
Vol:.(1234567890)

Journal of Membrane Computing (2023) 5:170–181
https://doi.org/10.1007/s41965-023-00127-8

1 3

RESEARCH PAPER

On maximal parallel application of rules in rewriting P systems

Claudio Zandron1

Received: 11 May 2023 / Accepted: 3 August 2023 / Published online: 24 August 2023
© The Author(s) 2023

Abstract
In rewriting P systems, that is P systems using structured strings instead of atomic symbols, rules can be applied in parallel
on all strings, but a single rule at a time can be applied on each string. Nonetheless, parallel application of rules also on each
string has been considered in various works. This leads to possible application of rules with conflicting target indications
on the same string, and different strategies have been considered to face this problem; relations among different classes of
languages generated in this way have been investigated in the literature. We continue the investigation on this subject, by
highlighting some relations among different classes of maximally parallel rewriting P systems by means of direct simula-
tions. The advantages of such simulations are highlighted, by showing how theoretical results concerning one such type of
systems can immediately be adapted to the corresponding simulating systems.

Keywords Membrane computing · Parallel rewriting · Lindenmayer system · Matrix grammars · Chomsky grammars

1 Introduction

Membrane systems (or P systems) have been defined in [43]
as a new computing model of a biochemical inspiration. In
the basic model, several membranes are embedded, in a hier-
archical way, in an external membrane, that is called skin.
The membranes define regions containing atomic objects
which, in the basic variant, are represented using symbols
from a finite alphabet. At each computation step, objects are
processed in a maximally parallel way by means of rewriting
rules; then, evolved objects are eventually communicated to
inner or outer regions, according to some target indications
associated with each rewriting rule [45].

Various research works related to P systems have
appeared, concerning their computing power [20, 43] or the
computing power of some variants with limited features,
like in [3, 54]. Such systems have also been considered to
study computational complexity aspects for a variant where
membranes can be created by division [44], resembling the
process of cell mitosis. These studies concern both time
complexity aspects [30–34, 41, 49, 51] as well as space

complexity [1, 2, 4, 47, 48, 50, 55, 58]. A recent survey on
this subject can be found in [53].

Crossing of membrane systems with other kind of sys-
tems have also been proposed (see, e.g., population P sys-
tems [17] or water based computing [25]), as well as applica-
tion of Membrane systems to computational problems (we
refer the reader to [12, 15, 18, 38, 40, 61] for some exam-
ples and details), or to more general problems (some recent
examples can be found in [14, 21, 26, 27, 35, 46, 57, 60]).

The use of membrane systems to model different pro-
cesses has also been considered in many papers appeared
in the literature. For example, an epidemiological model
developed in the context of the fight against SARS-CoV-2
has been presented in [5], while [23] models the vertical
migration of zooplankton in shallow and deep water, just to
cite some very recently appeared works.

In this work, we consider a variant of Membrane sys-
tems named Rewriting P systems [22, 36, 37, 43, 59] (or RP
systems, for short): in such a variant, objects are described
by finite strings over a finite alphabet. The rules allowing a
string to evolve are context-free rewriting rules.

This variant has been investigated under different
aspects. For instance, in [13] systems of this type where
communication is controlled according to the contents
of the strings are considered. More recently, the use of
splicing rules in RP systems has been the subject of other
works like [42], while systems using sets of pictures made

 * Claudio Zandron
 claudio.zandron@unimib.it

1 Università degli Studi di Milano-Bicocca Dipartimento di
Informatica, Sistemistica e Comunicazione, Viale Sarca 336,
20126 Milan, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-023-00127-8&domain=pdf

171On maximal parallel application of rules in rewriting P systems

1 3

of symbols in a two dimensional lattice (array languages)
have been considered in [16, 56]. In [39] authors consider
the use the use of such systems applied to chain code pic-
ture generation.

