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Abstract
In rewriting P systems, that is P systems using structured strings instead of atomic symbols, rules can be applied in parallel 
on all strings, but a single rule at a time can be applied on each string. Nonetheless, parallel application of rules also on each 
string has been considered in various works. This leads to possible application of rules with conflicting target indications 
on the same string, and different strategies have been considered to face this problem; relations among different classes of 
languages generated in this way have been investigated in the literature. We continue the investigation on this subject, by 
highlighting some relations among different classes of maximally parallel rewriting P systems by means of direct simula-
tions. The advantages of such simulations are highlighted, by showing how theoretical results concerning one such type of 
systems can immediately be adapted to the corresponding simulating systems.

Keywords  Membrane computing · Parallel rewriting · Lindenmayer system · Matrix grammars · Chomsky grammars

1  Introduction

Membrane systems (or P systems) have been defined in [43] 
as a new computing model of a biochemical inspiration. In 
the basic model, several membranes are embedded, in a hier-
archical way, in an external membrane, that is called skin. 
The membranes define regions containing atomic objects 
which, in the basic variant, are represented using symbols 
from a finite alphabet. At each computation step, objects are 
processed in a maximally parallel way by means of rewriting 
rules; then, evolved objects are eventually communicated to 
inner or outer regions, according to some target indications 
associated with each rewriting rule [45].

Various research works related to P systems have 
appeared, concerning their computing power [20, 43] or the 
computing power of some variants with limited features, 
like in [3, 54]. Such systems have also been considered to 
study computational complexity aspects for a variant where 
membranes can be created by division [44], resembling the 
process of cell mitosis. These studies concern both time 
complexity aspects [30–34, 41, 49, 51] as well as space 

complexity [1, 2, 4, 47, 48, 50, 55, 58]. A recent survey on 
this subject can be found in [53].

Crossing of membrane systems with other kind of sys-
tems have also been proposed (see, e.g., population P sys-
tems [17] or water based computing [25]), as well as applica-
tion of Membrane systems to computational problems (we 
refer the reader to [12, 15, 18, 38, 40, 61] for some exam-
ples and details), or to more general problems (some recent 
examples can be found in [14, 21, 26, 27, 35, 46, 57, 60]).

The use of membrane systems to model different pro-
cesses has also been considered in many papers appeared 
in the literature. For example, an epidemiological model 
developed in the context of the fight against SARS-CoV-2 
has been presented in [5], while [23] models the vertical 
migration of zooplankton in shallow and deep water, just to 
cite some very recently appeared works.

In this work, we consider a variant of Membrane sys-
tems named Rewriting P systems [22, 36, 37, 43, 59] (or RP 
systems, for short): in such a variant, objects are described 
by finite strings over a finite alphabet. The rules allowing a 
string to evolve are context-free rewriting rules.

This variant has been investigated under different 
aspects. For instance, in [13] systems of this type where 
communication is controlled according to the contents 
of the strings are considered. More recently, the use of 
splicing rules in RP systems has been the subject of other 
works like [42], while systems using sets of pictures made 
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of symbols in a two dimensional lattice (array languages) 
have been considered in [16, 56]. In [39] authors consider 
the use the use of such systems applied to chain code pic-
ture generation.

In particular, we concentrate on the computational prop-
erties of maximally parallel RP systems, that is rewriting 
P systems where, as it happens for standard P systems, all 
strings evolve in parallel and all regions evolve in parallel 
but, moreover, at each computation step all rules that can be 
applied simultaneously to the same string must be applied. 
Other kinds of parallelism can also be considered: we recall 
some of them in the last section (to highlight some research 
topics on this subject). In this kind of systems, when con-
sidering parallel application of rules also on single strings, 
a problem arises: in fact, different rules applied on a single 
string in a single computing step can have different target 
membranes. In this case, it is not immediately clear in which 
region the resulting string must be communicated, and some 
strategies must then be considered.

Three main such strategies, considered in the literature, 
are the following: 

1.	 In Krishna–Rama Parallel Rewriting P systems (KRPRP 
systems) [29], when a conflict occurs the string is moved 
by choosing the region indicated by the target occurred 
exactly once among the applied rules (if any). In case 
more than one target has occurred once, then a nonde-
terministically choice occurs. If no target have occurred 
exactly once, then the string is blocked.

2.	 In P systems with deadlock [6, 7, 9], when different rules 
having different target indications are applied on a single 
string at the same time, a deadlock state is obtained: the 
string is blocked, and it will not be processed anymore 
by any other rules.

3.	 In P systems without target conflicts [8], the situation is 
avoided a priori: only set of rules with the same target 
indication can be applied at the same time on the same 
string.

Some partial results concerning the computing power of 
such systems have already been presented in the literature 
[6–9, 29], by comparing such systems with classic systems 
from the formal languages area of research.

In this work, we present various new results regarding the 
relationships between parallel rewriting P systems achieved 
through direct simulations. These simulations involve sys-
tems that employ different strategies to resolve conflicts. 
Specifically, we demonstrate:

•	 How to simulate a parallel RP system with Deadlock 
using a KRPRP system

•	 How to simulate a parallel RP system without target con-
flicts using a parallel RP system with Deadlock

Such direct simulations between systems having different 
features offer several advantages. Firstly, an advantage of 
employing direct simulations between systems lies in their 
potential practical implementations. For instance, if we were 
to implement these systems using a biological medium, cer-
tain operations that are theoretically feasible might become 
practically restricted, at least in an easy manner. By lever-
aging the simulation, one can design a computational sys-
tem based on a specific theoretical model and then translate 
it into another model for practical implementation, while 
taking into account the limitations imposed by the chosen 
implementation medium.

