficients ζj = βj and the expected value µj(x,βj) = exp (xβ′

j)/(1 + exp (xβ′
j)):

p(y|x; ζj) = p(y|x;βj) = [µj(x,βj)]y[1 − µj(x,βj)]1−y (3)

For count response variables, assuming that y ∈ N and that Y |x ∼ Pois(µg) leads
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to the Poisson model in equation (4) with expected value µj(x,βj) = exp(xβ′
j).

p(y|x; ζj) = p(y|x;βj) =
µj(x,βj)y exp [µj(x,βj)]

y! (4)

2.2 Models for the marginal density

Assume that the covariates are formed by continuous and discrete variables such that
X = (U ′,V ′,W ′,Z ′)′, where U includes continuous covariates, V ∈ N, W includes
binary covariates, and all the elements of Z are unordered categorical variables. In
cwmglm,the marginal distribution of these covariates can be modeled as Gaussian (U),
Poisson (V ), binomial (W ), or multinomial (Z). In general, the variables in X are
not required to coincide with the covariates of the GLM underlying the conditional
density. The possible discrepancy between the variables in the marginal density and the
covariates of the GLM can be viewed as the results of some constraints on the conditional
or on the marginal density. For instance, omitting a covariate from the marginalization
is equivalent to constraining that the marginal density of such covariate have the same
parameters in all of the latent classes.

For d-variate Gaussian marginals, we have q(u;ψj) = N (u;µj , Σj) where µj and
Σj are the mean vector and the variance covariance matrix respectively of the j-th
component. In cwmglm the estimation of Σj considers the eigendecomposition of Celeux
and Govaert (1995).

Σj = λjDjAjD
′
j (5)

From a geometrical point of view, classes can be represented as ellipsoids centered
at the mean vector µj , where λj = |Σj | 1

d is the volume of class j, Dj represents the
orientation and Aj represents the shape (|Aj | = 1). Depending on constraints on λj ,
Dj and Aj , latent classes may have equal or variable volume and spherical, equal or
variable shape; the orientation may be axis-aligned, equal or variable. Spherical shape
means that the multivariate Gaussian variables underlying Σ are homoskedastic and
uncorrelated (i.e., Aj = Dj = I ∀j = 1, . . . , K). Equal orientation means that latent
classes are constrained to have the same orientation, variable orientation means that
orientation is class-specific; the same concept applies to volume and shape. Axis-aligned
orientation refers to the situation in which the ellipsoid representing the covariance
matrix have their major axes aligned to the axes of the coordinates system related to
the variables that are characterized by the same covariance matrix. The combinations
of these assumptions on λ, D and A lead to 14 parsimonious models which are detailed
in table 1.
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Table 1: Summary of the normal parsimonious models
Volume Shape Orientation Model name Σj N. parameters
Equal Spherical EII λI 1
Variable Spherical VII λjI K
Equal Equal Axis-Aligned EEI λA q
Variable Equal Axis-Aligned VEI λjA K + d − 1
Equal Variable Axis-Aligned EVI λAj 1 + K(d − 1)
Variable Variable Axis-Aligned VVI λjAj Kd
Equal Equal Equal EEE λDAD′ d(d + 1)/2
Variable Equal Equal VEE λjDAD

′ K + d − 1 + d(d − 1)/2
Equal Variable Equal EVE λDAjD

′ 1 + K(d − 1) + d(d − 1)/2
Variable Variable Equal VVE λjDAjD

′ Kd + d(d − 1)/2
Equal Equal Variable EEV λDjAD

′
j d + Kd(d − 1)/2

Variable Equal Variable VEV λjDjAD
′
j K + d − 1 + kD(D − 1)/2

Equal Variable Variable EVV λDjAjD
′
j 1 + K(d − 1) + Kd(d − 1)/2

Variable Variable Variable VVV λjDjAjD
′
j Kd(d + 1)/2

K: number of latent classes
d: number of parameters in x

Regarding binomial covariates, their density can be obtained by replacing y with
v in equation (3) and by assuming, in the same equation, that the expected value µj

is constant. The same reasoning can be applied to Poisson covariates. Multinomial
variables Z can be represented as zr = (zr1, . . . , zrl) where zrs = 1(zr = s) and
s ∈ {1, . . . , l} and modeled as independent binomial terms.

2.3 EM estimation

The log-likelihood l(θ) corresponding to equation (1) is as follows:

l(θ) =
K∑

j=1

N∑
i=1

τij ln πj +
K∑

j=1

N∑
i=1

τij ln[p(yi|xi; ζj)] +
K∑

j=1

N∑
i=1

τij ln[q(xi;ψj)] (6)

where τij is an indicator such that τij = 1 if observation i belongs to class j and τij = 0
otherwise. It is maximized using the EM algorithm (Dempster et al. 1977). In the t-th
iteration, the E-step consists of calculating τ̂ij the posterior probability related to τij

(equation (7)) given the current expectation of θt.

τ̂ t
ij =

πt
jp(yi|xi; ζt

j)q(xi;ψt
j)

f(x, y,θt)
(7)

In the M-step, the value of τ̂ij is plugged into equation (6) and then the current log-
likelihood is maximized, obtaining the new estimates of the parameters, see Ingrassia
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et al. (2015) for details. The maximization of l(θ) with respect to π = (π1, . . . , πK)
implies that: πj = n−1 ∑n

i=1 τij . Maximizing the conditional and marginal parts of (6)
with respect to ζj and ψj (∀j = 1, . . . , K) is equivalent to independently maximizing
the expressions for the additive components of equation (6). To establish convergence
cwmglm applies the Aitken acceleration (Aitken 1927) and the procedure stops when
lt+2
∞ − lt+1 < ϵ where the asymptotic log-likelihood estimate is:

lt+2
∞ = lr+1 + lt+2 − lt+1

1 − at+1 (8)

Once the posterior probabilities τ̂ij are obtained from the EM algorithm, observa-
tions can be allocated to latent classes using the maximum a posteriori (MAP) classifi-
cation. The posterior probabilities are also termed as “soft” group membership because
all of the observations have a positive probability of belonging to all of the classes. The
MAP classification is represented in equation (9) and is also referred as “hard” group
allocation since it assigns each observation to a single class (Di Mari et al. 2023) and,
therefore, it is a discrete variable.

