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Abstract: Alzheimer’s disease (AD) is a progressive and degenerative disease producing the most
common type of dementia worldwide. The main pathogenetic hypothesis in recent decades has
been the well-known amyloidogenic hypothesis based on the involvement of two proteins in AD
pathogenesis: amyloid β (Aβ) and tau. Amyloid deposition reported in all AD patients is nowadays
considered an independent risk factor for cognitive decline. Vascular damage and blood–brain barrier
(BBB) failure in AD is considered a pivotal mechanism for brain injury, with increased deposition of
both immunoglobulins and fibrin. Furthermore, BBB dysfunction could be an early sign of cognitive
decline and the early stages of clinical AD. Vascular damage generates hypoperfusion and relative
hypoxia in areas with high energy demand. Long-term hypoxia and the accumulation within the brain
parenchyma of neurotoxic molecules could be seeds of a self-sustaining pathological progression.
Cellular dysfunction comprises all the elements of the neurovascular unit (NVU) and neuronal loss,
which could be the result of energy failure and mitochondrial impairment. Brain glucose metabolism
is compromised, showing a specific region distribution. This energy deficit worsens throughout aging.
Mild cognitive impairment has been reported to be associated with a glucose deficit in the entorhinal
cortex and in the parietal lobes. The current aim is to understand the complex interactions between
amyloid β (Aβ) and tau and elements of the BBB and NVU in the brain. This new approach aimed
at the study of metabolic mechanisms and energy insufficiency due to mitochondrial impairment
would allow us to define therapies aimed at predicting and slowing down the progression of AD.

Keywords: Alzheimer’s disease; neurovascular unit; blood–brain barrier; glia; reactive oxygen
species (ROS)

1. Introduction

Alzheimer’s disease (AD) is a progressive and degenerative disease that affects cogni-
tion and leads to the most common type of dementia worldwide. The number of people
living with dementia—estimated to stand at 55 million in 2019—is expected to rise to
139 million in 2050, considering the overwhelming rate of estimated diagnosis (one every
three seconds) and the increased lifespan [1]. AD was described in the first decade of
the twentieth century by Alois Alzheimer and Gaetano Perusini [2]. According to the
amyloid hypothesis, two proteins are mainly involved in AD pathogenesis: amyloid β
(Aβ) and tau [3]. Aβ length, polymerization, and conformation seem to be the main factors
responsible for the formation of fibrils and plaques [4]. The amyloid plaques apparently
cannot be processed by the resident scavenger cells, thus Aβ accumulates in the extra-
cellular matrix (ECM) and impairs cell function. Hyperphosphorylated tau, instead, is
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responsible for intracellular neurofibrillary tangles which affect microtubule assembly, se-
quester microtubule-associated proteins (MAPs), and potentially block the multiple MAPs
assembly, responsible for vesicular trafficking and sorting in neurons [5,6]. Clinical, func-
tional, and histopathological evidence supports that the medial temporal lobe, including
the entorhinal cortex and hippocampus, is the most vulnerable region to AD pathophysi-
ology or, at least, where neuronal dysfunction and functional disconnection occur more
prominently [7]. The localization of these plaques and neurofibrillary tangles follows a
constant pattern: they accumulate initially in the entorhinal cortex, proceed towards the
limbic and hippocampal structures, and then spread to the frontal, temporal, and parietal
neocortex [8]. The amyloid hypothesis in AD pathogenesis has proved disappointing,
considering the high expectations for the first Aβ immunization (suspended due to the
severe encephalitis in some participants). The postmortem evaluation of treated patients
demonstrated a complete amyloid removal (the immunotherapy was indeed effective),
but there were no differences in terms of both survival and disease progression compar-
ing the immunized to the untreated group [9]. Disease-modifying drugs targeting Aβ
(both monoclonal antibodies and γ-secretase inhibitors) failed to show benefits in phase
III clinical trials [10]. Aducanumab is the only antibody against Aβ currently submitted
to the FDA for marketing approval, but there are still questions about its efficacy [11].
