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1 Introduction

Five-dimensional superconformal field theories (SCFTs) are inevitably strongly coupled [2]
and their string theory embeddings allow us to study the infrared (IR) phases of them.
They can be realized both in type IIA and IIB string theory. The Seiberg theory is a
USp(2N) gauge theory with Nf hypermultiplets in the fundamental representation and an
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antisymmetric matter field, which has a 5d ultraviolet (UV) fixed point with SU(2)M ×
ENf+1 global symmetry [3]. The theory describes the dynamics of N D4-branes probing a
stack of D8-branes and O8-plane, and is holographically dual to AdS6×w S4 background of
massive type IIA supergravity [4, 5]. A second and larger class of SCFTs can be engineered
in type IIB using 5-brane webs [6–8] and it can also be generalized to include 7-branes [9].
The dual supergravity backgrounds [10–13]1 have a warped AdS6 × S2 ×w Σ geometry,
where Σ is a Riemann surface that encodes the structure of the associated 5-brane web.

All these constructions can be realized on a compact Riemann surface Σg of genus g

with a partial topological twist, see [16] for the type IIA embedding. Since the 5d theory has
eight real supercharges with a SU(2) R-symmetry and the structure group of Σg is SO(2),
we can preserve N = 2 supersymmetry in three dimensions. An interesting generalization
is when the 5d theory has continuous flavor symmetries. In this case, apart from the R-
symmetry, we can twist the flavor symmetries by turning on various background magnetic
fluxes on Σg for these symmetries while preserving supersymmetry. The three-dimensional
SCFTs obtained in this way are called theories of class F [16]. It is our goal here to
present an effective four-dimensional N = 2 gauged supergravity model that captures the
gravitational dual to the theories of class F . The model follows from a consistent truncation
of six-dimensional matter-coupled F(4) gauged supergravity [17–19] on Σg, at the level of
the bosonic action. We add one abelian vector multiplet that can be precisely thought of
as an extra flavor symmetry of the parent 5d theory.

The 4d F(4) gauged supergravity we obtain here may be used to construct new inter-
esting solutions, many of which cannot be found easily in six dimensions. The AdS4 × Σg

solutions of minimal F(4) supergravity were analyzed in [20] (see also [21]) and these were
generalized to the matter-coupled theory in [1, 22]. A rotating black hole with one electric
charge, two independent angular momenta and the near-horizon geometry AdS2 ×w S4

was given in [23]. The twisted AdS black hole in minimal F(4) supergravity was obtained
in [24] and a generalization to include one independent magnetic charge, was constructed
in [1, 25]. In this paper, we provide the first examples of supersymmetric, asymptotically
AdS6, black hole solutions that carry both electric and magnetic charges, and derive their
Bekenstein-Hawking entropy from a microscopic counting of supersymmetric states in a
holographically dual field theory. New classes of Kerr-Newman-AdS (KN-AdS) black holes
in 4d (that upon uplift to 6d have the exotic horizon geometry AdS2 ×w S2 × Σg) and ro-
tating twisted black holes are also presented whose entropy gives a prediction for the large
N limit of the superconformal and refined twisted indices of class F theories, respectively.

An important role in this work is played by electromagnetic duality, which is a specific
feature of four-dimensional supergravity. It is of course easy to see that the dual of a
1-form in 4d is another 1-form. The standard 4d supergravity formulation makes a certain
choice to use a set of electric gauge potentials, and the equivalence of all other choices
translates into the freedom to perform further duality transformations. This is known
as electromagnetic duality, and the choice of electromagnetic frame is also known as a
duality frame. This leads to a certain difficulty for us when reducing 6d gauge fields, since

1T-duals of the massive type IIA solution [4] have been discussed in [14, 15].
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the natural reduction ansatz cannot tell us whether the resulting field is an electric or a
magnetic gauge potential from the point of view of the standard supergravity formulation.

We find that the natural duality frame from 6d perspective involves the magnetic
gauge field Ã0, whose electric counterpart we denote as A0, and thus the gauge kinetic
terms involve the magnetic field strength G0 instead of its electric counterpart F 0,

A0
µ ↔ Ã0,µ , F 0

µν ↔ G0,µν . (1.1)

In the standard frame the gauging of the internal isometries in the theory is purely electric,
but from the point of view of Ã0 coming from the reduction, the gauging is actually
magnetic (using the dual gauge field A0 instead of the gauge field Ã0). It then follows that
the Lagrangian can only be described using the embedding tensor formalism [26, 27] and
requires additional couplings to a tensor field. Due to the existence of a two-form field B in
the six-dimensional gauged supergravity, we naturally obtain such a two-form field in four
dimensions. It turns out that the universal hypermultiplet (UHM) can be actually dualized
to a tensor-scalar multiplet as explained in [28] and [29, 30]. Schematically, we have

σ ↔ Bµν , (1.2)

where σ is one of the hypermultiplet scalars, and the dualization is “carried out” by the
gauge field A0 in a precise way explained in the main text. It is then interesting to note
that the Higgs mechanism where the original massless scalar σ is eaten up by a vector field,
in this new duality frame is replaced by a Stueckelberg mechanism where the same vector
field in question instead gets eaten up by the two-form B that becomes massive itself.

When brought to the standard duality frame, we find an N = 2 supergravity coupled
to two vector multiplets and the UHM with a particular electric gauging of two of the
internal hypermultiplet isometries. The outcome is that at the AdS4 vacuum one of the
vectors becomes massive and together with a complex vector multiplet scalar and the
hyperscalars forms a massive vector multiplet. The form of the prepotential defining the
remaining massless scalar manifold and depending on the magnetic fluxes through the
Riemann surface then agrees with the one predicted in [1] from a direct six-dimensional
computation. Just like any matter-coupled theory, the resulting model admits a further
subtruncation to minimal gauged supergravity. For some specific values of the magnetic
fluxes the massive modes can also be truncated to a larger sector, the so-called T 3 model,
with a single massless vector multiplet and Fayet-Iliopoulos (FI) gauging.

For the reader’s convenience, we summarize our main results regarding the 4d su-
pergravity model in the next subsection. The reader not interested in the details of the
dimensional reduction and further subtruncations, can read it and then safely jump to
sections 5 and 6.

The remainder of this paper is organized as follows. In section 2 we give an overview of
6d matter-coupled F(4) supergravity and define our reduction ansatz on Σg. We next derive
the effective 4d action. In section 3 we formulate the 4d truncated theory in a canonical
supergravity language, discussing how one can switch between different duality frames.
In section 4 we discuss the possibility for further consistent truncations to subsectors of
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the original 4d supergravity, identifying explicitly two such cases. In section 5 we discuss
asymptotically AdS4 solutions in the minimal subtruncation related to a universal subsector
of the class F theories. In section 6 we write down general classes of supersymmetric black
hole solutions, summarizing previously known cases and extending them to new solutions
with electric charges and rotation. We then discuss their corresponding entropy functions
from gluing gravitational blocks in section 7, and in the process provide new holographic
predictions for two different classes of supersymmetric indices. Finally, in section 8, we
conclude with a further field theory discussion and a list of open problems.

1.1 Main results

In the standard duality frame we find an N = 2 supergravity coupled to two vector multi-
plets with scalar manifold [SU(1, 1)/U(1)]2, and one hypermultiplet, known as the universal
hypermultiplet (UHM), with scalar manifold SU(2, 1)/U(2). The bosonic field content is
given by a metric, three U(1) gauge fields A0,1,2, two complex scalars with an underlying
special Kähler manifold defined by the prepotential

F = −iX0
√
X1X2 , (1.3)

and four real scalars {φ, σ, ζ, ζ̃} spanning the UHM with a well-known quaternionic metric.
The three gauge fields are used for the gauging of two of the isometries of the UHM
manifold. The first isometry is compact and is gauged by a particular combination of the
electric gauge fields given by the following Killing vector in symplectic notation,

kU(1) = {0; 0, 3m, 3m} , (1.4)

while the second gauged isometry is non-compact and is defined by the Killing vector

kR =
{

0;−4m, s2, s1
}
. (1.5)

The parameter m denotes the gauge coupling constant that controls the radius of the
internal manifold from a ten-dimensional perspective, and s1,2 are the magnetic fluxes
through the Riemann surface with a constant curvature κ, satisfying the twisting condition

s1 + s2 = − κ

3m . (1.6)

The above data is enough to uniquely specify the Lagrangian of the theory, with all explicit
details spelled out in the main sections of this paper.

Due to the non-compact gauging, a spontaneous symmetry breaking (but fully su-
persymmetry preserving) Higgs mechanism takes place for many background solutions,
including the maximally supersymmetric AdS4 vacuum. The particular combination of the
vector fields as defined by kR becomes massive by eating up the scalar σ, and together with
other five massive scalars2 forms a massive vector multiplet [31]. The effective prepotential

2The five massive scalars are the three remaining hyperscalars φ, ζ, ζ̃ together with one of the two complex
scalars. In our dimensional reduction we actually set to zero the two charged 6d scalars proportional to
the 4d ζ, ζ̃. It is easy to see that this is a consistent subtruncation of the equations of motion and will not
prevent us from properly determining the 4d supergravity structure.
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for the massless field at the BPS Higgsed locus is then given by

Feff = − i
4m

(
s2X1 + s1X2

)√
X1X2 , (1.7)

in agreement with the expected supergravity action for the vacuum AdS4 solution [1,
cf. (4.8)]. Note that this is not a supersymmetric truncation in general, and the effec-
tive prepotential is a useful description of the massless sector strictly at the considered
background.

In the special case when one of the parameters s1,2 vanishes, one is actually able to
perform a consistent supersymmetric subtruncation to the purely massless sector already
at the level of the theory, such that the effective prepotential above truly becomes the
prepotential of the theory. This special limit of parameters leads to the so-called T 3

model with a scalar manifold SU(1, 1)/U(1) with constant FI gauge parameters (as the
hypermultiplet has been truncated out), and the prepototential

FT 3 = − i
12m2

√
X1(X2)3 . (1.8)

The same model can alternatively be obtained from a consistent truncation of maximal
N = 8 supergravity, where many BPS solutions have already been constructed. We can
then directly borrow these results and embed them in 10d massive type IIA and type IIB
supergravity, producing a variety of new bulk solutions and holographic predictions.

Finally, let us also note that already the general model, without any restrictions on s1,2,
admits a consistent truncation to minimal N = 2 gauged supergravity. This is of course
guaranteed by the general structure of supergravity, but also allows for further holographic
predictions if one restricts to the universal sector of the dual field theory, as in [32, 33].

2 6d F(4) supergravity on Σg

2.1 Matter coupled F(4) gauged supergravity

We first briefly review six-dimensional F(4) gauged supergravity [17] coupled to nV vector
multiplets [18, 19]. The field content of the gauged supergravity theory is as follows.
The bosonic part of the gravity multiplet consists of the metric gµν , four gauge fields
Aαµ corresponding to the symmetry group U(1)× SU(2)R where the latter factor is the R-
symmetry, an antisymmetric tensor field Bµν , and the dilaton λ. The fermionic components
are two gravitini ψAµ , and two spin one-half fermions χA in the fundamental representation
of SU(2)R. It is useful to split the index α = (0, r) where r = 1, 2, 3 is an index in the adjoint
representation of SU(2)R. The gravity multiplet can be coupled to nV vector multiplets,
which are labeled by an index I = 1, . . . , nV. Each vector multiplet contains one vector
field Aµ, four scalars φα and two gaugini λA. The 4nV scalar fields parameterize the coset
space SO(4,nV)

SO(4)×SO(nV) . It is convenient to introduce a new index Λ = (α, I) and encode the
scalar fields into a coset representative LΛ

Σ ∈ SO(4, nV).
The bosonic action, following the conventions of [18], reads

S6d = 1
G6d

N

∫
d6x
√
−gL6d , (2.1)
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with

L6d = −1
4R−

1
8e
−2λNΛΣF̂Λ

µνF̂Σµν + 3
64e

4λHµνρH
µνρ + ∂µλ∂µλ−

1
4P

IαµPIαµ

− 1
64ε

µνρσλτBµν

(
ηΛΣF̂Λ

ρσF̂Σ
λτ +mBρσF̂0

λτ + 1
3m

2BρσBλτ

)
+ V6d(λ, φα) ,

(2.2)

where
F̂Λ
µν = FΛ

µν −mδΛ0Bµν ,

NΛΣ = L α
Λ (L−1)αΣ − L I

Λ (L−1)IΣ ,

P Iα = (L−1)IΛ
(
dLΛ

α − f Λ
Γ ΠAΓLΠ

α

)
,

(2.3)

with fΛ
ΠΓ the structure constants of the gauge group SU(2)R × G, and the SO(4, nV)

invariant metric ηΛΣ = diag{1, 1, 1, 1,−1, . . . ,−1}. The gravitini are charged under the
SU(2)R with a charge g, while m corresponds directly to the mass parameter of massive
type IIA supergravity [34].

The particular theory we consider contains one vector multiplet, nV = 1, corresponding
to the U(1) ⊂ SU(2) mesonic symmetry of the holographic dual five-dimensional SCFT.
We consistently set to zero all vector fields except A0

µ, Ar=3
µ in SU(2)R (thus breaking

SU(2)R to a U(1)R), and AI=1
µ . Further, we require that the scalar fields φα in the vector

multiplet to be neutral under Ar=3
µ and this leaves us with φ0 and φ3.3 A convenient

parameterization of the scalar coset is given by [22, 35, 36]

LΛ
Σ =


coshφ0 0 0 sinhφ0 sinhφ3 sinhφ0 coshφ3

0 1 0 0 0
0 0 1 0 0
0 0 0 coshφ3 sinhφ3

sinhφ0 0 0 coshφ0 sinhφ3 coshφ0 coshφ3

 . (2.4)

The kinetic terms for the vectors can then be written as

NΛΣ =


cosh2φ0+cosh(2φ3)sinh2φ0 0 0 sinhφ0sinh(2φ3) −cosh2φ3sinh(2φ0)

0 1 0 0 0
0 0 1 0 0

sinhφ0sinh(2φ3) 0 0 cosh(2φ3) −coshφ0sinh(2φ3)
−cosh2φ3sinh(2φ0) 0 0 −coshφ0sinh(2φ3) cosh2φ0cosh(2φ3)+sinh2φ0

 .
(2.5)

Finally, the scalar potential for the fields we have chosen to keep reads

V6d = g2e2λ −m2e−6λ(cosh2 φ0 + sinh2 φ0 cosh(2φ3)) + 4mge−2λ coshφ0 coshφ3 . (2.6)

3Setting to zero the two scalars φ1 and φ2, charged under the remaining A3
µ of the original SU(2),

is strictly speaking a further truncation that we are allowed to perform only at the level of the bosonic
equations of motion. We will see during the reduction that this has its precise correspondence to the result-
ing four-dimensional supergravity model where the two charged scalars in the hypermultiplet, standardly
denoted by ζ and ζ̃, have been also set to zero in a consistent way.
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The potential admits an AdS6 background for g = 3m, as the pure F(4) gauged supergrav-
ity [17–19]. For later convenience we also define the following linear combinations of the
vector fields

A1,2
µ ≡ A3

µ ±A4
µ ⇒ A3,4 = 1

2(A1
µ ±A2

µ) ,

A0
µ ≡ A0

µ .
(2.7)

We believe that this theory as presented above is a consistent truncation of massive
type IIA supergravity on the warped background AdS6 × S4. Ample evidence for this was
presented in [1]: on one hand the six-dimensional AdS4×Σg solutions were shown to exactly
agree with the direct ten-dimensional solutions of [16]; on the other hand the corresponding
on-shell action and/or macroscopic entropy of different supersymmetric asymptotically
AdS6 solutions were successfully matched to the appropriate partition functions of the
five-dimensional Seiberg theory computed in [37] and [38]. Additionally, [39] showed that
this theory arises as a consistent truncation from type IIB supergravity on a general class
of manifolds, including the abelian T-dual of the type IIA background in question.

