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ABSTRACT
Two-body relaxation may drive stars onto near-radial orbits around a massive black hole, resulting

in a tidal disruption event (TDE). In some circumstances, stars are unlikely to undergo a single
terminal disruption, but rather to have a sequence of many grazing encounters with the black hole.
It has long been unclear what is the physical outcome of this sequence: each of these encounters can
only liberate a small amount of stellar mass, but may significantly alter the orbit of the star. We
study the phenomenon of repeating partial tidal disruptions (pTDEs) by building a semi-analytical
model that accounts for mass loss and tidal excitation. In the empty loss cone regime, where two-body
relaxation is weak, we estimate the number of consecutive partial disruptions that a star can undergo,
on average, before being significantly affected by two-body encounters. We find that in this empty loss
cone regime, a star will be destroyed in a sequence of weak pTDEs, possibly explaining the tension
between the low observed TDE rate and its higher theoretical estimates.

1. INTRODUCTION

A massive black hole (MBH) can reveal itself and in-
crease its mass via a so-called stellar tidal disruption
event (TDE, Hills 1975; Rees 1988; Phinney 1989; Evans
& Kochanek 1989). A TDE occurs when a star gets too
close to the MBH so that the MBH tidal shear overcomes
the star self-gravity, resulting in the disruption and ac-
cretion of the star by the MBH (e.g. Rees 1988; Lodato
et al. 2009). Such events produce extremely bright elec-
tromagnetic flare observable up to cosmological distances
(Bloom et al. 2011; Cenko et al. 2012; Leloudas et al.
2016). In particular, they can probe the dynamical prop-
erties of the galactic nuclei in which they are generated
(see e.g. the recent reviews by Stone et al. 2020; Wevers
& Ryu 2023). The most ubiquitous and likely dominant
mechanism able to generate a TDE is stellar two-body
relaxation: repeated two-body interactions among stars
slowly affect the orbital properties of an unlucky star that
as a consequence may get too close to the MBH and find
itself destroyed. Theoretical works focusing on this as-
pect typically assess the occurrence rate of TDEs given
the properties of the MBH and host environment (e.g.
Syer & Ulmer 1999; Magorrian et al. 1998; Wang & Mer-
ritt 2004); the growing body of TDE observations (now
of the order of ∼ 100, Gezari 2021) has sparked growing
interest in assessing TDE rates and has recently allowed
comparisons between theoretically predicted TDE rates
and observationally measured ones. In particular, re-
cent comparisons between theoretical (Stone & Metzger
2016; Stone et al. 2020) and observational (van Velzen
2018; Sazonov et al. 2021; Lin et al. 2022; Yao et al.
2023) TDE rate estimates suggest that current detec-
tion rates are a factor of a few to an order of magnitude
lower than empirically-calibrated predictions from clas-
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sical loss cone theory (though see also Roth et al. 2021;
Polkas et al. 2023; Teboul et al. 2024). This problem may
become worse considering the over-representation of ob-
served TDEs in rare post-starburst host galaxies (French
et al. 2016; French et al. 2020), pushing down the intrin-
sic TDE rate in “normal” galaxies.

Theoretical TDE rate calculations usually start from
a kinetic theory treatment of the statistical evolution
of stellar systems (Chandrasekhar 1942). Idealising the
stellar distribution as a statistical continuum, one finds
that a conical region in velocity space, the “loss cone,” is
where TDEs occur, and the rate of TDEs is set by the
rate of stellar diffusion into this loss cone (Frank & Rees
1976; Lightman & Shapiro 1977; Shapiro & Marchant
1978; Cohn & Kulsrud 1978). This theory relies on the
assumption that the disruption of a star happens as soon
as the pericentre of its orbit is smaller than

rTDE = R⋆

(
M•

m⋆

)1/3

(1)

known as the tidal disruption radius1. Here m⋆ and R⋆

respectively represent the stellar mass and radius, while
M• is the MBH mass.

In standard loss cone theory, rTDE is typically assumed
to be the threshold separation below which the total dis-
ruption of the star occurs, while stars approaching with
larger pericentres are assumed to remain unperturbed.
However, reality is more complex: the star can either be

1 A similar approach is also applied to the formation of extreme
mass ratio inspirals (EMRIs; Hils & Bender 1995), which occur
when compact objects are captured by MBHs through gravita-
tional wave emission (Hopman & Alexander 2005; Merritt 2013;
Broggi et al. 2022). The EMRI loss cone is not as simple as the
classical TDE loss cone, however, because of the slow evolution of
EMRI orbits over many pericentre passages; in this way, detailed
treatments of EMRI dynamics prefigure the aim of this paper.
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fully destroyed at a pericentre closer than rTDE, or, if
passing by at larger separations, only some outer layers
of the envelope may be "peeled off" the star and accreted
by the MBH, while a stellar remnant survives the inter-
action, giving rise to a partial disruption (e.g. Mainetti
et al. 2017; Ryu et al. 2020c). Such partial disruptions
can repeat if the orbit of the star is not dramatically
affected by either the partial disruption process itself
or by subsequent two-body scatterings over the course
of the next orbit. A number of recent works have ad-
dressed the expected emission and accretion features as-
sociated with the partial disruption of a single star ap-
proaching the MBH (Guillochon & Ramirez-Ruiz 2013;
Coughlin & Nixon 2019; Miles et al. 2020), and a growing
body of literature is reporting observational candidates
for partial disruptions, which manifest themselves as re-
peating events over timescales of ∼ 0.3 − 3 yrs (Payne
et al. 2021; Wevers et al. 2023; Liu et al. 2023a,b; Malyali
et al. 2023b,a; Somalwar et al. 2023). There are a num-
ber of hypotheses about the origins of stars on extremely
bound orbits, including the tidal break up of stellar bina-
ries (Cufari et al. 2022), the migration of stars through
a gaseous disk during the last AGN episode (Metzger
et al. 2022), or two-body relaxation in super massive
black holes binaries (Melchor et al. 2024). However, the
theoretical modeling of the event rates associated to par-
tial TDEs is still in its infancy (Stone et al. 2020; Krolik
et al. 2020; Chen & Shen 2021; Zhong et al. 2022; Bor-
tolas et al. 2023).

In a recent work, Bortolas et al. (2023) explore for
the first time the rate of both partial and total TDEs
by extending standard loss cone theory to include par-
tial TDEs, with critical pericentres determined from fully
relativistic hydrodynamics simulations involving realistic
main sequence stars (Ryu et al. 2020a,b,d). In particu-
lar, they show that it is possible to relate the rate of
total disruptions with the rate of (repeated) partial dis-
ruptions that are expected to occur in nuclear clusters;
partial disruptions were found to exceed the rate of to-
tal disruptions by a factor of ten or more, especially if
the stellar system was dominated by the empty loss cone
regime (see definition in Sec. 2.2 below). In Bortolas
et al. (2023), the loss cone radius was assumed to be the
one at which partial disruptions start to occur, instead
of the commonly assumed full disruption radius rTDE.
However, this first work did not take into account the fact
that when a star undergoes multiple partial disruptions,
its specific energy can vary owing to the mass stripping it
experiences at pericentre, as well as tidal excitation that
can be converted into orbital energy.

In this work we present a simple effective model for
repeated partial disruptions accounting for the energy
changes the star may experience at each pericentre; we
estimate the number of repeated partial disruptions stars
can experience and their final fate. Furthermore, we as-
sess whether the classical loss cone theory remains valid
when also considering partial disruptions and, if this is
the case, how it could be adapted to properly capture
this phenomenon.

