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Abstract 

The present study investigated whether listeners can form abstract voice representations while 

ignoring constantly changing phonological information and if they can use the resulting 

information to facilitate voice-change detection. Further, the study aimed at understanding 

whether the use of abstraction is restricted to the speech domain, or can be deployed also in non-

speech contexts. We ran an EEG experiment including one passive and one active oddball task, 

each featuring a speech and a rotated-speech condition. In the speech condition, participants 

heard constantly changing vowels uttered by a male speaker (standard stimuli) which were 

infrequently replaced by vowels uttered by a female speaker with higher pitch (deviant stimuli). 

In the rotated-speech condition, participants heard rotated vowels, in which the natural formant 

structure of speech was disrupted. In the passive task, the Mismatch Negativity was elicited after 

the presentation of the deviant voice in both conditions, indicating that listeners could 

successfully group together different stimuli into a formant-invariant voice representation. In the 

active task, participants showed shorter RTs, higher accuracy and a larger P3b in the speech 

condition with respect to the rotated-speech condition. Results showed that whereas at a pre-

attentive level the cognitive system can track pitch regularities while presumably ignoring 

constantly changing formant information both in speech and in rotated-speech, at an attentive 

level the use of such information is facilitated for speech. This facilitation was also testified by a 

stronger synchronization in the theta band (4-7 Hz), potentially pointing towards differences in 

encoding/retrieval processes.  
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1. Introduction 

The speech signal encodes both linguistic and vocal information. These two types of information 

can be selectively extracted and used for different communicative and social goals. In fact, 

listeners can understand the message content irrespectively of who is speaking and can also 

identify the talker’s voice regardless of what is being said. However, these operations are not 

undemanding as they may seem and, in order to perform them, speakers need to orient their 

attention accordingly.  

 In an ERP study, Kaganovich et al. (2006) asked participants to listen to different vowels 

uttered by different talkers. In one task, participants were asked to identify the talker 

notwithstanding changes in the unattended vowel dimension, whereas in another task they were 

asked to identify vowels while ignoring changes in the unattended talker dimension. The Garner 

paradigm (Garner, 2014) employed by the authors predicts that if two dimensions are processed 

together, sudden changes in the unattended dimension would hamper the processing of the 

attended one. Consistently, when compared with a baseline task (i.e., a task where no changes in 

the unattended dimension occurred), both tasks were characterized by a sustained negativity 

surfacing in the N100 time-window and spreading until the P3 time window. These findings 

suggest the involvement of two attention-based processes allowing for the dissociation of 

phonological vs. vocal information. Specifically, a low-level filtering process, occurring in the 

N100 time window, would isolate the physical dimension of interest. A second higher-level 

process, occurring in the P3 time-window, would instead be responsible for matching the output 

of the filtering process to the correct response representation in working memory. This result 

suggests that when listeners are asked to extract information from a complex signal by orienting 

their attention toward a target information, they need to take care of physical variability both in 
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the attended and in the unattended dimensions. Speech tokens embedding phonological and 

vocal information are produced in different ways by different talkers. Thus, regardless of the 

specific type of information to select or ignore, listeners need to use their cognitive resources to 

model and summarize variability within a stable percept. 

One way by which listeners can facilitate the extraction of relevant information from 

speech and deal with physical variability is by forming abstract representations which are 

selectively invariant to changes along specific dimensions of the speech signal (Belin, Fecteau, 

& Bédard, 2004; Norris & McQueen, 2008). Concerning this issue,  Bonte et al. (2009) ran an 

EEG experiment in which participants listened to different vowels uttered by different talkers 

which were randomly presented across different blocks. In separate blocks, they were asked to 

detect consecutive repetitions of either the same vowel or the same talker. In each task (i.e., 

detect vowel repetitions or talker repetitions), the alpha phase realignment surfacing ~250 ms 

after stimulus presentation was stronger for the target (phonemic or vocal) dimension. According 

to the authors’ interpretation, alpha phase alignment is induced by selective attention driving the 

temporal binding of information contained in abstract representations previously formed in 

auditory cortices. The interpretation of this result provides a neural characterization of the 

attentional processes descibed in Kaganovich et al. (2006), which require abstract representations 

to work correctly. Still, it is not clear how or when such abstract representations can inform and 

orient the attentional processes, nor if their formation occurs pre-attentively or needs the 

involvement of attentional processes. 

There is evidence that abstract (i.e., talker-invariant) representations of phonemes are 

automatically formed by the cognitive system. For example, Jacobsen, Schröger, and Alter 

(2004)  ran an EEG experiment with a passive oddball paradigm, in which participants heard one 
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vowel as standard stimulus with fixed first (F1) and second formant (F2) values – which are cues 

for vowel identification (Hewlett & Beck, 2013) –, but with continuous variation in F0 – which 

is a cue for voice identification (Baumann & Belin, 2010). The presentation of a deviant vowel 

featuring different F1/F2 values yielded an MMN, notwithstanding the constant variations in 

non-linguistic information (i.e., F0 and intensity). The finding suggests that listeners 

automatically abstract away from non-linguistic cues (i.e., F0) while focusing on phonological 

information (i.e., F1 and F2). The results were replicated using speech-like stimuli (i.e., complex 

tones synthesized with the same F0, F1 and F2), but not with non-speech stimuli (i.e., simple 

tones lacking formant structure, Jacobsen, Schröger, & Sussman, 2004). This suggests that 

abstraction mechanisms are speech-specific and get activated only in presence of a formant 

structure.  

Crucially, no evidence about the potential involvement of these abstraction mechanisms in 

the formation of phoneme-invariant voice representations has been shown yet. However, such 

mechanisms can be reasonably hypothesized, as i) talker-related information is highly relevant 

during communication (Van Berkum, van den Brink, Tesink, Kos, & Hagoort, 2008), ii) vocal 

information has been shown to be pre-attentively processed (Scharinger, Monahan, & Idsardi, 

2011; Titova & Näätänen, 2001) and iii) the cognitive system shows a domain-general ability to 

detect the violation of abstract regularities occurring across different physical features of acoustic 

stimuli. Consistently, many EEG studies used the “abstract-feature” oddball paradigm (e.g., 

Saarinen et al., 1992), in which standard stimuli differ in several physical dimensions while 

being similar in at least one dimension. These experiments demonstrated a reliable elicitation of 

the MMN, indexing the ability to automatically group together different sounds on the basis of 

the similarity in one physical dimension, regardless of other constantly changing ones (for a 
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review, see Paavilainen, 2013). The detection of abstract regularities in sound streams seem to be 

reliable even for newborns (Carral et al., 2005). These results may thus indicate that the 

cognitive system is able to extract invariant sound features in constantly varying acoustic 

contexts via a general-purpose auditory abstraction process, which can be used to process 

different kinds of regularities in several domains such as speech (Eulitz & Lahiri, 2004) and 

music (Virtala et al., 2011).  

Although listeners may be able to track different acoustic regularities in sounds and store 

them within abstract representations via general-purpose mechanisms, they might be influenced 

by their prolonged experience with speech and voices. Consistently, the identification of the 

linguistic (i.e., words) or vocal component (i.e., talker identity) of speech is facilitated when one 

of the two information is familiar to the listener (Johnsrude et al., 2013; Nygaard et al., 1994; 

Zarate et al., 2015), suggesting that even if listeners are focusing on one specific dimension of 

the speech signal, being familiar with the ignored dimension(s) is still beneficial. The influence 

of linguistic and voice-related experience surfaces early in time, as the MMN shows larger 

amplitude when native phonemes (Dehaene-Lambertz, 1997; Näätänen et al., 1997) and words 

(Pulvermüller et al., 2001; Pulvermüller, Shtyrov, Kujala, & Näätänen, 2004) or familiar voices 

(Beauchemin et al., 2006), are presented as deviant stimuli. This effect has commonly been 

considered as an index of a memory trace retrieval process (Näätänen, Paavilainen, Rinne, & 

Alho, 2007), and occurs in a time window compatible with the one in which the cognitive system 

builds representations of abstract regularities. Thus, listeners may be facilitated in detecting 

regularities when they hear speech by retrieving representations of known linguistic/vocal 

information in which both the attended and the unattended information can be encoded.  