Following the failure of therapeutic strategies aimed at countering beta-amyloid plaques,
there has been a great impulse to move from targeting amyloid to tau. Tau is a microtubule-
associated protein found primarily in central nervous system (CNS) neurons, although it is
also expressed at low levels in astrocytes and oligodendrocytes [12]. It has been shown in
imaging-based and autopsy studies to correlate more closely with the cognitive decline of
Aβ [13]. Immunotherapy targeting tau is in development and has entered phase II trials.
However, no evidence shows that MBAs will enter neurons to bind and clear abnormal or
toxic forms of tau. It is also unclear whether antibodies targeting tau capture and move
pathological forms from the brain to the periphery, neutralize toxic forms of tau protein in
situ, or stimulate phagocytosis through microglia. Therefore, the therapeutic mechanisms
through which the accumulation of pathological forms of tau protein could be acted on are
still unclear [12].

Moreover, amyloid deposition around cerebral vessels is related to cerebral amyloid
angiopathy (CAA), which is observed almost in all AD patients to different degrees [14],
and is considered, even after controlling for age and AD pathology, an independent risk
factor for cognitive decline [15,16]. CAA is a major contributor to vascular damage and BBB
failure in AD; indeed, BBB leakage was evaluated as a mechanism for CAA-related brain
injury with increased deposition of both immunoglobulins and fibrin [17]. Furthermore,
the BBB dysfunction has been considered an early biomarker of cognitive decline and
early stages of clinical AD [18–20]. It has been shown that carriers of apolipoprotein E4
(APOE4) (ε3/ε4 or ε4/ε4), an identified genetic risk factor for AD, show a higher BBB
permeability in the medial temporal lobe and hippocampus compared with non-carriers,
even when cognitively healthy [21]. The BBB breakdown was more severe in carriers with
cognitive impairment but was not related to AD biomarkers (both β-amyloid and tau). The
BBB damage, measured in vivo, considering pericytes and platelet-derived biomarkers
predicted the future cognitive status in carriers, even after controlling the analysis for Aβ
and tau levels [21]. These predictive biomarkers correlated with increased cyclophilin A
(CypA)–matrix metalloproteinase-9 (MMP9) activity in the cerebrospinal fluid. APOE reg-
ulates neurodegeneration predominantly by modulating activation of microglia, although
a minor role for apoE in regulating the formation of tau and insoluble tau has also been
identified regarding immunomodulatory function. Ptau (Ser202 and Thr205 epitopes) pro-
gression is therefore also determined by microglia [22], just as there is strong evidence that
reactive oxygen species (ROS) directly promote tau modifications [23]. Vascular damage
generates hypoperfusion and relative hypoxia in areas with high energy demand. Aβ, as
recently demonstrated, could also directly narrow brain capillaries at pericyte sites [24].
Aβ activates ROS formation, which prompts the release of endothelin-1 (ET-1) and me-
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diates capillary constriction [24]. Long-term hypoxia and the accumulation within the
brain parenchyma of neurotoxic molecules could be seeds of a self-sustaining pathological
process [25,26]. Cellular dysfunction comprises all the elements of the neurovascular unit
(NVU) [26]. Neuronal loss seems to be consistently related to energy failure and mito-
chondrial impairment [27]. The cerebral glucose metabolism seems to be progressively
affected and shows a specific regional distribution. This energy deficit worsens throughout
aging and can be observed in the pre-clinical stages of neurodegenerative disorders of
aging (NDAs) [28,29]. Even before the diagnosis of AD, there is a disruption of glucose
metabolism in some regions, but oxygen, lactate, and ketone levels do not change signifi-
cantly. In clinically significant mild cognitive impairment (MCI), there is a deficit of glucose
uptake of 10–12% in the entorhinal cortex and in the parietal lobes, a defect that becomes
more accentuated as the disease advances [27]. Understanding the complex interactions
between β amyloid (Aβ) and tau and elements of the NVU in the central nervous system
can contribute to the development of new therapies aimed at predicting and slowing the
progression of AD. Therefore, here we describe the new perspective analyzing the inter-
actions within the NVU elements of the BBB with the related metabolic consequences,
focusing on energy failure and mitochondrial impairment (Figure 1).