The paper is organised as follows: in Section 2 we
present the physical phenomena included in our model of
partial disruptions, and we summarise the key hypothe-
ses and results of classical loss cone theory as presented
in Cohn & Kulsrud (1978); in Section 3 we present the re-

sults of some simulations that show the effect of repeated
disruptions on orbits unaffected by relaxation; finally, in
Section 4 we summarise our results and discuss their im-
plications. In Appendix A we show the results of our
simulations when accounting for additional effects.

2. PARTIAL DISRUPTIONS AND LOSS CONE THEORY

Here we build a simple model of partial disruptions to
identify and characterise the key features of the process:
the change in stellar mass and specific binding energy.
We start by describing how the mass loss experienced by
partial disruptions can affect their subsequent orbits.

2.1. Partial Disruptions
We consider a star of mass m⋆ and radius R⋆ undergo-

ing a partial disruption around a MBH of mass M•. The
star is originally on an orbit with specific energy E and
specific angular momentum J ; in our notation, the orbit
is bound when E > 0. Since we expect no significant den-
sity of stars inside rTDE, the local potential is Keplerian
and the pericentre of the orbit for J2 ≪ G2 M2

•/(2E) –
as we expect for a tidal disruption – is

rp =
J2

2GM•
. (2)

When the star approaches the central MBH on an orbit
with rp ∼ rTDE, it loses part of its mass and the strong
tidal forces can make its structure oscillate. These two
effects generally alter the orbit of the remnant (if it sur-
vives the first pericentre passage) as follows.

The process of partial disruption around an MBH
strongly affects the specific orbital energy E of the sub-
ject star, while its angular momentum change is signifi-
cantly smaller. The orbit of the surviving stellar core is
modified by the receipt of a core kick produced by asym-
metric mass loss in the envelope; this asymmetry creates
a “rocket effect” altering the orbital elements of the core
(Manukian et al. 2013). This is in agreement with what
found by Ryu et al. (2020c) through hydrodynamical sim-
ulations and is consistent with theoretical expectations
(see e.g. Ivanov & Novikov 2001). At the order of mag-
nitude level, the magnitude of the kick imparted to the
surviving core, δvml, can be written as a fraction ϵ of the
typical velocity at the pericentre vp ≃

√
2GM•/rp, we

therefore have

|δEml|
E

≃ ϵ
4 a

rp

|δJml|
J

≃ ϵ (3)

where a ≃ GM• / 2E is the semimajor axis of the orbit.
Since we focus on very eccentric orbits, a ≫ rp and the
relative change in angular momentum is negligible with
respect to the relative change in energy. In addition to
the effect of core kicks, a close pericentre passage induces
tidal oscillations at the expenses of orbital kinetic energy
and orbital angular momentum. Assuming that the os-
cillations have specific energy |δEtid| = κE Gm⋆/R⋆ and
specific angular momentum |δJtid| = κJ

√
Gm⋆ R⋆ (with

κE ∼ κJ ≲ 1), it follows that for a star on an orbit with
rp ∼ rTDE

|δEtid|
E

≃ κE

(
m⋆

M•

)2/3
2 a

rp

|δJtid|
J

≃ κJ

(
m⋆

M•

)2/3

.

(4)
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Fig. 1.— Fraction of mass M(r) enclosed in a radius r for model
A (m⋆ = 1M⊙, R⋆ = 1R⊙, blue) and model B (m⋆ = 0.3M⊙,
R⋆ = 0.38R⊙, orange). The distance from the centre is expressed
in units of the stellar radius of the star. For each stellar model
we show the polytropic model (solid line) and the MESA profile
(dashed line) evolved for half its main-sequence lifetime. Model A
stars show a more concentrated profile compared to model B stars.
Consequently, the same mass loss fraction will produce stronger
tidal oscillations for model B (we mark with a dashed line the 3%
mass loss reference).

showing that the relative change in orbital angular mo-
mentum coming from tidal oscillations may be neglected
for the very eccentric orbits we are considering.

The mass lost in the process of a partial disruption
depends on the orbital parameters (in particular on the
pericentre distance), and on the internal structure of the
star. We will consider two reference cases:

• Model A: a star with mass mA = 1M⊙ and
radius R⋆ = 1R⊙, n = 3.0, rTDE = 3.6 · 10−6 pc.

• Model B: a star with mass mB = 0.3M⊙ and
radius 0.38R⊙, n = 1.5, rTDE = 2.0 · 10−6 pc.

where we report the index n of the polytropic model that
better agrees with the equilibrium MESA profile (Paxton
et al. 2010) for the two cases.

In the case of model A, we estimate the mass loss as
a function of the pericentre through the fitting formulae
obtained by Ryu et al. (2020a,b,c) for stars on nearly
radial orbits (e ≳ 0.99)

δmA

m⋆
=

(
ηATTDE

rTDE

rp

)ζ

log10 ζ = 0.3 + 3.15× 10−8

(
log10

M•

1M⊙

)8.42

.

(5)

where ηATTDE is a form factor of order unity that de-
termines the pericentre ηTTDE rTDE corresponding to
δm = m⋆ (i.e. a total disruption). When considering
a model A star:

ηATTDE(M•) =

(
0.80 + 0.26

√
M•

106M⊙

)
×(

1.47 + exp (2.416)

1 + 2.34 exp (2.416)

)
.

(6)

In the case we are considering, M• = 4 × 106M⊙ and
ζ = 3.56, so that ηATTDE = 0.61.

In the case of model B, we rely on the simulations by
Guillochon & Ramirez-Ruiz (2013), that simulated stars
with polytropic index n = 1.5. Here the mass loss is
given by2

δmB

m
= exp

(
3.1647− 6.3777β + 3.1797β2

1.− 3.4137β + 2.4616β2

)
(7)

for β = rTDE/rp > 0.5. We extrapolate this function at
larger pericentre values (i.e. smaller βs) as

δmB

m
= exp

(
A+B lnβ + C ln2 β

)
β < 0.5

A = −68.9227 B = −232.6214 C = −209.6639
(8)

that is a smooth extrapolation of the main solution up to
the second derivative in the log-log space. Although the
simulations of Guillochon & Ramirez-Ruiz (2013) were
Newtonian, this is an acceptable approximation for par-
tial disruptions around lower-mass MBHs such as our
case. The value of the pericentre such that δm/m = 1
corresponds to ηBTTDE = 1.11.

The change in orbital energy due to the ejection of
material can be crudely estimated from the asymmetry
in the tidal field as (Stone et al. 2013; Metzger et al.
2022, Eq. 32)

δES
ml ≃ −GM•

rTDE

(
R⋆

rTDE

)2
∆m

m−∆m
. (9)

The aforementioned equation assumes a pericentre close
to the tidal disruption radius rTDE. A more accurate
extension to larger pericentres that agrees with hydro-
dynamical simulations of a star undergoing a partial dis-
ruption around an intermediate MBH is simply obtained
by replacing rTDE with the pericentre of the orbit (Kre-
mer et al. 2022; Kıroğlu et al. 2023)

δEK
ml ≃ −GM•

rp

(
R⋆

rp

)2
∆m

m−∆m
. (10)

An alternative estimate, obtained not from physical rea-
soning but rather from fitting rational functions to sim-
ulations of a star being destroyed by an MBH has been
obtained by Gafton et al. (2015)

δEG
ml ≃ −Gm⋆

R⋆

[
1−

(
1− δm

m⋆

)2
]1.765(

1− δm

m

)−0.393

.