1.1 The present study 
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This study has two main aims. The first aim is to establish whether the abstraction mechanism is 

information-specific within the speech domain, that is whether listeners can spontaneously form 

abstract representations of the talker’s voice irrespectively of phonological information, exactly 

as they do with phonemes irrespectively of physical variations in the talker’s voice (Jacobsen, 

Schröger, & Alter, 2004; Jacobsen, Schröger, & Sussman, 2004; Shestakova et al., 2002). To 

achieve this goal, the “abstract-feature” oddball paradigm was used. In the first condition, 

different vowels uttered by a male voice were presented as standard stimuli. While F1/F2 values 

were constantly changed, the F0 value was kept fixed. Standard stimuli were infrequently 

replaced by deviant stimuli, that were produced by a female voice, characterized by a higher F0. 

Note that F0 is only one of the parameters on which speaker identification and/or discrimination 

are based. Other parameters include the formant frequencies or jitter (Baumann & Belin, 2010), 

and the perceptual relevance of such cues varies between speakers (Van Lancker, Kreiman, & 

Emmorey, 1985) and listeners (Lavner, Rosenhouse, & Gath, 2001). Although voice identity is a 

complex construct which relates to multiple features mapped onto different acoustic cues (Sidtis 

& Zäske, 2021), a voice gender contrast (i.e., male vs female voice) was implemented to index 

contrasts of voice-identities in order to maximize the possibility that participants actually 

perceived a change in the talker’s voice driven by pitch variations. Also in this case, F0 is one 

primary (but not the only) cue driving identification and discrimination (Hubbard & Assmann, 

2013; Lass, Hughes, Bowyer, Waters, & Bourne, 1976; Skuk & Schweinberger, 2014).  

  If listeners can automatically form an abstract representation of the talker’s voice 

irrespectively of the constant variation in phonological information (i.e., F1/F2 values of 

different phonemes), an MMN is expected. This result would indicate that listeners can form 

phoneme-invariant representations of the talker’s voice similarly as they form talker-invariant 
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representations of the phonemes. The absence of any MMN, instead, would suggest that the 

cognitive system is preferentially tuned to detect variations along the phonological dimension, 

compared to the vocal one. If this is the case, the abstraction mechanism under investigation 

could then be considered as information-specific, at least within the speech domain (as suggested 

by Jacobsen et al. (2004) results). Since the MMN could also be due to an acoustic-based 

abstraction mechanism, as suggested by the studies reviewed by Paavilainen (2013), the second 

aim of the present study was to understand whether the abstraction mechanism is speech-specific 

or whether it represents a general-purpose mechanism which is then employed across different 

domains, including speech perception. To investigate this issue, a second “abstract-feature” 

oddball block was implemented, but this time the stimuli corresponded to the spectrally rotated 

version of the speech stimuli presented in the first task. Spectral rotation consists in manipulating 

the spectrum of a specific sound by selecting a mirroring frequency (e.g., 2000 Hz) and 

exchanging the power values of the high frequencies with those of the low frequencies and vice 

versa (Blesser, 1972). This procedure results in auditory stimuli with implausible formant values, 

disrupting any possible recognition of phonological information while keeping both the spectral 

complexity and the pitch contour intact (Marklund, Lacerda, & Schwarz, 2018; Sjerps, Mitterer, 

& McQueen, 2011). If an MMN is successfully elicited in this condition, this would suggest that 

the abstraction mechanism under investigation is not speech specific. Additionally, in case the 

MMN is elicited in both conditions, phonological information might still be pre-attentively 

extracted to facilitate the detection of vocal changes. In this case, the MMN should be stronger 

for the speech condition, indexing the automatic retrieval of native phoneme representations. 

(Dehaene-Lambertz, 1997; Näätänen et al., 1997).  
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Additionally, an active version of the oddball task was conducted, in order to understand 

whether the output of the abstraction mechanisms facilitates the detection of changes within 

specific stimulus features (i.e., pitch) while other constantly varying dimensions (i.e., F1 and F2) 

are disregarded. If this is the case, for the conditions in which an MMN is elicited in the passive 

oddball task, a P3b is expected following the correct detection of deviant stimuli in the active 

oddball task. Moreover, since the amplitude of P3b is sensitive to the amount of cognitive and 

attentional resources deployed to stimulus processing independently of its physical features 

(Duncan et al., 2009), it represents a good index to assess whether the detection of variarions in 

pitch requires different amounts of cognitive resources across speech and rotated-speech 

contexts. Therefore, if a MMN is elicited both by speech and rotated-speech conditions we 

would expect a larger P3b for the speech condition as the extensive familiarity with speech and 

voices (as well as with the relationship between the two) might mitigate the demand of cognitive 

resources needed to detect variations in pitch. 

Finally, we also explored the oscillatory activity in the theta (4-7 Hz), alpha (8-12 Hz) 

and beta (13-30 Hz) frequency bands considering their association with specific cognitive 

processes that could be involved in the extraction of regularities or with the processing of 

specific stimulus types (e.g., speech) and features (e.g., pitch).   

Power modulations in the theta band are often found in correspondence to the 

presentation of deviant events in both passive (Jin, Díaz, Colomer, & Sebastián-Gallés, 2014; Ko 

et al., 2012; Koerner, Zhang, Nelson, Wang, & Zou, 2016) and active oddball tasks with speech 

and non-speech stimuli (Citherlet et al., 2020; Kolev et al., 1997; Spencer & Polich, 1999; 

Szalárdy et al., 2021). These modulations appear to be sensitive to pitch variations (Hsu, Evans, 

& Lee, 2015; Li & Chen, 2018) and have been associated with processes of encoding (Wolfgang 
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Klimesch, 1999), retrieval (Bastiaansen, Linden, Keurs, Dijkstra, & Hagoort, 2005; W. Klimesch 

et al., 2001) and working memory load (Fuentemilla, Marco-Pallarés, Münte, & Grau, 2008; 

Jensen & Tesche, 2002; Kolev et al., 1997). Power modulation in the alpha and in the beta bands 

are also commonly found in passive and active oddball tasks (Hsu et al., 2015; Mazaheri & 

Picton, 2005; Öniz & Başar, 2009): Alpha activity is associated with attentional control 

(Wöstmann, Lim, & Obleser, 2017) and informational gating (Strauß, Kotz, Scharinger, & 

Obleser, 2014), whereas beta modulations are informative about the temporal dynamics of 

maintenance and disruption of perceptual and cognitive sets (Engel & Fries, 2010), which in our 

experiment are induced by the presentation of deviant events. Therefore, the study of oscillatory 

activity within the theta, alpha, and beta bands may extend the functional characterization of 

non-phase-locked activity underlying fundamental cognitive processes that subserve the 

extraction of regularities in the auditory and in the speech domain, while possibly providing 

complementary evidence with respect to the underlying mechanisms. Importantly, despite the 

focus on specific frequency bands, if we consider the broad range of cognitive processes that are 

potentially involved in the extraction of regularities, as well as the potential sensitivity of 

oscillatory activity to multiple features of the stimuli, the time-frequency analyses in the present 

study should be considered explorative.   

2. Materials & Methods 

2.1 Participants 

Seventeen healthy Italian native speakers were recruited. Two participants were excluded from 

the final sample because of excessive noise in the EEG data. The final sample included 11 

female and 4 male participants (Mage = 22.60, SDage = 2.74), all right-handed (Edinburgh 

Handedness Inventory: M = .78, SD = .13). The sample size was decided on the basis of previous 
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studies that used the abstract oddball paradigm and reliably recorded both the MMN and/or the 

P3b responses (Bendixen & Schröger, 2008; Escera, Leung, & Grimm, 2014; Escera & 

Malmierca, 2014). Participants reported to be neurologically healthy and to have normal 

hearing1. Participation was compensated either with course credit or with 10€ per hour. The 

study was approved by the Ethical Committee of The University of Trento. Participants signed 

an informed consent document prior to the experiment. 