Another advantage concerns theoretical results pertain-
ing to properties of the simulated system can be directly 
applied to the simulating system, leveraging the relation-
ships between the two systems identified through the direct 
simulation. To illustrate this aspect, in particular, we pro-
vide results concerning the relationships between parallel 
rewriting P systems with deadlock and other systems such 
as Lindenmayer systems, Matrix grammars, and classical 
Chomsky grammars. We then report the corresponding 
results that can be obtained exploiting the direct simulation 
provided before using KRPRP systems. For instance, we 
prove that parallel rewriting P systems with deadlock using 
a single membrane are capable of generating all context-
free languages, including some non-context-free languages. 
By utilizing the outcome of the direct simulation, we can 
readily establish that the same languages can be generated 
by KRPRP systems using two membranes of depth one. 
Considering another example, we also recall a result from 
[11], stating that various classes of languages generated by 
different Lindenmayer systems can be generated by parallel 
rewriting P systems with deadlock using 4 membranes in a 
structure of depth three. An immediate consequence of the 
provided simulations is that these results (and, similarly, all 
results related to such systems) can be immediately trans-
lated to state that the same classes of languages can be gen-
erated by KRPRP systems using eight membranes arranged 
in a structure of depth four.

The rest of the paper is organized as follows. In Sect. 2 we 
recall main definitions used in the rest of the paper. In Sect. 3 
we describe relations among classes of parallel rewriting 
P systems using different ways of solving target conflicts, 
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by means of direct simulations between systems. In Sect. 4 
we provide some results considering specific languages to 
highlight some relations among parallel RP systems, Linden-
mayer systems, Matrix grammars, and Chomsky grammars. 
Finally, in Sect. 5 we draw some conclusions and describe 
some open problems related to this work.

2 � Maximally parallel rewriting P systems

In this section, we recall main definitions of P systems and 
of maximally parallel rewriting P systems.

A membrane structure � is obtained by embedding, 
in a hierarchical way, various membranes which are sur-
rounded by a unique membrane, that is called skin. A 
membrane structure can be described in various ways, 
for instance by a string of matching parentheses, where 
each pair identifies a specific membrane. another way of 
describing such a structure is by means of a tree graph; the 
height of this tree is called the depth of the corresponding 
membrane structure.

The membranes in a membrane structure identify regions, 
that is the space delimited by a membrane and by the mem-
branes that are immediately inside it. If a membrane does not 
contain other membranes inside, then it is called elementary.

By using symbols or strings over an alphabet V, we 
identify objects; in standard P systems, one usually con-
siders multisets of objects. In parallel rewriting P systems, 
the subject of this work, only strings are considered: in 
each region i = 0, 1,… , n of � we consider multisets 
of finite support over V. In other words, there is a map 
Mi ∶ V∗

→ N where Mi = {(x1,Mi(x1)),… , (xp,Mi(xp))} , for 
some xk ∈ V+ such that Mi(xk) > 0 ∀k = 1,… , p.

Evolution rules of the systems are context free rewrit-
ing rules of the following form: a → �(tar) , where 
a ∈ V , � ∈ V∗, and tar ∈ {here, out, in} denotes the target 
membrane. After the application of an evolution rule, the 
object can be sent to another membrane, according to the 
target indication: when tar = here , the object stays in the 
same region; when tar = out , the object is sent out from 
the region where the rule was applied; when tar = in , the 
object is sent to one (nondeterministically chosen) of the 
membranes that are immediately inside the actual region.

We can now formally define a parallel rewriting P system.

Definition 1  A parallel rewriting P system of degree n + 1 
is a construct

where: 

Π = (V , T ,�,M0,… ,Mn, (R0, �0),… , (Rn, �n)),

1.	 V denotes the alphabet of the system;
2.	 T ⊆ V  denotes the terminal alphabet;
3.	 � denotes a membrane structure, having n + 1 mem-

branes injectively labeled by means of numbers in 
{0, 1,… , n};

4.	 M0,… ,Mn are multisets over the alphabet V; they rep-
resent the strings initially present in the corresponding 
regions 0, 1,… , n;

5.	 R0,… ,Rn denotes finite sets of evolution rules associ-
ated with each region of � ; the rules are of the form 
a → �(tar) , where a ∈ V , � ∈ V∗, tar ∈ {here, out, in};

6.	 �0,… , �n are partial order relations over R0,… ,Rn.

A configuration of the system at a specific time step is 
defined by the multisets of objects associated with each 
region together with the membrane structure. The initial 
configuration is the ( n + 2)-tuple C0 = (�,M0,… ,Mn).

A transition from a configuration Ct = (�,Mt
0
,… ,Mt

n
) 

to a configuration Ct+1 = (�,Mt+1
0

,… ,Mt+1
n

) is obtained 
by applying the rules present in the regions, following the 
prescriptions of the specific parallel RP system.

A computation is a sequence of transitions. A computa-
tion halts when, in the current configuration, no rule can 
be further applied; in case at least one rule can be applied 
forever, then we have a non-halting computation.