2.2 The truncation ansatz

We now turn to construct the consistent bosonic truncation of the 6d F(4) gauged super-
gravity coupled to a single vector multiplet on a smooth Riemann surface of genus g, down
to 4d N = 2 gauged supergravity. The ansätze for the reduction of the various bosonic
fields are quite natural and follow similar consistent reductions on Riemann surfaces in
other settings, see for example [40, 41].

We choose the truncation ansatz for the metric such that we preserve four-dimensional
Einstein frame,

ds2
6 = e−2Cds2

4 − e2Cds2
Σg
, (2.8)

where C is the additional Kaluza-Klein (KK) scalar. We choose a constant curvature metric
on the Riemann surface4

ds2
Σg

= e2h(x,y)(dx2 + dy2) , with e2h(x,y) =
{ 4

(1+x2+y2)2 , for S2

1
y2 , for H2 . (2.9)

In our convention, we have RΣg = 2κ with κ = +1 for S2 and κ = −1 for H2. The
coordinates (x, y) take values in R2 for S2 and in R × R>0 for H2. In the latter case the
upper half-plane is quotiented by a suitable Fuchsian subgroup Γ ⊂ PSL(2,R) to obtain a
compact Riemann surface Σg>1. The volume form integrates to

vol(Σg) =
∫

volΣg =
∫
e2h(x,y)dx ∧ dy = 4π|g− 1| . (2.10)

The scalars are reduced in a straightforward fashion,

λ6d = λ4d , φ0,6d = φ0,4d , φ3,6d = φ3,4d . (2.11)
4We omit the more detailed discussion of the torus, g = 1, as it requires a slightly more careful treatment

of quantities such as (1− g) and κ. It is however clear that the toroidal case does not present a conceptual
problem and can easily be incorporated in the analysis, see e.g. [1]. We leave this as a simple exercise to
the interested reader.
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The gauge fields and the corresponding field strengths are reduced as follows

Ai6d = 2Ai4d + 2κsiωΣ , F i6d = 2F i4d + 2sivolΣg , i = 1, 2 , (2.12)

with ωΣg being the spin-connection on the Riemann surface. Supersymmetry further dic-
tates that [1]

s1 + s2 = − κ

3m . (2.13)

The vector field A0 is reduced as

A0
6d = 2Ã0,4d , F 0

6d = 2G0,4d . (2.14)

Note that in (2.14) we have intentionally lowered the index of the four-dimensional fields
and have used different letters to denote them, anticipating the major complication of the
resulting non-standard duality frame for the reduced gauge field. We explain how this
comes about carefully in the next section.

Finally, we reduce the antisymmetric tensor field as

B6d = −2B4d + 2b4d volΣg , H6d = −2H4d + 2
3db4d ∧ volΣg . (2.15)

2.3 Effective 4d theory

Using the above ansatz for the reduction, we can write out everything in terms of the
four-dimensional fields and explicitly perform the integrals in the action over the Riemann
surface coordinates. Dropping for clarity the superfluous index specifying that the fields
are now in four dimensions, we arrive at

Seff
4d = 1

G4d
N

∫
d4x
√
−gLeff4d ,

1
G4d

N
= vol(Σg)

G6d
N

, (2.16)

Leff4d =−1
4R+(∂µλ)2 + 1

4 cosh2φ3(∂µφ0)2 + 1
4(∂µφ3)2 +(∂µC)2

− 1
8 e

2C−2λ
[
4(cosh2φ0 +cosh(2φ3)sinh2φ0)(Ĝ0,µν)2 +cosh(2φ3)(F 1

µν +F 2
µν)2

+(cosh2φ0 cosh(2φ3)+sinh2φ0)(F 1
µν−F 2

µν)2−2coshφ0 sinh(2φ3)((F 1
µν)2−(F 2

µν)2)

+4sinhφ0 sinh(2φ3)Ĝµν0 (F 1
µν +F 2

µν)−4sinh(2φ0)cosh2φ3Ĝ
µν
0 (F 1

µν−F 2
µν)
]

+ 1
8 ε

µνρσBµν
(
s2F 1

ρσ+s1F 2
ρσ

)
− b8ε

µνρσ
(
Ĝ0,µνĜ0,ρσ+F 1

µνF
2
ρσ

)
+ 3

16 e
4(λ+C)(Hµνρ)2 + 1

32e
4(λ−C)(∂µb)2 +V eff

4d (C,λ,φ0,φ3) , (2.17)
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with Ĝ0 = G0 +mB , and the scalar potential

V eff
4d = κ

2 e
−4C +m2e−2C

[
9e2λ−e−6λ(cosh2φ0 +sinh2φ0 cosh(2φ3))

+12e−2λ coshφ0 coshφ3
]
− e
−2λ−6C

4

[cosh(2φ3)
4 (s1 +s2)2

+ cosh2φ0 cosh(2φ3)+sinh2φ0
4 (s1−s2)2− coshφ0 sinh(2φ3)

2 ((s1)2−(s2)2)
]

−m4 e−2λ−6C
[
mb2(cosh2φ0 +cosh(2φ3)sinh2φ0)

−bsinhφ0 sinh(2φ3)(s1 +s2)+bsinh(2φ0)cosh2φ3 (s1−s2)
]
.

(2.18)

3 4d N = 2 supergravity structure

3.1 The duality frame conundrum

Having in mind the form of the reduced Lagrangian (2.17), it is at first sight rather mys-
terious how to fit it in a standard 4d N = 2 supergravity language. The resolution comes
by realizing that the gauge fields coming from 6d might be either electric or magnetic from
the 4d point of view. In fact they turn out to be mixed, such that we can either choose Ã0
to be magnetic and A1,2 electric, or the exact opposite arrangement. For convenience we
choose the former option (as anticipated in the choice of index position), such that in the
duality frame we present the final Lagrangian we have purely electric gaugings for both
isometries that are gauged.

Let us for the moment keep full symplectic covariance of the Lagrangian with a number
of electric (index U, V ) and magnetic (index I, J) mutually exclusive field strengths, and we
allow for general magnetic gaugings as prescribed by [27] that introduced the embedding
tensor formalism. In particular, let us first consider only the vector-tensor part of the
Lagrangian to illustrate more concisely our main point:5

LV-T = 1
2
[
ÎIJ ĜµνI ĜµνJ + ÎUV F̂µνU F̂µνV + 2 ÎIU ĜµνI F̂µνU

]
+ 1

4ε
µνρσ

[
R̂IJ ĜµνI ĜρσJ + R̂UV F̂µνU F̂ρσV + 2 R̂IU ĜµνI F̂ρσU

]
− 1

8 ε
µνρσ ΘUαBµν α

(
∂ρÃσ U −

1
8ΘU

βBρσ β

)
+ 1

8 ε
µνρσ ΘI

αBµν α

(
∂ρA

I
σ −

1
8ΘIβBρσ β

)
,

(3.1)

where

ĜI,µν := ∂[µÃI,ν] −
1
4 ΘI

αBα,µν , F̂Uµν := ∂[µA
U
ν] + 1

4 ΘUαBα,µν , (3.2)

5Note that we follow the conventions imposed to us from the starting six-dimensional theory [18]. In
particular this means we have the less often used Fµν = 1

2 (∂µAν − ∂νAµ) and subsequently need to adapt
the four-dimensional theory of [27] in the same conventions.
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and the matrices Î and R̂ can be produced by symplectically rotating the imaginary and
real parts of the standard period matrix, which we will denote as (unhatted) I and R. We
show explicitly how to perform this symplectic rotation in the next subsection.

The embedding tensor Θ obeys a number of identities that render the theory consistent.
In particular, notice that we have in principle used all electric and all magnetic gauge fields
in the above Lagrangian, the electric AU corresponding to the electric field strength FU and
their magnetic duals ÃU , together with the electric ÃI corresponding to the magnetic GI ,
and their corresponding magnetic duals AI .6 The embedding tensor identities guarantee
that exactly half of the gauge fields carry the fundamental degrees of freedom. It is also
evident that the tensor fields appear in the definition of the composite F̂ or Ĝ whenever
there is a magnetic gauging from the point of view of the field strength in question, and
the corresponding magnetic gauge field enters in the Chern-Simons terms with the tensors.

The abstract form of the action might easily lead to various confusions about electro-
magnetic duality, so we prefer to directly discuss the example of interest to us. We only
consider a single tensor field, thus allowing us to erase the index α altogether, and look at
a case with a total of three vectors such that the first one (index I = 0) is magnetic and
the other two electric (U = 1, 2). We further choose (anticipating the match we will make
with the reduced 6d theory) the nonvanishing components of the embedding tensor to be

Θ0 = −4m, Θ1 = s2 , Θ2 = s1 . (3.3)

From the standard point of view this just corresponds to a purely electric gauging, and
the theory can very easily and efficiently be written in the conventions of [42]. However, in
the duality frame we are forced to work from the 6d reduction, the first component above
specifies a magnetic gauging from the point of view of the magnetic field strength G0. We
therefore have

Ĝ0 = G0 +mB , F̂ 1,2 = F 1,2 , (3.4)

and the resulting vector-tensor interaction term reads

LV-T 3 −
m

2 ε
µνρσBµν∂ρA

0
σ . (3.5)

This is however not the final form of the Lagrangian that is ready for a comparison with
the 6d reduction. Notice in particular the appearance of the gauge field A0, which does
not come out of the 6d reduction ansatz. In order to get to the correct duality frame we
need to integrate it out using its equation of motion, but only after we have included the
correct coupling to the UHM.

6We apologize to the perplexed reader, but unfortunately in the mixed duality frame the terminology
can often lead to confusion. This is because from the point of view of the magnetic field strengths GI we
can still have magnetic gauging that in the standard duality frame with purely electric field strengths is
electric. We chose to write the non-standard nomenclature in italics, to emphasize that this is the opposite
of what one sees in the standard purely electric frame.
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To do this, let us briefly look at the UHM, which is a realization of the coset space
SU(2, 1)/U(2). The metric, written in terms of real coordinates {φ, σ, ζ, ζ̃}, is given by

huv =


1 0 0 0
0 1

4e
4φ −1

8e
4φζ̃ 1

8e
4φζ

0 −1
8e

4φζ̃ 1
4e

2φ(1 + 1
4e

2φζ̃2) − 1
16e

4φζζ̃

0 1
8e

4φζ − 1
16e

4φζζ̃ 1
4e

2φ(1 + 1
4e

2φζ2)

 . (3.6)

The isometry group SU(2, 1) has eight generators; two of these are used for gauging in the
model we derive here, generating the group R × U(1). The corresponding Killing vectors
read

kR = ∂σ , kU(1) = −ζ̃∂ζ + ζ∂ζ̃ . (3.7)

These two isometries are gauged by a particular linear combination of the vector fields in
the theory. We define Killing vectors with a symplectic index corresponding to each of the
full set of electric and magnetic gauge fields at our disposal. The moment maps associated
to these two Killing vectors are given by

PR =
(
0, 0, −1

2e
2φ
)
, PU(1) =

(
ζ̃eφ, −ζeφ, 1− 1

4(ζ2 + ζ̃2)e2φ
)
. (3.8)

In the explicit reduction from 6d we have only kept half of the hypermultiplet scalars,
which amounts to the further consistent truncation

ζ = ζ̃ = 0 . (3.9)

This means the hypermultiplet metric takes the simple diagonal form

huv =
(

1 0
0 1

4 e
4φ

)
, (3.10)

and the Killing vectors associated with the U(1) isometry completely vanish. There is
however a residual trace of the U(1) gauging in the form of the moment maps

PU(1) = (0, 0, 1) . (3.11)

These moment maps show up in the expression for the scalar potential and therefore we
will be able to infer their existence even in the truncation ζ = ζ̃ = 0. Coming back to the
remaining part of the hypermultiplet, the embedding tensor (3.3) uniquely determines how
the scalars φ and σ are coupled to the gauge fields in the Lagrangian as it specifies the
correct linear combination of gauge fields used for gauging the non-compact isometry,7

kR =
{

0;−4m, s2, s1
}
, (3.12)

7Note that strictly speaking we should have already specified that the components of the embedding
tensor in (3.3) are only corresponding to the non-compact isometry. The compact isometry defines its own
embedding tensor components that we have so far suppressed as they do not lead to extra terms in the
Lagrangian. We instead specify the resulting moment maps explicitly when discussing the scalar potential.
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such that the hypermultiplet scalar kinetic terms are given by

LH = 1
2 huv∇µq

u∇µqu = 1
2 (∂µφ)2 + 1

8 e
4φ
(
∂µσ − (4mA0

µ − s2A1
µ − s1A2

µ)
)2

. (3.13)

Now we can put together all terms in the Lagrangian featuring the gauge field A0, which
in the model we consider is the only one that has no kinetic term (as opposed to the gauge
fields Ã0, A

1,2 that make up the field strengths G0, F
1,2),

LA0 = −m2 εµνρσBµν ∂ρA
0
σ + 1

8 e
4φ
(
∂µσ − (4mA0

µ − s2A1
µ − s1A2

µ)
)2

. (3.14)

The equation of motion for A0 therefore fixes
1
2 εµ

νρσ ∂νBρσ = e4φ∇µσ , (3.15)

giving a duality relation between the, so far, auxiliary tensor field B and the covariant
derivative of the hyperscalar σ, as noticed in [43]. This means that upon integrating out
A0, we generate a kinetic term for the tensor field B and new Chern-Simons couplings
between the tensor and the electric gauge fields A1,2 at the expense of the scalar σ that
disappears,

LA0 = 3 e−4φ

16 HµνρH
µνρ + 1

8 ε
µνρσBµν

(
s2∂ρA

1
σ + s1∂ρA

2
σ

)
, (3.16)

where
Hµνρ = ∂[µBνρ] = 1

3 (∂µBνρ − ∂νBµρ + ∂ρBµν) . (3.17)