MAP (τ̂ig) =
{

1 if max
j

(τ̂ij) occurs in g

0 otherwise
(9)

2.4 Measures of fit

Information criteria

For model selection, cwmglm implements the two standard information criteria in the
maximum likelihood framework: the AIC and the BIC. Given a sample of N observations
and a CWM characterized by r estimated parameters and the maximized value of the
log-likelihood l̂ the criteria are as follows:

AIC = 2r − 2l̂

BIC = r ln N − 2l̂
(10)

The lower AIC or BIC, the better is the model fit.

Deviance decomposition and generalized R2

To evaluate the goodness of fit of the GLM underlying the conditional density in equa-
tion (1), cwmglm adopts the measures of fit outlined by Di Mari et al. (2023) which
extend previous results in the framework of Gaussian models given in Ingrassia and
Punzo (2020). These measures, in turn, extend deviance-based measures of lack of fit
proposed by Cameron and Windmeijer (1996) to clusterwise regressions and are defined
both at the class level (i.e., locally) and at the whole sample level (i.e., globally).
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From the log-likelihood in equation (6) it is convenient to express the second additive
component as follows:

K∑
j=1

N∑
i=1

τij ln[p(yi|xi;βj , ϕj)] =
K∑

j=1

N∑
i=1

τij ln[p(yi; µij ; ϕj)] =
K∑

j=1
l(µj , ϕj) (11)

where µij = E(Yi|Xi;βj) is the expected value for the i-th observation in the j-th
latent class of the GLM underlying equation (11) and ϕj is the dispersion parameter.
For each group, the total within deviance WDj can be decomposed into two terms: the
local explained deviance EWDj and the local residual deviance RWDj .

WDj = [l(y, ϕ̂j) − l(ȳj , ϕ̂j)] = EWDj + RWDj

EWDj = [l(µ̂j , ϕ̂j) − l(ȳj , ϕ̂j)]
RWDj = [l(y, ϕ̂j) − l(µ̂j , ϕ̂j)]

(12)

Considering the whole sample, the total deviance TD can be additively decomposed
into the within-group deviance (WD =

∑K
j=1 WDj) and the between-group deviance

BD:

BD =
K∑

j=1
BDj

BDj = [l(ȳj , ϕ̂j) − l(ȳ, ϕ̂j)].

(13)

The former measures the class-specific dispersion of the observations with respect
to the latent class averages, while the latter contains information about the separation
between classes in terms of units of the response variable.

The global total deviance TD can be decomposed as follows:

TD = WD + BD = EWD + RWD + BD

EWD =
K∑

j=1
EWDj

RWD =
K∑

j=1
RWDj

(14)

where EWD is the overall explained within deviance and RWD is the global residual
within deviance. From the decomposition outlined in equation (12)-(14) it is possi-
ble to define a generalized coefficient of determination both locally (R2

j ) and glob-
ally (R2). Di Mari et al. (2023) define the former as the normalized local deviance
R2

j = EWDj/WDj and the latter as R2 = EWD/WD.
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In particular, R2
j can be seen as the proportion of the local deviance in the j-th

group that cannot be explained by the intercept-only GLM in that group, but which
can be explained by the linear predictor ηij = β̂jxi of the GLM. The overall R2 can be
interpreted as the proportion of the within deviance explained by the fitted mixture of
GLMs.

Furthermore, from equation (14) it is possible to define normalized indicators by
dividing both sides by TD (Ingrassia and Punzo 2020). Three measures are then ob-
tained: NEWD = EWD/TD, NRWD = RWD/TD and NBD = BD/TD. The
first is the proportion of the deviance explained by the inclusion of the covariates in
the conditional model (i.e., in the GLM), the second represents the proportion of to-
tal deviance left unexplained by the regressions, and NBD is a measure of association
between the response variable and the latent group variable (i.e., the proportion of the
deviance explained by the classes).

3 The cwmglm package
The cwmglm package requires Stata 16 or newer versions and allows fitting CWMs based
on mixtures of the most common GLMs with random covariates. The supported fami-
lies are Gaussian, Poisson and binomial and the marginal distributions allowed for the
covariates are multivariate Gaussian, multinomial, binomial, and Poisson. The syntax
of cwmglm is designed to maximize flexibility in model specification. In particular, users
can fit both mixtures of distributions and FMR, are nested in equation (1).
In cwmglm, the only mandatory option is posterior, and the general syntax is as follows:

cwmglm [depvar indepvars ] [if] [in], [k(#)] [glm options] [marginalization
options] [inizialization options] [maximization options] [display options]

After the command statement, users may optionally specify the response variable (depvar )
and the covariates (indepvars ) of the conditional part of the CWM. If they are spec-
ified, the conditional part of the CWM is a GLM of the family defined by the family
option (see section 3.1). Otherwise, the conditional part of the model is not considered:
this is equivalent to setting πjp(y|x; ζj) = 1 ∀j in equation (1) or assuming that the
second addend in the right-hand side of equation (6) is equal to zero.

3.1 Options

The option k(#) sets the number of latent classes, which is parameter K in equation (1).
Leaving this option unspecified leads to the estimation of a CWM with K = 2.

GLM options

The only option controlling the conditional density of the response variable that can be
specified is family(familyname). That option specifies the distribution of the response
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variable depvar for the GLM. The default is family(gaussian) (link identity, condi-
tional density in equation (2)). The other allowed distributions are family(binomial)
(link logit, conditional density in equation (3)) and family(poisson) (log link , condi-
tional density in equation (4)).