(11)
The two prescriptions differ more when δm is large,

while they are comparable (within a factor of 3) when
δm → 0; in Fig. 2 they can be compared directly.

As we already mentioned, tidal forces may also alter
the stellar structure, inducing oscillations of the star by
converting part of its orbital kinetic energy into the me-
chanical energy of stellar normal modes. This process,
known as tidal excitation (or the “dynamical tide”), in-
creases the orbital binding energy in competition with
the effects of mass loss. The specific binding energy

2 The expression of δm/m matches the accurate version pre-
sented in the erratum (Eq. A9).
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converted into oscillations can be written as (Press &
Teukolsky 1977)

δEtid =
GM2

•
m⋆ R⋆

(
R⋆

rp

)6

T (β) (12)

where T (β) is a dimensionless function that depends on
the details of the stellar structure. If the star is already
oscillating, whether tidal deformation injects or subtracts
energy to the stellar orbit depends on the phase of the
ongoing oscillation (Lai 1997), but Eq. 12 still gives the
approximate amplitude of the perturbation. Assuming
that the oscillations are weak, one can treat them in the
linear regime, and the function T (β) can be expanded,
giving

δElin
tid =

GM2
•

m⋆ R⋆

(
R⋆

rp

)6
[
T2(β) +

(
R⋆

rp

)2

T3(β) + . . .

]
(13)

where T2, T3 are the lowest order terms (quadrupolar and
octupolar, respectively) in the linear expansion of the
star’s response to the tidal field (Lee & Ostriker 1986).
Although these functions involve complicated integrals
over the internal structure of the star, we employ the
analytic fitting functions of Portegies Zwart & Meinen
(1993, Eq. 7 and Tab.1, with η ≃ β−3/2 since m⋆ ≪ M•),
which are accurate for the polytropic models we use.

When mass loss becomes significant and oscillations
are strong, the linear regime becomes inadequate; one
must instead solve directly the hydrodynamics of the os-
cillations. While this is most accurately done with hydro-
dynamical simulations (Manukian et al. 2013), the tidal
coupling driving nonlinear oscillations can be approxi-
mated reasonably well with the “extended affine model”
of Ivanov & Novikov (2001), a generalisation of the clas-
sical affine model for tidally disrupting stars (Luminet &
Carter 1986)3. In the case of some polytrope models, an-
alytic fits of the extended affine model’s predictions for
nonlinear T (β) have been presented in Generozov et al.
(2018, Eq. B1 and B2, η ≃ β−3/2). In Fig. 2 we show
the competing effects of mass loss and tidal excitation
as a function of the pericentre distance for both models.
Since stars described by model A are more centrally con-
centrated with respect to stars of model B – see Fig. 1 –
tidal excitation is of greater relative importance in model
B (n = 1.5).

The asymptotic trend at large rp is different fro the
two models: model A stars always decrease their orbital
binding energy, because of the dominant effect of asym-
metric mass loss. In contrast, model B stars can in-
crease or decrease their orbital binding energy, because
of the dominant effect of tidal excitation. The energy
changes presented here allow us to infer whether a star
can undergo multiple partial disruptions, and whether it
becomes more or less bound at each passage.

3 The affine model approximates the interior of a star subject
to strong tidal perturbations as a set of concentric (but not nec-
essarily co-aligned; Ivanov & Novikov 2001) ellipsoidal shells with
time-evolving axis ratios. In this sense, it can be understood as a
nonlinear theory of the quadrupolar tide, neglecting higher-order
terms.

2.2. Two-body relaxation and loss cone theory
The dynamical evolution and relaxation of a nuclear

cluster due to two-body encounters is simply and ac-
curately described by the orbit-averaged Fokker-Planck
equation (Cohn & Kulsrud 1978). By directly computing
the expected stochastic variations of a test star’s orbital
parameters, it can be shown that relaxation in squared
angular momentum (normalised to the value J2

c at the
circular orbit of energy E) R ≡ J2/J2

c is more efficient
than relaxation in E for eccentric orbits. One can iden-
tify two time scales (Merritt 2013):

• Tr(E) ∝ σ3(a)/ρ(a) is the typical relaxation time
for the energy of a particle with semi major
axis a, where σ(a) and ρ(a) are the velocity
dispersion and the density of the stellar distri-
bution at a distance a from the centre, respectively.

• ∆trlx ≃ RTr is the typical relaxation time for the
angular momentum of the particle.

Since 0 < R < 1, nearly radial orbits (where stars about
to be destroyed are typically located) relax much faster
in angular momentum, effectively decoupling the relax-
ation processes in R and E for small R. This fact has
been exploited by Cohn & Kulsrud (1978) to derive a
suitable boundary layer solution for the orbit-averaged
Fokker-Planck equation in (E,R) and to consistently in-
clude loss cone effects in the equation. Moreover, they
derived the expected relaxed distribution of R among
all the particles with energy E, including those that will
end up in a tidal disruption. We will briefly describe this
derivation, in order to highlight the underlying assump-
tions.

Since rp is small compared to the scale radius of the
stellar distribution, the value of RTDE (the dimensionless
angular momentum corresponding to rp = rTDE) is very
small for most of the stars in the distribution. Therefore,
one typically assumes that the energy is constant and
E can be treated as a parameter. The orbit-averaged
Fokker-Planck equation for the phase space distribution
function f(E,R) reduces to

∂

∂t
f(E,R, t) =

∂

∂R

[
RD

∂

∂R
f(E,R, t)

]
(14)

where D = D(E) is the orbit averaged diffusion coef-
ficient, that for very eccentric orbits characterises the
effects of 2-body encounters (Merritt 2013)

P D = ⟨∆R⟩orb ≃ 1

2

⟨∆R2⟩orb
R

. (15)

Here P (E) is the orbital period (we neglect its weak de-
pendence on R coming from the stellar potential), while
⟨∆R⟩orb and ⟨∆R2⟩orb are the orbit-averaged expecta-
tion values of perturbations in R and R2, which depend
negligibly on the properties of the star being scattered.4
It is useful to quantify the strength of angular momen-

4 The advective terms are proportional to the mass of the body
being scattered, but they are increasingly negligible as R goes to
zero.
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Fig. 2.— Magnitudes of energy changes because of asymmetric mass loss (the “rocket effect”) and tidal excitation of oscillation modes
for the two stellar models we consider, as a function of the normalized pericentre distance. For each model, we compute the mass lost at
a given pericentre according to Eq. 5 (model A) or Eq. 7 (model B) and estimate the corresponding energy change according to Eq. 10
(dashed blue) or Eq. 11 (dashed orange). For a direct comparison, we also plot the magnitude of tidal oscillations according to the non
linear theory Eq. 12 (solid green) and the linear expansion (solid pink) Eq. 13. Asymptotically, at large rp, the energy change for model A
stars is dominated by mass loss, while for model B it is dominated by tidal excitation.

tum diffusion by defining:

q(E) =
⟨∆R⟩orb

R

∣∣∣∣
RTDE

=
P D

RTDE
. (16)

The quantity q is also known as the loss cone occupation
fraction or loss cone diffusivity, since the local strength
of stochastic kicks determines how many particles on an
orbit penetrating rTDE will actually reach the pericentre
without being scattered back onto a safe orbit. Conse-
quently, inside the loss cone, no particles with R < RTDE

are statistically expected when q ≪ 1 (since relaxation
needs more than one orbit to change significantly the
pericentre), while many particles are expected at any
time when q ≫ 1 (as their pericentre is likely to change
along the orbit due to 2-body encounters). The former
is usually referred to as the empty loss cone regime, the
latter as the full loss cone regime. The number of orbits
required for relaxation to affect the orbital parameters
will be a crucial point for our analysis of repeated par-
tial disruptions, since they can happen only if the orbital
parameters are negligibly altered by relaxation. Because
of the dependency on rTDE, the value of q in the two
models is related as

qB(E) = 1.8 qA(E) . (17)