In particular, we concentrate on the computational prop-
erties of maximally parallel RP systems, that is rewriting
P systems where, as it happens for standard P systems, all
strings evolve in parallel and all regions evolve in parallel
but, moreover, at each computation step all rules that can be
applied simultaneously to the same string must be applied.
Other kinds of parallelism can also be considered: we recall
some of them in the last section (to highlight some research
topics on this subject). In this kind of systems, when con-
sidering parallel application of rules also on single strings,
a problem arises: in fact, different rules applied on a single
string in a single computing step can have different target
membranes. In this case, it is not immediately clear in which
region the resulting string must be communicated, and some
strategies must then be considered.

Three main such strategies, considered in the literature,
are the following:

1. In Krishna–Rama Parallel Rewriting P systems (KRPRP
systems) [29], when a conflict occurs the string is moved
by choosing the region indicated by the target occurred
exactly once among the applied rules (if any). In case
more than one target has occurred once, then a nonde-
terministically choice occurs. If no target have occurred
exactly once, then the string is blocked.

2. In P systems with deadlock [6, 7, 9], when different rules
having different target indications are applied on a single
string at the same time, a deadlock state is obtained: the
string is blocked, and it will not be processed anymore
by any other rules.

3. In P systems without target conflicts [8], the situation is
avoided a priori: only set of rules with the same target
indication can be applied at the same time on the same
string.

Some partial results concerning the computing power of
such systems have already been presented in the literature
[6–9, 29], by comparing such systems with classic systems
from the formal languages area of research.

In this work, we present various new results regarding the
relationships between parallel rewriting P systems achieved
through direct simulations. These simulations involve sys-
tems that employ different strategies to resolve conflicts.
Specifically, we demonstrate:

• How to simulate a parallel RP system with Deadlock
using a KRPRP system

• How to simulate a parallel RP system without target con-
flicts using a parallel RP system with Deadlock

Such direct simulations between systems having different
features offer several advantages. Firstly, an advantage of
employing direct simulations between systems lies in their
potential practical implementations. For instance, if we were
to implement these systems using a biological medium, cer-
tain operations that are theoretically feasible might become
practically restricted, at least in an easy manner. By lever-
aging the simulation, one can design a computational sys-
tem based on a specific theoretical model and then translate
it into another model for practical implementation, while
taking into account the limitations imposed by the chosen
implementation medium.

Another advantage concerns theoretical results pertain-
ing to properties of the simulated system can be directly
applied to the simulating system, leveraging the relation-
ships between the two systems identified through the direct
simulation. To illustrate this aspect, in particular, we pro-
vide results concerning the relationships between parallel
rewriting P systems with deadlock and other systems such
as Lindenmayer systems, Matrix grammars, and classical
Chomsky grammars. We then report the corresponding
results that can be obtained exploiting the direct simulation
provided before using KRPRP systems. For instance, we
prove that parallel rewriting P systems with deadlock using
a single membrane are capable of generating all context-
free languages, including some non-context-free languages.
By utilizing the outcome of the direct simulation, we can
readily establish that the same languages can be generated
by KRPRP systems using two membranes of depth one.
Considering another example, we also recall a result from
[11], stating that various classes of languages generated by
different Lindenmayer systems can be generated by parallel
rewriting P systems with deadlock using 4 membranes in a
structure of depth three. An immediate consequence of the
provided simulations is that these results (and, similarly, all
results related to such systems) can be immediately trans-
lated to state that the same classes of languages can be gen-
erated by KRPRP systems using eight membranes arranged
in a structure of depth four.

The rest of the paper is organized as follows. In Sect. 2 we
recall main definitions used in the rest of the paper. In Sect. 3
we describe relations among classes of parallel rewriting
P systems using different ways of solving target conflicts,

172 C. Zandron

1 3

by means of direct simulations between systems. In Sect. 4
we provide some results considering specific languages to
highlight some relations among parallel RP systems, Linden-
mayer systems, Matrix grammars, and Chomsky grammars.
Finally, in Sect. 5 we draw some conclusions and describe
some open problems related to this work.