2.2 Stimuli 

One female and one male Italian native speaker respectively aged 38 and 36 were recruited to 

record the experimental stimuli. They were asked to read aloud 5 isolated Italian vowels (/a/, /e/, 

/ɛ/, /i/, /ɔ/) three times each. Their voice was recorded at 44100 Hz with a professional recorder in 

a silent room. The best tokens were selected based on quantitative and qualitative evaluation. 

Noisy tokens and tokens with abnormal pitch contours (e.g., list-reading intonation) were 

discarded. After this, the tokens F1 and F2 values were extracted using Praat v. 6.0.49 (Paul 

Boersma & David Weenink, 2018). The tokens with the smallest difference of F1 and F2 between 

the two talkers were selected in order to minimize any possible attentional shift caused by large 

F1-F2 differences between the talkers. The central 100 ms part of each vowel was extracted. Then, 

the pitch contour was manipulated using Praat v. 6.0.49 (Paul Boersma & David Weenink, 2018). 

The pitch contour in each token was adjusted to a flat line to prevent participants from confounding 

idiosyncratic pitch shifts as changes in the identity of the talker. Pitch was set to an average value 

that was calculated as the mean across all tokens within each speaker. Stimuli were low-pass 

filtered at the cut-off frequency of 4000 Hz using custom filtering MATLAB (MATLAB, 2020) 

functions (available at https://www.phon.ucl.ac.uk/downloads/matlab/Blesser.zip) in order to 

match the spectral dimensions of the rotated speech stimuli, which require to be low-pass filtered 
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before applying spectral rotation (Blesser, 1972). Intensity was put to an average value of 70 dB 

with linear slopes of 10 ms at the onset and the offset in each token to avoid any harsh transition 

between silence and sound in the EEG experiment.  

 Rotated speech stimuli were created by rotating the spectrum of speech stimuli using a 

spectral rotation function in MATLAB (MATLAB, 2020) with a cut-off frequency of 4000 Hz 

(available at https://www.phon.ucl.ac.uk/downloads/matlab/Blesser.zip); the same function and 

other similar implementations of the spectral rotation algorithm were used in several studies to 

produce non-speech control stimuli in the attempt to contrast acoustic and speech-specific 

perceptual processes (Azadpour & Balaban, 2008; Marklund, Gustavsson, Kallioinen, & 

Schwarz, 2020; Scott, 2000; Steinmetzger & Rosen, 2017). The result of this procedure is a 

sound with a mirrored spectrogram along with a mirroring frequency (i.e., 2000 Hz 

corresponding to half of the cut-off frequency) with respect to the input sound. This means that 

the point-by-point power of lower frequencies (e.g., 0 Hz, 500 Hz, 1000 Hz) is transferred to 

higher frequencies (4000 Hz, 3500 Hz, 3000 Hz) and vice versa. The physical characteristics of 

the experimental stimuli are summarized in Table 1. All stimuli are available at 

https://osf.io/2pbmr/ 

--Table1-- 

2.3 Procedure 

First, participants were asked to complete questionnaires collecting demographic information, 

handedness, and musical expertise. Then, they were prepared for the EEG recording in a dimly 

lit room. The experiment consisted of a passive and an active version of the oddball task. During 

the passive oddball task, participants were asked to watch a silent video depicting drone footage 

of different landscapes while auditory stimuli were delivered via Etymotic ER-1 headphones at 
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fixed volume (70 dB) using E-prime 2.0 Software (Schneider & Zuccoloto, 2007). Speech and 

rotated-speech stimuli were presented across two different blocks in a counter-balanced order. 

Each block included 680 standard events (136 trials per vowel) and 120 deviant events (24 trials 

per vowel). At the end of each block, the 120 deviant stimuli (24 trials per vowel) were presented 

in random order to serve as control events. These latter stimuli were included in the experiment 

to control for the effects induced by the physical properties of the stimuli. Normally, the MMN 

component is calculated by subtracting standard ERPs from deviant ERPs (Näätänen et al., 

2007), but the result of this computation is also influenced by physical differences between 

standard and deviant events. By using control events, which are physically identical to deviant 

events but are presented with the standard events’ distribution, the MMN calculated by 

subtracting control from deviant events is uncontaminated by differences in terms of physical 

features and thus better highlights the cognitive processes of interest (Tuninetti, Chládková, 

Peter, Schiller, & Escudero, 2017). Between the two blocks, each of which lasted approximately 

11 minutes, participants could take a small break. 

 In the speech condition, all the vowels produced by the male speaker were equiprobably 

presented in random order as standard stimuli with a fixed Interstimulus Interval (ISI) of 700 ms. 

All the vowels produced by the female talker were equiprobably presented as deviant stimuli 

(probability of occurrence = .15) with the constraint that a minimum of two standard events 

occurred before the presentation of a deviant event. The same vowel was never repeated twice in 

a row, irrespectively of its standard/deviant status meaning that standard and deviant events were 

characterized both by a vowel change and by a voice change. This was done to adhere to the 

canonical implementation of the abstract-feature oddball paradigm. In fact, had the vowel been 

repeated across consecutive standard and deviant stimuli, an additional rule violation would have 
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been introduced (i.e., in addition to the voice change), thus complicating the interpretation of the 

effects. 

In the rotated speech condition, the same presentation paradigm was applied. The rotated 

speech condition was always presented first as presenting the speech condition first could have 

made participants aware of the stimulation paradigm structure, possibly leading to unwanted 

attentional modulations in the subsequent block.  

After the passive oddball task, the active oddball task took place. This order of presentation 

was fixed, with the goal to ensure that participants were constantly distracted during the passive 

task. Although this configuration may have prompted a familiarization with the voices during the 

passive task with subsequent potential influences on the results of the active oddball, we believe 

this was still the best option. In fact, as the active variant of the task explicitly instructs the 

participants to pay attention to the stimuli, such task-set – if presented as the first one – could 

have been carried over to the passive version thereby introducing attention-dependent activity 

(Justen & Herbert, 2018; Wronka, Kaiser, & Coenen, 2008) and invalidating any chance to 

isolate pre-attentive processes, which were the main target of the passive oddball task.   

The active task was identical to the passive one, with the only exception that participants 

were asked to press a button with their right index finger on a joypad as fast as possible when 

they heard a deviant event and that the control block was not presented at the end of each block. 

Before the start of the active task, participants were debriefed on what they heard in the passive 

task to ensure that they understood which stimuli were the deviant ones. They were told that the 

speech stimuli were produced by human voices while rotated speech stimuli were produced by 

guessing what aliens’ voices could have sounded like. Before each experimental block, a practice 

block was presented. For the first 10 practice trials, participants were helped in performing the 
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task by a graphical representation of the stimulus list presented on the screen where the 

information about the standard/deviant status of each upcoming stimulus was specified. For the 

subsequent 20 practice trials, participants performed the task as in the experimental part, that is 

with no graphical help and while watching the silent video that was presented in the passive task. 

At the end of the practice block, they received feedback on their performance. After this, the 

experimental blocks started and lasted approximately the same amount of time as in the passive 

task. The whole experiment lasted approximately 1.30 h.  

2.4 EEG recording and preprocessing 

The EEG was recorded with an eego sports system (ANT Neuro) at a sampling frequency of 

1000 Hz (filters: DC to 130 Hz, third-order sinc filter), from 64 Ag/AgCl shielded electrodes 

referenced to CPz and placed in the standard 10-10 locations on an elastic cap. Electro-

oculograms were acquired with an additional electrode placed under the left eye. Impedance was 

kept < 20 kΩ. Data pre-processing was performed with the MATLAB toolboxes EEGLAB v 

14.1.1 (Delorme & Makeig, 2004), ERPLAB 7.0 (Lopez-Calderon & Luck, 2014), and FieldTrip 

v. 20190207 (Oostenveld, Fries, Maris, & Schoffelen, 2011). The signal was re-referenced 

offline to the average reference. Data were high-pass filtered at 0.1 Hz using a 2nd order 

Butterworth filter (12 dB/oct Roll-off). A Notch filter at 50 Hz was then applied to attenuate line 

noise. Independent Component Analysis was run on the continuous signal using the Infomax 

algorithm (Bell & Sejnowski, 1995). Eye-blink and eye-movement components were identified 

with ICLabel algorithm (Pion-Tonachini, Kreutz-Delgado, & Makeig, 2019) and removed. 