In this work, we will consider extended RP systems: the 
output is the set of strings containing only symbols of the 
terminal alphabet T sent out of the system during a halting 
computation. If a string sent out from the system contains 
non-terminal symbols, then it does not contribute to the out-
put. If a computation never halts, then it produces no output.

2.1 � Krishna–Rama parallel P systems

In a Krishna–Rama parallel P system [28, 29], at each com-
putation step all rules in the system are applied in a nonde-
terministic and maximally parallel manner on all strings, in 
all the regions. Then, the obtained string is sent to the region 
that has occurred exactly once among all targets defined in 
the applied rules. In case different targets have occurred 
exactly once, one of them is chosen in a non deterministic 
way, and the string is sent to the corresponding region. If, 
on the contrary, no target has occurred exactly once, then 
the string is blocked and the computation freezes. Formal 
definitions concerning Krishna–Rama parallel P system can 
be found in [29]. In the same work, it is shown that extended 
parallel P systems of this type are computationally complete.

In the following, we will consider a slightly modified 
version of such systems, using generic target indications 
of the form {here, out, in} . In other words, instead of using 
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targets {inj} (allowing to send a string to a specific inner 
membrane with label j), the generic target indication {in} 
sends the string to an inner membrane non-deterministically 
chosen among all membranes immediately inside the 
membrane where the rule has been applied. It is easy to 
prove that the system obtained is equivalent to the original 
one.

In the following, we will denote the families of languages 
that are generated by (extended) Krishna–Rama systems 
(using maximal parallelism) by EKRPk

n
(M) , where n is the 

degree of the system and k is the depth of the membrane 
structure. If the number of membranes is not bounded 
a-priori, then we will replace the subscript n by ∗.

2.2 � Parallel rewriting P systems with deadlock

Also in a maximally parallel P system with deadlock [6], 
at each step all rules are applied in a nondeterministic and 
maximally parallel manner on all strings, in all the regions.

The difference between these systems and KRPRP sys-
tems lies in the action taken when rules with conflicting 
target indications are applied. When rules with conflicting 
targets are applied at the same time on a string, the system 
enters in a deadlock state. The string remains inside the 
membrane where conflicting rules have been applied, and 
it will not be processed anymore by any other rule. In the 
following we will consider deadlock state applied to single 
strings; this means that, when a string is deadlocked, the 
remaining strings (if any) can continue their computation 
within the system, and eventually can produce some outputs. 
In case all strings are deadlocked during the computation, 
then the system halts producing no output. It is also possible 
to consider systems that halt as soon as a single string is 
deadlocked: we refer the reader to [6] for details.

In P systems with deadlock, any sequence of transitions 
producing no deadlock or producing only some local dead-
lock configurations forms a computation. The non-dead-
locked strings (of terminal symbols) that exit the system are 
the output of the computation.

By EParRPk
n
(M,D) we will denote the family of languages 

generated by extended rewriting P systems of degree n and 
membrane structure of depth k, where M denotes the use 
of maximal parallel application of rules, and D denotes the 
possibility of having deadlocks. Again, when the number of 
membranes is not limited, we will substitute the subscript 
n by ∗.

2.3 � Parallel rewriting P systems without target 
conflicts

In a parallel P system without target conflicts [8, 10], only 
rules with the same target indication can be applied on a 

string at the same computation step, avoiding in this way the 
possibility of conflicting targets.

More formally, each set Ri of evolution rules of each 
region is divided into mutually disjoint subsets of rules, each 
subset having the same target indications: Ri(here),Ri(in), or 
Ri(out) . When we have to apply rules in parallel on a string 
in region i, we first non-deterministically select one target 
among {here, out, in} that have at least one applicable rule on 
the string with the selected target (assume, for instance, it is 
the target in); then, we apply in a maximally parallel way all 
rules from the subset having the selected target indication 
that can be applied on the string (in our example, all rules 
from the set Ri(in) ). Finally, the string is communicated 
according to the specific selected target.

By EMPRPk
n
 , we denote the family of languages generated 

by extended RP systems without target conflicts, having 
degree at most n and membrane structure depth k, using 
the maximal parallelism method in the way just described. 
When the number of membranes is not limited, the subscript 
n is replaced by ∗.

3 � Simulations of systems using different 
types of parallelism

It is known ( [11] that parallel P systems without target con-
flicts are strictly included in parallel P systems with Dead-
lock and, moreover, that these last systems are included in 
KR parallel P systems. Nonetheless, no direct simulations 
have been proposed so far. In this section, we thus propose 
such direct simulations between systems using different 
types of parallelism.

First of all, we propose a direct simulation of parallel 
P systems without target conflicts by means of parallel P 
systems with Deadlock. In the simulation we propose, the 
membrane structure of the simulating systems requires two 
levels more than the simulated one.

Theorem 1  EMPRPk
∗
⊆ EParRPk+2

∗
(M,D)

Proof  Consider a parallel P system without target conflicts 
Π . The parallel P system with Deadlock Π� simulating Π can 
be built as follows. Consider a generic membrane i of Π , 
and add inside it three membranes labeled by Outi , Ini , and 
Herei . Inside each of these added membranes, add a further 
membrane labeled by Out′

i
 , In′

i
 , and Here′

i
 , respectively. A 

summary of modifications of the structure of membrane i 
just discussed is presented in Fig. 1.