A common assumption in literature is to employ a re-
duced equation to evolve a distribution function f(E)
that does not depend explicitly on R, and assumes the
steady state distribution of angular momentum at each
energy

f(E,R) = f0 ln
R
R0

; ln
R0

RTDE
= − 4

√
q2 + q4 (18)

to compute the rate of tidal disruptions at each energy.
The relation between R0 and RTDE is directly deter-
mined by the model of instantaneous tidal disruptions at
the pericentre. The rates are computed from the solution
f(E) of the 1D evolution in energy (Vasiliev 2017; Stone

et al. 2020)

f(E) = f0

∫ 1

RTDE

dR lnR/R0 (19)

as
dNTDE

dt
=

∫
dE 4π2 J2

c P D f0 (20)

where the pre-factor 4π2 J2
c P converts the distribution

function f into the differential distribution n(E) such
that the number of stars is given by

∫
dE n(E). As we

shall see, the model of a TDE as an instantaneous event
is directly related to the estimate of TDE event rates
through the computation of f0.

We summarise here the key assumptions made to de-
rive the relaxed profile in Cohn & Kulsrud (1978):

CK 1 A full, terminal disruption occurs at the pericentre
if and only if rp < rTDE.

CK 2 The energy fluctuation timescale is much longer
than the angular momentum relaxation timescale.

We will now consider a prototypical system to compute
the strength of 2-body relaxation. The system is com-
posed of a central MBH with mass M• = 4×106M⊙ sur-
rounded by a distribution of stars (total number 8×107,
individual mass 1M⊙) and stellar black holes (total num-
ber 8 × 104, individual mass 10M⊙) both following a
Dehnen profile (Dehnen 1993; Tremaine et al. 1994) with
scale radius of 8.8 pc and inner slope 1.5, as in Broggi
et al. (2022). This system has an influence radius 5 of
rinf ≃ 2.2 pc and the velocity dispersion at the influ-
ence radius corresponds to σinf = 88 km/s, computed
according to the M − σ by Gültekin et al. (2009). This
system is used to compute the quantity |∆R|orb. The
loss cone diffusivity q = q(E) for the initially isotropic

5 There are multiple definitions of influence radius in literature.
In this work we define rinf = GM•/σ2

inf , where σinf is the local
velocity dispersion.
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Fig. 3.— The value of the loss cone diffusivity q as a function of
energy (in units of the velocity dispersion at the influence radius) in
a system with a central massive black hole of mass M• = 4×106M⊙
and for a sun-like star. The stellar distribution is composed of Solar
mass stars and stellar mass black holes, both following a Dehnen
profile with inner slope ρ ∝ r−1.5. We show the curve q(E) both for
the initial conditions (blue) and after 10 Gyr of relaxation (orange).
The upper axis shows the radius of the circular orbit at energy
E. The details of the underlying distributions of stars are in the
text. We mark with vertical dotted lines from left to right: in
blue, the energy corresponding to a circular orbit at the influence
radius; in orange, the energy where the flux entering the loss cone
is maximised; and in green, the energy where q = 1.

distribution and for the final profile (at 10 Gyr) in this
system is shown in Fig. 3. The net effect of mass segre-
gation, which pushes stars to lower E and stellar black
holes (sBHs) towards higher E, is to increase q for or-
bits with a ≃ rc(E) ≲ 10−1 pc. In fact, in this region
m⋆ ρ⋆ ≤ msBH ρsBH and therefore stellar mass black holes
dominate two-body relaxation rates. In the rest of this
work, we use the estimate of q from the relaxed profile
at 10 Gyr.

In Fig. 4 we show the predictions of our semi-analytical
model for partial disruptions of a non-oscillating star.
We consider both model A and model B stars; dif-
ferent values of the initial energy E0 corresponding to
q = {0.1, 1.0, 10.0}; different prescriptions for energy
change in the core kick (Eqs. 10 and 11); and different
models for tidal excitation (linear and non-linear).

Irrespective of the specific models used for the compu-
tation of energy changes (i.e. tidal excitation and mass
loss), there is a qualitative difference between the partial
disruption of stars in the two stellar models driven by
the different internal structure. The structure of model
B requires deeper penetration of the orbit (smaller rp)
for the star to lose mass, so that the function δm/m goes
to zero at large pericentres faster than to stars described
by model A. Moreover, model B corresponds to a larger
energy stored into oscillations, with tidal oscillations be-
ing dominant at large rp. On the other hand, partial
disruptions of model A stars are dominated by the ef-
fects of mass loss at larger pericentres. In general, the
linear expansion seems to perform well compared to non-
linear estimates when mass loss is below approximately
5%. While in the case of model A Eq. 11 predicts a larger
energy increase with respect to Eq. 10, the opposite is
true in the case of model B given the larger pericentres
involved in units of rTDE.

To overview the full energy range, in Fig. 5 we show the
qualitative effect of single passages pf a non-oscillating
star at the pericentre as a function of the initial energy
E and angular momentum J for model A and model B;
we also report the radius rc of a circular orbit at energy
E for better interpretation. Here, we use the combina-
tion of energy change given by Eq. 11 and non-linear
tidal excitations of Eq. 12. We plot the contours that
correspond to ∆E/E = −100%, |∆E/E| = 10% and
δm/m < 1%, and define some (arbitrary) thresholds to
classify the possible outcomes:

• Negligible change in the orbit, negligible
change in the mass. We define this to hap-
pen when |∆E|/E < 10% and |δm|/m < 1% (dark
blue).

• Significant change in the orbit, negligible
change in the mass. This happens when 10% <
|∆E|/E < 100% and |δm|/m < 1% (blue). This
only happens in model B.

• Negligible change in the orbit, significant
change in the mass. This happens when
|∆E|/E < 10% and |δm|/m > 1% (aqua green).

• Significant change in the orbit, significant
change in the mass. This happens when 10% <
|∆E|/E < 100% and |δm|/m > 1% (green).

• Ejection of the remnant. This happens when
δE < −100% (yellow).

The level curves of model A are non-monotonic, and for
E ≲ 3σ2

inf there are two disconnected curves correspond-
ing to δE = −10%. This is consistent with the trend of
Efin/E0 shown in Fig. 4: for model A, this ratio has
a maximum (with Efin/E0 > 1) and a minimum (with
Efin/E0 < 1 ). The structure of the levels δE = ±10%,
moving from small to large pericentres, is the following:
(i) for any value of E0 there is a small value of rp such
that Efin = 0.9E0 and δE = −10%; (ii) if the maximum
of Efin is larger than 1.1E0, there are two values of rp
such that Efin = 1.1E0 and δE = +10%; (iii) whenever
the local minimum of Efin is below 0.9E0, there are other
two values of rp such that Efin = 0.9E0 and δE = −10%.
The level curves of model B have a simpler pattern, since
Efin/E0 only has a maximum with Efin/E0 > 1 and is
asymptotic from above to 1 at large rp. Therefore, the
structure of the levels δE = ±10%, moving from small to
large pericentres, is the following: (i) for any value of E0

there is a small value of rp such that Efin = 0.9E0 and
δE = −10%; (ii) if the maximum of Efin is larger than
1.1E0, there are two values of rp such that Efin = 1.1E0

and δE = +10%.
Overall, when δm < 1% model A stars have smaller

energy fluctuations, while the tidal excitation is strongly
relevant in model B for semimajor axis (estimated
through rc) comparable to the influence radius. On the
other hand, mass loss effects are dominant for model A
and the total energy change is positive (i.e, the resulting
orbit is more bound) only in an interval of values at small
pericentres. Close to rp/rTDE = ηTTDE, the energy fluc-
tuation steeply decreases and becomes negative, so that
the remnant is ejected in both models.