Excessively noisy channels were interpolated via spherical interpolation. Mastoid and electro-

oculogram channels were excluded from the analyses. 

2.4.1 ERP data pre-processing 
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Data were low-pass filtered at 30 Hz using a 2nd order Butterworth filter (12 dB/oct Roll-off). 

Epochs were extracted from -200 ms before stimulus onset until 800 ms after stimulus onset and 

a baseline correction was applied by subtracting the mean voltage of the -200 - 0 pre-stimulus 

period from the entire epoch. Epochs containing signals with an amplitude exceeding ± 100 µV 

in any of the 62 EEG channels were rejected. An average of 3380 ± 79 epochs were retained per 

participant and the number was similar across conditions for the passive oddball task (Control 

Speech = 119 ± 2, Deviant Speech = 119 ± 1, Control Rotated = 117 ± 4, Deviant Rotated = 119 

± 1) and the active oddball task (Standard Speech = 551 ± 11, Deviant Speech = 117 ±  4, 

Standard Rotated = 544 ± 36, Deviant Rotated = 98 ± 20). 

For the passive oddball task, separate ERPs were computed by averaging epochs within 

each participant and within all the combinations of the factors condition (speech, rotated speech) 

and probability (control, deviant). The differential waveforms of the MMN were calculated 

within each participant and within each condition, by subtracting the control ERP from the 

deviant ERP. For the active oddball task, separate ERPs were computed by averaging only the 

events with a correct response within each participant and within all the combinations of the 

factors condition (speech, rotated speech) and probability (standard, deviant). All the epochs 

corresponding to standard events presented immediately after deviant events were removed from 

the analysis, to avoid any contamination from late potentials triggered by deviant events. 

2.4.2 Time-Frequency data pre-processing 

Data were low-pass filtered at 80 Hz using a 2nd order Butterworth filter (12 dB/oct Roll-off). 

Epochs were extracted from -800 ms before stimulus onset until 1200 ms after stimulus onset, to 

allow the estimation of power values in the frequency range (4-30 Hz) and in the time window of 

interest ( -300 ms to 800 ms). Epochs containing signals with an amplitude exceeding ± 100 µV 
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in any of the 62 EEG channels were rejected. An average of 3232 ± 119 of the total number of 

epochs per participant were retained and the number was similar across conditions for the 

passive task (Control Speech = 115 ± 11, Deviant Speech = 115 ± 6, Control Rotated = 113 ± 9, 

Deviant Rotated = 115 ± 5) and the active task (Standard Speech = 514 ± 48, Deviant Speech = 

109 ± 11, Standard Rotated = 517 ± 43, Deviant Rotated = 94.3 ± 21). The time-frequency 

representation was computed via Morlet wavelets sliding at 10 ms steps from -800 to 1200 ms 

with respect to stimulus onset in each epoch for the 4-30 Hz frequencies (1 Hz step) with a 

linearly increasing number of cycles (range 3-10) in order to balance spectral and temporal 

precision (Cohen, 2014). Power was expressed as the percentage of change with respect to the 

baseline period of  -300 to -100 ms from stimulus onset. The Event-Related Spectral 

Perturbations (ERSPs) for both active and passive oddball tasks were computed in the whole 

spectrum by averaging epochs within each participant and within all the combinations of the 

factors condition (speech, rotated speech) and probability (standard, deviant). All the epochs 

corresponding to standard events coming immediately after deviant events were removed from 

the analysis, to avoid any contamination from later potentials triggered by deviant events. For the 

active oddball task, only the events with a correct response were considered. In the statistical 

analyses, only the -300 ms to 800 ms time window of interest was considered.  

2.7 Statistical Analyses 

2.7.1 Behavioural Data  

Accuracy and RTs were both analyzed using the “lme4” package (Bates et al., 2015) in R 

Software (R Core Team, 2013). Participants' accuracy in the active task was analyzed by means 

of a Generalized Linear Mixed Model (GLMM) with a logit link-function. The best model was 

selected by sequentially including each predictor. Predictors were retained in the final model 
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only when their exlusion determined a significant reduction in goodness-of-fit, as assessed by 

Chi-Square tests comparing the two models in which the predictor under examination was 

present vs absent. The final model included the fixed factors condition (speech, rotated speech) 

and probability (standard, deviant) as well as by-participants and by-items random intercepts. 

Reaction times (RTs) of correct deviant events were analyzed by means of a Linear Mixed 

Model (LMM). Model selection was performed with the same method used for accuracy data. 

The final model included condition (speech, rotated speech) as a fixed factor as well as by-

participants and by-items random intercepts All factors in all models were deviance coded (0.5 

and -0.5). Thus, the model's coefficients represent the main effects, coded as the difference 

between the levels of each factor. Post-hoc comparisons were implemented via “emmeans” R 

package.  

2.7.2 EEG Data 

Nonparametric cluster-based permutation tests were used for both ERPs and time-frequency 

analyses. In this approach, conditions are compared via multiple paired t-tests performed at each 

time point within each channel. T-values with a p-value < .05 are selected and clustered on the 

basis of temporal and spatial adjacency. All the t-values within each cluster are then summed and 

compared with the distribution of the t-values under the null hypothesis which is obtained by 

calculating the test statistic several times (N = 2,500) on the data points shuffled across 

conditions. The proportion of random permutations where the observed cluster’s t-value is larger 

than the t-value drawn from the actual data represents the cluster p-value. When analyzing ERP 

components for which the literature provides robust temporal coordinates (e.g., MMN) and 

specific directions (i.e., positive or negative), one-tailed tests were restricted to an apriori defined 

time-window (see below). For every statistical test, 95 % Confidence Intervals of the p-value are 



19 
 

reported. Cohen’s d is also reported and was calculated by dividing the mean of the differences 

between conditions by the standard deviation of the differences between the conditions at test 

and obtained from the individual values of the dependent variable (i.e., voltage or power). 

Individual values were computed separately for each condition by averaging the dependent 

variable across channels and time samples of significant clusters within every individual 

participant following the indication of FieldTrip’s authors (for additional information see 

https://www.fieldtriptoolbox.org/example/effectsize/) 

2.7.3 ERP Analyses 

In the passive oddball task, the presence of the MMN component within each condition was 

assessed by comparing deviant and control events via a one-tailed test in the 110-225 ms time 

window as suggested in Kappenman et al. (2021).2 Visual inspection of the ERPs also showed 

the presence of a sustained negative component surfacing ~350 ms after stimulus onset and 

lasting until the end of the epoch, mostly distributed across frontal and fronto-central electrodes 

(see Supplementary Materials for the ERP waveforms on a large set of channels). This 

component was tentatively identified as the Late Discriminative Negativity (LDN), which was 

also reported in another study encompassing the abstract-feature paradigm as “Late Mismatch 

Negativity” (Zachau et al., 2005). Previous studies that used the canonical oddball paradigm 

reported the presence of this component over different time windows scattered across the 350-

600 ms interval (Choudhury et al., 2015; David et al., 2020; Honbolygó, Kolozsvári, & Csépe, 

2017). Given the absence of a-priori hypotheses on its presence and/or modulation, the analysis 

of this component must be considered explorative. For this reason, and in order not to select an 

ad-hoc time window based on visual inspection, we performed a one-tailed test in a wider 350-

800 m time-window, which started well after the offset of the MMN and lasted throughout the 
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whole epoch. Finally, to assess the presence of a P3b component in the active oddball task, a 

broad time-window was considered, by comparing deviant and standard events via a one-tailed 

test between 300 and 600 ms after stimulus onset. The time window was selected following the 

same logic used for the MMN (Kappenman et al., 2021). The difference between conditions 

(speech, rotated speech) was then tested by comparing the two differential waveforms calculated 

by subtracting the control ERP from the deviant ERP for the MMN and the LDN, and the 

standard ERP from the deviant ERP for the P3b.  