Marginalization options

The marginalization options control the specification of the marginal density q(xi;ψj).
The cwmglm package allows covariates to be multivariate Gaussian, Poisson, binomial
and multinomial distributed. The detailed options are as follows:

• xnormal(varlist ) specifies that the variables in varlist follow a (multivariate)
Gaussian distribution. If this option is specified, users can model the variance-
covariance matrix of normal covariates using one of the fourteen parsimonious
models of Celeux and Govaert (1995). The options are based on the taxonomy of
table 1 and are eii, vii, eei, vei, evi, vvi, eee, vee, eve, vve, eev, vev, evv and
vvv. If exactly one variable is included in xnorm(varlist ), the possible options
are equal variance (using eee) or different variances (option vvv). Estimates
for the models EVE and VVE are obtained using the minorization-majorization
algorithm (Browne and McNicholas 2014; Sarkar et al. 2020).

• xpoisson(varlist ) specifies that the variables in varlist follow independent
Poisson distributions

• xbinomial(varlist ) specifies that the variables in varlist follow independent
binomial distributions

• xmultinomial(varlist ) specifies that the variables in varlist follow indepen-
dent multinomial distributions. Factor variable syntax is not allowed. Categories
are detected automatically.

Let us consider a theoretical example for the sake of clarity. Let us assume that the
covariates of a model to be estimated are X (continuous), U, and V (both binary). Users
modeling X as multivariate Gaussian distributed with equal volume, variable shape and
variable orientation (EVV) and modeling U and V as binomial covariates, should set
the marginalization options in the following way:

cwmglm ..., posterior(stub) xnormal(X ) evv xbinomial(U V )

This is equivalent to assuming that the parameters to be estimated in the marginal
distribution in equation (1) are given by ψj = (µj , Σj , puj , pvj), and that the underly-
ing marginal density in latent class j would be:

q([X,U ,V ];ψj) = ϕ(x, µj , Σj)[puj ]u[1 − puj ]1−u[pvj ]v[1 − pvj ]1−v (15)
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where ϕ(x, µj , Σj) is the density of the bivariate Gaussian distribution with expected
value µj and variance-covariance matrix Σj . The parsimonious model EVV implies that
Σj = λDjAjD

′
j . Scalars puj and pvj are the parameters for the underlying binomial

distributions related to U and V in latent class j.

Initialization options

The initialization options control the initial values of the CWM. The main option is
start(svmethod), which that specifies how the initial component membership (hard
class memberships) or component membership probabilities (soft class memberships) to
be supplied to the EM algorithm are obtained. This option can be specified as follows:

• start(kmeans) specifies that the starting values are computed by assigning each
observation to an initial latent class that is determined by running a kmeans
cluster analysis; this is the default.

• start(randomid) specifies that the starting values are computed by randomly
assigning observations to initial classes.

• start(randompr) specifies that the starting values are computed by randomly
assigning initial class probabilities.

• ndraws(#), applies only if start(randompr) or start(randomid) are specified.
It specifies #, the number of random draws for used to select the starting val-
ues(initial class memberships or probabilities); among the # runs, starting values
are selected if they have the highest log-likelihood. The default value is 10.

• start(custom) causes cwmglm to initialize the EM algorithm with user-specified
initial class memberships or probabilities. If this option is chosen, users must
specify the initial option.

• initial(varlist ) is a variable set containing the starting values for start(custom).
The user must specify a k-dimensional varlist, where k is the number of latent
classes. The varlist in this option may represent soft or hard group member-
ships; it applies only if start(custom) is specified.

Maximization options

These options control the settings of the iterative maximization procedures occurring
in cwmglm

• iterate(#), is the maximum number of EM iterations. The default is 1200.

• iteratexnorm(#) is the maximum number of iterations to be used for the par-
simonious models. It only affects the estimations of VEE, EVE, VVE, VEV and
VEI models. Default is 1200.
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• convcrit(#) is the stopping criterion for the Aitken acceleration procedure. The
default threshold is 1e-5.

Display options

These options reduce the output in the results window.

• nolog suppresses the iteration log. Reports only the required iterations to con-
verge and the log-likelihood at convergence.

• noclustertable forces cwmglm not to display the clustering table. If this option
is specified the package supresses the output related to the number of observations
allocated to each latent class and prior class probabilities π = π1, . . . , pK .

• nodeviance forces cwmglm not to display the deviance measures outlined in section
cwmglm.

• nomarginal forces cwmglm not to display the parameters of the marginal den-
sities such as mean vectors and covariances of multivariate normal covariates.

• noregtable forces cwmglm not to display regression table related the parameters
of the generalized linear model underlying the conditional part of the CWM.

3.2 Saved results

The following scalars are returned by cwmglm:

• e(N), the number of observations used for the estimation;

• e(dof), the number of estimated parameters;

• e(ll), the value of the maximized log likelihood;

• e(bic), the BIC;

• e(aic), the AIC;

• e(converged), a binary indicator that is equal to 1 if the EM has reached con-
vergence and 0 otherwise.

The cwmglm package returns the following matrices:

• e(b), the coefficients vector of the GLM;

• e(V), the variance-covariance matrix of the GLM;

• e(phi0), the dispersion parameter of the GLM;
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• e(globaldeviance), a 2 × 4 matrix containing the overall residual deviance, the
overall explained deviance, the between deviance, and the total deviance, as de-
fined by equation (14). These measures are both in their natural units and nor-
malized.

• e(localdeviance), a 4 × (K + 1) matrix including the within deviance decom-
position WD = EWD + RWD of the GLMs and the generalized R2 (see equa-
tion (12)-14).

• e(R2) a vector including the group-specific (R2
j ) and overall (R2) generalized

coefficients of determination for the GLM;

• e(cl table), clustering table that contains the estimated size for each latent class
based on MAP group memberships (equation (9));

• e(prior), estimates of πj the prior latent classes weights (equation (1)).

• e(mu), the mean vector of the variables marginalized as multivariate Gaussian
distributed (xnormal option).

• e(sigma), the variance-covariance matrices of the variables marginalized as mul-
tivariate Gaussian distributed (xnormal option).

• e(lambda), a mP oisson × K matrix of the parameters the covariates with Pois-
son marginalization, where mP oisson is the number of variables declared in the
xpoisson option.

• e(p binomial), a mbinomial × K matrix of the parameters the covariates with
binomial marginalization, where mbinomial is the number of variables declared in
the xbinomial option.