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Figure 1. Genetic, metabolic, vascular, and energetic factors contribute to the onset and progression
of Alzheimer’s disease.

2. Vascular Damage: Neurovascular Unit, BBB Disruption, and Pathological Blockage
of the Glymphatic Flow

The neurovascular unit (NVU) manages the metabolic supply of the brain [30]. The
NVU is finely regulated to support the regional energy demand of neurons and glia through
the blood–brain barrier (BBB). Moreover, it allows the clearing of cellular and extracellu-
lar by-products (e.g., CO2, lactate, Aβ, tau) [31]. The intimate anatomical and chemical
relationship between NVU elements prompts delivery of oxygen and glucose in selected
cerebral areas synchronously with their activation. The mechanisms regulating vasodilation
and vasoconstriction have been described both as feedback (metabolic demand and waste
clearance drive vasodilation) and feedforward (release of vasoactive substance through
synaptic activity, independent of the metabolic needs), and are not mutually exclusive [31].
The cerebral blood flow in resting conditions and the vascular responses to activation are
impaired in early phases of AD, suggesting prodromal changes of these mechanisms during
the disease [32]. The NVU of AD brains is damaged particularly at the microvascular level
with injured and rarefied capillaries showing a thickened basement membrane [33]. Brain
atherosclerosis, ischemic lesions, and CAA are more pronounced in the AD population com-
pared to aged-matched controls [34–36]; however, BBB damage has been shown as an early
phenomenon in patients with MCI due to AD [37]. Degeneration of pericytes, measured by
analyzing in vivo markers, seems to be crucial for BBB leakage [37]. They play a crucial role
supporting the structural integrity and genesis of the BBB [38]. The maintenance of vascular
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integrity in the brain is also regulated by the communication between astrocyte end-feet and
pericytes [39]. Pericytes (PCs) are the cells of microvessels including capillaries, venules,
and arterioles that wrap around the endothelial cells. They provide structural support and
dynamic capacity to the microvasculature. There is an accelerated degeneration of pericytes
associated with BBB breakdown in AD brains with ApoE4 carriers, and E4 fails to suppress
the CypA-MMP-9 pathway in pericytes leading to degradation of BBB tight junctions [40].
Dysfunction of the pericytes due to the accumulation of Aβ plaques also leads to cerebral
hypoperfusion which further worsens the clinical picture [41]. In the human brain, APOE
and the nuclear factor of activated T cells (NFAT) are selectively dysregulated in pericytes
of APOE4 carriers, and inhibition of calcineurin–NFAT signaling reduces APOE4-associated
CAA pathology in vitro and in vivo. Considering the role of pericytes in APOE4-mediated
CAA calcineurin–NFAT signaling could be a therapeutic target in CAA and Alzheimer’s
disease [42]. The early involvement of pericytes could characterize these cells as more
sensitive to the metabolic impairment. Vascular damage could be considered the initial
input through which impaired BBB function and/or reduced cerebral perfusion determines
secondary neuronal damage, followed by Aβ deposition, functional impairment, and gray
matter atrophy [43]. Vascular dysfunction can be triggered by degeneration and loss of
pericytes and the decrease in cerebral blood flow in patients with AD. Pericyte denaturation
could be responsible for an early reduction in O2 supply in the active sites of the brain [32].