If we now put all components of the 4d supergravity Lagrangian together, we arrive at a
rather unusual duality frame which more closely resembles the earlier constructions of [28–
30],

L4d = −1
4R+ 1

2gij̄ ∂µz
i∂µz̄j̄ + 1

2 (∂µφ)2 + 3 e−4φ

16 HµνρH
µνρ

+ 1
2
(
Î00 Ĝ0,µν Ĝ

µν
0 + ÎUV FµνU FµνV + 2 Î0

U Ĝ0,µν F
µνU

)
+ 1

4 ε
µνρσ

(
R̂00 Ĝ0,µν Ĝ0,ρσ + R̂UV FµνU FρσV + 2R̂0

U Ĝ0,µν Fρσ
U
)

+ 1
8 ε

µνρσBµν
(
s2F 1

ρσ + s1F 2
ρσ

)
+ 1

2 V (φ, z, z̄) ,

(3.18)

where U, V = {1, 2}, and the scalar potential still has the standard form,

V = 4LΛL̄Σhuv k
u
Λ k

v
Σ + ~PΛ · ~PΣ

(
gīfi

Λf̄̄
Σ − 3LΛL̄Σ

)
, (3.19)

with Λ,Σ = {0, 1, 2}, due to the purely electric gauging.
This unusual duality frame can then be fully dualized back to the standard frame upon

dualizing the tensor to a scalar and G0 to F 0, which we perform next in order to keep the
gauge kinetic matrices in a simple form for presentation purposes. We pause here to note
that the form of (3.18) is precisely the one we arrive at from the straightforward reduction
ansatz we assumed in 6d. Notice that due to the truncation ζ = ζ̃ = 0, we still have
not fully fixed the Lagrangian as we have the freedom of adding arbitrary moment maps
PU(1) as explained above. They will be fixed in due course by matching the explicit scalar
potential we find from the reduction with the general form in the above formula.
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3.2 Final dualization and scalar mapping

Let us now perform a Legendre transformation to trade Ĝ0 for its electric counterpart F̂ 0.
We shall extremize

Leff, e4d ≡ Leff, em4d + 1
2ε

µνρσF̂ 0
µνĜ0,ρσ , (3.20)

with respect to Ĝ0,µν ,
∂Leff, em4d
∂Ĝ0,µν

+ 1
2ε

µνρσF̂ 0
ρσ = 0 , (3.21)

and evaluate (3.20) at its critical point. We find the standard N = 2 gauged supergravity
Lagrangian with two vector multiplets and a dualized hypermultiplet (also known as a
tensor-scalar multiplet),

L4d = −1
4R+ 1

2gij̄ ∂µz
i∂µz̄j̄ + 1

2 (∂µφ)2 + 1
2 IΛΣF̂

Λ
µνF̂

µνΣ + 1
4ε

µνρσRΛΣF̂
Λ
µνF̂

Σ
ρσ

+ 3 e−4φ

16 HµνρH
µνρ + 1

8 ε
µνρσBµν

(
s2F 1

ρσ + s1F 2
ρσ

)
+ 1

2 V (φ, z, z̄) ,
(3.22)

where the scalar potential V is given by

V = 4LΛL̄Σhuv k
u
Λ k

v
Σ + ~PΛ · ~PΣ

(
gīfi

Λf̄̄
Σ − 3LΛL̄Σ

)
. (3.23)

Introducing the homogenous coordinates XΛ = (1, zi), i = 1, 2, our model is uniquely
specified by the prepotential

F (XΛ) = −iX0
√
X1X2 , (3.24)

and the quaternionic Killing vector and moment maps

kR =
{

0;−4m, s2, s1
}
,

P 1 = P 2 = 0 , P 3 =
{

0; 2me2φ, 3m− s2

2 e
2φ, 3m− s1

2 e
2φ
}
.

(3.25)

The vector multiplet scalar moduli space is a special Kähler manifold defined by the pre-
potential (3.24), and corresponds to the coset space [SU(1, 1)/U(1)]2. A convenient param-
eterization of the complex scalars is

z1 ≡ X1

X0 = e2χ1+χ2 , z2 ≡ X2

X0 = e2χ1−χ2 . (3.26)

We also define the symplectic covariant section

V = {LΛ;MΛ} ≡ eK/2{XΛ;FΛ} , FΛ ≡
∂F (XΛ)
∂XΛ , (3.27)

from which we can construct

fΛ
i ≡ eK/2(∂i + ∂iK)XΛ , hΛ|i ≡ eK/2(∂i + ∂iK)FΛ . (3.28)
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Here, K is the Kähler potential and reads

e−K = i
(
X

Λ
FΛ −XΛFΛ

)
=
(
e2χ1 + e2χ̄1

)
(1 + cosh(χ2 − χ̄2)) . (3.29)

The Kähler metric is then given by

gij̄ = ∂i∂j̄K(χ, χ̄) =
(

sech2(χ1 − χ̄1) 0
0 1

1+cosh(χ2−χ̄2)

)
. (3.30)

The period matrix reads

NΛΣ = RΛΣ + iIΛΣ = FΛΣ + 2i ImFΛ∆ ImFΣΘX
∆XΘ

ImF∆ΘX∆XΘ . (3.31)

We need the explicit values of fΛ
i to write down the scalar potential. Using (3.28) we

obtain

f0
1 = − 2

√
2e

1
2 (4χ1+χ2+χ̄2)

(e2χ1 + e2χ̄1)3/2 (eχ2 + eχ̄2)
, f0

2 =
√

2e
1
2 (χ2+χ̄2) (eχ̄2 − eχ2

)
√
e2χ1 + e2χ̄1 (eχ2 + eχ̄2)2 ,

f1
1 = 2

√
2e

1
2 (4χ1+3χ2+4χ̄1+χ̄2)

(e2χ1 + e2χ̄1)3/2 (eχ2 + eχ̄2)
, f1

2 = 2
√

2e
3
2 (χ2+χ̄2)+2χ1

√
e2χ1 + e2χ̄1 (eχ2 + eχ̄2)2 ,

f2
1 = 2

√
2e

1
2 (4χ1−χ2+4χ̄1+χ̄2)

(e2χ1 + e2χ̄1)3/2 (eχ2 + eχ̄2)
, f2

2 = − 2
√

2e
1
2 (4χ1+χ2+χ̄2)

√
e2χ1 + e2χ̄1 (eχ2 + eχ̄2)2 .

(3.32)

We have checked that these quantities satisfy the following special geometry identities

LΛIΛΣL̄
Σ = −1

2 , LΛIΛΣf̄
Σ
i = 0 ,

fΛ
i IΛΣL̄

Σ = 0 , fΛ
i IΛΣf̄

Σ
j̄ = −1

2gij̄ ,

fΛ
i gij̄f

Σ
j̄ = −1

2I
ΛΣ − L̄ΛLΣ .

(3.33)

Finally, upon using the field redefinitions

χ1 = −1
2 log

(
e2(C−λ) − i

2b
)
, φ = −(C + λ) ,

χ2 = log
( 1

coshφ0 coshφ3 − sinhφ3
− i sinhφ0

coshφ0 − tanhφ3

)
,

(3.34)

one finds the Lagrangian (3.22) precisely matches the 4d effective one (2.17). We have
explicitly checked this by first transforming the explicit gauge kinetic matrices appearing
in (2.17) evaluating Ĝ0 in terms of F̂ 0, and then matching these terms with the canonical
expressions (3.31) following from the parametrization (3.26).

4 Consistent subtruncations in 4d

Having obtained the canonical N = 2 form of the reduced Lagrangian, we note that due to
the gauging of the non-compact isometry we will always find one massive tensor multiplet
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(or massive vector multiplet in the standard duality frame) at the AdS4 vacuum of the
theory. This follows from the supersymmetry-preserving (i.e. BPS) Stuckelberg (or Higgs)
mechanism, leaving us with a single massless vector multiplet. As discussed in [44, 45]
in the context of black hole near-horizon geometries, on the backgrounds that exhibit the
BPS Higgs mechanism one can further describe the massless degrees of freedom using an
effective prepotential. The effective prepotential is derived directly by imposing the BPS
condition that kRΛXΛ and kRΛAΛ need to vanish, such that the remaining scalar manifold is
described by

Feff = − i
4m

(
s2X1 + s1X2

)√
X1X2 . (4.1)

One might however wonder if we can consistently truncate the massive modes and obtain
a new supergravity theory, which means the massive modes would be integrated out at
the level of the theory and not just decoupled on a given background. From the analysis
of [31, 46] this can be achieved by imposing the maximally supersymmetric constraints
on the massive modes only, while keeping free the remaining massless modes. This is in
general not possible and is achieved only in special cases.

Following [31] and [47], let us sketch the main constraints that ensure a consistent
truncation can be achieved. We start from the theory in the standard duality frame with
electric gaugings. The massive vector is integrated out using the hyperino variation condi-
tion ∇µσ = 0 leading to the following integrability constraint,

kRΛA
Λ
µ = 0 ⇒ kRΛF

Λ
µν = 0 , (4.2)

while the massive scalar in the vector multiplet is integrated out via

kRΛX
Λ = 0 , (4.3)

again following from the hyperino variation. Let us denote the massive complex scalar that
is fixed to a constant from the above equation as τ . The last constraint is that the gaugino
variation that corresponds to the scalar τ vanishes identically, which translates into

gτ j̄ f̄Λ
j̄ IΛΣF

Σ
µν = 0 , P xΛf

Λ
τ = 0 , ∀x ∈ {1, 2, 3} , (4.4)

with the second equation fixing uniquely the values of the remaining hypermultiplet scalars
(apart from the free Goldstone boson, in this case σ, which is eaten by the massive vector).
These two equations are non-trivial as they involve in general the full set of scalars and
vectors and, depending on the model, might only be satisfied on a specific background. The
truncation is therefore only fully consistent at the level of the theory when the last equations
are identically solved for arbitrarily values of the remaining massless scalars and vectors.
This means that apart from the constraints (4.2) and (4.3), the remaining complex scalars
and vectors should be kept arbitrary in (4.4). Instead, in case we want to truncate all
the matter and keep only the gravity multiplet, we should impose (4.4) for all the complex
scalars. This will leave us with a single free gauge field (the graviphoton) and no free scalars.

If we perform these steps on the model we have identified in the previous section, we
find two different consistent truncations that we describe in more detail below.

– 15 –



J
H
E
P
0
2
(
2
0
2
1
)
1
7
7

For completeness let us also sketch the same truncation as seen in the duality frame
including the two-form field B and its field strength H. Combining the condition ∇µσ = 0
and the relation between the two frames found in (3.15) we arrive at

Hµνρ = 0 , (4.5)

such that the equation of motion for B following from (3.18) becomes purely algebraic,

Î00 Ĝ0,µν + Î0
U F

U
µν + 1

8m εµν
ρσ
(
s2F 1

ρσ + s1F 2
ρσ

)
+1

2 εµν
ρσ
(
R̂00 Ĝ0,ρσ + R̂0

U Fρσ
U
)

= 0 .
(4.6)

The remaining conditions spelled out above for the vectors and scalars remain the same, and
we are then able to uniquely fix the two-form B from the equation above. This procedure
is equivalent to the one followed in 6d for fixing the two-form on BPS configurations [1,
24, 25].8

4.1 T 3 model

One of the subtruncations that are possible starting from the general 4d theory we obtained
is the so-called gauged T 3 model. It corresponds to a single vector multiplet with the scalar
manifold SU(1, 1)/U(1) and constant FI gauging in the lack of hypermultiplets. The same
model comes out as a consistent subtruncation of the gauged STU model that can be
embedded in maximal 4d N = 8 supergravity arising as a reduction of 11d supergravity
on S7 [48, 49].

In our case the T 3 model is obtained by setting9

κ = −1 , s1 = 1
3m , s2 = 0 , (4.7)

and the hyperscalar φ to its AdS4 value

φ̊ = 1
2 log(12m2) . (4.8)

Furthermore, the supersymmetry preserving Higgs mechanism imposes

kΛX
Λ = 0 ⇒ X0 = 1

12m2X
2 (3.26)====⇒ χ2 = 2(χ1 − φ̊) , (4.9)

and thus we see that the massive complex scalar fixed to a constant (denoted as τ in the
general discussion above) corresponds here to

τ = 2χ1 − χ2 , ⇒ τ̊ = φ̊ = 1
2 log(12m2) , (4.10)

8The form of (4.6) involving in general both B and ∗B in form notation does not allow us to write down
a closed formula for B itself. One can immediately compare for example that [1, eq. (5.3)] agrees with (4.6)
in the case of vanishing axions considered there.

9There is an obvious symmetry in our model under the exchange of indices 1 and 2, so we just pick one
case without loss of generality.
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which allows us to verify successfully that (4.4) is satisfied identically without additional
constraints.

Using the constraint between the sections above, we can derive the effective prepoten-
tial of the reduced model parametrized by two of the original three sections,

FT 3(XI) = − i
12m2

√
X1(X2)3 , I = 1, 2 . (4.11)

We therefore need to effectively reduce all the symplectic vectors defining the model using
the truncation rules above. This leads to identically vanishing Killing vectors and to a
reduced form of the moment maps, which now have the meaning of constant FI terms after
the hyperscalars have been truncated out,

P 3 ≡ G = {0, 0; 3m, 3m} . (4.12)

Finally, after rescaling the field strengths as

F 0 = 1
12m2F

2 = F̃ 2 , F 1 = F̃ 1 , (4.13)

we can bring (3.22) into the standard N = 2 Lagrangian of the T 3 model,

LT 3 = −1
4R + 3

2 sech2(χ1 − χ̄1)dχ1dχ̄1 −
18m2

(
48m4 + e2(χ1+χ̄1)

)
e2χ1 + e2χ̄1

+ 1
2 IIJ F̃

I
µνF̃

µνJ + 1
4ε

µνρσRIJ F̃ IµνF̃ Jρσ .
(4.14)

with the FI gauging (4.12) and the following special geometry data. The Kähler potential,
up to Kähler transformations, reads

e−K = 4eχ1+χ̄1 cosh3(χ1 − χ̄1) , (4.15)

where we used
X2

X1 = (12m2)2 e−4χ1 , (4.16)

to parametrize the same scalar χ1 that we encountered in the bigger model. The Kähler
metric is then given by

g11̄ = 3 sech2(χ1 − χ̄1) . (4.17)

The scalar potential has the standard form

VT 3(χ1, χ̄1) = gIgJ
(
g11̄f I1 f̄

J
1̄ − 3L̄ILJ

)
, (4.18)

with

f1
1 = −6m2e−

1
2 (χ1+χ̄1)(3 tanh(χ1 − χ̄1) + 1)

cosh
3
2 (χ1 − χ̄1)

,

f2
1 = e

1
2 (5χ1+χ̄1)

8m2 cosh
5
2 (χ1 − χ̄1)

.