2 Maximally parallel rewriting P systems

In this section, we recall main definitions of P systems and
of maximally parallel rewriting P systems.

A membrane structure � is obtained by embedding,
in a hierarchical way, various membranes which are sur-
rounded by a unique membrane, that is called skin. A
membrane structure can be described in various ways,
for instance by a string of matching parentheses, where
each pair identifies a specific membrane. another way of
describing such a structure is by means of a tree graph; the
height of this tree is called the depth of the corresponding
membrane structure.

The membranes in a membrane structure identify regions,
that is the space delimited by a membrane and by the mem-
branes that are immediately inside it. If a membrane does not
contain other membranes inside, then it is called elementary.

By using symbols or strings over an alphabet V, we
identify objects; in standard P systems, one usually con-
siders multisets of objects. In parallel rewriting P systems,
the subject of this work, only strings are considered: in
each region i = 0, 1,… , n of � we consider multisets
of finite support over V. In other words, there is a map
Mi ∶ V∗

→ N where Mi = {(x1,Mi(x1)),… , (xp,Mi(xp))} , for
some xk ∈ V+ such that Mi(xk) > 0 ∀k = 1,… , p.

Evolution rules of the systems are context free rewrit-
ing rules of the following form: a → �(tar) , where
a ∈ V , � ∈ V∗, and tar ∈ {here, out, in} denotes the target
membrane. After the application of an evolution rule, the
object can be sent to another membrane, according to the
target indication: when tar = here , the object stays in the
same region; when tar = out , the object is sent out from
the region where the rule was applied; when tar = in , the
object is sent to one (nondeterministically chosen) of the
membranes that are immediately inside the actual region.

We can now formally define a parallel rewriting P system.

Definition 1 A parallel rewriting P system of degree n + 1
is a construct

where:

Π = (V , T ,�,M0,… ,Mn, (R0, �0),… , (Rn, �n)),

1. V denotes the alphabet of the system;
2. T ⊆ V denotes the terminal alphabet;
3. � denotes a membrane structure, having n + 1 mem-

branes injectively labeled by means of numbers in
{0, 1,… , n};

4. M0,… ,Mn are multisets over the alphabet V; they rep-
resent the strings initially present in the corresponding
regions 0, 1,… , n;

5. R0,… ,Rn denotes finite sets of evolution rules associ-
ated with each region of � ; the rules are of the form
a → �(tar) , where a ∈ V , � ∈ V∗, tar ∈ {here, out, in};

6. �0,… , �n are partial order relations over R0,… ,Rn.

A configuration of the system at a specific time step is
defined by the multisets of objects associated with each
region together with the membrane structure. The initial
configuration is the (n + 2)-tuple C0 = (�,M0,… ,Mn).

A transition from a configuration Ct = (�,Mt
0
,… ,Mt

n
)

to a configuration Ct+1 = (�,Mt+1
0

,… ,Mt+1
n

) is obtained
by applying the rules present in the regions, following the
prescriptions of the specific parallel RP system.

A computation is a sequence of transitions. A computa-
tion halts when, in the current configuration, no rule can
be further applied; in case at least one rule can be applied
forever, then we have a non-halting computation.

In this work, we will consider extended RP systems: the
output is the set of strings containing only symbols of the
terminal alphabet T sent out of the system during a halting
computation. If a string sent out from the system contains
non-terminal symbols, then it does not contribute to the out-
put. If a computation never halts, then it produces no output.

2.1 Krishna–Rama parallel P systems

In a Krishna–Rama parallel P system [28, 29], at each com-
putation step all rules in the system are applied in a nonde-
terministic and maximally parallel manner on all strings, in
all the regions. Then, the obtained string is sent to the region
that has occurred exactly once among all targets defined in
the applied rules. In case different targets have occurred
exactly once, one of them is chosen in a non deterministic
way, and the string is sent to the corresponding region. If,
on the contrary, no target has occurred exactly once, then
the string is blocked and the computation freezes. Formal
definitions concerning Krishna–Rama parallel P system can
be found in [29]. In the same work, it is shown that extended
parallel P systems of this type are computationally complete.