7

𝛿m
/m

10−2.0

10−1.5

10−1.0

10−0.5

100.0
Model A

5% 3% 1%

E f
in

0

5

10

15
rc = 0.23 pc, E0 = 13.1 𝜎inf

2 , q0 = 0.1

E f
in
/E

0

0.0

0.38

0.76

1.1

q(
E f

in
)

10−1

100

101

102

E f
in

0

2

4

6

8

rc = 0.79 pc, E0 = 7.95 𝜎inf
2 , q0 = 1.0

E f
in
/E

0

0.0

0.25

0.5

0.75

1.0

q(
E f

in
)

100

102

104

E f
in

0

2

4

rc = 4.4 pc, E0 = 3.59 𝜎inf
2 , q0 = 10.0

E f
in
/E

0

0.0

0.56

1.1

rp/rTDE

1.0 1.5 2.0 2.5

q(
E f

in
)

101

102

103

104

𝛿m
/m

10−3

10−2

10−1

100
Model B

5% 3% 1%

E f
in

0

5

10

15

20
rc = 0.17 pc, E0 = 15.0 𝜎inf

2 , q0 = 0.1

E f
in
/E

0

0.0

0.33

0.67

1.0

1.3

q(
E f

in
)

100

102

104

E f
in

0

5

10

rc = 0.57 pc, E0 = 8.98 𝜎inf
2 , q0 = 1.0

E f
in
/E

0

0.0

0.56

1.1

q(
E f

in
)

100

101

102

103

104

E f
in

0

2

4

6

8

rc = 2.6 pc, E0 = 4.82 𝜎inf
2 , q0 = 10.0

E f
in
/E

0

0.0

0.41

0.83

1.2

1.7

rp/rTDE

1.2 1.4 1.6 1.8 2.0

q(
E f

in
)

100

101

102

103

104

Kremer
Gafton

Kremer, lin
Gafton, lin

Fig. 4.— Summary of the effects of mass-loss and tidal excitation for a single passage of a partial disruption. Different sets of rows
represent stars with different initial energies, lying in the empty, intermediate, and full loss cone regimes. On the left, we consider model
A (m⋆ = 1M⊙, n = 3.0), and on the right, model B (m⋆ = 0.3M⊙, n = 1.5). In each column, we plot in the first row the relative mass
loss, as a function of the stellar pericentre divided by the tidal radius. Then we show three figures (corresponding to q0 = {0.1, 1.0, 10.0})
composed of two panels each. In the first panel we show the energy after the disruption Efin through its ratio to the initial energy E0
according to the model for core kicks from Eq. 10 (blue) and Eq. 11 (orange). For each core kick model, we consider both non-linear
prescriptions for tidal excitation (solid) and the linear regime (dashed). In the second panel of each figure we show the loss cone filling
factor for the final energy q(Efin). Note that q goes to infinity as Efin → 0, since the star gets unbound. In all plots we show vertical dashed
lines at the pericentres corresponding to {1%, 3%, 5%} mass stripping, and horizontal dashed lines corresponding to the initial energy E0
and the initial diffusivity q(E0). Due to the different stellar structures, δm(rp) has different trends at large rp for model A and model B.
We see that at large pericentres - where mass loss is small - stars described by model A receive small negative kicks and are moved to less
bound orbits, while stars described by model B are moved to slightly more bound orbits.
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3. REPEATED DISRUPTIONS AND 2-BODY RELAXATION

We will now try to assess the impact of single and
repeated disruptions, first considering the full loss cone
regime, where repeated disruptions are unlikely to occur,
and then the empty loss cone regime where repeated par-
tial disruptions are likely to take place. The key variable
we will introduce is the number of orbits needed by re-
laxation to significantly alter the pericentre

Nq ≃ R
⟨∆R⟩orb

=
1

q
(21)

so that a repeated partial disruption is likely to occur
when Nq ≳ 2.

3.1. Full loss cone regime
When q ≳ 1, relaxation acts on timescales shorter

than times between two partial disruption events. In this
regime, single passages grazing or entering the loss cone
radius will alter the orbital parameters once per period
P , while the timescale of relaxation in angular momen-
tum is P/q. This implies that only a small fraction of the
stars instantaneously moving on an orbit with pericen-
tre smaller than the tidal disruption radius will actually
manage to reach such a pericentre, but they are likely to
be scattered to a different (safe) orbit before reaching it.
As a consequence, the probability of having a pTDE and
staying on the same orbit to undergo a second disruption
is small, and virtually negligible since q grows quickly as
the orbital energy E decreases (see Fig. 3).

A fraction of partial disruptions of loosely bound stars
may result in the ejection of the remnant at a pericentre
larger than rTDE (see Fig. 5), and this may be compat-
ible with classical loss cone theory. In fact, since they
both imply an instantaneous removal of the subject star
from the distribution, ejections can be treated together
with total disruptions in the standard approach to the
loss cone, where particles are removed when they reach
a pericentre below the critical value rTDE. Therefore, by
identifying a suitable, larger threshold radius rLC > rTDE

that roughly distinguishes the region of ejections plus
total disruptions, classical loss cone theory may be sim-
ply adapted to provide a good description of the system.
Such a value of rLC weakly depends on energy, but this
does not affect the estimation of the corresponding Cohn-
Kulsrud solution.

3.2. Empty loss cone regime
In the empty loss cone regime q ≪ 1, and repeated

partial disruptions are expected. In fact, the empty loss
cone regime is defined as the region of phase space where
relaxation needs many orbits to alter significantly the
orbital parameters of an orbit with the critical pericentre
rTDE.

Since we are interested in understanding whether the
classical loss cone theory applies to partial disruptions,
we need to assess the cumulative effect of repeated par-
tial disruption on the orbits over the local relaxation
timescale, that operates in Nq orbits; furthermore, this
approach allows us to estimate how many passages a
star initially on a partial disruption orbit manages to
complete before either being ejected, surviving the inter-
action without escaping the system, or being fully dis-
rupted.

For each pericentre passage, we will consider the mass
lost according to Eq. (5) (model A) or Eq. (7) (model B)
and the two prescriptions for the corresponding decrease
in specific binding energy via core kicks, also including
the exchange of energy between stellar oscillations and
orbital motion according to Eq. (12). We remark that the
perturbation due to tidal excitation is positive-definite
(i.e. the orbit becomes more bound) only at the first
pericentre passage. At subsequent passages, tidal defor-
mation will inject or subtract energy to the stellar orbit
depending on the phase of the ongoing oscillation (in-
duced by the previous passage) when the star returns
to pericentre. To include this effect, we use Eq. 12 to
determine the amplitude of the energy exchanged but,
from the second pericentre passage onwards, we give it a
random sign at each passage.

For q = {0.1, 0.01, 0.001} and each stellar model we set
up three simulations with the following simple scheme.

1. We set the initial energy E0 corresponding to
the chosen value of q. We set the initial mass
to m⋆ and the initial angular momentum J0 ∈
[JTDE,

√
5 JTDE], where JTDE is the angular mo-

mentum of the orbit whose pericentre is rTDE.