LRP-1 is a member of the low-density lipoprotein receptor family, while RAGE is a multili-
gand receptor of the immunoglobulin superfamily. They are mainly located on the surface
of endothelial cells and pericytes [38]. Several studies have shown that by regulating
the levels of LRP-1 and RAGE, it is possible to modulate the transport and clearance of
β-amyloid plaques [44,45]. BBB-associated pericytes regulate the clearance of Aβ aggre-
gates via an LRP1/apoE isoform-specific mechanism, with apoE4 disrupting Aβ clearance
compared to apoE3. This has been demonstrated by pharmacologic inhibition of LRP1 by an
anti-LRP1 antibody. ApoE isoforms can be considered either protective (ApoE2) or a major
risk for AD development (ApoE4), and, interestingly, ApoE4 homozygotes display, during
asymptomatic stages even decades before the AD onset, a similar regional hypometabolism
compared to AD patients, as observed with glucose tracers [46]. The precise understanding
of how the ApoE4 isoform differently interacts with the metabolic receptor LRP1 seems
a pivotal step in BBB regulation and AD pathophysiology [47]. A possible therapeutic
target to control Aβ levels and clearance could therefore be represented by the LRP1/apoE
pathway in pericytes [48]. The formation and maintenance of the BBB are influenced by
the presence of astrocytic end-feet interacting with the endothelium and pericytes, capable
of building up this delicate and complex framework even in vitro [49]. Astrocytes are
cells characterized by dense branched processes that extend both into the synaptic cleft
and towards the blood vessels. The astrocytes are highly heterogeneous through the CNS
and form functional domains, particularly through gap junctions and hemichannels that
account for intercellular and extracellular syncytia, respectively [50,51]. Astrocytes regulate
the extracellular environment, participate in synaptic activity, and promptly react to CNS le-
sions. They provide metabolic support to neurons, regulate the composition of the neuronal
microenvironment, and regulate blood supply [52–54]. The regionality of astrocytes could
partly explain the localization of neuropathological findings with various susceptibility
of different brain areas [46]. In response to changes in synaptic activity, astrocytes release
prostaglandins, arachidonic acid, and nitric oxide to constrict or vasodilate blood vessels.
Vascular cerebral flow varies according to neuronal activity and energy demands [31,55].
The formation of arachidonic acid and the release of vasoactive substances are induced by
changes in the level of intracellular calcium in astrocytes [56]. Thus, astrocyte dysfunction
damages the BBB and induces alterations in the clearance of Aβ [57,58]. Alterations in tau
protein and BBB dysfunction are also closely linked: just as tau pathology can trigger BBB
damage, BBB dysfunction can induce tau hyperphosphorylation creating a deleterious feed-
forward loop [59]. Damage to the BBB induces oxidative stress and neuroinflammation and
thus can accelerate the development of tau hyperphosphorylation and NFT formation [60].
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The BBB dysfunction could initiate tau pathology [61,62]. Preclinical studies have shown
that the BBB can reversibly be opened by magnetic resonance (MR)-guided low-intensity
focused ultrasound (FUS). This facilitates the delivery of targeted brain therapeutics. It has
also been shown that FUS can safely, noninvasively, transiently, reproducibly, and focally
mediate BBB opening in the hippocampus/EC in humans [63]. Different mouse models
of Alzheimer’s disease have been used to investigate disease-specific changes in the BBB,
but the translation of findings from mouse models into the human pathology is hindered
by interspecies differences. Several human BBB in vitro models have been developed
to create new delivery techniques of drugs into the brain, and to better understand the
alterations of the BBB in the case of Alzheimer’s disease [64]. The homeostasis of protein
production and clearance is not autonomously guaranteed by the brain, like it was thought,
recycling its wastes [65]. The paradigm shift is due to the emerging role of sleep–wake
cycles and the discovery of the related influx/efflux currents from the brain parenchyma
to the lymphatic circulation, via astrocytes (the glymphatic system) [66]. These fluxes are
generated by arterial pulsation which allows CSF influx from the perivascular space into
the parenchyma, regulated by astrocytic end-feet which express clustered AQP4 water
channels. The efflux of CSF mixed with extracellular interstitial fluid is directed towards
the low-pressure venous system (perivenous spaces), where solutes are exported through
meningeal lymphatic vessels [66]. During the sleep–wake cycle, these fluxes allow the varia-
tion of small molecules and protein concentrations (neurotransmitters, MMPs, etc.), change
the localization of membrane receptors (e.g., LRP1, glutamate receptors), and rearrange
the ECM complex structures bridging the cellular cytoskeletal elements [67,68]. Indeed,
it has been shown that there is a link between single nucleotide polymorphisms (SNPs)
of AQP4 and the integrity of perivascular AQP4 localization, correlated to sleep quality
and cognitive functions in humans [69,70]. Remarkably, AQP4 is exclusively astrocytic
and the expression of perivascular astroglial gene products, such as dystroglycan, dystro-
brevin, and alpha-syntrophin, were also associated with dementia and phosphorylated tau
levels in the temporal cortex [71]. The reduction of these fluxes could in part justify how
sleep-related disorders and circadian rhythm dysfunctions are associated with AD [72].