2.7.4 Time-Frequency Analyses 

Statistical analyses on time-frequency data were conducted on theta (4-7 Hz), alpha (8-12 Hz) 

and, beta (13-30 Hz) frequency bands by averaging power values within each band and within 

the same combination of factors as in the ERP analyses. The whole 0-800 ms epoch was used in 

the analyses as we had no specific hypotheses about the temporal unfolding of power modulation 

following non-phase locked activity. Differently from ERP analyses, due to the lack of specific 

predictions concerning differences in the ERSPs across standard/control and deviant events 

and/or across conditions, we started by testing for the interaction effect between probability (i.e., 

standard/control and deviant) and condition (i.e., speech, rotated speech). First, spearately within 

each condition, (i.e., speech and rotated-speech) we computed the two differential ERSPs by 

subtracting the power of control/standard events from the one of deviant events. Second, we 

comapred the two differential ERSPs across conditions via cluster-based permutation test. 

Finally, when significant interaction effects pointed towards reliable differences, post-hoc tests 

were performed by directly comparing the ERSPs of standard/control events with the ERSPs of 

deviant events separately within speech and non-speech conditions.  

3. Results 
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3.1 Behavioural Results 

The mean proportion of accurate responses in the speech condition was .99 (SD = .002) for 

standard and .98 (SD = .01) for deviant events, whereas in the rotated speech condition it was .97 

(SD = .06) for standard and .83 (SD = 0.16) for deviant events. The analyses revealed a main 

effect of condition (β = 3.24, SE =0.18, z =-17.67, p < .001), showing a higher accuracy in the 

speech condition (M = .99, SD = .004) with respect to the rotated speech condition (M = .95, SD 

= .06). The significant main effect of probability (β = 2.49, SE = 0.10, z = 24.89, p = < .001) 

revealed higher accuracy for standard events (M = .98, SD = .03) comapred to deviant events (M 

= .90, SD = .09).  

The mean reaction times for correctly identified deviant events was 414 ms (SD = 86) in 

the speech condition and 457 ms (SD = 110) in the rotated speech condition. The statistical 

model revealed only the main effect of condition (β = -45.70, SE =3.08, z =-14.82, p < .001): 

participants responded faster in the speech than in the rotated speech condition. Behavioural 

results are summarized in Figure 1. 

-- Figure 1-- 

3.2 ERP Results 

In the passive oddball task, the presence of the Mismatch Negativity in the 110-225 ms time 

window was revealed by a significant difference between control and deviant ERPs for both the 

speech (one negative cluster encompassing the whole window duration, p < .001, 95% CI 

[.000 .001], d = 1.646), and the rotated speech condition (one negative cluster surfacing between 

138-225 ms, p < .001, 95% [.000 .001], d = 1.741). Both clusters showed a topographical 

distribution coherent with that of the MMN, being mostly pronounced over frontal, fronto-central 

and central channels.  The test of the interaction did not reveal any difference between conditions 
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in the 110-225 ms time window. An a-posteriori analysis performed to test for potential 

differences in MMN latency between the speech and the rotated speech condition did not reveal 

any significant difference (see Supplementary Materials for further details). 

 The significant difference in the 350-800 ms between control and deviant ERPs 

confirmed the presence of a LDN component, which showed a stronger negativity in the deviant 

than in the control ERPs for both the speech (p < .001, 95% [.000 .002], d = 1.371) and the 

rotated speech condition (p < .001, 95% CI [.000 .001], d = 1.701), respectively captured by 

negative clusters surfacing in the 350-800 ms and in the 460-800 ms time window. The test of 

the interaction showed a stronger LDN response in the 350-800 ms time window for the speech 

condition compared to the rotated speech condition, mostly distributed over right frontal 

electrodes as highlighted by the presence of a negative cluster in the 631-733 ms time window (p 

= .021, 95% CI [.014 .027], d = 1.710). ERP results for the passive oddball task are summarized 

in Figure 2 (see Supplementary Figure 1 for additional descriptive plots).  

In the active oddball task, a significant positive difference surfaced between standard and 

deviant ERPs in the P3b time window for the speech (p < .001, 95% CI [.000 .001], d = 2.070) 

and rotated speech condition (p < .001, 95% CI [.000 .001], d = 1.7891), captured by two 

positive clusters emerging in the 300-600 time window, broadly distributed over central, centro-

parietal, parietal and parieto-occipital channels. The test of the interaction, revealed a stronger 

P3b effect in the speech condition with respect to the rotated speech condition (p = .001, 95% 

[.000 .002], d = 1.490), highlighted by a positive cluster mostly distributed over central and 

centro-parietal channels in the 300-565 ms time window. ERP results for the active oddball tasks 

are summarized in Figure 2 (see Supplementary Figure 2 for additional descriptive plots). 

-- Figure 2 -- 
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3.3 Time-Frequency Results 

In the passive oddball task, the test on the interaction between the factors condition and 

probability within the beta-band showed the presence of a negative cluster distributed on central, 

centro-parietal and, parietal electrode sites between 310 and 540 ms (p = .022, 95 % CI 

[.015 .028], d = 1.748). As the upper limit of the p-value 95% C.I. surpassed the critical alpha 

level of .025, the result of this test should not be considered statistically reliable. Therefore, the 

post-hoc tests were conducted only for explorative purposes.  

The source of this effect was attributed to a significant difference between deviant and 

control events surfaced in the rotated speech condition, as revealed by two spatiotemporally 

distinguishable clusters (see Supplementary Figure 3). One positive cluster unfolded over left 

fronto-central and central channels (p = .009, 95 % CI [.005 .012], d = 1.559), ranging between 

140 and 540 ms, apparently indexing both an early desynchronization in control events and a 

later occurring synchronization in deviant events (see Figure 3). A second positive cluster was 

detected (p = .017, 95 % CI [.012 .022], d = 1.399) between 630 and 800 ms signaling another 

ERS in deviant events distributed over right parieto-occipital and occipital channels. Instead, no 

significant differences between control and deviant events were found for the speech condition in 

the beta-band.  

No singificant condition by probability interaction was found for the passive oddball task 

in the theta or in the alpha frequency bands. 

 For the active oddball task, the test of the interaction between condition and probability 

within the theta band revealed the presence of a positive cluster (p = .013, 95 % CI [.009 .018], d 

=1.160) surfacing between 320 and 800 ms on right central, centro-parietal and parietal 

electrodes. Post-hoc tests comparing standard and deviant events revealed that deviant events 
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yielded a stronger theta synchronization than control ones, as highlighted by reliable positive 

clusters both in the speech (p < .001, 95 % CI[.000 .001], d = 1.274) and the rotated speech (p 

< .001, 95 % CI [.000 .001], d = 1.2679 ) conditions, widely distributed from pre-frontal to 

parietal electrodes in the 130-800 ms and in the 150-660 ms time windows, respectively  (see 

Supplementary Figure 4). Therefore, the interaction between condition and probability 

substantially reflected the stronger theta synchronization occurring for deviant evets in the 

speech condition.  

 In the beta band, the same test revealed the presence of a positive cluster (p = .015, 95 % 

CI [.010 .019], d = 1.247), between 590 and 800 ms across central, centro-parietal and parietal 

electrodes. Post-hoc tests comparing standard and deviant events within speech and rotated 

speech conditions, revealed a stronger desynchronization for deviant  than for standard events, 

both in the speech (p = .010, 95 % CI [.006 .014], d = 1.360) and the rotated speech condition (p 

= .004, 95 % CI [.002 .007], d = 1.242), captured by negative clusters unfolding over central and 

centro-parietal channels, in the 250 -590 ms and in the 250 -710 ms time windows, respectively. 

The speech condition was also characterized by a stronger beta synchronization for deviant 

events with respect to standard ones, surfacing right after the earlier-occurring desynchronization 

and widely distributed over the scalp between 570 and 800 ms (p = .010, 95 % CI [.006 .014], d 

= 1.154), which presumably induced the interaction effect (see Supplementary Figure 5). No 

condition by probability interaction surfaced in the alpha frequency band. Results are 

summarized in Figure 3.  