2. We compute the pericentre rp and use Eq. (5) or
Eq. 7 to determine the mass lost at the pericentre
passage.

3. We use Eq. (10) or Eq. (11) and Eq. (12) to com-
pute the total energy variation

δE = δEml + ξ δEtid (22)

where ξ = 1 at the first pericentre passage, and
ξ = ±1 with equal probability at later passages.
We keep track of the total energy of the oscillations,
and we adjust δEtid to damp them completely when
their total energy would become negative.

4. We compute the new mass m⋆, the new tidal dis-
ruption radius rTDE, and the new energy E.

We repeat steps 2− 4 until

• total disruption (rp < rTDE for model A, rp <
ηBTTDE rTDE for model B),

• ejection (E < 0),

• survival (i.e. the star completes Nq orbits).

For each value of q we choose 80 equally spaced values
in ln J

ln Ji = x0 + i δ i = 0 . . . 79 (23)

with x0 = ln
√
10/160 and δ = ln

√
10/80, consistently

with step 1 above.
We treat R⋆ and ηTTDE as fixed parameters through-

out the evolution, since modelling the readjustment of
the star requires to directly solve the complex hydrody-
namic evolution of the stellar structure6. In Appendix

6 Since we are considering orbital periods of at most 104 yr,
much less than the Kelvin-Helmholtz timescale (∼ 1 − 100 Myr;
Kippenhahn & Weigert 1990), dramatic mass loss and energy in-
jection through the dissipation of nonlinear oscillation modes can
in principle seriously affect the internal structure of the star.
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Fig. 6.— Effects of repeated partial disruptions with initial pericentre rp (in units of rTDE) according to our simple step-by-step
evolution for q = 0.1 (upper figure), q = 0.01 (middle figure) and q = 0.001 (lower figure); the corresponding energy for our fiducial model
is also reported in units of σ2

inf and the orbital period P in years. The first column refers to model A stars, the second column to model
B stars. In the upper panel of each figure, we show the outcome of particles completing less than Nq = 1/q orbits, distinguishing between
total disruptions (rp < rTDE) and ejections (Efin < 0); we dub as survival the stars that complete Nq orbits. In the middle panel, we
report the ratio between the final and initial energy, showing the 90% line (blue) and the 110% line (orange) for reference. In the lower
panel, we show the fraction of completed orbits Norb/Nq . We mark with a vertical dashed line the threshold pericentre, i.e. the smallest
pericentre allowing the stars to complete Nq orbits. Model A stars show a reduced orbital energy as they start closer to the threshold
pericentre, meaning that they are less bound to the central MBH. On the other hand, model B stars show significant energy fluctuations
slightly biased towards less bound orbits when computing the effect of asymmetric mass loss according to Gafton et al. (2015).
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A we explore a non-fiducial scenario where the star can
inflate due to nonlinear tides. In this case, part of the
energy stored in oscillations is converted into internal
energy through an enlargement of the radius. Finally,
we remark that the procedure composed of steps 1 − 4
implies that the specific angular momentum is constant
throughout the repeated disruptions.

In Fig. 6 we show the results of our simulations by
reporting the outcome (survival, total disruption or ejec-
tion), the final energy and the number of repeating par-
tial disruption orbits for each simulation as a function
of its initial pericentre rp. For both models and for any
value of q, we see that repeating the partial disruption
process can lead to total disruption and, in a minority
of cases, to ejection at pericentres larger than rTDE and
ηTDE rTDE. The threshold radius (reported in units of
rTDE in each sub-figure) increases with Nq and therefore
decreases with q. There are, however, some significant
differences between the repeated partial disruption of a
star described by model A and one described by model
B.

In the case of model A, when a star is partially de-
stroyed and manages to survive Nq pericentre passages,
it gradually decreases its specific binding energy E, end-
ing up on orbits for which q is larger: particles slightly
above the threshold radius at qA(E0) equal to 0.1 or 0.01
will decrease E by ∼ 15% and ∼ 50% respectively. This
is consistent with the fact that asymptotically the total
energy fluctuation is dominated by the effects of mass
loss.

On the other hand, in the case of model B the star
may increase its energy up to ∼ 10% for the three values
of q we considered. This is consistent with the fact that
asymptotically the total energy fluctuation is dominated
by the effects of tidal excitation.

We highlight that, for the cases we considered, each
threshold pericentre between total disruption / ejection
and survival is consistent between the two models for
core kicks, and is such that the linear regime of tidal
oscillations is sufficiently accurate (see Fig. 4). Only be-
low the threshold pericentre the non-linear description of
tidal oscillations must be taken into account.

In Fig. 7 we show the trajectories at the threshold peri-
centre for both models. The plot shows that model A
corresponds to a gradual decrease of E, while model B
corresponds to fluctuations of E because of tidal excita-
tion. By construction, the angular momentum of the star
is conserved along the evolution, so that the pericentre
is constant too: rp is recomputed at each step with the
updated energy, but the fluctuations are at most of one
part in 105 for these orbits. Therefore, the key change
in the process is the enlargement of rTDE due to mass
loss, so that within a small number of orbits (compared
to Nq) the mass is fast depleted up to the total disrup-
tion (upper panel). The energy of the star, on the other
hand, shows an evolution that depends on the stellar
model and the particular pericentre, and for q = 0.01
and q = 0.001 clearly follows the expectation based on
the large rp/rTDE trend.

4. DISCUSSION AND CONCLUSIONS

We presented a simple semi-analytical model of par-
tial disruptions for two stellar models, one for main se-
quence stars with mass 1M⊙ and the other for main

sequence stars with mass 0.3M⊙. The prescriptions in-
cluded in our semi-analytical models are based on the
results of hydrodynamical simulations and semi-analytic
modeling (Ryu et al. 2020a,b,c,d; Guillochon & Ramirez-
Ruiz 2013; Gafton et al. 2015; Kremer et al. 2022; Stone
et al. 2013; Ivanov & Novikov 2001). To properly study
the phenomenon in the empty loss cone regime, where re-
laxation needs more than one orbit to change the orbital
parameters, we accounted for the possibility of repeating
partial disruptions. We will now discuss the implications
of our model for the inclusion of partial disruptions in
the loss cone theory, and the computation of their event
rate.

4.1. Partial disruptions and loss cone theory
In the theory of the loss cone, one can use a Monte

Carlo or a Fokker Planck approach to study the evolu-
tion of the distribution function of a stellar system (Cohn
& Kulsrud 1978; Shapiro & Marchant 1978). These stud-
ies show that particles enter the critical radius of the loss
cone once are driven there by the stochastic encounters;
in particular they typically start with a pericentre larger
than the critical value and are then driven on orbits pen-
etrating the critical sphere.

In the full loss cone regime, particles approaching the
loss cone boundary can be scattered at any pericentre
value (Merritt 2013), so that all possible outcomes (i.e.
partial disruption with orbital and mass change, ejection
or total disruption) can occur. Neglecting the change
in energy and mass, one can apply the classical loss cone
theory - based on the instantaneous disruption model - to
account for both ejections and disruptions. The standard
treatment should be applied with the replacement of the
tidal disruption radius rTDE with the largest pericentre
where ejections appear (as a function of energy). The
critical pericentre corresponding to ejections is generally
larger than rTDE, as can be seen in Fig. 5.