• e(p multi #) probabilities for the variable marginalized as multinomial distributed.
It returns m matrices named e(p multi 1), ..,e(p multi m), where m is the num-
ber of multinomial variables declared in xmultinomial.

• e(ic), a vector containing the AIC and the BIC.

cwmglm returns the following macros:

• e(depvar), the response variable of the GLM;

• e(indepvars), the list of covariates used in the GLM;

• e(cmd), cwmglm;

• e(xnormal), a varlist containing the variables with normal marginalization;

• e(xnormodel) the parsimonious model used for the normal marginalization (e.g.,
vvv, eee);
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• e(xpoisson), a varlist containing the variables with poisson marginalization;

• e(xbinomial), a varlist containing the variables with binomial marginalization;

• e(xmultinomial) , a varlist containing the variables with multinomial marginal-
ization;

• e(xmultinomial fv) , a varlist containing the variables with multinomial marginal-
ization in factor variable notation;

• e(glmcmd), the command to fit the GLM within each EM iteration.

The only function returned by cwmglm is e(sample), which marks the estimation
sample.

3.3 Postestimation commands

Here we outline the syntax for prediction (the predict command), bootstrapping
(cwmbootstrap command) and model comparison (the cwmcompare command).

Syntax for predict

After cwmglm, the predict command can be used to classify observations into the K
latent classes. To calculate the posterior class memberships (i.e., soft class membership)
the following syntax is used:

predict stub , posterior

This command creates K new variables with a prefix given by stub. For instance, if
K = 3 and stub is z, Stata would create 3 new variables: z1, z2 and z3. The prediction
of hard group memberships (i.e., discrete allocation of observations to classes) is also
possible using the MAP. The syntax is as follows:

predict newvarname , map

This creates a new variable varname that assigns hard group membership according
to the maximum a posteriori probability. This means that observation i is assigned to
latent class j if ẑij = maxh=1..k(ẑih).

Syntax for cwmbootstrap

This postestimation command cwmbootstrap uses the results returned by cwmglm (see
section 3.2) to estimate bootstrap standard errors for the following estimates:

• e(b) , the coefficient vector of the GLM;

• e(p multi #), the probabilities of a each outcome for the xmultinomial variables;
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• e(p binomial), the probabilities of a positive outcome for the xbinomial variables;

• e(lambda), the mean of the xpoisson variables;

• e(mu), the mean of the xnorm variables.

cwmbootstrap returns only matrices related to the inference on the above-mentioned
parameters. Such matrices are:

• r(b), the inference table for e(b);

• r(p multi), the inference table for e(p multi #);

• r(p binomial), the inference table for e(p binomial);

• r(lambda), the inference table for e(lambda);

• r(mu), the inference table for e(mu).

The only option for cwmbootstrap is nreps , an integer that sets the number of boot-
strap replications. The syntax is as follows:

cwmbootstrap, reps(#)

Syntax for cwmcompare

The cwmcompare command uses the AIC and BIC to compare different moldes obtained
using from cwmglm. The syntax is as follows:

cwmcompare namelist

where namelist is a list of estimates saved using estimates store. The cwmcompare
command recalculates the information criteria using the most general specification from
the members of namelist as well as suitable constraints in order to make estimates
comparable. The returned results are as follows:

• r(table) is a matrix containing the AIC and BIC for the model in namelist ;

• r(bestAIC) and r(bestBIC) are macros containing the members of namelist
corresponding to the models minimizing the AIC and BIC respectively.

4 Examples
This section provides three examples to illustrate the use cwmglm in the empirical setting.
The first two are based on real data, while the last one is based on artificial datasets.
Additional examples are available in the online appendix.
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4.1 The covid dataset

The first real dataset includes a random sample of administrative data regarding 1,000
hospital admissions during the first COVID-19 wave (February 2020 to May 2020) in a
single Italian province. The COVID-19 dataset is used to illustrate how to build CWMs
with the cwmglm command. The variables are as follows:

• los, the length of stay (LOS) (in days);

• admday, the day of admission (standardized variable);

• age, the patient’s age (standardized variable);

• mortrisk, the standardized in-hospital mortality risk score based on comorbidi-
ties(see Fabbian et al. (2017) for details);

• n1, the number of procedures that the patient underwent during their hospital
stay;

• female, =1 if the patient is female, or =0 otherwise.

The empirical strategy is concerned with estimating CWMs for different numbers
of latent classes (K = 2, 3, 4) and comparing their fit. The conditional part is aimed
at explaining the LOS (los) conditional on the period of admission (admday), on the
patient’s demographic characteristics (age and sex) and on patient complexity as proxied
by the number of procedures characterizing the hospital stay (n1) and mortality risk
(mortrisk). This section reports the estimation results only for K = 2 and the summary
of the fit of each models. For further details, we refer readers to the appendix (see online
supplementary material).

Since los is an integer representing the number of days spent in the hospital, the
conditional part of the CWM is based on the Poisson family. In this framework, the
basic syntax for cwmglm is as follows:

cwmglm los admday age mortrisk n1 female, k(2) family(poisson)

In its current state, the command above would not model the marginal density of the
covariates; it would assume q(X;ψj) = 1 in equation (1) and fit a FMR. Thus, to fit a
CWM (a mixture of regressions with random covariates), the command must be updated
with the marginalization options. The continuous covariates (admday age mortrisk)
are modeled as a multivariate Gaussian distribution with a VVV variance-covariance
matrix, the most general parsimonious model. Thus, the option xnormal(admday age
mortrisk) must be added; although the VVV model is the default, the vvv option is
specified for the sake of illustration. Omitting vvv would estimate the same model.
Since n1 is a count variable it is marginalized as Poisson distributed. Gender (the
variable female) is modeled using the binomial distribution. Overall, the command
would be updated as follows:

cwmglm los admday age mortrisk n1 female, k(2) family(poisson) xnormal(admday
age mortrisk) vvv xpoisson(n1) xbinomial(female)
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The command above is also used as the building block to estimate CWM with
K = {3, 4} by simply changing the value of k(). Executing it in Stata with the addition
of the nolog nomarg options to avoid excessive tables would lead to the following output:

. cwmglm los admday age mortrisk n1 female, xnormal(admday age mortrisk) vvv ///
> xpoisson(n1) xbin(female) k(2) family(poisson) nolog nomarg
initializing EM...
EM iteration 129:log-likelihood= -9883.11853
Prior Probabilities

g1 g2

.3094271 .6905729

Clustering Table

g1 g2

306 694

Information criteria

AIC BIC

19832.24 19994.19

Local Deviance

g1 g2 Overall

WD 2487.11 2084.844 4571.954
RWD 1099.886 1717.78 2817.666
EWD 1387.225 367.063 1754.288
Rˆ2 .5577657 .1760626 .3837064

Global Deviance

RWD EWD BD TD

Deviance 1754.288 2817.666 2919.108 7491.062
Normalized˜e .2341841 .3761371 .3896788 1

los Coefficient Std. err. z P>|z| [95% conf. interval]

g1
admday -.0138496 .0083668 -1.66 0.098 -.0302482 .002549

age .4370916 .0098406 44.42 0.000 .4178043 .4563789
mortrisk -.332969 .009551 -34.86 0.000 -.3516887 -.3142493

n1 .2316298 .0054555 42.46 0.000 .2209373 .2423223
female -.2845163 .0144488 -19.69 0.000 -.3128355 -.2561971
_cons 2.49537 .0231239 107.91 0.000 2.450048 2.540692

g2
admday .0412585 .010733 3.84 0.000 .0202222 .0622948

age .2730241 .0338367 8.07 0.000 .2067054 .3393429



18 CWM using Stata

mortrisk -.3688652 .0345665 -10.67 0.000 -.4366143 -.3011161
n1 .1556781 .0091091 17.09 0.000 .1378246 .1735316

female -.1753901 .0251741 -6.97 0.000 -.2247305 -.1260498
_cons 1.615551 .0371954 43.43 0.000 1.54265 1.688453

The first table in the Stata output above shows that the estimated groups (g1 and g2)
have prior probabilities (π from equation (1)) equal to π̂1 = 0.309 and π̂2 = 0.691, while
the second one reports that hard group membership would correspond to allocating 306
and 694 observations to g1 and g2, respectively. Overall, the GLM is characterized
by a generalized determination coefficient R2 = 0.38 (from the fourth table in the
Stata output), this is equivalent to a 38 % proportionate increase in the local explained
deviance due to the inclusion of the covariates in the regression models (Cameron and
Windmeijer 1997; Brilleman 2011). The same figure is equal to R2

1 = 0.56 for g1 and
R2

2 = 0.18 for g2. This implies that the GLM in the first latent class fits the data better
than g2. The between deviance is a separation measure: it indicates the degree of
separation of the latent class along the response variable axis (Di Mari et al. 2023). The
normalized between deviance is 2919.108/7491.062 = 0.389, which means that 38.9%
of the total deviance is explained by the difference in the dependent variable between
latent classes. Specifically, the separation of the groups explains the deviances as well
as the regression models since NEWD = 0.376.

The estimation results on the regression coefficients are β1 = (−0.013, 0.437, −0.333,
0.231, −0.284, 2.495) for latent class g1 and β2 = (0.041, 0.273, −0.369, 0.155, −0.175, 1.61)
for g2. The parameters of the marginal densities of the covariates can be accessed from
the returned results (see section 3.2; the command ereturn list can be used to access
the complete list of returned results). For multivariate Gaussian covariates admday, age,
and mortrisk, the parameters are stored in matrices e(mu) and e(sigma), shown in
the Stata output below.

.

. matlist e(mu), title("mean of multivariate Gaussian covariates ")
mean of multivariate Gaussian covariates

g1 g2

admday -.0438391 .0196431
age -.1848609 .0828312

mortrisk .1941918 -.0870121
.
. matlist e(sigma),title("variance-covariance matrix of multivariate Gaussian covariates")
variance-covariance matrix of multivariate Gaussian covariates

g1 g2
admday age mortrisk admday age mortrisk

admday .6904834 .1316384 .281698 1.135991 .1382855 .1698366
age .1316384 1.484113 1.063809 .1382855 .7594605 .6944169

mortrisk .281698 1.063809 1.506549 .1698366 .6944169 .7471128

The latent class g1 is characterized by a mean vector equal to µ1 = (−0.044, −0.189, 0.194),
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the corresponding vector in g2 is µ2 = (0.0196, 0.082, −0.087). This means that in g1,
patients have been admitted earlier (admday), are younger (age) but have a higher risk
of mortality at the time of admission (mortrisk). The variance-covariance matrices
highlight that the normal covariates are positively correlated in both latent classes.
The latent classes have a rather similar expected value of the only Poisson covariate
(n1): λ1 = 3.480 in g1 and λ2 = 3.515 in g2. Concerning sex, females have a larger
probability to belong to the first latent class (p1 = 0.424) than to g2 (p2 = 0.295).

. matlist e(lambda), title("mean of Poisson covariates")
mean of Poisson covariates

g1 g2

n1 3.480433 3.51456
.
. matlist e(p_binomial), title("mean of binomial covariates")
mean of binomial covariates

g1 g2

female .4240503 .295099

To estimate models with K greater than 2, users may simply edit the k option in the
command (see section 3.1) with the desired number of latent classes. A summary of the
models for K = 2, 3, 4 is presented in table 2. Overall, the results suggest that models
with larger K values fit the data better than the model with K = 2. The AIC and BIC
suggest selecting the model with K = 4; however, the differences in AIC and BIC are
marginal and model selection would be between K = 3 and K = 4 as they involve a
trade-off between regression fit (indicated by R2) and class separation (summarized by
NBD). The CWM with K = 2 is discarded.