 

-- Figure 3 – 
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Finally, to isolate the contributions of phase- and non-phase locked power to the 

significant theta and beta ERS found in the analysis of total power, an additional analysis showed 

that both theta and beta ERS effects reflected non-phase locked oscillatory activity (see 

Supplementary Materials for further details). Therefore, the ERP and the time-frequency results 

seem to reflect separate, and possibly complementary, facets of the cognitive phenomena under 

examination.  

4. Discussion 

The aim of this EEG study was to understand whether listeners can pre-attentively form 

phoneme-invariant voice representations from constantly changing vowel stimuli. The same test 

was performed when using rotated speech stimuli, in order to clarify whether the phenomenon is 

restricted only to the speech domain. Secondly, through an active version of the task, we 

examined the influence of attentional focus on the stimuli with respect to the detection of 

changes in the talker’s voice driven by pitch variations. On the basis of our results, we argue that 

listeners can form representations of abstract regularities in sounds via a domain-general 

mechanism, as suggested by the comparable MMNs triggered by the speech and the rotated-

speech condition. Second, when the listener's attention is focused on sound features during the 

active oddball task, the extensive experience with speech and voices might lead to the activation 

of more efficient encoding strategies as suggested by stronger theta ERS for the speech 

condition. This in turn would mitigate the demand for cognitive resources needed to detect 

changes in the talker’s voice indexed by pitch variations, as suggested by the larger amplitude 

P3b for the speech condition.  

4.1 Passive Oddball Task 
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The ERP data showed that the MMN was clearly elicited with both speech and rotated 

speech stimuli, with no sizeable differences between these two conditions. Note that the 

experiment was designed so that the MMN could be triggered by the presentation of a deviant 

stimulus only if the preceding standard stimuli were grouped into an abstract representation of 

the invariant F0 despite the constant variations within F1 and F2. Compared to the studies in 

which pitch deviants are presented among identical standard stimuli (Aaltonen, Eerola, Lang, 

Uusipaikka, & Tuomainen, 1994; Hsu, Evans, & Lee, 2015; Lang, 1990), this study showed that 

listeners could track the changes within the pitch dimension while ignoring variations of formant 

frequencies, which hold a primary importance for phoneme categorization and have been shown 

to reliably elicit an MMN (Dehaene-Lambertz, 1997; Näätänen et al., 1997; Peltola et al., 2003). 

In line with previous studies showing that listeners can track different regularities across 

multiple stimulus features at the same time (Huotilainen et al., 1993; Pakarinen, Huotilainen, & 

Näätänen, 2010), the elicitation of the MMN across both the speech and the rotated speech 

condition indicates that the cognitive system is able to represent abstract regularities via a 

domain-general mechanism. By using this mechanism, the cognitive system can equally form 

talker-invariant phoneme representations, as shown by previous studies (Eulitz & Lahiri, 2004; 

Jacobsen, Schröger, & Sussman, 2004, 2004; A. Shestakova et al., 2002), and phoneme-invariant 

voice representations, as suggested by our results.  

It is reasonable to think that, during the extraction of pitch regularities, phonological 

information was not retained. In fact, the presence of phonological information should have 

yielded a stronger MMN for the speech condition. This was not the case, as the speech and the 

rotaed-speech condition yielded comparable MMNs . However, the amplitude of MMN can 

reflect both acoustic and linguistic differences (Näätänen et al., 2007) between standard and 
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deviant stimuli. To isolate the contribution of these two sources, previous studies (Christmann, 

Berti, Steinbrink, & Lachmann, 2014; Marklund et al., 2018) contrasted the MMNs generated by 

vowel contrasts in speech and rotated speech using the classic oddball paradigm. These studies 

showed a stronger MMN for speech than for rotated speech stimuli and suggested that such 

difference reflects the specific contribution of phonological information to the final amplitude. In 

our study, the comparable MMNs elicited in the speech and in the rotated speech condition might 

suggest that the mechanism driving the detection of deviant stimuli was able to separate 

phonological and vocal information to build a representations of voices based on the regularity of 

F0.  

Interestingly, the phonological/formant information presumably ignored by this early-

occurring mechanism, may have been taken into account during later processes. In fact, within 

the passive oddball task, a sustained negativity surfaced right after the offset of the MMN, in a 

350-800 ms time-window and featuring a fronto-central spatial distribution. We identified this 

sustained negativity as an instantiation of the LDN, an automatic response with an unsettled 

functional significance, which occasionally occurs after the MMN (Datta, Shafer, Morr, 

Kurtzberg, & Schwartz, 2010). The LDN has been consistently recorded in children (Cheour, 

Korpilahti, Martynova, & Lang, 2001; Ervast et al., 2015; Anna Shestakova, Huotilainen, 

Čeponien, & Cheour, 2003) and less often in adults (Bishop, Hardiman, & Barry, 2011; Mueller, 

Brehmer, Von Oertzen, Li, & Lindenberger, 2008).  

The interpretation of the sustained negativity as LDN may not be completely 

straightforward. The scarcity of studies conducted on adults, paired with sometimes inconsistent 

results, prevents the identification of clear-cut spatiotemporal characteristics for this specific 

component (which has indeed been analyzed in multiple time windows; e.g., 300-550 ms in 



28 
 

Bishop, Hardiman, & Barry, 2011; 350-600 ms in David, Roux, Bonnet‐Brilhault, Ferré, & 

Gomot, 2020; 425-475 in Honbolygó et al., 2017; 250-400 ms in Zachau et al., 2005). It is 

important to point out that the cluster-based permutation approach we employed for statistical 

analyses warrants against strong conclusions on components onset and offset latencies 

(Sassenhagen & Draschkow, 2019), further complicating the comparison with previous studies. 

One alternative interpretation would be to consider this late component as a Reorienting 

Negativity (RON). However, the RON is usually recorded during active tasks following a P3a 

component (Horváth, Roeber, & Schröger, 2009; Munka & Berti, 2006; Schröger & Wolff, 

1998; Wetzel & Schröger, 2014). To understand if the P3a component was elicited in our 

experiments, we compared the amplitude of the ERP triggered by control events with the one 

elicited by deviant events in the passive oddball task via cluster-based random permutations in 

the 250-350 ms time window (Comerchero & Polich, 1999; Friedman, Cycowicz, & Gaeta, 

2001; Wronka, Kaiser, & Coenen, 2012) but we found no statistically significant differences in 

any of the conditions (all ps >.18). Thus, considering that the late component found in our 

experiments was highlighted with a passive oddball task and without a clear P3a component, the 

interpretation in term of a RON was discarded. While the interpretation of this late component as 

an LDN still warrants some caution, it seems the most plausible alternative.  

In a study implementing the abstract-feature oddball paradigm and simple tones as 

stimuli, Zachau et al. (2005) reported the presence of the LDN in adults following violations of 

abstract rules and suggested that the LDN is an index of a transfer mechanism supporting the 

formation of representations of sound regularities in memory. The authors suggest that this 

mechanism could provide the computational basis for the segmentation of speech signals, further 

clarifying the reasons for which the LDN is consistently found in children (Bishop, Hardiman, & 
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Barry, 2011), who are still developing linguistic abilities. This notion was further strengthened 

by similar results obtained by Liu et al. (2014) with consonant and lexical tone contrasts in pre-

school and school-aged Mandarin speaking children. David et al. (2020) also reported a larger 

LDN in children with respect to adults, elicited by phonologically complex rather than simple 

multisyllabic non-words. Although this transfer mechanism for regularities could be relevant for 

language learning, our findings together with previous studies (Zachau et al., 2005) suggest that 

it is not necessarily language-specific.  