In the following, we will consider a slightly modified
version of such systems, using generic target indications
of the form {here, out, in} . In other words, instead of using

173On maximal parallel application of rules in rewriting P systems

1 3

targets {inj} (allowing to send a string to a specific inner
membrane with label j), the generic target indication {in}
sends the string to an inner membrane non-deterministically
chosen among all membranes immediately inside the
membrane where the rule has been applied. It is easy to
prove that the system obtained is equivalent to the original
one.

In the following, we will denote the families of languages
that are generated by (extended) Krishna–Rama systems
(using maximal parallelism) by EKRPk

n
(M) , where n is the

degree of the system and k is the depth of the membrane
structure. If the number of membranes is not bounded
a-priori, then we will replace the subscript n by ∗.

2.2 Parallel rewriting P systems with deadlock

Also in a maximally parallel P system with deadlock [6],
at each step all rules are applied in a nondeterministic and
maximally parallel manner on all strings, in all the regions.

The difference between these systems and KRPRP sys-
tems lies in the action taken when rules with conflicting
target indications are applied. When rules with conflicting
targets are applied at the same time on a string, the system
enters in a deadlock state. The string remains inside the
membrane where conflicting rules have been applied, and
it will not be processed anymore by any other rule. In the
following we will consider deadlock state applied to single
strings; this means that, when a string is deadlocked, the
remaining strings (if any) can continue their computation
within the system, and eventually can produce some outputs.
In case all strings are deadlocked during the computation,
then the system halts producing no output. It is also possible
to consider systems that halt as soon as a single string is
deadlocked: we refer the reader to [6] for details.

In P systems with deadlock, any sequence of transitions
producing no deadlock or producing only some local dead-
lock configurations forms a computation. The non-dead-
locked strings (of terminal symbols) that exit the system are
the output of the computation.

By EParRPk
n
(M,D) we will denote the family of languages

generated by extended rewriting P systems of degree n and
membrane structure of depth k, where M denotes the use
of maximal parallel application of rules, and D denotes the
possibility of having deadlocks. Again, when the number of
membranes is not limited, we will substitute the subscript
n by ∗.

2.3 Parallel rewriting P systems without target
conflicts

In a parallel P system without target conflicts [8, 10], only
rules with the same target indication can be applied on a

string at the same computation step, avoiding in this way the
possibility of conflicting targets.

More formally, each set Ri of evolution rules of each
region is divided into mutually disjoint subsets of rules, each
subset having the same target indications: Ri(here),Ri(in), or
Ri(out) . When we have to apply rules in parallel on a string
in region i, we first non-deterministically select one target
among {here, out, in} that have at least one applicable rule on
the string with the selected target (assume, for instance, it is
the target in); then, we apply in a maximally parallel way all
rules from the subset having the selected target indication
that can be applied on the string (in our example, all rules
from the set Ri(in)). Finally, the string is communicated
according to the specific selected target.

By EMPRPk
n
 , we denote the family of languages generated

by extended RP systems without target conflicts, having
degree at most n and membrane structure depth k, using
the maximal parallelism method in the way just described.
When the number of membranes is not limited, the subscript
n is replaced by ∗.

3 Simulations of systems using different
types of parallelism

It is known ([11] that parallel P systems without target con-
flicts are strictly included in parallel P systems with Dead-
lock and, moreover, that these last systems are included in
KR parallel P systems. Nonetheless, no direct simulations
have been proposed so far. In this section, we thus propose
such direct simulations between systems using different
types of parallelism.

First of all, we propose a direct simulation of parallel
P systems without target conflicts by means of parallel P
systems with Deadlock. In the simulation we propose, the
membrane structure of the simulating systems requires two
levels more than the simulated one.