Table 2: Summary of the CWM applied to the covid dataset
K = 2 K = 3 K = 4

AIC 19,832.24 19,560.91 19,053.67
BIC 19,994.19 19,801.39 19,372.68
R2 0.384 0.435 0.573

NEWD 0.234 0.202 0.281
NBD 0.389 0.536 0.510

4.2 The students dataset

The second real dataset is based on a survey of 270 students attending the University of
Catania. For each respondent, the variables include information about height (height),
father’s height (heightf), weight (weight), and gender (gender).
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Estimation and bootstrapping

In this section, we replicate the model presented in section 5.3 of Mazza et al. (2018) and
integrate it with bootstrapping using the postestimation command cwmbootstrap. The
underlying modeling strategy is to treat gender as an unobserved and evaluate whether
the CWM is able to discriminate between females and males. This model specified
multivariate normal covariates with equal size, equal shape and equal orientation (EEE)
and a Gaussian GLM. The dependent variable is weight while the covariates are height
and heightf.

. cwmglm weight height heightf, k(2) xnormal(height heightf) eee
initializing EM...
(output omitted)
EM iteration 17:log-likelihood= -2648.16080
Prior Probabilities

g1 g2

.4369902 .5630098

Clustering Table

g1 g2

117 153

Information criteria

AIC BIC

5328.322 5385.896

Local Deviance

g1 g2 Overall

WD 169.0922 228.9385 398.0306
RWD 116.9874 151.0126 268
EWD 52.1048 77.92581 130.0306
Rˆ2 .3081444 .3403789 .3266849

Global Deviance

RWD EWD BD TD

Deviance 130.0306 268 204.7742 602.8048
Normalized˜e .2157093 .4445884 .3397023 1

mean vectors of the Gaussian variables

g1 g2

height 177.5373 161.7553
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heightf 174.1353 175.6054

variance matrices of the Gaussian variables

g1 g2
height heightf height heightf

height 27.8441 22.04352 27.8441 22.04352
heightf 22.04352 34.69652 22.04352 34.69652

weight Coefficient Std. err. z P>|z| [95% conf. interval]

g1
height .7612449 .1082026 7.04 0.000 .5491717 .9733182

heightf -.0088664 .0939404 -0.09 0.925 -.1929862 .1752534
_cons -57.28365 12.3717 -4.63 0.000 -81.53174 -33.03556

g2
height .8983653 .0912865 9.84 0.000 .719447 1.077284

heightf -.1442846 .0838213 -1.72 0.085 -.3085712 .0200021
_cons -54.08234 12.12518 -4.46 0.000 -77.84725 -30.31742

Compared to Mazza et al. (2018), the two groups have the same dimensions and the
regression coefficients are very close in value. For instance the coefficient of height in
the largest group obtained by Mazza et al. (2018) is equal to 0.897714 while the one
given by cwmglm is equal to 0.8983653. Moreover, for the smallest group, the obtained
mean vector is (177.5373 , 174.1353), while Mazza et al. (2018) report (177.54,174.14).

.

. predict group, map
(maximum posterior probability group allocation)
. tab group gender

Gender
group F M Total

1 149 4 153
2 2 115 117

Total 151 119 270
.
. tw (scatter height weight if group==1 & gender=="M", mlcolor(gs9) mcolor(gs9) msymbol(T)) ///
> (scatter height weight if group==2 & gender=="M", mlcolor(gs9) mcolor(gs16) msymbol(T)) ///
> (scatter height weight if group==1 & gender=="F", mlcolor(gs9) mcolor(gs16) msymbol(O)) ///
> (scatter height weight if group==2 & gender=="F", mlcolor(gs9) mcolor(gs9) msymbol(O)), ///
> legend(off) saving(g1,replace)
file g1.gph saved
.
. tw (scatter height heightf if group==1 & gender=="M", mlcolor(gs9) mcolor(gs9) msymbol(T)) ///
> (scatter height heightf if group==2 & gender=="M", mlcolor(gs9) mcolor(gs16) msymbol(T)) ///
> (scatter height heightf if group==1 & gender=="F", mlcolor(gs9) mcolor(gs16) msymbol(O)) ///
> (scatter height heightf if group==2 & gender=="F", mlcolor(gs9) mcolor(gs9) msymbol(O)), ///
> legend(off) saving(g2,replace)
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file g2.gph saved
.
. tw (scatter heightf weight if group==1 & gender=="M", mlcolor(gs9) mcolor(gs9) msymbol(T)) ///
> (scatter heightf weight if group==2 & gender=="M", mlcolor(gs9) mcolor(gs16) msymbol(T)) ///
> (scatter heightf weight if group==1 & gender=="F", mlcolor(gs9) mcolor(gs16) msymbol(O)) ///
> (scatter heightf weight if group==2 & gender=="F", mlcolor(gs9) mcolor(gs9) msymbol(O)), ///
> legend(off) saving(g3,replace)
file g3.gph saved
. graph combine g1.gph g2.gph g3.gph, rows(1)

In figure 1 triangles represent males and circles represent females; empty markers
indicate correctly classified observations, while full markers represent classification er-
rors.

Figure 1: Scatter plot of model variables

For inference purposes, we use the postestimation command cwmbootstrap to obtain
the standard errors of the estimated parameters. Consistently with standard Stata
estimation commands, cwmbootstrap displays and returns the inference tables for the
estimated parameters. In this example, cwmbootstrap returns a matrix r(b) containing
the inference table for GLM and a matrix r(mu) containing bootstrap estimates for the
means of the multivariate Gaussian covariates. Our test rejects the null hypothesis that
the coefficient of height is zero for both groups, while it fails to reject the one regarding
the father’s height.