All rules with target Out in membrane i are then moved 
in membrane Out′

i
 , those with target In are moved in mem-

brane In′

i
 , and those with target Here are moved in membrane 



174	 C. Zandron 

1 3

Here
′

i
 , replacing in all of them the original target by the tar-

get Out. We also add rules T �

→ O(in) , O → O(out) , and 
T → L(out) in membrane Outi , rules T �

→ I(in) , I → I(out) , 
and T → L(out) in membrane Ini , and rules T �

→ H(in) , 
H → H(out) , and T → L(out) in membrane Herei . Finally 
we add to membrane i the rules T → T

�

(in) , T �

→ L(here) , 
O → T(out) , I → T(in) , and H → T(here).

A summary of required changes is presented in Table 1.
Each initial string w is then replaced by a string Tw (i.e. 

we add a symbol T to it). All symbols T , T ′

,O, I,H, L are 
special symbols not initially present. The symbol L (lock 
symbol) is a symbol that, once introduced in the string, is 
never removed (thus the string produces no output).

Consider now a string Tw in membrane i. The idea is to 
simulate a parallel application of rules without the possibil-
ity to have conflicts concerning their target indications and, 

as a consequence, without deadlocks. In order to do this, we 
send the string to one inner added membrane, containing 
only rules having the same target indication. The movement 
of the string is then managed by means of the symbol added 
to the string: T corresponds to choosing the target, replaced 
then by O (out), I (in), or H (here) to simulate the correct 
movement of the string to a target membrane.

Initially, the only applicable rule in membrane i is the rule 
T → T

�

(in) , which replaces T by T ′ and non-deterministically 
sends the string to an inner membrane. If such a membrane 
is a membrane j ≠ i originally already present inside mem-
brane i, then the rule T ′

→ L is applied, that introduces the 
loop symbol in the string (in fact, the string cannot reach 
such membranes without applying any original rules). If, 
on the contrary, the string reaches one of the added mem-
brane Outi , Ini , or Herei , then the simulation of all possible 
applicable rules having the same target indication is started. 
Assume, for instance, that the chosen membrane is Ini . The 
symbol T ′ is then replaced by I, and the string is sent to 
membrane In′

i
 . Here, all applicable rules to w are applied in 

parallel (and all of them have now target Out), together with 
the rule I → I(out) . The string is sent back to membrane 
Ini , where the only applicable rule is I → I(out) that sends 
the string back to membrane i. Having started from Tw we 
have now Iw′ , such that w′ has been obtained by w having 
applied in a maximal parallel way all rules with a target 
indication In.

In membrane i we can apply now only the rule I → T(in) , 
producing a string Tw′ that is then sent to an inner membrane 
(in the discussed case; otherwise, the string is sent to the 
membrane immediately outside - in case of target Out - or it 
stays in the same membrane - in case of target Here). Notice 
that if the string reaches again an added membrane Outi , Ini , 
or Herei when the symbol T is present (instead of T ′ ), then 
T is replaced by the loop symbol L, and then sent back to 
membrane i.

Fig. 1   Simulating a parallel P 
system without target conflicts 
by means of a parallel P system 
with deadlock

Table 1   Summary of modifications required

EMPRP EParRP

Rules with target (Out) Moved in added membrane Out′
i

Rules with target (In) Moved in added membrane In′

i

Rules with target (Here) Moved in added membrane Here′

i

Add in membrane Outi rules
T

�

→ O(in) , O → O(out) , and T → L(out)

Add in membrane Ini rules
T

�

→ I(in) , I → I(out) , and T → L(out)

Add in membrane Herei rules
T

�

→ H(in) , H → H(out) , and T → L(out)

Add in membrane i rules
T → T

�

(in) , T �

→ L(here) , O → T(out)

I → T(in) , and H → T(here)

Each initial string w Replaced by Tw
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We conclude the proof by highlighting the fact that small 
differences are needed for elementary membranes and for the 
skin membrane. For elementary membranes, no rules with 
target In are present, hence we do not need to add the sub-
membranes to manage this target, nor the rule I → T(in) . For 
the skin membrane, we simply need one small change: the 
rule O → T(out) is replaced by O → �(out) , which removes 
the symbol used to manage the movement of the string, and 
sends the string in the environment. If the string contains 
only terminal symbol, then it is a valid output.

It is easy to see that the computation produces the same 
results as the original parallel P system without target con-
flicts Π.

In order to explain the result, we consider now a simple 
example illustrating the simulation.

Example 1  Let us consider a maximally par-
a l l e l  P  s ys t e m  w i t h o u t  t a rge t  c o n f l i c t s 
Π = (V , T ,�,M0,… ,Mn, (R0, �0),… , (Rn, �n)) and a string 
ABCDEF inside a generic membrane i of Π . Moreover, let us 
assume that the rules in membrane i are the following:

•	 A → u(in)

•	 B → v(in)

•	 C → w(out)

•	 D → x(out)

•	 E → y(here)

•	 F → z(here)

In a P system without target conflicts, rules are applied in 
a maximally parallel way, but avoiding conflicting target 
indications. Thus, one possible way to apply the rules in 
our example is by non-deterministically choosing to apply 
the first two rules, thus obtaining the string uvCDEF, that 
is then sent to a membrane immediately inside membrane i; 
another possibility is to apply the third rule and the fourth 
rules, thus obtaining the string ABwxEF, that is then sent to 
the membrane immediately outside membrane i; finally, a 
further possibility is to apply the fifth rule and the sixth rule, 
obtaining the string ABCDyz, that remains in membrane i.