(4.19)
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We have thus found a string theory embedding for the 4d gauged T 3 model in type
IIA/IIB via the passage through 6d F(4) supergravity on Σg. As mentioned in the begin-
ning of this subsection, the same T 3 model can be embedded in 11d supergravity on S7

and therefore one can find numerous results in the literature concerning supersymmetric
solutions [50–57] and even thermal black holes in this theory [58–60]. We are then free to
take these results and interpret them now also in the type IIA/IIB setting. We give a few
examples of this when discussing rotating black holes in section 6.3.

4.2 Minimal gauged supergravity

Notice that in the above truncation we specified from the beginning the value of the a
priori free parameters s1,2. If we want to find a subtruncation while still allowing for an
arbitrary κ and s1,2 it turns out we cannot keep any of the additional matter multiplets.
The reason is that (4.4) can only be solved by fixing all scalars to their AdS4 values if we
do not commit to (4.7),

χ̊1 = 1
4 log

(
96m3

m (9(s1 − s2)2 + 12s1s2)− κ
√

9(s1 − s2)2 + 4s1s2

)
,

χ̊2 = 1
2 log

(
2s1√

9(s1 − s2)2 + 4s1s2 + 3(s1 − s2)

)
,

φ̊ = 1
2 log

(
24m2

−κ+m
√

9(s1 − s2)2 + 4s1s2

)
,

(4.20)

where we have assumed that s1 is never vanishing. It is well known that any matter-coupled
supergravity admits a consistent truncation to minimal gauged supergravity, and in our
case this is achieved by further identifying

F 0 = e−χ̊1 F̃ , F 1 = eχ̊1+χ̊2 F̃ , F 2 = eχ̊1−χ̊2 F̃ . (4.21)

The relation between F 0, F 1 and F 2 above is fixed uniquely by supersymmetry since the
gaugino variations require the combinations fΛ

i IΛΣF
Σ to vanish. The overall normalization

concerning the rescaled field strength F̃ was chosen such that one can derive the truncated
theory from the prepotential

Fmin = −iX̃2 . (4.22)

The corresponding Lagrangian describes only the gravity multiplet of N = 2 supergravity
and its bosonic part is equivalent to Einstein-Maxwell theory with a cosmological constant,

Lmin = −1
4R − F̃µνF̃

µν + 1
2 Vmin . (4.23)

The scalar potential is given by

Vmin = − 3
L2
AdS4

= −2(6m)4

√
2κ
(
κ−
√
κ2 + 8z2

)
+ 4z2(√

κ2 + 8z2 − 3κ
)2 , (4.24)
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such that the gauge coupling constant entering the standard gauged supergravity formula-
tion is given by g = 2L−1

AdS4
. Here, the variable z parametrizes the fluxes

s1 = − κ

6m

(
1 + z

κ

)
, s2 = − κ

6m

(
1− z

κ

)
. (4.25)

Let us emphasize that in the above truncation we only kept the graviphoton, which is
considered dual to the U(1) R-current, and the solutions of this theory can be embedded
into string or M-theory in various ways, see [61, 62]. However, in contrast with the universal
solutions presented in [33, section 4.2], our more general backgrounds depend on the twist
parameter z for the U(1) ⊂ SU(2)M flavor symmetry. Setting κ = −1 and z = 0 we find,
upon uplift to minimal 6d F(4) supergravity, the AdS4 × Σg>1 vacuum of [20]. The scalar
potential in this case reads

Vmin
∣∣∣
κ=−1, z=0

= −4(3m)4 . (4.26)

5 Universal AdS4 solutions

We are now in a position to discuss some interesting solutions of the 4d theory we have
found. We can first focus on the simplest case of the subtruncation to minimal supergravity.
In this case a multitude of asymptotically AdS4 solutions are already known, see [63–65] and
many consequent references. More recently, a simple organizing principle was put forward
in [66] for all supersymmetric asymptotically AdS4 solutions in terms of fixed points (NUTs)
or fixed two-manifolds (Bolts) of the isometry arising from the Killing spinor on the given
background. This allows us to write down a general expression for the holographically
renormalized on-shell action of all supersymmetric solutions. We refer the reader for more
details to [66], while here we can make a simple example to illustrate the idea. For a
solution with a number of fixed points, the resulting on-shell action reads

I =
πL2

AdS4

2G4d
N

∑
NUTs

(ε+ 1)2

4ε , (5.1)

where L2
AdS4

is given in (4.24), and at each isolated fixed point one encounters an omega
deformation parameter ±ε. In general, such solutions correspond to Euclidean AdS4 ge-
ometries with squashed S3 boundary, or to rotating black holes in AdS4. Holographically
they relate to the squashed S3 free energy or superconformal indices of the dual field theo-
ries. Below we discuss in some more detail the free energy of the dual SCFTs on a sphere,
while we devote the next sections to the black hole cases, which we present not only in
the minimal subtruncation but in the more general matter-coupled 4d theory. We do not
discuss at further length the Bolt solutions, but we note that all supergravity results in [67]
can be applied to our case and there is an analogous formula that generalizes (5.1) to in-
clude the Bolts. It would be interesting to further generalize all such minimal supergravity
solutions to the full matter-coupled model we found above.

Let us for the sake of clarity stress again that the results in 4d minimal supergravity
should not be considered as equivalent to those in minimal 6d F(4) supergravity since the
4d theory incorporates the effect of the additional U(1) gauge field for the SU(2)M flavor
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symmetry. In practice, this for example means that our result for the S3 free energy of the
class F theories is more general than the answer coming from the universal flow from 6d
in [33], owing to the additional parameter z.

5.1 The S3 free energy

The AdS4 vacuum described in section 4.2 can be uplifted to 10d massive type IIA and IIB
supergravities. The complete spacetime can be thought of as interpolating between AdS6×
M4 and AdS4×Σg×M4 vacua, leading to a natural holographic interpretation as a renor-
malization group (RG) flow across dimensions: we have a flow from the 5d N = 1 SCFT
compactified on Σg to a 3d SCFT. In general, we have a family of such 3d SCFTs labeled
by a set of magnetic fluxes, parameterizing the twist, that we call class F theories. The free
energy of class F theories on S3 can be computed directly using (4.24), or alternatively from
the general squashed sphere free energy with a single fixed point in (5.1) in the ε→ 1 limit
(no squashing). Setting m = 1

2 such that in the parent theory we find (LAdS6 = 1), we find

FS3 =
πL2

AdS4

2G4d
N

= −1
9 |1− g|FS5

(√
κ2 + 8z2 − 3κ

)2√
2κ
(
κ−
√
κ2 + 8z2

)
+ 4z2

, (5.2)

where we used the standard AdS6/CFT5 dictionary,

1
G6d

N
= − 3

π2FS5
(2.10)====⇒ 1

G4d
N

= vol(Σg)
G6d

N
= −12|1− g|

π
FS5 . (5.3)

Here, FS5 is the free energy of the parent N = 1 SCFTs on S5.
For Seiberg USp(2N) gauge theories with Nf fundamental flavors and an antisymmet-

ric matter field, arising on the worldvolume of D4-branes near D8-branes and O8-planes [3],
the S5 free energy was computed in [68] and it is give by

F Seiberg
S5 = −9

√
2π

5
N5/2
√

8−Nf
. (5.4)

The S3 free energy of this category of class F theories can then be explicitly written as

F Seiberg
S3 =

√
2π|1− g|

5
N5/2
√

8−Nf

(√
κ2 + 8z2 − 3κ

)2√
2κ
(
κ−
√
κ2 + 8z2

)
+ 4z2

, (5.5)

in complete agreement with the free energy derived directly in 10d massive type IIA su-
pergravity [16, eq. (1.1)] and the field theory computations of [37, 38].

A larger class of 5d SCFTs can be engineered using (p, q) 5-branes in type IIB super-
gravity, among them TN and #M,N theories. The TN theories are realized on an intersection
of N D5-branes, N NS5-branes and N (1, 1) 5-branes [69]. Interestingly, upon a circle re-
duction they become the 4d TN theories of [70]. The #M,N theories are realized on the
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intersection of N D5-branes with M NS5-branes [8]. The free energy of this class of field
theories on S5 was computed in [71, 72] and they read

F TNS5 = −27ζ(3)
8π2 N4 , F

#M,N

S5 = −189ζ(3)
16π2 N2M2 . (5.6)

The S3 free energy of the corresponding class F theories can thus be written as

F TNS3 = 3ζ(3)|1− g|
8π2 N4

(√
κ2 + 8z2 − 3κ

)2√
2κ
(
κ−
√
κ2 + 8z2

)
+ 4z2

,

F
#M,N

S3 = 21ζ(3)|1− g|
16π2 N2M2

(√
κ2 + 8z2 − 3κ

)2√
2κ
(
κ−
√
κ2 + 8z2

)
+ 4z2

.

(5.7)

It would be interesting to derive (5.7) by taking the large N limit of the S3 ×Σg partition
function of TN and #M,N theories. This can be done along the lines of [72].

It is clear that we can analogously derive the same type of holographic predictions
for squashed spheres [73, 74] and other supersymmetric solutions using the general for-
mula (5.1) and its generalization with Bolts. The same considerations can also lead us to
the supersymmetric Rényi entropy of the class F theories [75–77].

6 Black hole solutions

In this section we write down supersymmetric black hole solutions of the 4d F(4) gauged
supergravity. We find some genuinely new static dyonic black holes to the general 4d model
with hypermultiplet gaugings derived above, generalizing the purely magnetic ones found
directly in 6d in [1, 25]. We also write down rotating black holes with and without a twist
in the T 3 subtruncation with FI gauging. Even though the solutions of the T 3 model are
not new, our reduction provides a novel embedding in string theory. This in turn leads to
new holographic predictions as we discuss in the next section.

All the BPS solutions we discuss here are derived by solving the first order integrability
conditions following from the existence of Killing spinors generating a timelike isometry,
derived in detail in [78–80] in a duality frame with purely electric gauging. These conditions
were further simplified and solved explicitly in a series of related papers for the various
classes of black holes we consider here.

Static magnetic black holes in AdS4 were first found in [50] for models with FI gauging,
and their dyonic generalizations were understood in [52, 53]. The problem of generalizing
those solutions to cases with hypermultiplet gaugings was discussed first in [80, 81] and
gradually more examples were added in [43, 44, 82–85] based on the effective decoupling
of the massive vector near the horizon.

The addition of rotation to the twisted black holes described above, as well as in the
case of KN-AdS without a twist, is still an open problem for the models with general
hypermultiplet gauging. A first example of this kind, to the best of our knowledge, was
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given recently in [45], based on a generalization of the rotating solutions with FI gaugings
in [54, 55] and [86] for rotating twisted AdS4 black holes, KN-AdS4 black holes, and twisted
rotating AdS5 black strings, respectively. In order to proceed with the explicit solutions in
the different cases, we should first introduce the so-called I4-formalism, which is defined for
all symmetric special Kähler models. In such cases one can define the invariant contraction
of up to four different symplectic vectors, such as the symplectic section {XΛ;FΛ} and
the vector of electromagnetic charges Γ = {pΛ; qΛ}. The invariant contraction is called the
quartic invariant, or I4, see the appendices of [53, 54, 87, 88] for further definitions and
useful identities involving symplectic inner products 〈·, ·〉 and the I4. Here we just note
that for our model defined by the prepotential

F = −iX0
√
X1X2 , (6.1)

the quartic invariant is given by

I4(Γ) = 2p0p1q0q1 + 2p0p2q0q2 − (p1q1 − p2q2)2 + (p0)2p1p2 + 4q2
0q1q2 , (6.2)

which is enough to define uniquely all the rest of the quantities we discuss in the specific
examples below.

6.1 Static magnetic black holes of [1]

We first look at the case of static magnetic black holes with a twist, and directly zoom in
on the near-horizon region of the product form AdS2×Σg. Upon uplift to six dimension via
the formulae in the previous sections, one recovers the near-horizons of the form AdS2 ×
Σg1×Σg2 in [1, section 5]. The full flow from the near-horizon to the asymptotic AdS6 was
constructed numerically in [25]. From four-dimensional perspective, these can be found
most directly in the duality frame with a hypermultiplet using the equations of [80]. One
can see a more detailed account of how these equations are solved step by step in [44], here
we just present the main steps.

We only include magnetic charges here, and the truncation of the massive vector at
the near-horizon translates into the condition

〈kR,Γ〉 = 0 , (6.3)

which means that
Γ =

{ 1
4m(p2s1 + p1s2), p1, p2; 0

}
. (6.4)

The magnetic charges further satisfy the twisting condition

〈P 3,Γ〉 = −κ ⇒ p1 + p2 = − κ

3m , (6.5)

with κ being the curvature of the Riemann surface. The scalars at the near-horizon are
fixed to constants and in the symplectic formalism are parametrized by

H0 =
{ 1

4m(a2s
1 + a1s

2), a1, a2; 0
}
, (6.6)
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where we have already imposed that 〈kR,H0〉 = 0. The value of the sections can be then
recovered by

{XΛ;FΛ} = − 1
2〈P 3,H0〉

√
I4(H0)

I ′4(H0) + i
〈P 3,H0〉

H0 . (6.7)

The value of the hypermultiplet scalar φ is fixed from the condition I4(kR, P 3,H0,H0) = 0,
which arises from compatibility of the attractor equations with (6.3),

e2φ = 12m(a2
1s

2 + a2
2s

1)
3a2

2(s1)2 + 2a1a2s1s2 + 3a2
1(s2)2 . (6.8)

The attractor equations themselves relate the charges Γ and the vector H0, thus fixing the
scalars in terms of charges. We find the relations

p1 = 3ma1(a1s
2 + a2s

1)(a1s
2(a1 + 3a2) + 3a2s

1(a2 − a1))
3a2

2(s1)2 + 2a1a2s1s2 + 3a2
1(s2)2 ,

p2 = 3ma2(a1s
2 + a2s

1)(3a1s
2(a1 − a2) + a2s

1(3a1 + a2))
3a2

2(s1)2 + 2a1a2s1s2 + 3a2
1(s2)2 ,

(6.9)

and for brevity we choose not to explicitly present the form of the parameters a1,2 in terms
of p1,2 and s1,2. Note that due to the constraint among the charges, only one of the two
parameters a1,2 is free. Finally, the black hole entropy given by the Bekenstein-Hawking
formula, reads

SBH = Area
4G4d

N
= vol(Σg)

16mG4d
N

(a1s
2 + a2s

1)
√
a1a2 , (6.10)

and implicitly is a function of the magnetic fluxes through the Riemann surface p1,2 corre-
sponding to a one-parameter family of solutions (if we assume the 4d point of view where
the parameters s1,2 are part of the definition of the theory).