. set seed 67788

. cwmbootstrap, reps(100)
Bootstrap replications (100)
.................................................. 50
.................................................. 100

GLM estimates
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Coefficient Std. err. z P>|z| [95% conf. interval]

g1
height .7612449 .1857554 4.10 0.000 .397171 1.125319

heightf -.0088664 .1590014 -0.06 0.956 -.3205035 .3027706
_cons -57.28365 15.7494 -3.64 0.000 -88.15189 -26.4154

g2
height .8983653 .1410497 6.37 0.000 .6219129 1.174818

heightf -.1442846 .100023 -1.44 0.149 -.3403261 .0517569
_cons -54.08234 13.39161 -4.04 0.000 -80.3294 -27.83527

Mean of Gaussian covariates (marginal distribution)

Coefficient Std. err. z P>|z| [95% conf. interval]

g1
height 177.5373 .5050874 351.50 0.000 176.5473 178.5272

heightf 174.1353 .4082369 426.55 0.000 173.3351 174.9354

g2
height 161.7553 .5161487 313.39 0.000 160.7436 162.7669

heightf 175.6054 .4450325 394.59 0.000 174.7331 176.4776

Comparing CWM and FMR

In this section, we use cwmcompare to select the best model among two nested alterna-
tives. The benchmark model (saved as cwm using estimates store) is the CWM from
section 4.2. The competing model (saved as fmm) is a finite mixture of Gaussian GLMs
with the same response variable as the previous one. The number of latent classes is
held fixed at k = 2. Since the models maximize different log-likelihoods the AIC and
BIC values obtained from cwmglm are not directly comparable but must be adjusted.
The model cwm is the most general, its log-likelihood is as follows:

N∑
i=1

2∑
g=1

τig

{
ln πig + ln

[
ϕ(weighti −Xiβ

′
g, σ2

g)
]

+ ln [ϕ2(Xi − µg, Σg)]
}

(16)

while the model fmm maximizes
N∑

i=1

2∑
g=1

τig

{
ln πig + ln

[
ϕ(weighti −Xiβ

′
g, σ2

g)
]}

(17)

where ϕ2() is the bivariate Gaussian PDF and Xi = (heighti, heightfi). The in-
formation criteria calculated using log-likelihoods from equations (16) and (17) are not
comparable. The postestimation command cwmcompare adjusts equation (17) using
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the expression in equation (16) and the constraints µ1 = µ2 and Σ1 = Σ2 (i.e., the
means and covariance matrices of the covariates are constrained to be group-invariant).
The Stata output below reports the results. Note that, in the second call of cwmglm,
the option xnormal have been omitted. This omission allows to estimate the FMR in
equation (17) instead of the CWM in equation (16). The order of magnitude of the
information criteria is rather different between models (the AIC is 5,328 vs 1,937 in cwm
and fmm) due to the difference in the formula used for the log-likelihood. Selecting the
model without adjustment would lead to the (incorrect) selection of model fmm. After
the adjustment using cwmcompare the AIC- and BIC-minimizing model is cwm.

. cwmglm weight height heightf, k(2) xnormal(height heightf) eee nolog ///
> nocluster nodev noregt nomarginal
initializing EM...
EM iteration 17:log-likelihood= -2648.16080
Information criteria

AIC BIC

5328.322 5385.896

. estimates store cwm

.

. cwmglm weight height heightf, k(2) eee nolog nocluster nodev noregt
initializing EM...
EM iteration 855:log-likelihood= -959.66820
Information criteria

AIC BIC

1937.336 1969.722

. estimates store fmm

. cwmcompare cwm fmm
information criteria for cwmglm estimates

AIC BIC

cwm 5328.322 5385.896
fmm 5629.813 5680.191

the model with the minimum AIC is cwm
the model with the minimum BIC is cwm

4.3 The multinorm dataset

This simulated example illustrates the use of cwmglm as a tool for estimating parsimo-
nious mixtures of multivariate normal distributions, as well as how to use loops along
with cwmglm and the postestimation command cwmcompare to automate the model se-
lection process based on AIC and BIC. The dataset is generated with the code below.
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. clear

. set seed 234567

. matrix C1 = (1351, -358\-358, 136)

. matrix mu1=(59,68)

. drawnorm x1 x2, n(1000) cov(C1) means(mu1)
(obs 1,000)
. tempfile temp
. gen group=1

. preserve

. clear

. matrix C1 = (47, -12\ -12, 378)

. matrix mu1=(8,61)

. drawnorm x1 x2, n(200) cov(C1) means(mu1)
(obs 200)
. gen group=2
. save `temp´, replace
. restore
. append using `temp´
.
. preserve
. clear
. matrix mu1=(124,40)
. matrix C = (7407, 1033\ 1033, 728)
. drawnorm x1 x2, n(720) cov(C1) means(mu1)
(obs 720)
. gen group=3
. save `temp´, replace
. restore
. append using `temp´
. save multinorm,replace
.
. tw (scatter x1 x2 if group==1) ///
> (scatter x1 x2 if group==2) ///
> (scatter x1 x2 if group==3), ///
> legend(order (1 "comp. 1" 2 "comp. 2" 3 "comp. 3")) ///
> legend( rows(1)) title(Artificial Data)

The 1,920 observations are labeled by the variable group, which identifies three sub-
populations (A, B, and C). In this dataset, there are two continuous variables, admday
and age, which are drawn from a multivariate normal distribution. The classes are
shown in figure 2. The variables admday and age have different covariance matri-
ces with variable shape, orientation, and volume (VVV). The characteristic means,
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variance-covariance matrices, and sample sizes are as follows:

µA = (59, 68), ΣA =
( 1351 −358

−358 136
)
, NA = 1000

µB = (8, 61), ΣB =
( 47 −12

−12 378
)
, NB = 200

µC = (124, 40), ΣC =
(

7407 1033
1033 728

)
, NC = 720

(18)

Figure 2: Clusters in the multinorm dataset

In the following code, we run a foreach loop on all the possible combinations of
parsimonious models and number of components. The outer foreach loop cycles over
different specifications of the multivariate Gaussian parsimonious models listed in local
macro models (e.g., VVV,VVE,EEI) and the inner forvalues loop cycles over k =
2, . . . , 5 . Inside the concatenated loops, convergence is checked and the estimates of
the converging model are saved using estimates store. Model selection is carried out
using cwmcompare on the saved estimates.