The pathological blockage of the lymphatic flow at each point of the described pathway
(e.g., decreased or dispersed AQP4 expression, hydrostatic pressure variation due to CSF
decline or inflammatory processes) could justify regionally specific degeneration, based
on microvascular dynamics not utterly clarified [73]. Moreover, the hindrance to fluid
passage from the neuropilum to the perivascular space together with the LRP1 expression
on smooth muscle cells surrounding the vessels could sequester Aβ, favoring vascular
amyloidosis [66]. Eventually, the bottleneck of this system could be localized even outside
the CNS in the cervical lymphatics [74,75]. Finally, the proteomics associated with the
circadian rhythms showed that proteins involved in synaptic transmission were predomi-
nantly expressed during waking times, while metabolism genes were activated a few hours
before the expected sleep. These characteristics were altered by sleep deprivation, with
synaptic transmission overcoming the proteins functionally associated with metabolism.
This emergency mechanism, if chronically activated, could lead to metabolic impairment
and cognitive dysfunctions [76,77].

3. From Vascular Damage to Alteration of Metabolism

The role of NVU in AD should be emphasized as a whole. Whenever there is damage
to the NVU, it can trigger the breakdown of the BBB, decrease cerebral blood flow, and
decrease the clearance of Aβ and its deposition. The result is a response that alters the
different elements of the NVU: pericyte degeneration, activation of glial cells, metabolic
imbalance, activation of the neuroinflammatory response, synaptic impairment, and neu-
ronal loss [78]. Following vascular damage, thrombin promotes the formation of fibrin
and platelet aggregation. Fibrin, by causing an increase in inflammatory and oxidative
mediators, activates glial cells and damages the blood–brain barrier (BBB) [79]. Thrombin,
a multifunctional serine protease, is thought to be responsible for vascular dysfunction,
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inflammation, and neurodegeneration. It acts on the endothelial cells of the blood–brain
barrier, on microglia, astrocytes, and neurons. In AD patients, its levels are elevated, and a
correlation has been identified between thrombin signaling and pathological markers of
the disease, tau protein, and beta-amyloid plaques. Understanding the effects of thrombin
on BBB endothelial cells is crucial. On the one hand, the damage caused by thrombin
increases the permeability of the BBB, allowing several harmful substances to enter the
brain from the blood. On the other hand, the damaged endothelial cells themselves can
produce thrombin, which has negative effects on astrocytes, microglia, and neurons [79].
Following vascular damage, a decrease in the clearance of Aβ and its deposition with
significant metabolic alterations occurs. Regional changes in brain glucose metabolism
seen during healthy ageing are quantitatively and qualitatively different from those in
AD [80,81]. During healthy aging, some cognitive domains have a modest decline, such as
episodic and working memory, whereas others (such as semantic memory) do not undergo
significant changes [82]. In healthy aging, the frontal cortex is the region most affected
by the reduction in brain glucose metabolism, whereas in AD, the parietal lobe and the
precuneus are the most markedly affected [27,83–86]. APOE*E4 alleles (which encode the
E4 isoform of apolipoprotein E (ApoE4)) carriers have reduced glucose metabolism [87] and
increased accumulation of Aβ aggregates [27]. Region-specific neurodegenerative diseases
(AD, PD, HD) appear to be caused by the accumulation of ROS in the injured regions,
which result from the alteration of mitochondrial activity. Much data have accumulated to
indicate that mitochondrial dysfunction, especially at the level of Complex I, accumulates
with age, leading to the production of ROS and the reduced production of ATP building
blocks, which prevents the necessary work for the maintenance of cells and organs. The
synthesis of lipids at the neuronal level can be induced by the accumulation of high levels
of reactive oxygen species (ROS) [88,89]. Peroxidized lipids are sequestered in the lipid
droplets (LD) at the glial level, delaying neurotoxicity. The damaged mitochondria produce
ROS, which in turn are responsible for activating the transcription factors JNK and SREBP