Despite the activation of the transfer mechanism for regularities may not be restricted to 

the speech domain, it could still be modulated by the presence of meaningful phonological 

information. In fact, we found a stronger LDN for the speech condition, and the difference was 

mainly distributed over right frontal electrode sites. This effect does not stem from differences in 

terms of spectral complexity – speech and rotated speech are thought to be equally complex 

(Maier, Di Luca, & Noppeney, 2011) –, nor in terms of physical properties of speech and rotated 

speech stimuli, as the differential waveforms were calculated by subtracting the averaged ERPs 

of deviant events from the ERPs of physically identical control events. Therefore, this effect 

seems to be related to the presence of phonological information encoded in speech. If this effect 

is an actual index of a transfer mechanism for information subserving learning processes, we 

could speculate that, when hearing natural sounding voices from speech (i.e., containing 

meaningful phonological information), listeners may use the information about the voice to 

update their prototypical voice model. In fact, our cognitive system is thought to prototypically 

represent male and female voices, and update those voice models throughout lifetime (Latinus, 

McAleer, Bestelmeyer, & Belin, 2013; Petkov & Vuong, 2013; Yovel & Belin, 2013). This 

feature is critical for the interpretation of our results, in which there is a clear overlap between 
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voice gender and voice identity. We implemented the contrast between voices as a contrast 

between voice gender in order to maximize the possibility that listeners perceived a change in the 

identity of the talker. While this issue might be of secondary relevance for the pre-attentive 

abstraction processes, as it may rely on low-level physical features in the signal, it may be of 

particular relevance for later stages in which the “content” (e.g., the talker’s gender) of voice 

representations may influence the storage of information.  

However, despite previous studies might provide sufficient information to interpret this 

result, considering the a-posteriori nature of the analysis and the weak difference surfaced 

between speech and rotated speech conditions (upper limit of the p-value 95% C.I. surpassed the 

critical alpha level of .025), the interpretation provided here only represents a tentative proposal.  

4.2 Active Oddball Task 

At a pre-attentive level, abstract pitch/voice regularities seem to be easily extracted from 

sounds irrespectively of the presence of phonological information. In contrast, at an attentive 

level, it seems that information about regularities can be transferred to working memory and 

matched to response categories more efficiently when phonological information is present. 

Consistently, in the active oddball task, participants performed better in the speech than in the 

rotated-speech condition. Further, EEG data showed the elicitation of a clear P3b response, with 

a stronger amplitude for the speech condition. The P3b component is commonly thought to 

reflect a range of cognitive processes subserving the revision of a mental representation induced 

by incoming stimuli (Donchin, 1981): When new or target stimuli are detected, attentional 

processes are thought to update the stimulus representation held in working memory (Polich, 

2007). Additionally, previous studies have shown that the amplitude of the P3b component is 

also modulated by task difficulty, being lower in the context of higher demands, hence in the 
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amount of cognitive and/or attentional resources required to revise mental representations (Kok, 

2001; Polich, 1987, 2007). However, it is important to specify that, in our experiment, the 

amplitude of the P3b component could have been contaminated by motor-related activity 

considering that the active oddball task involved a motor response from participants. In fact, 

Salisbury et al. (2001) showed that the amplitude of the P3b is smaller during a button press task 

with respect to silent-count task, suggesting that in our active oddball experiment motor-related 

activity contributed to an overall reduced P3b. Nonetheless, since the response modality was 

identical across conditions, both the speech and the rotated speech conditions were equally 

contaminated by motor-related activity. Consequently, it is safe to assume that the source of the 

amplitude difference of the P3b between speech and rotated-speech conditions does not stem 

from motor-related activity. 

Additionally, as shown in previous P300 studies (Başar-Eroglu, Başar, Demiralp, & 

Schürmann, 1992; Demiralp, Ademoglu, Comerchero, & Polich, 2001; Yordanova, Devrim, 

Kolev, Ademoglu, & Demiralp, 2000), an increased theta synchronization emerged, both in the 

speech and in the rotated-speech conditions, albeit enhanced in the former compared to the latter. 

Oscillatory activity within the theta band has a primary role in neurophysiological models of 

memory (Backus, Schoffelen, Szebényi, Hanslmayr, & Doeller, 2016; Lisman & Buzsaki, 2008). 

Consequently, synchronization within the theta band is commonly associated with working 

memory (WM) capacity/load (Dong, Reder, Yao, Liu, & Chen, 2015; Moran et al., 2010; 

Scharinger, Soutschek, Schubert, & Gerjets, 2017) and more specifically with the encoding 

(Wolfgang Klimesch, 1999) and retrieval processes (Bastiaansen et al., 2005; W. Klimesch et al., 

2001). Thus, looking at behavioural and electrophysiological data together, it seems that 
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detecting an interruption of the pitch/voice regularity required less cognitive resources when 

hearing speech.  

One possibility is that listeners needed more cognitive resources for the acoustic analysis 

of the pitch dimension, given the smaller number of available cues to pitch changes in the rotated 

speech condition. In fact, despite spectral rotation preserves the pitch contour, it disrupts the 

relationship occurring between formant frequencies and pitch in natural speech (Assmann & 

Nearey, 2007). To this regard, enhanced theta ERS over frontal sites has also been linked to 

higher spectral quality, indicating that the quantity of available spectral information directly 

promotes speech intelligibility (Obleser & Weisz, 2012). Yet, in our experiment the differences 

in theta ERS between speech and rotated-speech condition begin to surface at ~300 ms over 

parietal and parieto-occipital electrodes, suggesting that the source of the effect could be related 

to higher and later-occurring levels of processing. 

According to Paavilainen (2013), while at a pre-attentive level the auditory cortex 

automatically represents regularities about different acoustic features, at an attentive level high 

levels of accuracy in detecting deviant stimuli require an explicit awareness about the rules 

underlying standard vs deviant status of the stimulus. In our study, we made sure participants had 

explicit knowledge about the task structure and the stimuli by directly describing the active 

oddball paradigm and providing extensive practice. Despite this training, participants had life-

long experience with speech produced by male and female voices, but certainly not with rotated 

speech produced by “alien voices”. Relatedly, sound regularities appear to be extracted without a 

particular attentional focus (Batterink & Paller, 2019; Duncan & Theeuwes, 2020), but extensive 

experience with a specific auditory material may facilitate top-down processing of the extracted 

regularities, especially with speech stimuli (Monte-Ordoño & Toro, 2017; Sun et al., 2015). The 
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specific functional role of experience in facilitating the deliberate processing of abstract 

regularities is not yet fully understood and has been linked with enhanced statistical learning 

abilities (Pesnot Lerousseau & Schön, 2021) or with the development of more efficient encoding 

strategies (Monte-Ordoño & Toro, 2017). In our experiment, the enhanced theta ERS for the 

speech condition suggests that the presence of native phonemes and/or human-like voices may 

have promoted a more efficient encoding strategy of the regularities. Relatedly, previous studies 

showed that enhanced theta ERS is associated with encoding efficiency and successful recall 

from memory (Khader, Jost, Ranganath, & Rösler, 2010; Klimesch, Doppelmayr, Russegger, & 

Pachinger, 1996; Mölle, Marshall, Fehm, & Born, 2002).  

The consequences of this facilitation effect may also be tracked in the pattern of beta 

modulations found for the active task. Oscillatory activity in the beta band is thought to be tied to 

the status of a cognitive and/or perceptual set (Engel & Fries, 2010): When a task is being 

performed, and no sudden variation in the stimuli or in the task requests occurs, beta-band 

activity is stable and signals the maintenance of the “status quo”. When an unexpected stimulus 

is presented, a beta ERD occurs and signals the disruption of cognitive/perceptual sets following 

exogenous bottom-up sensory components. After an ERD, a subsequent beta ERS signals the re-

establishment of the previous cognitive sets. 

  In line with this interpretation, beta ERD associated with the presentation of deviant 

stimuli may index a disruption of the previous stable cognitive set in which several different 

instances of speech or rotated-speech stimuli were being accumulated into one voice/pitch 

representation. While in the rotated speech condition beta ERD appeared to be longer-lasting, in 

the speech condition it was readily followed by a synchronization. Qualitatively, a beta 

synchronization with a similar spatial distribution seemed to emerge also for the rotated speech 
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condition, but later in time with respect to the speech condition (see Supplementary Figure 3). 

This temporal dynamic might further suggest that the efficient encoding of regularities in speech 

also allowed for a faster reestablishment of the cognitive set that characterized listeners’ activity 

prior to the presentation of deviant events.  