Theorem 1 EMPRPk
∗
⊆ EParRPk+2

∗
(M,D)

Proof Consider a parallel P system without target conflicts
Π . The parallel P system with Deadlock Π� simulating Π can
be built as follows. Consider a generic membrane i of Π ,
and add inside it three membranes labeled by Outi , Ini , and
Herei . Inside each of these added membranes, add a further
membrane labeled by Out′

i
 , In′

i
 , and Here′

i
 , respectively. A

summary of modifications of the structure of membrane i
just discussed is presented in Fig. 1.

All rules with target Out in membrane i are then moved
in membrane Out′

i
 , those with target In are moved in mem-

brane In′

i
 , and those with target Here are moved in membrane

174 C. Zandron

1 3

Here
′

i
 , replacing in all of them the original target by the tar-

get Out. We also add rules T �

→ O(in) , O → O(out) , and
T → L(out) in membrane Outi , rules T �

→ I(in) , I → I(out) ,
and T → L(out) in membrane Ini , and rules T �

→ H(in) ,
H → H(out) , and T → L(out) in membrane Herei . Finally
we add to membrane i the rules T → T

�

(in) , T �

→ L(here) ,
O → T(out) , I → T(in) , and H → T(here).

A summary of required changes is presented in Table 1.
Each initial string w is then replaced by a string Tw (i.e.

we add a symbol T to it). All symbols T , T ′

,O, I,H, L are
special symbols not initially present. The symbol L (lock
symbol) is a symbol that, once introduced in the string, is
never removed (thus the string produces no output).

Consider now a string Tw in membrane i. The idea is to
simulate a parallel application of rules without the possibil-
ity to have conflicts concerning their target indications and,

as a consequence, without deadlocks. In order to do this, we
send the string to one inner added membrane, containing
only rules having the same target indication. The movement
of the string is then managed by means of the symbol added
to the string: T corresponds to choosing the target, replaced
then by O (out), I (in), or H (here) to simulate the correct
movement of the string to a target membrane.

Initially, the only applicable rule in membrane i is the rule
T → T

�

(in) , which replaces T by T ′ and non-deterministically
sends the string to an inner membrane. If such a membrane
is a membrane j ≠ i originally already present inside mem-
brane i, then the rule T ′

→ L is applied, that introduces the
loop symbol in the string (in fact, the string cannot reach
such membranes without applying any original rules). If,
on the contrary, the string reaches one of the added mem-
brane Outi , Ini , or Herei , then the simulation of all possible
applicable rules having the same target indication is started.
Assume, for instance, that the chosen membrane is Ini . The
symbol T ′ is then replaced by I, and the string is sent to
membrane In′

i
 . Here, all applicable rules to w are applied in

parallel (and all of them have now target Out), together with
the rule I → I(out) . The string is sent back to membrane
Ini , where the only applicable rule is I → I(out) that sends
the string back to membrane i. Having started from Tw we
have now Iw′ , such that w′ has been obtained by w having
applied in a maximal parallel way all rules with a target
indication In.

In membrane i we can apply now only the rule I → T(in) ,
producing a string Tw′ that is then sent to an inner membrane
(in the discussed case; otherwise, the string is sent to the
membrane immediately outside - in case of target Out - or it
stays in the same membrane - in case of target Here). Notice
that if the string reaches again an added membrane Outi , Ini ,
or Herei when the symbol T is present (instead of T ′), then
T is replaced by the loop symbol L, and then sent back to
membrane i.