As explained above, the parallel P system with Deadlock 
Π

� simulating Π has, inside membrane i, three membranes 
labeled by Outi , Ini , and Herei . Inside each of these added 
membranes, there is a further membrane labeled by Out′

i
 , In′

i
 , 

and Here′

i
 , respectively. The rules with target in ( A → u(in) , 

B → v(in) ) are moved in membrane In′

i
 , those with target 

out ( C → w(out) , D → x(out) ) are moved in membrane Out′
i
 , 

and those with target here are moved in membrane Here′

i
 , 

replacing in all of them the original target by the target Out.
We also add rules T �

→ O(in) , O → O(out) , and 
T → L(out) in membrane Outi , rules T �

→ I(in) , I → I(out) , 

and T → L(out) in membrane Ini , and rules T �

→ H(in) , 
H → H(out) , and T → L(out) in membrane Herei . Finally 
we add to membrane i the rules T → T

�

(in) , T �

→ L(here) , 
O → T(out) , I → T(in) , and H → T(here) . The original 
string ABCDEF is replaced by the string TABCDEF.

The only applicable rule in membrane i is now the rule 
T → T

�

(in) , which produces the string T ′

ABCDEF , and then 
send it in an inner membrane, non-deterministically chosen 
among all membranes inside membrane i.

Let’s assume the string reaches membrane Outi . The 
symbol T ′ is thus replaced by O, and the string OABCDEF 
is sent to membrane Out′

i
 . Here, all applicable rules (that 

is, C → w(out) , and D → x(out) ) are applied in parallel, 
together with the rule O → O(out) . The obtained string 
OABwxEF is sent back to membrane Outi , where the only 
applicable rule is O → O(out) that sends the string back to 
membrane i. Here we finally apply the rule O → T(out) , thus 
obtaining TABwxEF which is sent to the membrane immedi-
ately outside membrane i. We started from TABCDEF and 
we correctly simulated the parallel application of the two 
rules having target (out), and then sent the obtained string 
to the membrane outside membrane i.

We now propose a direct simulation of maximal parallel P 
systems with Deadlock by means of Krishna-Rama maximal 
parallel P systems. In this case, the membrane structure of 
the simulating systems requires just one level more than the 
simulated one.

Theorem 2  EParRPk
n
(M,D) ⊆ EKRPk+1

2n
(M)

Proof  We recall that the difference between Krishna-Rama 
maximal parallel P systems and maximal parallel P systems 
with Deadlock is related to the management of conflicting 
target indications in the application of the rules in parallel. 
In fact, while in maximal parallel P systems with Deadlock a 
string is locked every time rules with different target indica-
tions are applied, in KR parallel P systems if a target indica-
tion is specified in exactly one rule among those applied, 
then it is used to denote the used target. We thus proceed 
with the simulation of parallel P systems with deadlock by 
using KR P systems in which we check the use of conflicting 
rules, even for the case with a single rule using a specific 
target indication.

Thus, consider a parallel P system with deadlock Π . The 
KR parallel P systems simulating Π can be built as follows. 
Consider a generic membrane i of Π , and add inside it a 
membrane labeled by Checki.

Every rule A → x(in) , B → y(out) , and C → z(here) in 
membrane i is moved to membrane Checki , and replaced 
by A → xII(out) ,  B → yOO(out) and C → zHH(out) , 
respectively. In membrane Checki we also add the rules 
T → L(here) and T �

→ �(out).
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In membrane i we add the rules T → T
�

(in) , I → T(in) , 
H → T(here) , O → T(out), and T �

→ L(here) . Each initial 
string w is replaced by a string TTw (i.e. we add two symbols 
T to it).

All symbols I,O,H, T , T
′

, L are special symbols not 
initially present.

A summary of required changes is presented in Table 2.
Consider a string TTw in membrane i. We apply the rule 

T → T
�

(in) : if the string reaches a membrane j originally 
present in membrane i, then the rule T �

→ L(here) is applied, 
which introduces the lock symbol in the string. If, on the 
contrary, the string reaches membrane Checki , then we apply 
modified rules originally present in membrane i. Every such 
rule introduces now two symbols, corresponding to the 
target indication. These two symbols are used to avoid the 
possibility that a single rule with a specific target indication 
can be applied on the string. In fact, consider an application 
of two conflicting rules, such that one of them is applied 
exactly once (e.g., assume that a rule with target (in) is 
applied exactly once and other rules with target (out) are 
applied at the same time). While in a parallel system with 
deadlock this would lead to a conflict, in the case of Krishna-
Rama systems this would not lead to a conflict: the target 
of the rule applied exactly once will be chosen as the target 
of the string.

Adding two copies of the same target allows to avoid this 
problem. In fact, the string is now sent back to membrane 
i, and it contains two copies of the symbols I, O,  and H for 
each applied rule with target In, Out,  and Here, respectively. 
At the same time, all symbols T ′ in the string are deleted.

If the string contains conflicting symbols (that is, at least 
two different symbols among I, H,  and O are present), then 
the computation is blocked in membrane i. In fact, at least 
two rules among I → T(in) , H → T(here) , and O → T(out), 
can be applied and, moreover, each rule is applied at least 
two times, since every target symbol is introduced in 
couples, as explained above.