6.2 General static dyonic black holes

Here, we add electric charges to the static magnetic solutions presented above. We follow
the same steps as above but additionally need to impose the vanishing NUT condition

〈P 3, I ′4(H0)〉 = 0 . (6.11)

This constraint is automatically satisfied in the absence of electric charge but here imposes
an additional non-linear constraint among the charges. Taking into account that the mas-
sive vector does not give rise to a conserved charge, one can think of the solution presented
below as the addition of a single free electric charge on top of the purely magnetic solution.
The charge vector is parametrized by

Γ =
{ 1

4m(p2s1 + p1s2), p1, p2; q0, q1, q2

}
, (6.12)

satisfying the same twisting condition (6.5). The scalars are parametrized now by the
parameters a1,2 and b, such that

H0 =
{
a2s

1 + a1s
2

4m , a1, a2; b, b

8m

(
s2 + c2

d1
s1
)
,
b

8m

(
s1 + c1

d2
s2
)}

, (6.13)
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where for convenience here and in later expressions we define the short-hand notation

c1 = a2
1 + 3a1a2 + 2b2 , c2 = a2

2 + 3a1a2 + 2b2 ,
d1 = a2

1 − a1a2 − 2b2 , d2 = a2
2 − a1a2 − 2b2 ,

f1 = 3a2
1 + a1a2 − 2b2 , f2 = 3a2

2 + a1a2 − 2b2 ,
Π = 3d2

2(s1)2 + 3d2
1(s2)2 + 2s1s2(a1a2(a1 − a2)2 + 4b2(a1 + a2)2 − 4b4) .

(6.14)

The value of the hypermultiplet scalar φ is then fixed to

e2φ = 12m(d2
1s

2 + d2
2s

1)
Π . (6.15)

The attractor mechanism fixes the scalars in terms of the charges via

p1 = 3md1
d2 Π (s2d1 − s1d2)(3s1d2

2 − s2d1f2) ,

p2 = 3md2
d1 Π (s1d2 − s2d1)(3s2d2

1 − s1d2f1) ,
(6.16)

and

q0 = 3mb(a1 +a2)
d1d2Π (s2d1−s1d2)

(
s1d2

2(f1−2a1a2−2b2)−s2d2
1(f2−2a1a2−2b2)

)
q1 = 3b(a1 +a2)

8d1d2Π (s2d1−s1d2)×
[
8s1s2(d1 +d2)(a2

2−b2)(a1a2 +b2)

+3(s1)2d2
2(d1−2a1a2−2b2)−(s2)2d2

1(f2−2a1a2−2b2)
]
,

q2 = 3b(a1 +a2)
8d1d2Π (s2d1−s1d2)×

[
8s1s2(d1 +d2)(a2

1−b2)(a1a2 +b2)

+3(s2)2d2
1(d2−2a1a2−2b2)−(s1)2d2

2(f1−2a1a2−2b2)
]
.

(6.17)

We will not attempt to write the parameters a1,2 and b in terms of the charges, but we
note that due to the twisting condition (6.5) only two of these parameters are independent.
The black hole entropy is then given by

SBH = vol(Σg)
16mG4d

N

(s2d1 − s1d2)
d1d2

√
((a1 − a2)2 − 4b2) (a1a2 + b2)3 . (6.18)

We expect that there exist numerical solutions interpolating between the full parameter
space of near-horizon solutions presented here and the asymptotic AdS4 region, as well as
another flow connecting the same near-horizon to AdS6 when embedded in six-dimensional
supergravity. We leave the explicit construction of such solutions as a future research
direction.

6.3 Rotating black holes in the T 3 limit

We can also discuss cases with rotation, for which we need to specify our model to the
T 3 truncation. The rotating solutions for models with general hypermultiplet gaugings are
yet to be constructed and are beyond the scope of the present work. In order to keep the
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symplectic vectors to be the same size as above for a clear comparison, we will not use the
resulting T 3 prepotential, but only the specification

κ = −1 , s1 = 1
3m , s2 = 0 . (6.19)

At the level of BPS equations this is really the same as looking at the T 3 model. We will
again only look at the near-horizon geometries, but we note that due to the constant hyper-
multiplet scalars this subtruncation allows for a completely analytic form of the complete
black hole spacetime as presented in the original references we give.

6.3.1 Twisted black holes in AdS
We first look at the case of the twisted black holes discussed above, generalizing the mag-
netic solutions to include rotation. We insist on the horizon to remain compact, which
means we can only look at the spherical case. The near-horizon geometry then becomes
a fibration of a squashed S2 over AdS2. The magnetic rotating solution of the T 3 model
was constructed explicitly in [54, section 4.3.1] and further discussed carefully in [88, sec-
tion 2.2]. Here we just list the main formluae characterizing the solution, setting m = 1

2
for simplicity. The vector of electromagnetic charges is given by

Γ =
{
−1

3

(2
3 + p1

)
, p1,−2

3 − p
1; 0
}
, (6.20)

where we already implemented the twisting condition (6.5) and the specialization to s2 = 0.
After imposing the a number of constraints in analogy to the cases above, we find the scalars
parametrized simply by

H0 =
{
a2
3 , a1, a2; 0

}
. (6.21)

Due to the rotation, the scalars are no longer constants at the horizon and depend on one
of the angular directions on the sphere via the generalization of (6.7),

{XΛ;FΛ} = − I ′4(H0 + jP 3 cos θ)
2〈P 3,H0〉

√
I4(H0 + jP 3 cos θ)

+ i
〈P 3,H0〉

(H0 + jP 3 cos θ) , (6.22)

where the parameter j is related to the conserved angular momentum J via the attractor
equations. They now fix the parameters a1,2 and j in terms of the magnetic charge p1 and
the conserved angular momentum J ,

p1 + 35

(6p1 + 1)3 J
2 = 3

2 a1(a2 − a1) ,

−p1 + 36

(6p1 + 1)3 J
2 = 2

3 + 1
2 a2(3a1 + a2) ,

33

(6p1 + 1)3 J
2 = −j2 .

(6.23)

The Bekenstein-Hawking entropy is given by

SBH = π

9
√

2G4d
N

√
1− 6p1(3p1 + 1)− (6p1 + 1)

√
(2p1 + 1)(6p1 + 1)3 − 4× 35J 2 , (6.24)

with regular solutions existing for p1 < 0, and one can see that the absolute value of the
angular momentum is bounded from above.
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6.3.2 Kerr-Newman black holes in AdS

Let us now look at the Kerr-Newman solution, which in the T 3 model contains only electric
charges and rotation. The near-horizon geometry can again only allow for a spherical
topology and becomes a fibration of a squashed S2 over AdS2. This solution was explicitly
written in [55] and therefore we keep the discussion here short. We again set m = 1

2 for
simplicity, and have the electromagnetic charge vector given by

Γ = {0; 6q2, q1, q2} . (6.25)

The scalars in this case are parametrized by the vector

C =
{

0; b0, b1,
1
6 b0

}
, (6.26)

where the precise relation between the sections and the above vector is no longer given
by (6.22), but by a more complicated expression that the interested reader can find in [55].
In analogy to the case above, the scalars at the horizon are functions of the angular coor-
dinate θ on the sphere. The attractor equations relate the conserved charges q1,2 and J to
the parameters b0,1 such that we find a two-parameter family of solutions. Explicitly we
obtain10

q1 = 1
4Ξ

(
4b1 − 3b30 + 18b20b1

)
, q2 = 1

12Ξ
(
2b0 + 3b30 + 6b20b1

)
,

J = − 1
2Ξ2 b

2
0

(
b0 + 6b1 + 6b0b1(4b1 + 3b0(2 + b20 + 6b0b1))

)
,

(6.27)

where we defined Ξ ≡ 1− 18b30 b1. In terms of the two independent parameters, the black
hole entropy is given by

SBH = π

2ΞG4d
N

√
8
3 b

3
0 b1 + 12b50 b1 + 12b40 b21 + b60(48b21 − 1) . (6.28)

Remarkably, we can rewrite the above formula in a more compact and suggestive form
using the explicit relations between the conserved charges and the parameters b0,1,

SBH(q1, q2,J ) = π

3G4d
N

√
108q2

2(q1 + q2) + J
q1 + 9q2

. (6.29)

Even if the latter formula seems more suggestive, we should stress that only two of the
three charges are independent. In particular, one is not free to take the limit of vanishing J
anymore and these black holes are always rotating, in contrast to the previously described
twisted solutions.

6.4 Universal Kerr-Newman-AdS black holes

Apart from the solutions described above in the T 3 subtruncation, we can of course easily
write down the analogous solutions in the truncation to minimal gauged supergravity. Note

10We have an overall sign difference with the definition of angular momentum in [55]. We have chosen
this convention to present in a unifying way the entropy functions in the next section.
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that in terms of holographic meaning the latter solutions will not be a subset of the former
ones since the minimal truncation depends on the twist parameter z, cf. (4.24). This is
in contrast with the static black holes above, which we could write down in full generality
without specifying subtruncations, and, therefore automatically include the limit to the
minimal theory.

We could in fact write down the most general thermal KN-AdS4 black hole in mini-
mal supergravity as written in [63] but we directly focus on the supersymmetric limit in
accordance with the preceding sections. We give the conserved charges for completeness,
leaving all details to the original reference. The electric charge and angular momentum are
related via

J = − q

2g

(
−2 +

√
4 + g2q2

)
, (6.30)

and the entropy reads

SBH(q,J ) = − 2π
gG4d

N

J
q

= π

g2G4d
N

(
−2 +

√
4 + g2q2

)
, (6.31)

where g = 2L−1
AdS4

with LAdS4 given in (4.24).
In effect we already discussed the on-shell supergravity action of this solution in the

minimal subtruncation in section 5, see also [89]. One can recover it from the general form
of (5.1) noting that the black holes exhibit two fixed points of the same orientation at the
two poles of the sphere in the near-horizon geometry, εSP = εNP = ε. Upon an additional
Legendre transform with respect to the electric charge q and the angular momentum J
one can obtain the Bekenstein-Hawking entropy (6.31). We will capture this behavior in
the next section where we discuss more generally the entropy function of all the black hole
solutions in the matter-coupled theory using the gravitational blocks.

7 Gravitational blocks and black hole microstates

In this section we discuss the attractor mechanism for the class F black holes and com-
ment about the field theory interpretation of this result. The attractor mechanism works
as follows. The Bekenstein-Hawking entropy SBH(pi, Qi,J ) of AdS black holes with ar-
bitrary rotation and generic electric and magnetic charges is obtained by extremizing the
functional [88]

I(pi,X i, ω) = π

4G4d
N

(
E(pi,X i, ω)− 2i

2∑
i=1

QiX i − 2Jω
)

+ µ

(
3m

2∑
i=1
X i − iν ω − 2

)
, (7.1)

with respect to the chemical potentials (X i, ω) conjugated to the conserved charges (Qi,J ),
respectively, and the Lagrange multiplier µ. Extremizing (7.1) with respect to µ imposes a
constraint among the chemical potentials that depends on the details of the model, ν = 0
for the twisted black holes and ν = 1 for the KN-AdS black holes. Here, the functional

E(pi,X i, ω) ≡
2∑
r=1
B
(
X1

(r), X
2
(r), ω(r)

)
, (7.2)
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is obtained by gluing gravitational blocks

B(Xi, ω) ≡ −F (Xi)
ω

, (7.3)

where F (Xi) is the prepotential of 4d N = 2 gauged supergravity. For twisted AdS4 black
holes we use the A-gluing

Xi
(1) = X i − iωpi , ω(1) = ω ,

Xi
(2) = X i + iωpi , ω(1) = −ω ,

(7.4)

while for the KN-AdS black holes we use the identity gluing

Xi
(1) = X i − iωpi , ω(1) = ω ,

Xi
(2) = X i + iωpi , ω(1) = ω .

(7.5)

Finally, the fixed attractor points X̊i
(1) and X̊

i
(2) (critical point of (7.1)) are identified with

the values of the supergravity sections Xi at the South pole (SP) and the North pole (NP)
of the sphere in the near horizon region.

For black holes of class F the gravitational blocks are given by

B(X1, X2, ω) = i
4mω

(
s2X1 + s1X2

)√
X1X2 . (7.6)

Notice that here we already used the effective form of the prepotential (4.1) describing
only the massless modes at the near horizon of our black holes. We have therefore already
imposed the vanishing of kRΛXΛ, and thus eliminated X0 (and X 0), in full analogy to the
case discussed in [45, appendix A]. We have also eliminated A0 such that

PR
ΛXΛ = 0 , PR

Λ p
Λ = 0 , (7.7)

where we have suppressed the index 3 for the moment maps, which is the only nonvanishing
one. This also leads to a redefinition of the electric charges associated with the two massless
gauge fields A1 and A2 of the effective theory,

Q1 ≡ q1 + s2

4m q0 , Q2 ≡ q2 + s1

4m q0 . (7.8)

7.1 Twisted black holes

For this class of black holes we use the A-gluing (7.4). We have checked that the entropy
of static dyonic back holes with generic fluxes (s1, s2) and rotating black holes of the T 3

model with (s1 = 1
3m , s

2 = 0), can be obtained by extremizing (7.1) with ν = 0. We have
then verified that the values of the sections at the SP and the NP of the sphere in the near
horizon region are given by

Xi
SP, NP = i

2
(
X̊ i ∓ i ω̊pi

)
, i = 1, 2 . (7.9)

The functional (7.1) has a natural field theory interpretation. The five-dimensional N = 1
Seiberg USp(2N) gauge theories wrapped on Σg×S2 are holographically dual to our black
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holes of class F once they are uplifted to massive type IIA theory on Σg×wS4. Under some
assumptions, at large N , their topologically twisted index on Σg × S2 × S1 was computed
in [37] and the final result can be written as

logZtwisted(si, ti,∆i) = − 4
27 F

Seiberg
S5

2∑
i,j=1

sitj
∂2(∆1∆2)3/2

∂∆i∂∆j
, (7.10)

with S5 free energy given in (5.4) and

s1 + s2 = 2(1− g) , t1 + t2 = 2 , ∆1 + ∆2 = 2 . (7.11)

Here, (si, ti) denote the magnetic fluxes through (Σg, S
2), respectively, and ∆i, i = 1, 2 are

the chemical potentials that parameterize the Cartan of the SU(2) R-symmetry and the
SU(2) flavor symmetry. Define

Itwisted(∆i) ≡ logZtwisted(si, ti,∆i)− iπ
2∑
i=1

Q̃i∆i . (7.12)

The entropy of BPS static dyonic black holes can then be obtained as

SBH(si, ti, Qi) = Itwisted(∆i)
∣∣∣
∆̊i

, (7.13)

where ∆̊i is the extremum of I(S1×S2)×Σg
(∆i).

Let us focus on static dyonic black holes where we know the large N twisted index of
the holographic dual field theory. In the static limit (ω → 0), the entropy function (7.1) is
explicitly given by

ImAdS4(pi,X i) = π

4G4d
N

(
p1X 2(3s2X 1 + s1X 2) + p2X 1(s2X 1 + 3s1X 2)

4m
√
X 1X 2

− 2i
2∑
i=1

QiX i
)
.