As previously mentioned with respect to the amplitude of the P3b, the power modulations 

recorded during the active oddball task are open to motor-related contaminations, particularly 

with respect to beta-band ERSPs. Self-paced or triggered voluntary movements are in fact 

preceded by a beta ERD and readily followed by beta ERS (Bardouille & Bailey, 2019; Doyle, 

Yarrow, & Brown, 2005; Pfurtscheller, Zalaudek, & Neuper, 1998; Protzak & Gramann, 2021). 

Clearly, this pattern is similar to the one observed in our study, as both the speech and the rotated 

speech conditions of the active task were characterized by a beta ERD approximately starting 

before the mean RT. Notably, however, only the speech condition was also characterized by 

subsequent beta ERS. As for the ERP results, even if the modulations of beta power partially 

reflect motor-related activity, it is safe to assume that the differences concerning beta ERS 

between conditions do not reflect motor-related activity considering that the response modalities 

were equivalent across conditions.  

Furthermore, it is worth mentioning that a previous study showed a stronger beta ERD 

for learned voices with respect to previously unheard voices emerging approximately between 

300 and 400 ms after stimulus onset (Zäske, Volberg, Kovacs, & Schweinberger, 2014). While it 

is difficult to compare this result with the one reported in the present study (as we did not 

implement any contrast between learned/familiar and unfamiliar voices), it would be interesting 

to understand whether the activity within the beta band reflects processes specifically related 

with voice familiarity or, more generally, with familiar stimuli beyond voices or speech tokens.  
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As a last note, it should be noted that in the present study only two voices were used as 

stimuli. Future studies may benefit from using a larger sample of voices to avoid possible 

speaker-specific effects and to allow a broader generalization of results. 

5. Conclusion 

In conclusion, we show that listeners pre-attentively track pitch regularities by possibly using a 

domain-general mechanism that encodes abstract representations in the context of constantly 

changing formant information and irrespectively of the presence of phonological information. 

Representations of regularities are then transferred to long-term memory while encoding 

additional vocal information in the case of human-like speech. At an attentive level, the presence 

of phonological information facilitates the use of the previously abstracted information, 

suggesting that the output of pre-attentive abstraction mechanisms is not transferred to working 

memory without effort. ERP and the time-frequency results offer converging evidence that the 

source of the facilitation driven by the presence of phonological information may be provided by 

the extensive experience listeners have with speech and voices. This could provide listeners with 

more efficient encoding strategies which would need fewer cognitive resources to encode 

information. 

 Future studies could characterize in more detail the influence that the relationship 

between pitch and the formant structure may have on the formation of abstract voice 

representations, while also investigating the contribution that the use of meaning-differing units 

(e.g., phonemes) might exert on the encoding strategies employed to parse the speech signal.  
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Footnotes 

 

1 Participants’ musical experience was assessed with the Ollen Musical Sophistication Index 

(Ollen, 2006) in order to avoid confounds in the interpretation of possible amplitude modulation 

of the MMN component as pitch changes were shown to elicit stronger MMNs in musically 

trained listeners (Chandrasekaran, Krishnan, & Gandour, 2009). None of the participants was 

musically trained. 

 

2 In the cited study (Kappenman, Farrens, Zhang, Stewart, & Luck, 2021), the measurement 

windows for the MMN and P300 were identified by cross-validating the time windows generally 

reported in the literature with the results of a cluster-based permutation analysis. 
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Tables  

Table 1. Pitch (F0), First and Second Formant (F1, F2) values of the experimental stimuli for 

each talker and each condition.  

  Condition   

  Speech Rotated Speech   

Talker’s 

Sex 
Vowel F0  F1 F2 F0  F1 F2 

  

Male 

a 121 Hz 816 Hz 1252 Hz 121 Hz 768 Hz 1623 Hz   

e 121 Hz 384 Hz 2141 Hz 121 Hz 653 Hz 1360 Hz   

i 121 Hz 360 Hz 2039 Hz 121 Hz 795 Hz 1402 Hz   

ɔ 121 Hz 561 Hz 862 Hz 121 Hz 772 Hz 1007 Hz   

ɛ 121 Hz 571 Hz 1782 Hz 121 Hz 1049 Hz 1717 Hz   

          

Female 

a 184 Hz 981 Hz 1469 Hz 184 Hz 1269 Hz 2081 Hz   

e 184 Hz 368 Hz 1698 Hz 184 Hz 803 Hz 1332 Hz   

i 184 Hz 329 Hz 1209 Hz 184 Hz 780 Hz 1113 Hz   

ɔ 184 Hz 733 Hz 1169 Hz 184 Hz 964 Hz 1976 Hz   

ɛ 184 Hz 695 Hz 1599 Hz 184 Hz 934 Hz 1675 Hz 

 

 

 

 



57 
 

 

Figure Captions 

 

Figure 1. Behavioural results of the active oddball task. (A) Proportion of correct responses 

broken down by condition (1st column) and by probability (2nd column). (B)  Reaction times of 

correct responses to deviant events only. Error bars represent the SE and grey points represent 

individual observations. For illustrative purposes, only the relevant portion of the y axis is shown 

in both plots (dashed lines indicate the discontinuity of the axis).   

 

Figure 2. ERP results. (A) Passive oddball task. The first column displays the ERPs for control 

(dotted line), deviant (dashed line) and differential waveforms (continuous line) at a 

representative channel (Fz) for the speech (blue lines) and the rotated speech condition (red line). 

The grey rectangles indicate the time-window used in the analyses (MMN, first row; LDN, 

second row). In the subsequent columns, topographies show the spatial distribution of the MMN 

(first row) and LDN (second row) in the time windows where significant differences emerged. 

The last column represents the voltage difference between conditions, calculated by subtracting 

the differential waveforms in the rotated speech condition from the ones calculated in the speech 

condition. Electrodes that were included in the clusters for more than 50% of the samples within 

the cluster time windows (reported below the topographies) are represented by black asterisk 

marks superimposed to the maps. (B) Active oddball task. The first column represents the ERPs 

for standard (dotted line), deviant (dashed line) and differential waveforms (continuous line) at a 

representative channel (CPz) for the speech (blue lines) and the rotated speech condition (red 

line). In the subsequent columns, topographies show the spatial distribution of the differential 
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P300 waveforms, calculated by subtracting the standard ERP from the deviant ERP in the time 

windows where significant differences emerged for each condition. The last column represents 

the voltage difference between conditions, calculated by subtracting the differential waveforms 

in the rotated speech condition from the ones calculated in the speech condition. Electrodes are 

marked as in A. 

 

Figure 3. Time-Frequency results for the passive (first row) and the active (second row) oddball 

tasks. The time-frequency power spectra show the power modulations (% change) characterizing 

the differential ERSPs for each condition (1st and 2nd columns) as well as the difference between 

them, corresponding to the interaction effect (3rd column). Spectra were obtained by averaging 

activity for the electrodes F5, F3, F1, Fz, F2, F4, F6, FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, 

C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P5, P3, P1, Pz, P2, P4, P6, PO5, 

PO3, PO1, POz, PO2, PO4, PO6. In the plot for power-spectra, black squares represent the 

temporal distribution of the significant clusters within theta (4-7 Hz) and beta (13-30 Hz) bands. 

The mean number of channels included in each cluster represented in the power spectra was 

calculated across all time-samples and only the time-bins including at least half of the mean 

number of channels are enclosed in black squares. Topographies in the lower and higher row 

show the spatial distribution of theta and beta ERDs/ERSs characterizing the differential ERSPs 

for each condition (1st and 2nd columns) as well as the difference between them, corresponding to 

the interaction effect (3rd column). Electrodes that were included in the clusters for more than 

50% of the samples within the cluster time windows (reported below each topography) are 

represented by black asterisk marks superimposed to the maps. Black squares on topographies 

represent the channels that were included in the averaged spectral plots.  
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Figure 2 
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Figure 3 



62 
 

Graphical Abstract Figure 

 

Graphical Abstract Text 

Attentively detecting changes in the talker’s voice driven by pitch variations is facilitated by the 

presence of phonological information in speech. The extensive familiarity with speech and 

voices might mitigate the demand of cognitive resources and promote more efficient 

encoding/retrieval processes as testified by the a stronger P3b and a larger power theta ERS for 

speech vs. rotated speech.  

 

 