If, on the contrary, only rules with a unique target indica-
tion were applied, then only copies of one symbol among 
I, O, and H are present when the string reaches membrane 

i. If the symbols in the string are I, then we apply the rule 
I → T(in) ; the string is sent to an inner membrane. If it is 
again membrane Checki , then T is replaced by L and the 
string is locked. If, instead the string reaches one of the 
membrane originally inside i, then the computation can 
continue, exploiting the symbols T just introduced.

If the string contains only symbols O, then they are 
replaced by T and the string is sent outside. Finally, if the 
string contains only symbols H, then they are replaced by 
T and the string remains in i, where it is ready to simulate 
another computation step.

As for the previous proof, we point out that for the skin 
membrane we simply need one small change: the rule 
O → T(out) is replaced by O → �(out) , which removes the 
symbol used to manage the movement of the string, and 
sends the string in the environment. If the string contains 
only terminal symbols, then it is a valid output.

It is easy to see that the computation produces the same 
results as the original parallel P system without target con-
flicts Π.

As for the previous case, we consider now a simple 
example illustrating the simulation.

Example 2  Let us consider a maximally parallel P system 
with deadlock Π = (V , T ,�,M0,… ,Mn, (R0, �0),… , (Rn, �n)) 
and a string ABCEF inside a generic membrane i of Π.

Moreover, let us assume that the rules in membrane i are 
the following:

•	 A → u(in)

•	 B → v(in)

•	 C → w(out)

•	 E → y(here)

•	 F → z(here)

We recall that in a KR parallel P system rules are applied 
in a maximally parallel way and, if a target indication is 
specified in exactly one rule among those applied, then it 
is used to select the used target.

Table 2   Summary of 
modifications required

Rules A → x(in) in membr. i Replaced by A → xII(out) in Check
i

Rules B → y(out) in membr. i Replaced by B → yOO(out) in Checki
Rules C → z(here) in membr. i Replaced by C → zHH(out) in Checki

Add T → L(here) , T �

→ �(out) to Checki
Add rules T → T

�

(in) , I → T(in) , H → T(here)

O → T(out), and T �

→ L(here) to membrane i
Each initial string w in i Replaced by TTw



177On maximal parallel application of rules in rewriting P systems﻿	

1 3

In the example above, while in P systems with deadlock 
we would have a conflict, that would result in a locked 
string, in KR systems the (unique) rule with the target out 
would select the target where the string is sent, allowing the 
computation to proceed.

In order to correctly simulate the parallel system with 
deadlock, we thus need to produce a KR P systems in which 
we check the use of conflicting rules, even for the case with 
a single rule using a specific target indication.

As explained above, the KR parallel P system simulat-
ing Π is built adding inside each membrane i a membrane 
labeled by Checki . Then, all rules in membrane i are moved 
to membrane Checki , with some added symbols:

•	 A → uII(out)

•	 B → vII(out)

•	 C → wOO(out)

•	 E → yHH(out)

•	 F → zHH(out)

In membrane Checki we have the rules T → L(here) and 
T

�

→ �(out) , while in membrane i we have the rules 
T → T

�

(in) , I → T(in) , H → T(here) , O → T(out), and 
T

�

→ L(here) . The original string ABCEF is replaced by the 
string TABCEF.

The only applicable rule in membrane i is now the rule 
T → T

�

(in) , which produces the string T ′

ABCEF , and then 
send it in an inner membrane, non-deterministically chosen 
among all membranes inside membrane i.

If it reaches one membrane originally present in membrane 
i, then the rule T �

→ L(here) is applied, thus producing the 
string LABCEF; since this string contains the lock symbol L it 
will not produce any output. Let’s assume, on the contrary, that 
the string reaches membrane Checki.Here, we apply all rules in 
parallel, thus obtaining the string uIIvIIwOOyHHzHH, that is 
then sent back to membrane i. In this membrane, each symbol 
I, O,  and H is replaced by T, thus obtaining the string uTTvT-
TwTTyTTzTT; since the rules replacing those symbols have 
conflicting target indications, the string is then locked, thus 
producing no output; as one can notice, this happens even if 
the original rule with target out is unique, since we introduced 
two symbols O in the string, to avoid this problem.

Of course, considering a combination of these two simula-
tions is possible: starting from a Parallel Rewriting P System 
without Target Conflicts, we first obtain an equivalent system 
using Deadlock, and then we simulate this one by means of 
a Krishna-Rama parallel system. A direct consequence of the 
previous two theorems is thus the following:

Corollary 1  EMPRPk
∗
⊆ EKRPk+3

∗
(M)

Regarding simulations in the opposite direction, the fol-
lowing points should be noted. Firstly, we recall that paral-
lel P systems without target conflicts are strictly included by 
parallel P systems with Deadlock. Therefore, it is not possible 
to simulate all systems in the opposite direction in this case.

In the case of P systems with Deadlock and KR parallel 
P systems, it remains uncertain whether a simulation in the 
opposite direction is always feasible. This uncertainty arises 
from the fact that we do not have conclusive information on 
whether the inclusion between these two classes is strict or 
not, as mentioned earlier in this section. Establishing a direct 
simulation of KR parallel P systems using P systems with 
Deadlock would also solve the open problem concerning 
their relationship.