(7.14)
The functional (7.14) can be easily mapped to the field theory index (7.12) via (5.3), (5.4),
and

si = − κ

6m(1− g)s
i , pi = − 1

6m ti ,

Qi = 6mG4d
N Q̃i , X i = 1

3m∆i , i = 1, 2 .
(7.15)

This provides a microscopic derivation of the entropy of static dyonic black holes in AdS4×
Σg ×w S4.

One can refine the index on Σg × S2 × S1 by adding a chemical potential ω for the
angular momentum on S2 [37]. Solving the refined index at large N is a non-trivial problem.
However, the gravitational picture suggests that it can be factorized into simpler building
blocks as

logZtwisted(si, ti,∆i|ω) = − 1
2πiω

[
F Seiberg
S3×Σg

(
si,∆i + iω2 t

i
)
− F Seiberg

S3×Σg

(
si,∆i − iω2 t

i
)]

,

(7.16)
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where the S3 × Σg free energy is given by [38]11

F Seiberg
S3×Σg

(si,∆i) = −8
√

2π
15

N5/2√
8−Nf

2∑
i=1

si
∂(∆1∆2)3/2

∂∆i
. (7.17)

It would be interesting to generalize the computations of [37] to the refined case and prove
the above conjecture. We naturally expect (7.16) to hold for other classes of 5d SCFTs
with a holographic dual.

7.2 Kerr-Newman-AdS black holes

For this class of black holes we use the identity gluing (7.5). We have checked that the
entropy of the KN-AdS black holes of the T 3 model can be obtained by extremizing (7.1)
with ν = 1.12 Moreover, we have verified that the solutions to the saddle point equations,
denoted by (X̊ i, ω̊), are related to the values of the sections at the SP and the NP of the
sphere by

X̄i
SP = − i

2 X̊
i
(1) = − i

2
(
X̊ i − i̊ωpi

)
,

Xi
NP = − i

2X̊
i
(2) = − i

2
(
X̊ i + i̊ωpi

)
, i = 1, 2 ,

(7.18)

for i = 1, 2. Notice that here the values of the sections can be identified with the critical val-
ues of the gluing quantities Xi

(r) up to a complex conjugate. Even though the general gluing
rules allow for magnetic charges, the explicit solutions we could write down above in the T 3

and minimal subtruncations have vanishing magnetic charges due to additional regularity
constraints. In these cases the entropy function simplifies and agrees with the one proposed
in [90] and rederived in [91] for Kerr-Newman black holes with AdS4 × S7 asymptotics.

The functional (7.1) for dyonic KN-AdS black holes with generic fluxes (s1, s2) can be
interpreted as the Legendre transform of the large N partition function of the holographic
dual field theory on (S1 × S2) × Σg. Here, the S2 is not twisted while there still exists a
partial topological twist on Σg. This is an intriguing example of a five-dimensional partition
function that from one angle can be thought of as a 3d topologically twisted index on Σg×S1

(with a KK tower of modes on S2) and from another angle as a 3d superconformal index
(SCI) on S2 × S1 (with a KK tower of modes on Σg). It would certainly be interesting
to derive this partition function using localization and study its large N behavior. The
gravitational viewpoint suggests the factorization of this partition function, at least in the
large N limit, as

logZSCI(si, ti,∆i|ω) = − 1
2πiω

[
F Seiberg
S3×Σg

(
si,∆i + iω2 t

i
)

+ F Seiberg
S3×Σg

(
si,∆i − iω2 t

i
)]

,

(7.19)
where F Seiberg

S3×Σg
(si,∆i) is given in (7.17). We again expect (7.19) to hold for other classes of

5d SCFTs with a holographic dual.
11One can swap between the conventions in [38] and here by setting s1,2 = (1 − g)(1 ± n̂M ) and ∆1,2 =

1± ν̃AS.
12The entropy function for the universal KN-AdS4 black holes discussed in section 6.4 (sticking to the

normalization of Fmin in (4.22)) is given by Imin(X̃ , ω) = π

4G4d
N

(
E − 2iX̃ q − 2ωJ

)
+ µ(gX̃ − iω − 2).
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8 Discussion and outlook

A major motivation for this work stems from the rather enigmatic nature of the class F
theories, obtained by twisted compactification of 5d N = 1 CFTs on a generic Riemann
surface. The bulk duals of such SCFTs interpolate between AdS6 and AdS4 × Σg vacua,
leading to a natural holographic interpretation as RG flows across dimensions. The AdS4
region was explicitly constructed in massive type IIA in [16] based on the general classifi-
cation of [92]. Due to the construction here we also expect that the type IIB uplift via [39]
will fit in the general classification of [93]. Such bulk constructions indicate the existence
of an interacting conformal phase in the IR limit of the parent 5d SCFTs on Σg.

The parent 5d SCFTs are strongly coupled microscopic theories and can be realized
at the intersection of N D4-branes, Nf D8-branes and orientifold planes in the massive
IIA case, or alternatively by utilizing (p, q) 5-branes in type IIB. Various supersymmetric
observables for such CFTs have been computed at large N , see for example [37, 38, 68, 71,
72, 94, 95], and they exhibit the N5/2 and N4 scaling of the number of degrees of freedom
of the D4-D8-O8 system and the (p, q) 5-branes, respectively. It would be desirable to
have a three-dimensional description of this class of SCFTs, similar to the class S program
where Gaiotto [70] identified a family of isolated N = 2 SCFTs, describing the theory of
N coincident M5-branes wrapped on a Riemann surface.

Another interesting research direction concerns the correspondences à laAGT [96]. The
basic premise is that the compactification of 6d N = (2, 0) theory on S4 leads to a two-
dimensional Toda CFT on a Riemann surface, dual to the 4d supersymmetric gauge theory
obtained by reduction on the surface. It would be intriguing to derive the analogous 3d-2d
correspondence for the class F theories and exploit it to understand the microscopic origin
of the entropy of the black holes presented in this paper. This line of thought has proven
to be useful, see e.g. [97] and references thereto, in studying the microscopic free energy
of various bulk solutions arising from M5-branes wrapped on hyperbolic 3-manifolds [98].

There are also plenty of open problems in supergravity, which seem more immediately
reachable. Let us mention some of them.

– The proof that our starting point, the 6d F(4) supergravity coupled to an abelian
vector multiplet, comes from a consistent truncation of massive IIA on S4 is strictly
speaking still lacking. Such a reduction was performed on the abelian T-dual solution
in [39] and we presented additional arguments why it must be true. It seems very
likely that this problem can be completely settled with the exceptional field theory
(EFT) techniques [39, 99]. It would be further very interesting if EFT techniques can
be used to determine the full KK spectra for the holographic backgrounds discussed
here, in analogy to [100–102].

– An interesting generalization is to enlarge the reduction ansatz to include the sym-
metry group of the Riemann surface. In particular, we need to include extra gauge
fields arising from the six-dimensional metric, which would give rise to additional
four-dimensional vector multiplets. Such a bulk construction would be the analogue
of equivariant integration, see e.g. [45], in the holographic dual field theory. A related
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observation is that one can also add punctures to the Riemann surface for the class
S theories [70, 103] and their bulk duals [104–106], while preserving some amount of
supersymmetry. It would be interesting to understand better the analogous story for
the class F theories.

– We already discussed more extensively the squashed sphere and black hole solutions
in AdS4 arising from the reduced model. We should note the existence of other purely
Euclidean solutions such as [51] and more recently [57]. Both types of solutions can
be directly embedded in the T 3 subtruncation of our model and have an intriguing
holographic interpretation. It would be also interesting to generalize these solutions
to the full model with hypermultiplet gauging.

– An interesting further extension is to start from a bigger 6d theory with even more
matter multiplets. Some very special examples can be found as arising from type
IIB compactifications [39]. The reduction of the 6d F(4) supergravity coupled to
two vector multiplets on a Riemann surface gives rise to an extra vector multiplet
in the 4d F(4) supergravity constructed here. It is tempting to speculate that this
completes the square root prepotential (1.3) to the STU model,

F = −i
√
X0X1X2X3 . (8.1)

A further massless subtruncation might then lead to the ST 2 model generalizing the
T 3 truncation here.

– An open avenue for exploration is the possibility of adding higher-derivative correc-
tions to the effective supergravity model. It is worth noting that the structure of
the higher-derivative theory is much better studied in four dimensions [107–109] and
via the uplift on Σg we can hope to understand better such corrections also in six
dimensions. Alternatively, one can also adopt a more practical approach and try to
directly fix the higher-derivative corrections in 4d via holography, see [110].

Acknowledgments

The authors would like to thank Achilleas Passias for fruitful discussions and collaboration
in the early stages of this work, and Alberto Zaffaroni for useful discussions and comments.
SMH is supported in part by WPI Initiative, MEXT, Japan at IPMU, the University of
Tokyo, JSPS KAKENHI Grant-in-Aid (Wakate-A), No.17H04837 and JSPS KAKENHI
Grant-in-Aid (Early-Career Scientists), No.20K14462. KH is supported in part by the
Bulgarian NSF grants DN08/3, N28/5, and KP-06-N 38/11.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

– 32 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
2
(
2
0
2
1
)
1
7
7

References

[1] S.M. Hosseini, K. Hristov, A. Passias and A. Zaffaroni, 6D attractors and black hole
microstates, JHEP 12 (2018) 001 [arXiv:1809.10685] [INSPIRE].

[2] C.-M. Chang, 5d and 6d SCFTs have no weak coupling limit, JHEP 09 (2019) 016
[arXiv:1810.04169] [INSPIRE].

[3] N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string
dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].

[4] A. Brandhuber and Y. Oz, The D4-D8 brane system and five-dimensional fixed points,
Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].

[5] O. Bergman and D. Rodriguez-Gomez, 5d quivers and their AdS6 duals, JHEP 07 (2012)
171 [arXiv:1206.3503] [INSPIRE].

[6] O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl.
Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].

[7] B. Kol, 5D field theories and M-theory, JHEP 11 (1999) 026 [hep-th/9705031] [INSPIRE].

[8] O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field
theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].

[9] O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and
five-dimensional En field theories, JHEP 03 (1999) 006 [hep-th/9902179] [INSPIRE].

[10] E. D’Hoker, M. Gutperle, A. Karch and C.F. Uhlemann, Warped AdS6 × S2 in type IIB
supergravity I: local solutions, JHEP 08 (2016) 046 [arXiv:1606.01254] [INSPIRE].

[11] E. D’Hoker, M. Gutperle and C.F. Uhlemann, Holographic duals for five-dimensional
superconformal quantum field theories, Phys. Rev. Lett. 118 (2017) 101601
[arXiv:1611.09411] [INSPIRE].

[12] E. D’Hoker, M. Gutperle and C.F. Uhlemann, Warped AdS6×S2 in type IIB supergravity II:
global solutions and five-brane webs, JHEP 05 (2017) 131 [arXiv:1703.08186] [INSPIRE].

[13] E. D’Hoker, M. Gutperle and C.F. Uhlemann, Warped AdS6 × S2 in type IIB supergravity
III: global solutions with seven-branes, JHEP 11 (2017) 200 [arXiv:1706.00433] [INSPIRE].

[14] Y. Lozano, E. Ó Colgáin, D. Rodríguez-Gómez and K. Sfetsos, Supersymmetric AdS6 via T
duality, Phys. Rev. Lett. 110 (2013) 231601 [arXiv:1212.1043] [INSPIRE].

[15] Y. Lozano, E. Ó Colgáin and D. Rodríguez-Gómez, Hints of 5d fixed point theories from
non-Abelian T-duality, JHEP 05 (2014) 009 [arXiv:1311.4842] [INSPIRE].

[16] I. Bah, A. Passias and P. Weck, Holographic duals of five-dimensional SCFTs on a Riemann
surface, JHEP 01 (2019) 058 [arXiv:1807.06031] [INSPIRE].

[17] L.J. Romans, The F (4) gauged supergravity in six-dimensions, Nucl. Phys. B 269 (1986)
691 [INSPIRE].

[18] L. Andrianopoli, R. D’Auria and S. Vaula, Matter coupled F (4) gauged supergravity
Lagrangian, JHEP 05 (2001) 065 [hep-th/0104155] [INSPIRE].

[19] R. D’Auria, S. Ferrara and S. Vaula, F (4) supergravity and 5D superconformal field
theories, Class. Quant. Grav. 18 (2001) 3181 [hep-th/0008209] [INSPIRE].

[20] M. Naka, Various wrapped branes from gauged supergravities, hep-th/0206141 [INSPIRE].

– 33 –

https://doi.org/10.1007/JHEP12(2018)001
https://arxiv.org/abs/1809.10685
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.10685
https://doi.org/10.1007/JHEP09(2019)016
https://arxiv.org/abs/1810.04169
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.04169
https://doi.org/10.1016/S0370-2693(96)01215-4
https://arxiv.org/abs/hep-th/9608111
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9608111
https://doi.org/10.1016/S0370-2693(99)00763-7
https://arxiv.org/abs/hep-th/9905148
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9905148
https://doi.org/10.1007/JHEP07(2012)171
https://doi.org/10.1007/JHEP07(2012)171
https://arxiv.org/abs/1206.3503
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.3503
https://doi.org/10.1016/S0550-3213(97)00472-0
https://doi.org/10.1016/S0550-3213(97)00472-0
https://arxiv.org/abs/hep-th/9704170
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9704170
https://doi.org/10.1088/1126-6708/1999/11/026
https://arxiv.org/abs/hep-th/9705031
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9705031
https://doi.org/10.1088/1126-6708/1998/01/002
https://arxiv.org/abs/hep-th/9710116
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9710116
https://doi.org/10.1088/1126-6708/1999/03/006
https://arxiv.org/abs/hep-th/9902179
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9902179
https://doi.org/10.1007/JHEP08(2016)046
https://arxiv.org/abs/1606.01254
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.01254
https://doi.org/10.1103/PhysRevLett.118.101601
https://arxiv.org/abs/1611.09411
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.09411
https://doi.org/10.1007/JHEP05(2017)131
https://arxiv.org/abs/1703.08186
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.08186
https://doi.org/10.1007/JHEP11(2017)200
https://arxiv.org/abs/1706.00433
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.00433
https://doi.org/10.1103/PhysRevLett.110.231601
https://arxiv.org/abs/1212.1043
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.1043
https://doi.org/10.1007/JHEP05(2014)009
https://arxiv.org/abs/1311.4842
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.4842
https://doi.org/10.1007/JHEP01(2019)058
https://arxiv.org/abs/1807.06031
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.06031
https://doi.org/10.1016/0550-3213(86)90517-1
https://doi.org/10.1016/0550-3213(86)90517-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB269%2C691%22
https://doi.org/10.1088/1126-6708/2001/05/065
https://arxiv.org/abs/hep-th/0104155
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0104155
https://doi.org/10.1088/0264-9381/18/16/308
https://arxiv.org/abs/hep-th/0008209
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0008209
https://arxiv.org/abs/hep-th/0206141
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0206141


J
H
E
P
0
2
(
2
0
2
1
)
1
7
7

[21] N. Kim and M. Shim, Wrapped brane solutions in romans F (4) gauged supergravity, Nucl.
Phys. B 951 (2020) 114882 [arXiv:1909.01534] [INSPIRE].