which determine lipid synthesis. The synthesized lipids undergo the peroxidation process
thanks to the presence of ROS. They are subsequently transferred to the pigment glia, where
they are sequestered in the LDs [88]. Activation of neuronal lipogenesis, in the absence of
ROS, determines the formation of LD but does not lead to neurodegeneration [90]. There-
fore, lipid production, and not lipid peroxidation, causes neurotoxicity by damaging lipids,
proteins, and nucleic acids [91,92]. ROS could have a beneficial role for cells when their
levels are finely regulated [93,94]. Nowadays, it is not clear whether ROS are the cause or
the consequence of the disease, but it is well known that their production is exacerbated
by neuroinflammation [95,96] and by Aβ42-mediated neurotoxicity [91,97]. The formation
of lipid droplets is therefore neuroprotective. Several genes regulate their formation, in-
cluding homologues of human ABCA1, ABCA7, VLDLR, VPS26, VPS35, AP2A, PICALM,
and CD2AP. APOE could be relevant as a risk factor for AD by mediating and modulat-
ing the transfer of lipids between neurons and the glia. Reduced transport capacities of
APOE4 [78,98,99] could be responsible for a reduced transfer of lipids between neurons
and the glia. When ROS levels rise, the peroxidized lipids are no longer able to be exported
and transferred to the glial cell LDs. This determines neuronal damage [88]. In a mouse
model of human APOE expression [100,101], an ABCA1 agonist peptide was able to restore
APOE4 lipidation and improve Aβ42/tau pathologies. However, a possible contribution
to the formation of LDs has not been investigated. An ABCA1 agonist peptide was also
studied in a humanized APOE4 fly model. It has been shown to be able to restore glial
LD formation. This could have a valid therapeutic potential for preventing ROS-induced
neurotoxicity. In the future, it will be necessary to study therapeutic approaches aimed at
inducing the glial uptake of lipids to reduce the levels of ROS and clear amyloids.

4. Glycometabolic Issues in Neurodegeneration: Brain Energy Rescue

Metabolism, through the production of ATP, regulates both the difference in electro-
chemical potential between mitochondria and the cell cytoplasm, and bioelectric activity,
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which propagates from the neuronal axons, and together they have a determining role in
the transmission of the nerve impulse. Metabolism is considered as the core of destiny
regulation, growth, death, or cell differentiation. Mathematical models are being developed
to explain the connection between ROS and metabolism, as well as the importance of
ROS-mitochondrial remodeling in neuron differentiation, neuroprotection, and antiglio-
sis [53,102,103]. The brain continuously requires energy in the form of ATP. Although
the brain accounts for just over 2% of an adult’s body weight, the brain demands 20% of
the body’s total energy requirement. Glucose metabolism provides 95% or more of the
brain’s production of ATP [104]. Most of it is produced by oxidative phosphorylation
in the mitochondria starting from glucose, while another share is produced by aerobic
glycolysis in the cytoplasm. The ATP required by neurons is mainly generated in the
mitochondria, with the oxidative phosphorylation of glucose via the tricarboxylic acid
cycle [105]. This is unlike astrocytes, which, on the other hand, satisfy their energy needs
mainly through aerobic glycolysis [106]. When glucose decreases, the liver generates
ketonic bodies and lactate, produced by skeletal muscles during exercise, and lactate is
also used as an energy substrate [27]. The different cytotypes that together form the neu-
rovascular unit (brain capillary endothelial cells, pericytes, astrocytes, oligodendrocytes,
microglia, and neuron) manage glucose uptake within the brain [107,108]. Glucose uptake
is not stimulated by its circulating levels but by the energy demands of activated neuronal
cells [27]. Among the various glucose transporters involved, it is significant to mention
GLUT4, whose translocation in the plasma membrane is insulin-dependent in muscles,
adipose tissue, and probably also in neurons. This is why insulin resistance, which often
occurs in NDAs, results in a reduction in neuronal glucose uptake [106,109]. Neuronal
activation transiently stimulates aerobic glycolysis in astrocytes, thus producing lactate.