4 � Further results: Lindenmayer systems, 
matrix grammars and Chomsky grammars

As we saw, it is known that EKRP systems are Turing 
equivalent. On the contrary, the exact computing power of 
maximal parallel P systems with Deadlock and of maximal 
parallel P systems without conflict target indications is not 
known. In this section, we present some (partial) results 
in this respect.

The goal of this section is twofold. On the one hand, 
we prove some specific results concerning comparison 
of RP systems (in particular, using a limited amount of 
membranes) with other classic computing models. On the 
other hand, we show how to exploit the results obtained 
in the previous section to extend the results obtained for 
one type of parallel RP systems to other types of parallel 
RP systems.

We start by recalling from [7] the definition of 
Lindenmayer systems. An ET0L system is a tuple 
G = (V , T ,w,P1,… ,Pm) , m ≥ 1 , where V is a finite alpha-
bet of symbols, T ⊆ V ,w ∈ V+ , and Pi, 1 ≤ i ≤ m , are finite 
sets (usually called tables) of context-free rules defined 
over the alphabet V; for each A ∈ V  there is at least one 
rule A → x in each set Pi (tables are complete).

In each computation step, all the symbols in the current 
sentential form are rewritten by means of one table. The 
l a n g u a ge  ge n e r a t e d  by  G  i s  d e n o t e d  by 
L(G) = {x ∈ T∗ ∣ w ⟹Pj1

w1 ⟹Pj2
⋯ ⟹Pjm

wm = x,m

≥ 0, 1 ≤ ji ≤ n, 1 ≤ i ≤ m}  . 
The following results concerning such systems are known: 
CF ⊂ ET0L ⊂ CS ; CF and CS denote, respectively, the 
families of context free languages and the families of con-
text sensitive languages. Details on L systems can be found 
in [52].

It is known [11] that ET0L systems are properly included 
in the class of languages generated by maximal parallel P 
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systems with Deadlock using at most four membranes. By 
considering the relations among classes of languages gener-
ated by Lindenmayer systems, we can state the following:

Theorem 3  ED0L ⊂ E0L ⊂ ET0L ⊂ EParRP3

4
(M,D)

EDT0L ⊂ ET0L ⊂ EParRP3

4
(M,D)

By exploiting this result and the result obtained in The-
orem 2 we have:

T h e o r e m   4   ED0L ⊂ E0L ⊂ ET0L ⊂ EParRP
3

4
(M,D) ⊆ EKRP

4

8
(M) 

EDT0L ⊂ ET0L ⊂ EParRP3

4
(M,D) ⊆ EKRP4

8
(M)

Proof  The result in Theorem 3 is obtained by using a system 
having four membranes organized so that the skin contains 
a single membrane, containing a single membrane, and so 
on. The corresponding membrane structure is of depth 3. 
Such systems can be simulated by Krishna-Rama Parallel 
P systems having twice the number of membranes of the 
original systems, and requiring a membrane structure having 
one added level of depth.

Considering context-free grammars in the Chomsky 
hierarchy, it is easy to see that they can be generated by 
maximal parallel P systems with Deadlock using a single 
membrane:

Theorem 5  CF ⊆ EParRP0

1
(M,D).

Proof  Consider a CF grammar G, and the axiom S. We can 
generate the same language generated by G by means of a 
maximal parallel P system with Deadlock Π (with a single 
membrane) as follows. Add the axiom S′ to Π . For every rule 
A → x in G add the rule A → x(here) in Π . Moreover, add 
the rules S�

→ S�(here) and S�

→ �(out).
Context free rules are applied (in parallel, but this is not 

an issue since no interactions among different non terminal 
symbols are possible) on the string in Π . At the same time, 
the rule S�

→ S�(here) is also applied. After some time, the 
rule S�

→ �(out) is applied. If the string still contains non-
terminal symbols, then also other rules with target Here are 
also applied, thus producing a deadlock. On the contrary, S′ 
is removed, and the terminal string is sent out, thus produc-
ing a valid output.

It is also possible to show that also some non-context 
free languages can be generated by maximal parallel P 
systems with Deadlock using a single membrane:

Theorem 6  L = {anbncn|n ≥ 0} ∈ EParRP0

1
(M,D)

Proof  Consider the system Π = (V , T , [0]0,M0 = {S},R0) . 
We  a d d  t o  R0  t h e  f o l l o w i n g  r u l e s : 
S → ABC,A → A′ ,B → B′ ,C → C′ ,

A′
→ Aa,B′

→ Bb,C′
→ Cc  all having target Here, plus 

the rules A → �(out),B → �(out),C → �(out).
Starting from the axiom S, we apply the rule 

S → ABC . Now, consider a generic string of the form 
AakBbkCck for some k ≥ 0 . If we apply in parallel rules 
A → A

′

,B → B
′

,C → C
′ , then we obtain A′

akB
′

bkC
′

ck , and 
we can only apply now the rules A′

→ Aa,B
′

→ Bb,C
′

→ Cc 
thus obtaining Aak+1Bbk+1Cck+1.

At some point (or even immediately, for the string ABC) 
we can apply the rules A → �(out),B → �(out),C → �(out) , 
producing the string ahbhch (for some h ≥ 0 ) which is then 
sent out, thus producing a valid string.

In case of parallel application of rules having on the left 
side the symbols A, B, C but with different target indications 
on the right (Here or Out), the string produces a deadlock, 
and no output is obtained.