[22] P. Karndumri, Twisted compactification of N = 2 5D SCFTs to three and two dimensions
from F (4) gauged supergravity, JHEP 09 (2015) 034 [arXiv:1507.01515] [INSPIRE].

[23] D.D.K. Chow, Charged rotating black holes in six-dimensional gauged supergravity, Class.
Quant. Grav. 27 (2010) 065004 [arXiv:0808.2728] [INSPIRE].

[24] M. Suh, Supersymmetric AdS6 black holes from F (4) gauged supergravity, JHEP 01 (2019)
035 [arXiv:1809.03517] [INSPIRE].

[25] M. Suh, Supersymmetric AdS6 black holes from matter coupled F (4) gauged supergravity,
JHEP 02 (2019) 108 [arXiv:1810.00675] [INSPIRE].

[26] B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal
supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].

[27] B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09
(2005) 016 [hep-th/0507289] [INSPIRE].

[28] U. Theis and S. Vandoren, N = 2 supersymmetric scalar tensor couplings, JHEP 04 (2003)
042 [hep-th/0303048] [INSPIRE].

[29] G. Dall’Agata, R. D’Auria, L. Sommovigo and S. Vaula, D = 4, N = 2 gauged supergravity
in the presence of tensor multiplets, Nucl. Phys. B 682 (2004) 243 [hep-th/0312210]
[INSPIRE].

[30] R. D’Auria, L. Sommovigo and S. Vaula, N = 2 supergravity Lagrangian coupled to tensor
multiplets with electric and magnetic fluxes, JHEP 11 (2004) 028 [hep-th/0409097]
[INSPIRE].

[31] K. Hristov, H. Looyestijn and S. Vandoren, BPS black holes in N = 2, D = 4 gauged
supergravities, JHEP 08 (2010) 103 [arXiv:1005.3650] [INSPIRE].

[32] F. Azzurli, N. Bobev, P.M. Crichigno, V.S. Min and A. Zaffaroni, A universal counting of
black hole microstates in AdS4, JHEP 02 (2018) 054 [arXiv:1707.04257] [INSPIRE].

[33] N. Bobev and P.M. Crichigno, Universal RG flows across dimensions and holography,
JHEP 12 (2017) 065 [arXiv:1708.05052] [INSPIRE].

[34] M. Cvetič, H. Lü and C.N. Pope, Gauged six-dimensional supergravity from massive type
IIA, Phys. Rev. Lett. 83 (1999) 5226 [hep-th/9906221] [INSPIRE].

[35] M. Gutperle, J. Kaidi and H. Raj, Janus solutions in six-dimensional gauged supergravity,
JHEP 12 (2017) 018 [arXiv:1709.09204] [INSPIRE].

[36] M. Gutperle, J. Kaidi and H. Raj, Mass deformations of 5d SCFTs via holography, JHEP
02 (2018) 165 [arXiv:1801.00730] [INSPIRE].

[37] S.M. Hosseini, I. Yaakov and A. Zaffaroni, Topologically twisted indices in five dimensions
and holography, JHEP 11 (2018) 119 [arXiv:1808.06626] [INSPIRE].

[38] P.M. Crichigno, D. Jain and B. Willett, 5d partition functions with a twist, JHEP 11
(2018) 058 [arXiv:1808.06744] [INSPIRE].

[39] E. Malek, H. Samtleben and V. Vall Camell, Supersymmetric AdS7 and AdS6 vacua and
their consistent truncations with vector multiplets, JHEP 04 (2019) 088
[arXiv:1901.11039] [INSPIRE].

– 34 –

https://doi.org/10.1016/j.nuclphysb.2019.114882
https://doi.org/10.1016/j.nuclphysb.2019.114882
https://arxiv.org/abs/1909.01534
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.01534
https://doi.org/10.1007/JHEP09(2015)034
https://arxiv.org/abs/1507.01515
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.01515
https://doi.org/10.1088/0264-9381/27/6/065004
https://doi.org/10.1088/0264-9381/27/6/065004
https://arxiv.org/abs/0808.2728
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0808.2728
https://doi.org/10.1007/JHEP01(2019)035
https://doi.org/10.1007/JHEP01(2019)035
https://arxiv.org/abs/1809.03517
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.03517
https://doi.org/10.1007/JHEP02(2019)108
https://arxiv.org/abs/1810.00675
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.00675
https://doi.org/10.1016/S0550-3213(03)00059-2
https://arxiv.org/abs/hep-th/0212239
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0212239
https://doi.org/10.1088/1126-6708/2005/09/016
https://doi.org/10.1088/1126-6708/2005/09/016
https://arxiv.org/abs/hep-th/0507289
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0507289
https://doi.org/10.1088/1126-6708/2003/04/042
https://doi.org/10.1088/1126-6708/2003/04/042
https://arxiv.org/abs/hep-th/0303048
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0303048
https://doi.org/10.1016/j.nuclphysb.2004.01.014
https://arxiv.org/abs/hep-th/0312210
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0312210
https://doi.org/10.1088/1126-6708/2004/11/028
https://arxiv.org/abs/hep-th/0409097
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0409097
https://doi.org/10.1007/JHEP08(2010)103
https://arxiv.org/abs/1005.3650
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1005.3650
https://doi.org/10.1007/JHEP02(2018)054
https://arxiv.org/abs/1707.04257
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.04257
https://doi.org/10.1007/JHEP12(2017)065
https://arxiv.org/abs/1708.05052
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.05052
https://doi.org/10.1103/PhysRevLett.83.5226
https://arxiv.org/abs/hep-th/9906221
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9906221
https://doi.org/10.1007/JHEP12(2017)018
https://arxiv.org/abs/1709.09204
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.09204
https://doi.org/10.1007/JHEP02(2018)165
https://doi.org/10.1007/JHEP02(2018)165
https://arxiv.org/abs/1801.00730
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.00730
https://doi.org/10.1007/JHEP11(2018)119
https://arxiv.org/abs/1808.06626
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.06626
https://doi.org/10.1007/JHEP11(2018)058
https://doi.org/10.1007/JHEP11(2018)058
https://arxiv.org/abs/1808.06744
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.06744
https://doi.org/10.1007/JHEP04(2019)088
https://arxiv.org/abs/1901.11039
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.11039


J
H
E
P
0
2
(
2
0
2
1
)
1
7
7

[40] P. Szepietowski, Comments on a-maximization from gauged supergravity, JHEP 12 (2012)
018 [arXiv:1209.3025] [INSPIRE].

[41] K.C. Matthew Cheung, J.P. Gauntlett and C. Rosen, Consistent KK truncations for
M5-branes wrapped on Riemann surfaces, Class. Quant. Grav. 36 (2019) 225003
[arXiv:1906.08900] [INSPIRE].

[42] L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general
scalar manifolds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys.
23 (1997) 111 [hep-th/9605032] [INSPIRE].

[43] A. Guarino, BPS black hole horizons from massive IIA, JHEP 08 (2017) 100
[arXiv:1706.01823] [INSPIRE].

[44] S.M. Hosseini, K. Hristov and A. Passias, Holographic microstate counting for AdS4 black
holes in massive IIA supergravity, JHEP 10 (2017) 190 [arXiv:1707.06884] [INSPIRE].

[45] S.M. Hosseini, K. Hristov, Y. Tachikawa and A. Zaffaroni, Anomalies, black strings and the
charged Cardy formula, JHEP 09 (2020) 167 [arXiv:2006.08629] [INSPIRE].

[46] K. Hristov, H. Looyestijn and S. Vandoren, Maximally supersymmetric solutions of D = 4,
N = 2 gauged supergravity, JHEP 11 (2009) 115 [arXiv:0909.1743] [INSPIRE].

[47] O. Varela, Minimal D = 4 truncations of type IIA, JHEP 11 (2019) 009
[arXiv:1908.00535] [INSPIRE].

[48] B. de Wit and H. Nicolai, The consistency of the S7 truncation in D = 11 supergravity,
Nucl. Phys. B 281 (1987) 211 [INSPIRE].

[49] M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions,
Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

[50] S.L. Cacciatori and D. Klemm, Supersymmetric AdS4 black holes and attractors, JHEP 01
(2010) 085 [arXiv:0911.4926] [INSPIRE].

[51] D.Z. Freedman and S.S. Pufu, The holography of F -maximization, JHEP 03 (2014) 135
[arXiv:1302.7310] [INSPIRE].

[52] S. Katmadas, Static BPS black holes in U(1) gauged supergravity, JHEP 09 (2014) 027
[arXiv:1405.4901] [INSPIRE].

[53] N. Halmagyi, Static BPS black holes in AdS4 with general dyonic charges, JHEP 03 (2015)
032 [arXiv:1408.2831] [INSPIRE].

[54] K. Hristov, S. Katmadas and C. Toldo, Rotating attractors and BPS black holes in AdS4,
JHEP 01 (2019) 199 [arXiv:1811.00292] [INSPIRE].

[55] K. Hristov, S. Katmadas and C. Toldo, Matter-coupled supersymmetric Kerr-Newman-AdS4
black holes, Phys. Rev. D 100 (2019) 066016 [arXiv:1907.05192] [INSPIRE].

[56] S.M. Hosseini, C. Toldo and I. Yaakov, Supersymmetric Rényi entropy and charged
hyperbolic black holes, JHEP 07 (2020) 131 [arXiv:1912.04868] [INSPIRE].

[57] N. Bobev, A.M. Charles and V.S. Min, Euclidean black saddles and AdS4 black holes, JHEP
10 (2020) 073 [arXiv:2006.01148] [INSPIRE].

[58] M.J. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys.
B 554 (1999) 237 [hep-th/9901149] [INSPIRE].

– 35 –

https://doi.org/10.1007/JHEP12(2012)018
https://doi.org/10.1007/JHEP12(2012)018
https://arxiv.org/abs/1209.3025
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.3025
https://doi.org/10.1088/1361-6382/ab41b3
https://arxiv.org/abs/1906.08900
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.08900
https://doi.org/10.1016/S0393-0440(97)00002-8
https://doi.org/10.1016/S0393-0440(97)00002-8
https://arxiv.org/abs/hep-th/9605032
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9605032
https://doi.org/10.1007/JHEP08(2017)100
https://arxiv.org/abs/1706.01823
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.01823
https://doi.org/10.1007/JHEP10(2017)190
https://arxiv.org/abs/1707.06884
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.06884
https://doi.org/10.1007/JHEP09(2020)167
https://arxiv.org/abs/2006.08629
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.08629
https://doi.org/10.1088/1126-6708/2009/11/115
https://arxiv.org/abs/0909.1743
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0909.1743
https://doi.org/10.1007/JHEP11(2019)009
https://arxiv.org/abs/1908.00535
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.00535
https://doi.org/10.1016/0550-3213(87)90253-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB281%2C211%22
https://doi.org/10.1016/S0550-3213(99)00419-8
https://arxiv.org/abs/hep-th/9903214
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9903214
https://doi.org/10.1007/JHEP01(2010)085
https://doi.org/10.1007/JHEP01(2010)085
https://arxiv.org/abs/0911.4926
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0911.4926
https://doi.org/10.1007/JHEP03(2014)135
https://arxiv.org/abs/1302.7310
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.7310
https://doi.org/10.1007/JHEP09(2014)027
https://arxiv.org/abs/1405.4901
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.4901
https://doi.org/10.1007/JHEP03(2015)032
https://doi.org/10.1007/JHEP03(2015)032
https://arxiv.org/abs/1408.2831
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.2831
https://doi.org/10.1007/JHEP01(2019)199
https://arxiv.org/abs/1811.00292
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.00292
https://doi.org/10.1103/PhysRevD.100.066016
https://arxiv.org/abs/1907.05192
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.05192
https://doi.org/10.1007/JHEP07(2020)131
https://arxiv.org/abs/1912.04868
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.04868
https://doi.org/10.1007/JHEP10(2020)073
https://doi.org/10.1007/JHEP10(2020)073
https://arxiv.org/abs/2006.01148
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.01148
https://doi.org/10.1016/S0550-3213(99)00299-0
https://doi.org/10.1016/S0550-3213(99)00299-0
https://arxiv.org/abs/hep-th/9901149
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9901149


J
H
E
P
0
2
(
2
0
2
1
)
1
7
7

[59] D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real
formulation of special geometry, JHEP 01 (2013) 053 [arXiv:1207.2679] [INSPIRE].

[60] C. Toldo and S. Vandoren, Static nonextremal AdS4 black hole solutions, JHEP 09 (2012)
048 [arXiv:1207.3014] [INSPIRE].

[61] J.P. Gauntlett and O. Varela, Consistent Kaluza-Klein reductions for general
supersymmetric AdS solutions, Phys. Rev. D 76 (2007) 126007 [arXiv:0707.2315]
[INSPIRE].

[62] G. Larios and O. Varela, Minimal D = 4, N = 2 supergravity from D = 11: an M-theory
free lunch, JHEP 10 (2019) 251 [arXiv:1907.11027] [INSPIRE].

[63] M.M. Caldarelli and D. Klemm, Supersymmetry of anti-de Sitter black holes, Nucl. Phys. B
545 (1999) 434 [hep-th/9808097] [INSPIRE].

[64] A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Large N phases, gravitational
instantons and the nuts and bolts of AdS holography, Phys. Rev. D 59 (1999) 064010
[hep-th/9808177] [INSPIRE].

[65] N. Alonso-Alberca, P. Meessen and T. Ortín, Supersymmetry of topological
Kerr-Newman-Taub-NUT-AdS space-times, Class. Quant. Grav. 17 (2000) 2783
[hep-th/0003071] [INSPIRE].

[66] P. Benetti Genolini, J.M. Perez Ipiña and J. Sparks, Localization of the action in
AdS/CFT, JHEP 10 (2019) 252 [arXiv:1906.11249] [INSPIRE].

[67] C. Toldo and B. Willett, Partition functions on 3d circle bundles and their gravity duals,
JHEP 05 (2018) 116 [arXiv:1712.08861] [INSPIRE].

[68] D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories
with gravity duals, JHEP 05 (2014) 032 [arXiv:1207.4359] [INSPIRE].

[69] F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal
field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].

[70] D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

[71] M. Fluder and C.F. Uhlemann, Precision test of AdS6/CFT5 in type IIB string theory,
Phys. Rev. Lett. 121 (2018) 171603 [arXiv:1806.08374] [INSPIRE].

[72] C.F. Uhlemann, Exact results for 5d SCFTs of long quiver type, JHEP 11 (2019) 072
[arXiv:1909.01369] [INSPIRE].

[73] D. Martelli, A. Passias and J. Sparks, The gravity dual of supersymmetric gauge theories on
a squashed three-sphere, Nucl. Phys. B 864 (2012) 840 [arXiv:1110.6400] [INSPIRE].