In the empty loss cone regime, the stellar model plays
an important role. For stars of 1M⊙ (i.e. star model A),
our model predicts that for q ≃ 0.01 (and larger values up
to q ∼ 1) stars approaching the loss cone in phase space
by gradually reducing their pericentre due to 2-body in-
teractions will likely reduce their specific binding energy
significantly (more than 10%). Consequently, stars will
move to a region where q is larger - where they can be
scattered away from the loss cone, or being disrupted /
ejected at an energy different from the initial one. Only
at very small q, as in the case of q = 0.001, the energy
change is so small that the particle will likely proceed to-
wards total disruption through a sequence of very small
partial disruption events. The classical picture based on
instantaneous disruption cannot be therefore adapted,
as we proposed for the full loss cone regime. Here, the
phenomenon of partial disruptions will effectively alter
the energy of the particles approaching the loss cone, in-
validating the assumption CK2, i.e. the fact that the
(stochastic) relaxation of R can determine the expected
relaxed profile in phase space.

Stars described by model B, on the other hand, show
a difference: the specific binding energy is subject to
significant fluctuations, as these compact stars are more
susceptible to tidal excitation. The orbital energy can
change by more than 10% as the star approaches the
loss cone boundary, with a bias towards tighter config-
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Fig. 7.— Energy, mass and pericentre in units of rTDE for the orbits corresponding to the threshold values highlighted in Fig. 6. As q
decreases, the mass of the star before the (final) total disruption decreases, possibly resulting in less energetic events.

urations when considering Kremer’s estimate for mass
loss (Eq. 10). This means that the star may be moved
to regions where q is smaller and two-body interactions
less efficient. This process is somehow similar to that
of extreme mass ratio inspirals (EMRIs), a phenomenon
where a compact object approaches the central MBH
so close that its evolution is deterministically driven
by GWs emission over hundreds of thousand of orbits
(Amaro-Seoane 2018). In this case, the role of the emis-
sion of GWs at each pericentre passage would be replaced
by a small mass loss and consequent tidal excitation.
The total event rate of EMRIs (but not the distribu-
tion at capture) is computed by integrating the classi-
cally expected rate – with the loss cone radius equal to
the innermost parabolic orbit – over the region where
one expects EMRIs to be formed (Hopman & Alexander
2005; Bar-Or & Alexander 2016). For stars of model B, a
tentative approach to compute the total number of stars
undergoing a partial disruption may be therefore to inte-
grate the classical rate over the phase-space region where
Nq ≳ 2. However, the information about the number of
repeated partial disruptions that each of these stars un-
dergoes must be inserted with a more detailed model.

As we mentioned at the beginning of this section, relax-
ation in the empty loss cone regime mainly drives parti-
cles from larger to smaller angular momenta/pericentres.
This means that stars will gradually approach the crit-
ical thresholds identified in Fig. 6 from right to left in
the plots, effectively resulting in a sequence of weak par-
tial disruptions as shown in Fig. 7. As q decreases, the
mass lost at each pericentre passage is smaller, and there-
fore the resulting electromagnetic flare is expected to be
weaker (Stone et al. 2020; Rossi et al. 2021).

4.2. Implications for TDE rates
Currently available estimates of time-evolving TDE

rates rely on the assumption that the relaxed profile in
angular momentum of stars is described by the CK so-
lution, either in the whole range of R, as in 1D Fokker
Planck approaches (e.g. Vasiliev 2017; Stone & Metzger
2016) or as the boundary condition at the loss cone in-
terface for 2D models (e.g. Broggi et al. 2022). It is of
primary interest to understand how these results should
be interpreted when relaxing the hypothesis of instanta-
neous disruption.

The efficiency of two-body relaxation in altering the or-
bital parameters when q ≳ 1 implies that the classically
computed rates are reliable in this regime, and should be
computed with a loss cone radius slightly larger than
ηTTDE rTDE accounting for the possibility of ejections
due to mass loss (rALC ≃ 0.8 rTDE and rBLC ≃ 1.2 rTDE

for the models we considered). Among the events com-
puted this way, one should identify the pericentres re-
sulting into observable events, as discussed in Bortolas
et al. (2023).

The case of partial disruptions in the empty loss cone
regime instead requires a more careful treatment. In
the most extreme case we considered, q = 0.001, stars
with pericentres up to rp ≃ 4.5 rTDE for model A and
rp ≃ 2.05 for model B will be affected by the presence
of the loss cone. The trend emerging from our analy-
sis is that at smaller value of q, therefore higher specific
binding energy, the critical value of the pericentre, up to
which orbits result in pTDEs, will increase due to the
larger number of orbits allowed. This will correspond
to a larger rate of partial disruptions, possibly repeat-
ing. Moreover, both models predict a significant change
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of the specific binding energy for particles as they ap-
proach the identified total disruption zone, with higher
values of q corresponding to stronger alterations. In the
case of model A stars, part of the classically predicted
rate will therefore result in failed disruptions, since par-
ticles will be moved to higher q areas as the sequence
of weak partial disruptions takes place. On the other
hand, model B stars might increase their specific bind-
ing energy completing the sequence of weak disruptions.
In both cases, the inclusion of partial disruptions in
Fokker-Planck solvers requires a proper modelling of the
phenomenon accounting for modifications to the Cohn-
Kulsrud profile, see Eq. 18.

For all models, the inclusion of repeated partial disrup-
tions implies that a fraction of the classically expected
TDEs will actually correspond to a sequence of weak dis-
ruptions, that may be too weak to be detected (Rossi
et al. 2021; Stone et al. 2020), but can still contribute
to the growth of the MBH. The large number of con-
secutive desruptions with weak mass loss may result in
a sequence of bursts of gravitational waves, possibly in-
creasing the gravitational wave background from TDEs
(Toscani et al. 2020).

It has been estimated that most of the TDEs originates
in the empty loss cone regime, with a fraction approxi-
mately given by (Stone & Metzger 2016, Eq. 29)

fempty = 1− 0.22

(
M•

108 M⊙

)−0.307

(24)

corresponding to 70% of the total expected cosmological
rate. A qualitative result of our analysis is that part of
these classically expected events will correspond to non-
detectable pTDEs, therefore possibly reconciling the ob-
served discrepancy between observed and expected TDE
rates (Stone et al. 2020; van Velzen 2018), while main-
taining the possibility that stellar captures contribute to
the growth of MBHs.

4.3. Caveats
In the case of model A, we determined the mass lost

at the pericentre passage through Eq. 5. This equa-
tion has been derived for a MESA star with the core
hydrogen mass fraction of 0.5 (Ryu et al. 2020a) on a
parabolic orbit. On the other hand, the effect of tidal
excitation has been included through a prescription valid
for n = 3.0 polytropes. The MESA profile and the
polytropic model correspond to different tidal excita-
tion, with MESA model subject to stronger oscillations
as shown in Generozov et al. (2018) (the corresponding
function T (β) is larger by a factor of a few).

On the other hand, when considering model B, we used
the estimate for δm from the simulations by Guillochon
& Ramirez-Ruiz (2013). These do not account for rel-
ativistic effects, that are increasingly important as the
mass of the central MBH grows and the pericentre of the
orbit of partial disruption decreases.