According to the astrocyte-neuron lactate shuttle, the release of glutamate—mediated by
neurons during neuronal transmission—stimulates glucose uptake, glycogen catabolism,
aerobic glycolysis, and the production of lactate by surrounding astrocytes. Lactate pro-
duced by astrocytes is thought to contribute to neuroplasticity [27]. Ketone bodies and
lactate are the main alternative energy sources to glucose. The two main ketone bodies
are acetoacetate and D-beta-hydroxybutyrate (BHB). Only acetoacetate can be metabolized
into acetyl coenzyme A (acetyl-CoA). The acetyl-CoA enters the TCA cycle to generate
ATP. Unlike glucose uptake which varies according to neuronal metabolic activity, ketone
entry is directly related to their plasma concentration [28]. This difference justifies the
glucose-sparing effect of increased ketone levels [110]. Unlike glucose, ketone bodies can
contribute to the production of ATP only through oxidative phosphorylation, not being able
to exploit aerobic glycolysis and not being able to be metabolized to lactate [27]. Oligoden-
drocytes primarily obtain ATP through aerobic glycolysis, while microglia mainly exploit
oxidative phosphorylation. In the case of NDAs, due to neuroinflammation, the microglia
undergoes a metabolic reprogramming turning towards an aerobic glycolysis-predominant
phenotype. In parallel with this energetic shift, microglia play a pathological role rather
than a protective one against neurodegenerative diseases. When the energy resources of
glucose are no longer sufficient, the high energy demand by the activated microglia further
limits the energy available to neurons. The function of astrocytes and oligodendrocytes is
perturbed, which leads to a worsening of the aging process which perpetuates and worsens
neurodegeneration and cerebral glucose metabolism [27]. In neurodegenerative diseases,
we witness a deterioration of the cerebral glucose metabolism in a progressive way and
with a specific region distribution, depending on the pathology in question. Brain energy
metabolism deteriorates over the course of aging and this decline is often present before
the diagnosis of NDAs (neurodegenerative disorders of aging) [28,29]. Even before the
diagnosis of AD is made, there is a disorder of glucose metabolism in some regions, but
oxygen, lactate, and ketone levels do not undergo significant changes. Already in mild
cognitive impairment (MCI) there is a deficit of glucose uptake of 10–12% in the entorhinal
cortex and in the parietal lobes, a defect that becomes more and more accentuated as the
disease progresses [27]. Reduced neuronal glucose uptake, impaired aerobic glycolysis and
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TCA cycle, failure of axonal transport, and loss of glial energy support to neurons are major
causes of cerebral glucose hypometabolism in NDAs. Lower glucose uptake, TCA activity,
mitochondrial function, and energy support of neuronal astrocytes and oligodendrocytes
characterize AD [27]. Neuronal network performance and axonal mitochondrial transport
are impaired by white matter atrophy in AD. Particularly in women, the loss of white
matter is due to the reduction of maintenance and synthesis of myelin (energy-intensive
processes) and the catabolism of myelin to provide energy in the occurrence of a reduc-
tion in glucose levels [111]. Brain glucose hypometabolism is associated with synaptic
loss and neuronal death in AD. This is followed by the onset of energy deficits and the
accumulation of neurotoxic proteins which further worsen the situation. The clearance
of the 42 amino acid isoform of beta-amyloid proteins (Aβ42) and tau from the brain is
impaired by an insufficient generation of neuronal glucose and mitochondrial energy. In
turn, the accumulation of Aβ42 and tau worsens mitochondrial homeostasis and energy
production; this process is based on an increase in oxidative stress [112,113]. Aβ exacer-
bates cerebral glucose hypometabolism, possibly due to pericyte-mediated constriction of
capillary blood flow. In turn, this hypometabolism triggers cellular damage and neuroin-
flammation [113,114]. Furthermore, the mitophagic process becomes insufficient, resulting
in an accumulation of impaired mitochondria that further compromise bioenergetics in
AD [115]. The metabolism of brain ketones, unlike the use of brain glucose, is not altered in
Alzheimer’s disease (AD) and mild cognitive impairment (MCI), which implies that mito-
chondrial respiration is relatively normal in most mitochondria; this allows the generation
of ATP. So, understanding if the metabolism of brain ketones is compromised allows us to