[74] D. Martelli and J. Sparks, The gravity dual of supersymmetric gauge theories on a biaxially
squashed three-sphere, Nucl. Phys. B 866 (2013) 72 [arXiv:1111.6930] [INSPIRE].

[75] T. Nishioka and I. Yaakov, Supersymmetric Rényi entropy, JHEP 10 (2013) 155
[arXiv:1306.2958] [INSPIRE].

[76] T. Nishioka, The gravity dual of supersymmetric Rényi entropy, JHEP 07 (2014) 061
[arXiv:1401.6764] [INSPIRE].

[77] X. Huang, S.-J. Rey and Y. Zhou, Three-dimensional SCFT on conic space as hologram of
charged topological black hole, JHEP 03 (2014) 127 [arXiv:1401.5421] [INSPIRE].

– 36 –

https://doi.org/10.1007/JHEP01(2013)053
https://arxiv.org/abs/1207.2679
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.2679
https://doi.org/10.1007/JHEP09(2012)048
https://doi.org/10.1007/JHEP09(2012)048
https://arxiv.org/abs/1207.3014
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.3014
https://doi.org/10.1103/PhysRevD.76.126007
https://arxiv.org/abs/0707.2315
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0707.2315
https://doi.org/10.1007/JHEP10(2019)251
https://arxiv.org/abs/1907.11027
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.11027
https://doi.org/10.1016/S0550-3213(98)00846-3
https://doi.org/10.1016/S0550-3213(98)00846-3
https://arxiv.org/abs/hep-th/9808097
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9808097
https://doi.org/10.1103/PhysRevD.59.064010
https://arxiv.org/abs/hep-th/9808177
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9808177
https://doi.org/10.1088/0264-9381/17/14/312
https://arxiv.org/abs/hep-th/0003071
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0003071
https://doi.org/10.1007/JHEP10(2019)252
https://arxiv.org/abs/1906.11249
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.11249
https://doi.org/10.1007/JHEP05(2018)116
https://arxiv.org/abs/1712.08861
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.08861
https://doi.org/10.1007/JHEP05(2014)032
https://arxiv.org/abs/1207.4359
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.4359
https://doi.org/10.1088/1126-6708/2009/09/052
https://arxiv.org/abs/0906.0359
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0906.0359
https://doi.org/10.1007/JHEP08(2012)034
https://arxiv.org/abs/0904.2715
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0904.2715
https://doi.org/10.1103/PhysRevLett.121.171603
https://arxiv.org/abs/1806.08374
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.08374
https://doi.org/10.1007/JHEP11(2019)072
https://arxiv.org/abs/1909.01369
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.01369
https://doi.org/10.1016/j.nuclphysb.2012.07.019
https://arxiv.org/abs/1110.6400
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.6400
https://doi.org/10.1016/j.nuclphysb.2012.08.015
https://arxiv.org/abs/1111.6930
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.6930
https://doi.org/10.1007/JHEP10(2013)155
https://arxiv.org/abs/1306.2958
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.2958
https://doi.org/10.1007/JHEP07(2014)061
https://arxiv.org/abs/1401.6764
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.6764
https://doi.org/10.1007/JHEP03(2014)127
https://arxiv.org/abs/1401.5421
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.5421


J
H
E
P
0
2
(
2
0
2
1
)
1
7
7

[78] S.L. Cacciatori, D. Klemm, D.S. Mansi and E. Zorzan, All timelike supersymmetric
solutions of N = 2, D = 4 gauged supergravity coupled to Abelian vector multiplets, JHEP
05 (2008) 097 [arXiv:0804.0009] [INSPIRE].

[79] P. Meessen and T. Ortín, Supersymmetric solutions to gauged N = 2, d = 4 SUGRA: the
full timelike shebang, Nucl. Phys. B 863 (2012) 65 [arXiv:1204.0493] [INSPIRE].

[80] S. Chimento, D. Klemm and N. Petri, Supersymmetric black holes and attractors in gauged
supergravity with hypermultiplets, JHEP 06 (2015) 150 [arXiv:1503.09055] [INSPIRE].

[81] N. Halmagyi, M. Petrini and A. Zaffaroni, BPS black holes in AdS4 from M-theory, JHEP
08 (2013) 124 [arXiv:1305.0730] [INSPIRE].

[82] A. Amariti and C. Toldo, Betti multiplets, flows across dimensions and c-extremization,
JHEP 07 (2017) 040 [arXiv:1610.08858] [INSPIRE].

[83] F. Benini, H. Khachatryan and P. Milan, Black hole entropy in massive type IIA, Class.
Quant. Grav. 35 (2018) 035004 [arXiv:1707.06886] [INSPIRE].

[84] N. Bobev, V.S. Min and K. Pilch, Mass-deformed ABJM and black holes in AdS4, JHEP 03
(2018) 050 [arXiv:1801.03135] [INSPIRE].

[85] F. Benini, E. Colombo, S. Soltani, A. Zaffaroni and Z. Zhang, Superconformal indices at
large N and the entropy of AdS5 × SE5 black holes, Class. Quant. Grav. 37 (2020) 215021
[arXiv:2005.12308] [INSPIRE].

[86] S.M. Hosseini, K. Hristov and A. Zaffaroni, Microstates of rotating AdS5 strings, JHEP 11
(2019) 090 [arXiv:1909.08000] [INSPIRE].

[87] G. Bossard and S. Katmadas, Duality covariant multi-centre black hole systems, JHEP 08
(2013) 007 [arXiv:1304.6582] [INSPIRE].

[88] S.M. Hosseini, K. Hristov and A. Zaffaroni, Gluing gravitational blocks for AdS black holes,
JHEP 12 (2019) 168 [arXiv:1909.10550] [INSPIRE].

[89] N. Bobev and P.M. Crichigno, Universal spinning black holes and theories of class R, JHEP
12 (2019) 054 [arXiv:1909.05873] [INSPIRE].

[90] S. Choi, C. Hwang, S. Kim and J. Nahmgoong, Entropy functions of BPS black holes in
AdS4 and AdS6, J. Korean Phys. Soc. 76 (2020) 101 [arXiv:1811.02158] [INSPIRE].

[91] D. Cassani and L. Papini, The BPS limit of rotating AdS black hole thermodynamics, JHEP
09 (2019) 079 [arXiv:1906.10148] [INSPIRE].

[92] A. Passias, D. Prins and A. Tomasiello, A massive class of N = 2 AdS4 IIA solutions,
JHEP 10 (2018) 071 [arXiv:1805.03661] [INSPIRE].

[93] A. Passias, G. Solard and A. Tomasiello, N = 2 supersymmetric AdS4 solutions of type IIB
supergravity, JHEP 04 (2018) 005 [arXiv:1709.09669] [INSPIRE].

[94] C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Romans supergravity from
five-dimensional holograms, JHEP 05 (2018) 039 [arXiv:1712.10313] [INSPIRE].

[95] M. Fluder, S.M. Hosseini and C.F. Uhlemann, Black hole microstate counting in type IIB
from 5d SCFTs, JHEP 05 (2019) 134 [arXiv:1902.05074] [INSPIRE].

[96] L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from
four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219]
[INSPIRE].

– 37 –

https://doi.org/10.1088/1126-6708/2008/05/097
https://doi.org/10.1088/1126-6708/2008/05/097
https://arxiv.org/abs/0804.0009
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0804.0009
https://doi.org/10.1016/j.nuclphysb.2012.05.023
https://arxiv.org/abs/1204.0493
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1204.0493
https://doi.org/10.1007/JHEP06(2015)150
https://arxiv.org/abs/1503.09055
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.09055
https://doi.org/10.1007/JHEP08(2013)124
https://doi.org/10.1007/JHEP08(2013)124
https://arxiv.org/abs/1305.0730
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.0730
https://doi.org/10.1007/JHEP07(2017)040
https://arxiv.org/abs/1610.08858
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.08858
https://doi.org/10.1088/1361-6382/aa9f5b
https://doi.org/10.1088/1361-6382/aa9f5b
https://arxiv.org/abs/1707.06886
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.06886
https://doi.org/10.1007/JHEP03(2018)050
https://doi.org/10.1007/JHEP03(2018)050
https://arxiv.org/abs/1801.03135
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.03135
https://doi.org/10.1088/1361-6382/abb39b
https://arxiv.org/abs/2005.12308
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.12308
https://doi.org/10.1007/JHEP11(2019)090
https://doi.org/10.1007/JHEP11(2019)090
https://arxiv.org/abs/1909.08000
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.08000
https://doi.org/10.1007/JHEP08(2013)007
https://doi.org/10.1007/JHEP08(2013)007
https://arxiv.org/abs/1304.6582
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.6582
https://doi.org/10.1007/JHEP12(2019)168
https://arxiv.org/abs/1909.10550
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.10550
https://doi.org/10.1007/JHEP12(2019)054
https://doi.org/10.1007/JHEP12(2019)054
https://arxiv.org/abs/1909.05873
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.05873
https://doi.org/10.3938/jkps.76.101
https://arxiv.org/abs/1811.02158
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.02158
https://doi.org/10.1007/JHEP09(2019)079
https://doi.org/10.1007/JHEP09(2019)079
https://arxiv.org/abs/1906.10148
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.10148
https://doi.org/10.1007/JHEP10(2018)071
https://arxiv.org/abs/1805.03661
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.03661
https://doi.org/10.1007/JHEP04(2018)005
https://arxiv.org/abs/1709.09669
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.09669
https://doi.org/10.1007/JHEP05(2018)039
https://arxiv.org/abs/1712.10313
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.10313
https://doi.org/10.1007/JHEP05(2019)134
https://arxiv.org/abs/1902.05074
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.05074
https://doi.org/10.1007/s11005-010-0369-5
https://arxiv.org/abs/0906.3219
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0906.3219


J
H
E
P
0
2
(
2
0
2
1
)
1
7
7

[97] D. Gang, N. Kim and S. Lee, Holography of wrapped M5-branes and Chern-Simons theory,
Phys. Lett. B 733 (2014) 316 [arXiv:1401.3595] [INSPIRE].

[98] A. Donos, J.P. Gauntlett, N. Kim and O. Varela, Wrapped M5-branes, consistent
truncations and AdS/CMT, JHEP 12 (2010) 003 [arXiv:1009.3805] [INSPIRE].

[99] O. Hohm and H. Samtleben, Exceptional form of D = 11 supergravity, Phys. Rev. Lett. 111
(2013) 231601 [arXiv:1308.1673] [INSPIRE].

[100] E. Malek and H. Samtleben, Kaluza-Klein spectrometry for supergravity, Phys. Rev. Lett.
124 (2020) 101601 [arXiv:1911.12640] [INSPIRE].

[101] E. Malek and H. Samtleben, Kaluza-Klein spectrometry from exceptional field theory, Phys.
Rev. D 102 (2020) 106016 [arXiv:2009.03347] [INSPIRE].

[102] O. Varela, Super-Chern-Simons spectra from exceptional field theory, arXiv:2010.09743
[INSPIRE].

[103] D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems, and the WKB
approximation, arXiv:0907.3987 [INSPIRE].

[104] D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories,
JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].

[105] I. Bah, A. Passias and A. Tomasiello, AdS5 compactifications with punctures in massive IIA
supergravity, JHEP 11 (2017) 050 [arXiv:1704.07389] [INSPIRE].

[106] N. Bobev, P. Bomans and F.F. Gautason, Wrapped branes and punctured horizons, JHEP
06 (2020) 011 [arXiv:1912.04779] [INSPIRE].

[107] E. Bergshoeff, M. de Roo and B. de Wit, Extended conformal supergravity, Nucl. Phys. B
182 (1981) 173 [INSPIRE].

[108] B. de Wit, S. Katmadas and M. van Zalk, New supersymmetric higher-derivative couplings:
full N = 2 superspace does not count!, JHEP 01 (2011) 007 [arXiv:1010.2150] [INSPIRE].

[109] D. Butter, B. de Wit, S.M. Kuzenko and I. Lodato, New higher-derivative invariants in
N = 2 supergravity and the Gauss-Bonnet term, JHEP 12 (2013) 062 [arXiv:1307.6546]
[INSPIRE].

[110] N. Bobev, A.M. Charles, K. Hristov and V. Reys, The unreasonable effectiveness of
higher-derivative supergravity in AdS4 holography, Phys. Rev. Lett. 125 (2020) 131601
[arXiv:2006.09390] [INSPIRE].

– 38 –

https://doi.org/10.1016/j.physletb.2014.04.051
https://arxiv.org/abs/1401.3595
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.3595
https://doi.org/10.1007/JHEP12(2010)003
https://arxiv.org/abs/1009.3805
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1009.3805
https://doi.org/10.1103/PhysRevLett.111.231601
https://doi.org/10.1103/PhysRevLett.111.231601
https://arxiv.org/abs/1308.1673
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.1673
https://doi.org/10.1103/PhysRevLett.124.101601
https://doi.org/10.1103/PhysRevLett.124.101601
https://arxiv.org/abs/1911.12640
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.12640
https://doi.org/10.1103/PhysRevD.102.106016
https://doi.org/10.1103/PhysRevD.102.106016
https://arxiv.org/abs/2009.03347
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.03347
https://arxiv.org/abs/2010.09743
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.09743
https://arxiv.org/abs/0907.3987
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0907.3987
https://doi.org/10.1007/JHEP10(2012)189
https://arxiv.org/abs/0904.4466
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0904.4466
https://doi.org/10.1007/JHEP11(2017)050
https://arxiv.org/abs/1704.07389
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.07389
https://doi.org/10.1007/JHEP06(2020)011
https://doi.org/10.1007/JHEP06(2020)011
https://arxiv.org/abs/1912.04779
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.04779
https://doi.org/10.1016/0550-3213(81)90465-X
https://doi.org/10.1016/0550-3213(81)90465-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB182%2C173%22
https://doi.org/10.1007/JHEP01(2011)007
https://arxiv.org/abs/1010.2150
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1010.2150
https://doi.org/10.1007/JHEP12(2013)062
https://arxiv.org/abs/1307.6546
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.6546
https://doi.org/10.1103/PhysRevLett.125.131601
https://arxiv.org/abs/2006.09390
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.09390

	Introduction
	Main results

	6d F(4) supergravity on Sigma(g)
	Matter coupled F(4) gauged supergravity
	The truncation ansatz
	Effective 4d theory

	4d N = 2 supergravity structure
	The duality frame conundrum
	Final dualization and scalar mapping

	Consistent subtruncations in 4d
	T**3 model
	Minimal gauged supergravity

	Universal AdS(4) solutions
	The S**3 free energy

	Black hole solutions
	Static magnetic black holes of [1]
	General static dyonic black holes
	Rotating black holes in the T**3 limit
	Twisted black holes in AdS
	Kerr-Newman black holes in AdS

	Universal Kerr-Newman-AdS black holes

	Gravitational blocks and black hole microstates
	Twisted black holes
	Kerr-Newman-AdS black holes

	Discussion and outlook