. tw (scatter x1 x2 if group=="A") ///
> (scatter x1 x2 if group=="B") ///
> (scatter x1 x2 if group=="C"), ///
> legend(order (1 "comp. A" 2 "comp. B" 3 "comp. C")) ///
> legend( rows(1)) title(Artificial Data)
.
. graph export fig3.png, as(png) replace
file fig3.png saved as PNG format
. global CWMs //initializing the estimates list
. local models vev evv vvv eei vei evi ///
> vvi eii vii eee vee eve vve eev // list of the 14 parsimonious models
.
. foreach model of local models { // looping over parsimonious models

2. forval i=2/5 { // looping over number of clusters
3.
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. qui cwmglm, xnorm(x1 x2) k(`i´) `model´
4. if (e(converged)==1) {
5. estimates store `model´`i´ //saving estimates for converged models
6. global CWMs $CWMs `model´`i´ //updating the estimates list
7. }
8. else di in red ///

> "model `model´ with `i´ mixture component did not converge"
9. }

10. }
model evv with 5 mixture component did not converge
model vvv with 4 mixture component did not converge
model eve with 4 mixture component did not converge
model eev with 5 mixture component did not converge
.
. cwmcompare $CWMs
information criteria for cwmglm estimates

AIC BIC

vev2 37030.31 37085.91
vev3 36057.32 36140.72
vev4 36100.53 36211.73
vev5 35549.92 35688.92
evv2 35457.97 35513.57
evv3 34558.02 34641.42
evv4 35244.29 35355.49
vvv2 35182.28 35243.44
vvv3 34505.37 34599.89
vvv5 36197.52 36358.76
eei2 36137.08 36176.01
eei3 35713.89 35769.49
eei4 36098.1 36170.38
eei5 35960.8 36049.76
vei2 36124.26 36168.74
vei3 35574.39 35641.11
vei4 35619.72 35708.68
vei5 35539.86 35651.06
evi2 35560.15 35604.63
evi3 35200.26 35266.98
evi4 34959.24 35048.2
evi5 35199.14 35310.35
vvi2 35252.24 35302.28
vvi3 35159.25 35237.09
vvi4 35045.69 35151.33
vvi5 35086.71 35220.15
eii2 36219.56 36252.92
eii3 35790.79 35840.83
eii4 36116.7 36183.42
eii5 36056.54 36139.94
vii2 36165.59 36204.51
vii3 35579.66 35640.82
vii4 35635.12 35718.52
vii5 35326.92 35432.56
eee2 36012.86 36057.34
eee3 35608.79 35669.95
eee4 35969.97 36047.81
eee5 35862.86 35957.38
vee2 36000.59 36050.63
vee3 35495.59 35567.87
vee4 35549.8 35644.32
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vee5 35221.59 35338.35
eve2 35540.84 35590.88
eve3 34889.31 34961.59
eve5 35855.42 35972.18
vve2 35267.77 35323.37
vve3 34869.07 34952.47
vve4 35158.68 35269.88
vve5 35832.35 35971.35
eev2 35451.93 35501.97
eev3 34724.96 34797.24
eev4 35160.93 35255.45

the model with the minimum AIC is vvv3
the model with the minimum BIC is vvv3

As displayed in the output above, the model that minimizes both the AIC and the
BIC is characterized by three latent classes; the variance covariance matrix is character-
ized by variable orientation, variable volume, and variable shape (VVV), which is the
most general type of model. As can be observed in figure 3 and from the Stata output of
the tab command, the mixture of parsimonious multivariate normal models predict the
classes well. Specifically, the MAP classes obtained through predict correctly classifies
1,762 observations out of 1,920 (92%). Latent class A largely overlaps with estimated
latent class g3, B is assigned to g2, and C is assigned to g1 (output of tab map group).
The means (e(mu)) and variance-covariance (e(sigma)) matrices are very similar to the
data-generating ones in values and order of magnitude. For instance, group g3 is char-
acterized by an estimated vector of means µ̂3 = (60.279, 67.529) which is remarkably
similar to the corresponding vector from the data-generating process µA = (59, 68).

. ***** activating the estimates from the best model

. estimates restore `r(bestAIC)´
(results vvv3 are active now)
. matlist e(mu)

g1 g2 g3

x1 8.044332 124.2815 60.27864
x2 60.91576 39.82697 67.52907

. matlist e(sigma)
g1 g2 g3

x1 x2 x1 x2 x1 x2

x1 50.51839 -8.000548 49.85068 -23.94966 1299.013 -341.5892
x2 -8.000548 399.377 -23.94966 379.8781 -341.5892 131.7972

. predict _tau, posterior
(posterior probabilities)
. predict map, map
(maximum posterior probability group allocation)
.
. tw (hist x1) (kdensity x1 [aw=_tau1]) (kdensity x1 [aw=_tau2] ///
> ) (kdensity x1 [aw=_tau3]), ///
> legend(rows(1)) ///
> legend(order(1 "Observed PDF" 2 "comp.1" 3 "comp.2" 4 "comp.3")) ///
> saving(gg1,replace) title(x1)
file gg1.gph saved
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.

. tw (hist x2) (kdensity x2 [aw=_tau1]) (kdensity x2 [aw=_tau2]) (kdensity x2 [aw=_tau3]), ///
> legend(rows(1)) ///
> legend(order(1 "Observed PDF" 2 "comp.1" 3 "comp.2" 4 "comp.3")) ///
> saving(gg2,replace) title(x2)
file gg2.gph saved
.
. tab map group

Cluster identifier
map A B C Total

1 15 160 0 175
2 78 0 701 779
3 907 40 19 966

Total 1,000 200 720 1,920
. tw (scatter x1 x2 if map==1) (scatter x1 x2 if map==2) ///
> (scatter x1 x2 if map==3), ///
> legend(order (1 "CWM Comp. 1" 2 "CWM Comp. 2" 3 "CWM Comp. 3")) ///
> legend( rows(1)) title(Artificial Data) subtitle(Estimated components)
. graph combine gg1.gph gg2.gph , rows(1) ycommon
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Figure 3: Estimated classes in the multinorm dataset

5 Conclusion
In this article, we introduced cwmglm, a new Stata command that supports CWMs, gen-
eral class of mixture models that includes FMRs and mixture of distributions. Models
for the marginal and conditional densities are based the most common distributions
used in GLMs. A possible development of cwmglm would be its extension to other less
common models to be estimated within each latent class such as those related to the
mixtures of Student-t distributions or to regressions with multivariate response vari-
ables; this is left to future research.
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