go and study the possible alteration of mitochondrial activity. In fact, if the dysfunction is
only a burden of glycolysis or glucose transport, it means that only glucose metabolism is
compromised. Ketogenic food supplements containing medium-chain triglycerides and
the very low-carb ketogenic diet improve cognitive function in AD, as has been shown in
several clinical studies [27]. This deterioration opens up new therapeutic perspectives to
address neurodegenerative diseases; the conditions of these patients could be improved
and slowed down by preserving or rescuing brain energetics. The possible approaches are
numerous: it could restore the functionality of oxidative phosphorylation and glycolysis, it
could increase insulin sensitivity, correct mitochondrial dysfunction, perform ketone-based
interventions, act through hormones to modulate brain energy, RNA therapeutics, and aid
in lifestyle changes. Impaired brain energy metabolism precedes the onset of the NDA
clinic. There is a reduction in neuronal glucose uptake, as well as alterations in glycolysis
and in the functioning of the TCA cycle, with further negative consequences on mitochon-
drial function and the production of ATP. Now, we need to consider a combined approach
that includes both the use of drugs and improvements in diet and lifestyle to improve
the prognosis and clinical symptoms of patients with neurodegenerative diseases [27].
Lifestyle changes that rely primarily on increasing physical activity and improving one’s
diet can reduce insulin resistance and improve brain energy, and thus reduce the occurrence
of neurodegenerative diseases. Both increased physical activity and improved diet are
neuroprotective in preclinical models of AD [116–119]. They cause increased neurogenesis
in the hippocampus, increased autophagy of neurotoxic proteins, and increased mitophagy
by removing impaired mitochondria [82,120,121] and biogenesis of increased synaptic
spine density [122].

5. Conclusions and Perspectives

In conclusion, we can understand how saving brain energy improves neuronal in-
tegrity, synaptic plasticity, and interactions between neurons and glia, delaying the onset
and progression of neurodegenerative diseases. Just as the neurocognitive development
of the child requires an adequate energy supply, in the same way this energy supply is
necessary during aging. To delay the onset and progression of neurodegenerative dis-
eases, maintaining the brain’s energy state should therefore be a cornerstone for future
experiments. Diet, body weight, diabetes, physical activity, and other factors must be kept
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under control. We cannot cure dementia, but we do know how to decrease its risk. It is
increasingly clear that it is not monocausal but a multi-cause syndrome. This changes
the conceptual and practical approach to dementia: preventive measures are exploited,
which act on the epigenesis of dementia. Now we can talk of the genetic and epigenetic
nature of senile dementia. Metabolic connectivity is the key word for the future study of
neurodegenerative diseases. It means the intertwining of the metabolic pathways for which
the increase in the level of a certain metabolite may correspond to the increase (or the de-
crease) of other metabolites, depending on the metabolic pathway taken. Each disturbance
of cell physiology will be characterized by having its own “metabolic fingerprint”, i.e.,
variations of metabolite levels in certain areas of metabolism, which will be strictly specific
with respect to the physiological disturbance. Given the great level of connectivity of the
metabolism, it will be difficult to analyze and interpret these metabolic changes without
the use of mathematical models. According to Systems Biology, therefore, the functional
properties of the cell result in emerging properties, directly determined by metabolism.
Understanding how metabolism is regulated and how all other events occur, as well as
how informational cells act on metabolism, and how metabolites act on other events of
cellular life, is far from simple. A mosaic is not examined by concentrating attention on
the individual tiles: the most detailed analysis of the parts cannot in fact provide an idea
of the whole. Numerous future studies are needed to delve into this new fundamental
view based on Systems Biology and metabolism. These approaches which will constitute
the “systems metabolomics” studies will be the new cornerstones for the interpretation of
biological processes.
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