Liu et al. (2024) simulated the partial disruption of dif-
ferent stars on orbits with eccentricity e ≃ 0.95 around
an MBH with mass M• = 105 M⊙. The simulations
include the disruption of a 1M⊙ star with radius 1R⊙
initially described by a MESA model (corresponding to
our model A stars). At small penetration factors, cor-
responding to weak mass loss, the simulated stars get

slightly more tightly bound to the central MBH, the op-
posite of our predictions, showing a trend similar to what
we expect for the less concentrated model B stars. In
addition to the inconsistency between the MESA pro-
file and the polytrope, this qualitative difference may
also arise from the specific orbital parameters. In fact
Eq.5 (the function relating the pericentre distance and
the mass lost at the pericentre passage) has been fit to
the simulation of disruptions on e ≳ 0.99 orbits (Ryu
et al. 2020a,b,c), and the tidal excitation prescription
similarly assume a parabolic orbit (Lee & Ostriker 1986;
Ivanov & Novikov 2001). In general, the time spent at
the pericentre increases as the eccentricity decreases, af-
fecting both asymmetric mass loss and tidal excitation.

A general assumption in our treatment of repeating
partial disruptions is that the stellar profile evolves self-
similarly - with the same radius and the same polytropic
index n. However, it is natural to expect that strong non-
linear excitation and significant mass loss will result in a
readjustment of the stellar profile and change, for exam-
ple, the best fitting polytropic index. In general, when
mass loss is extremely weak the outer layers of the star
may expand to locally compensate the stripping. More-
over, as tidal oscillations become stronger, it is possible
that part of the energy they store may thermalise and
trigger a readjustment of the stellar profile, possibly by
enlarging the radius of the star. In Appendix A we ex-
plore this possibility and show that this effect mainly
affects stars described by model B. In fact, being dom-
inated by tidal excitation effects at larger rp, model B
stars can end up in a total disruption at slightly larger
pericentre compared to the reference scenario. Overall,
the qualitative picture we discussed seems generally in-
sensitive to stellar expansion, but we caution that our
model for this is approximate and the matter should be
investigated further with hydrodynamical simulations.

The model we built for partial disruptions holds only
on a range of MBH masses. Repeated disruptions at
small penetration factors may completely disrupt a star
as long as the motion of the central MBHs around the
centre of the system is negligible with respect to the or-
bital timescales, setting a lower bound to the mass of
the central MBH. On the other hand, the star can un-
dergo a disruption as long as it is not gravitationally
captured before the disruption, setting an upper bound
to the mass of the central black hole (M• ≲ 108M⊙ for
a sun-like star, the Hills mass). Finally, when the mass
of the central black hole is large, one should account for
general relativistic effects affecting the disruption process
(Coughlin & Nixon 2022) and the tidal excitation of the
surviving core (Ivanov et al. 2003).

Finally, we included relaxation in our model only by
setting the maximum number of pericentre passages that
a repeating pTDE can perform. However, a more com-
plete treatment should include discrete orbital fluctua-
tions (in energy and angular momentum), e.g. in a Monte
Carlo fashion (Shapiro & Marchant 1978). This will re-
sult, for example, in the possibility of interrupting the se-
quence of weak partial disruptions with a stronger event
even in the empty loss cone regime (Weissbein & Sari
2017).
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4.4. Summary and Conclusions
We have constructed a simple model for the partial

disruption of a star around a massive black hole. We es-
timated of the number of consecutive partial disruptions
that a star will undergo depending on the strength of
two-body encounters, and estimated the final outcome
of the sequence of disruptions as a function of the ini-
tial pericentre distance. We considered two stellar mod-
els of m⋆ = 1M⊙ and m⋆ = 0.3M⊙, taking these two
values as roughly representative of lower-main sequence
and upper-main sequence internal structures. We then
built a model for partial disruptions that accounts for
the effects of mass loss and tidal excitation of the stellar
structure. We built our model based on the results of hy-
drodynamical simulations (Ryu et al. 2020a,b,c,d; Guil-
lochon & Ramirez-Ruiz 2013; Gafton et al. 2015) and
previous theoretical studies (Kremer et al. 2022; Stone
et al. 2013; Ivanov & Novikov 2001). For each model we
studied the problem of single partial disruptions, arguing
that this is the relevant problem for loss cone orbits (rp
comparable to rTDE) with binding energy small enough
that two-body relaxation is efficient, i.e. in the full loss
cone regime. We then considered the phenomenon of
repeated partial disruptions, estimating the number of
passages as the inverse of the loss cone diffusivity q, as
in Eq. (21). Therefore, pTDEs are expected to occur in
the empty loss cone regime.

The main results of our work are summarised below:

• The phenomenon of ejections, that is caused by sig-
nificant mass loss in partial disruptions, may effec-
tively enlarge the loss cone radius by 20% compared
to ηTTDE rTDE.

• Partial disruptions may alter the orbital energy
without destroying the stars. For stars with m⋆ =
1M⊙, the energy change is driven by mass loss,
and weak pTDEs happening at pericentres larger
than ∼ 1.5 rTDE will result in a less tightly bound
remnant. For stars with m⋆ = 0.3M⊙, the en-
ergy change is driven by tidal oscillations, and
weak pTDEs happening at pericentres larger than
∼ 1.6 rTDE will result in a more tightly bound rem-
nant at the first pericentre passage.

• Stars in the empty loss cone are kicked by two-body
relaxation towards orbits with smaller pericentres.
Regardless of the stellar model, they are likely be-
ing consumed by a sequence of weak pTDEs. Only
for 1M⊙ stars we find the possibility of being scat-
tered onto a total TDE or away from the loss cone

because of significant energy fluctuations when q is
small (≲ 10−2 − 10−3).

• TDEs originating in the empty loss cone may cor-
respond to unobservable events. Since 70 % of the
TDEs are expected to originate in the empty loss
cone regime, accounting for repeating pTDEs may
reconcile expectations and observations of the total
observed TDE rate.

We conclude by noting that our results strongly depend
on the interplay of mass loss effects and tidal excitation.
The simulation of a star being repeatedly disrupted by a
MBH is currently too computationally expensive, since
one needs to describe the hydrodynamical structure of
the star including self gravity. The large computational
cost is primarily due to the need of following a star along
its nearly-radial orbit. However, a better understanding
of repeating pTDEs offers a promising tentative solution
for the tension between observational TDE rates and the-
oretical estimates.
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APPENDIX

A. EXPANSION DUE TO TIDAL OSCILLATIONS

We report here a set of simulations that allow for the conversion of energy stored in oscillations into internal energy of
the star. This is implemented through an expansion of the star, computed between step 3 and step 4 of the procedure
outlined in 3.2. This is expected to happen only when the oscillations of the stellar structure are strongly non-linear.
To estimate when this happens, we compare the total energy stored in oscillations with the internal energy of the star.
For a polytrope model with index n (Chandrasekhar 1957)

ϵint = − 3

5− n

Gm2
⋆

R⋆
. (A1)
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Fig. 8.— Same as 7 but with the inclusion of the conversion of part of the oscillation energy ϵosc into internal energy of the star through
an enlargement of the stellar radius.

When ϵosc > 3% |ϵint| (an arbitrary threshold) we enlarge the stellar radius by a quantity

δR⋆ = R⋆
ϵosc
ϵint

(A2)

and update ϵosc consistently
δϵosc = −δϵint. (A3)

In Fig. 8 and 9 we report the orbits at the threshold value of rp and the overview of the outcomes at q = 0.1, q = 0.01
and q = 0.001.

Compared to the reference model presented in the text, partial disruptions will completely destroy stars up to larger
pericentre values. The effect is evident for model B stars, since they are strongly affected by tidal excitation at larger
rp. Qualitatively, the results of this simulations are consistent with the conclusions presented in the main text.
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Fig. 9.— Same as Fig. 6 but with the inclusion of the conversion of part of the oscillation energy ϵosc into internal energy of the star
through an enlargement of the stellar radius.
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