As a consequence, context free languages are strictly 
included in the class of languages generated by maximally 
parallel rewriting P systems with deadlock using a single 
membrane. Considering the results obtained in the previ-
ous section, such systems can be simulated by Krishna-
Rama parallel systems by simply adding a membrane 
inside the unique membrane used to obtain the results just 
described. Thus, we can immediately state the following:

Theorem 7 CF ⊂ EParRP0

1
(M,D) CF ⊂ EKRP1

2
(M)

Other classes of formal languages that can be considered 
are those generated by Matrix grammars. A matrix grammar 
is a grammar G = (N, T , S,M,C) , where N, T denote finite 
disjoint alphabets of symbols, S ∈ N , M denotes a finite set 
of sequences of context-free rules over N ∪ T  (nonterminal 
and terminal alphabets) of the form (A1 → x1, ...,An → xn) , 
n ≥ 1 , where Ai ∈ N, xi ∈ (N ∪ T)∗ , while C is a set of rules 
in M.

The symbol S is called the axiom, and the elements of 
the set M are the matrices. For w, z ∈ (N ∪ T)∗ , we have 
w ⇒ z if and only if there is a matrix (A1 → x1, ...,An → xn) 
in M and the strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1 , such 
that w = w1, z = wn+1 , and, for all 1 ≤ i ≤ n , either 
wi = w

�

i
Aiw

��

i
,wi+1 = w

��

i
xiw

��

i
 , for some w�

i
,w

��

i
∈ (N ∪ T)∗ , 

or wi = w
i+1

,Ai does not appear in wi , and the rule Ai → xi 
appears in C (all the rules that are in a matrix must be 
applied following the order; it is only possible to skip the 
rules in the set C, in case they cannot be applied to the 
string; these rules are said to be applied in the appearance 



179On maximal parallel application of rules in rewriting P systems﻿	

1 3

checking mode.) If the set C is empty, then the matrix gram-
mar is without appearance checking.

We denote by L(G) = {w ∈ T∗|S ⇒
∗ w} the language 

generated by G, where the symbol ⇒∗ denotes the reflexive 
and transitive closure of the relation ⇒ . By MATac we denote 
the family of languages generated in this way, and by MAT 
the family generated by matrix systems without appearance 
checking. We refer the reader to [19] for further details on 
matrix grammars.

Relations between such classes and the class of languages 
generated by maximal parallel P systems with Deadlock are 
not known, but the following partial result can be shown, 
proving that maximal parallel P systems with Deadlock can 
generate languages not in the class MAT.

T h e o r e m   8   L = {a2
n

|n ≥ 0} ∈ EParRP0

1
(M,D) 

L = {a2
n

|n ≥ 0} ∈ EKRP1

2
(M)

Proof  It is known [24] that all the one-letter languages in 
MAT are regular.

Consider the system Π = (V , T , [0]0,M0 = {A},R0) . We 
add to R0 the following rules: A → AA(here),A → a(out).

Starting from A, if we apply in parallel on all symbols the 
rule A → AA(here) , then we duplicate them. After k steps, 
we have a string of the form A2k . If we then apply in parallel 
on all symbols the rule A → a(out) , we produce a correct 
output string. If, at some point, we apply the first rule to 
some symbols and the second rule to the remaining symbols, 
then a deadlock is obtained and no output is produced.

It is easy to see that the language generated by such a 
system is then L = {a2

n

|n ≥ 0}.
A s  f o r  t h e  p r e v i o u s  T h e o r e m , 

L = {a2
n

|n ≥ 0} ∈ EKRP1

2
(M) follows immediately from 

the result of the direct simulation obtained in the previous 
section.

A direct consequence of this result is that either the class 
MAT is strictly included in EParRP∗

∗
(M,D) or the two classes 

are incomparable, but this is still an open problem.

5 � Conclusions

In this work, we shortly recall definitions and results 
concerning maximally parallel rewriting P systems, and we 
illustrate relations among systems using different strategies 
to solve conflict problems, by means of direct simulations. 
In particular, we show how to simulate systems without 
target conflicts by means of systems with deadlock, and how 
to simulate systems with deadlock by means of Krishna-
Rama parallel rewriting systems. Partial results concerning 

relations with standard Chomsky grammars, and with 
Lindenmayer systems and Matrix grammars have also been 
presented.

We conclude the work with some open problems. First, 
while it is known that Krishna-Rama systems are Turing 
universal, complete characterizations for systems without 
target conflict or with Deadlock have not yet been defined.

As already pointed out in some previous works, another 
interesting research topic is to consider other types of par-
allelism, and to consider relations among parallel systems 
described in this work but using, instead of maximal paral-
lelism, different parallel semantics. Some possibilities have 
been discussed in [6]: we recall them shortly.

•	 In unique parallel semantic, the occurrences of exactly 
one symbol are substituted using exactly one rule; the 
rule to be used is nondeterministically chosen among the 
set of all applicable rules.

•	 In symbol parallel semantic, we substitute all occurrences 
of one symbol according to exactly one rule, but different 
symbols can be modified in parallel in the same comput-
ing step.

•	 In table parallel semantic, we divide the set of rewriting 
rules into tables (like in Lindenmayer systems); at each 
step, the rules from a single table (non-deterministically 
chosen) is applied to the string.

•	 In limited parallel semantic, we define a constant k and, 
at each step, we apply exactly k rules in parallel. Sub-
variants that can be considered are the application of at 
most k rules or at least k rules.
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