Fig. 1 Simulating a parallel P
system without target conflicts
by means of a parallel P system
with deadlock

Table 1 Summary of modifications required

EMPRP EParRP

Rules with target (Out) Moved in added membrane Out′
i

Rules with target (In) Moved in added membrane In′

i

Rules with target (Here) Moved in added membrane Here′

i

Add in membrane Outi rules
T

�

→ O(in) , O → O(out) , and T → L(out)

Add in membrane Ini rules
T

�

→ I(in) , I → I(out) , and T → L(out)

Add in membrane Herei rules
T

�

→ H(in) , H → H(out) , and T → L(out)

Add in membrane i rules
T → T

�

(in) , T �

→ L(here) , O → T(out)

I → T(in) , and H → T(here)

Each initial string w Replaced by Tw

175On maximal parallel application of rules in rewriting P systems

1 3

We conclude the proof by highlighting the fact that small
differences are needed for elementary membranes and for the
skin membrane. For elementary membranes, no rules with
target In are present, hence we do not need to add the sub-
membranes to manage this target, nor the rule I → T(in) . For
the skin membrane, we simply need one small change: the
rule O → T(out) is replaced by O → �(out) , which removes
the symbol used to manage the movement of the string, and
sends the string in the environment. If the string contains
only terminal symbol, then it is a valid output.

It is easy to see that the computation produces the same
results as the original parallel P system without target con-
flicts Π.

In order to explain the result, we consider now a simple
example illustrating the simulation.

Example 1 Let us consider a maximally par-
a l l e l P s ys t e m w i t h o u t t a rge t c o n f l i c t s
Π = (V , T ,�,M0,… ,Mn, (R0, �0),… , (Rn, �n)) and a string
ABCDEF inside a generic membrane i of Π . Moreover, let us
assume that the rules in membrane i are the following:

• A → u(in)

• B → v(in)

• C → w(out)

• D → x(out)

• E → y(here)

• F → z(here)

In a P system without target conflicts, rules are applied in
a maximally parallel way, but avoiding conflicting target
indications. Thus, one possible way to apply the rules in
our example is by non-deterministically choosing to apply
the first two rules, thus obtaining the string uvCDEF, that
is then sent to a membrane immediately inside membrane i;
another possibility is to apply the third rule and the fourth
rules, thus obtaining the string ABwxEF, that is then sent to
the membrane immediately outside membrane i; finally, a
further possibility is to apply the fifth rule and the sixth rule,
obtaining the string ABCDyz, that remains in membrane i.

As explained above, the parallel P system with Deadlock
Π

� simulating Π has, inside membrane i, three membranes
labeled by Outi , Ini , and Herei . Inside each of these added
membranes, there is a further membrane labeled by Out′

i
 , In′

i
 ,

and Here′

i
 , respectively. The rules with target in (A → u(in) ,

B → v(in)) are moved in membrane In′

i
 , those with target

out (C → w(out) , D → x(out)) are moved in membrane Out′
i
 ,

and those with target here are moved in membrane Here′

i
 ,

replacing in all of them the original target by the target Out.
We also add rules T �

→ O(in) , O → O(out) , and
T → L(out) in membrane Outi , rules T �

→ I(in) , I → I(out) ,

and T → L(out) in membrane Ini , and rules T �

→ H(in) ,
H → H(out) , and T → L(out) in membrane Herei . Finally
we add to membrane i the rules T → T

�

(in) , T �

→ L(here) ,
O → T(out) , I → T(in) , and H → T(here) . The original
string ABCDEF is replaced by the string TABCDEF.

The only applicable rule in membrane i is now the rule
T → T

�

(in) , which produces the string T ′

ABCDEF , and then
send it in an inner membrane, non-deterministically chosen
among all membranes inside membrane i.

Let’s assume the string reaches membrane Outi . The
symbol T ′ is thus replaced by O, and the string OABCDEF
is sent to membrane Out′

i
 . Here, all applicable rules (that

is, C → w(out) , and D → x(out)) are applied in parallel,
together with the rule O → O(out) . The obtained string
OABwxEF is sent back to membrane Outi , where the only
applicable rule is O → O(out) that sends the string back to
membrane i. Here we finally apply the rule O → T(out) , thus
obtaining TABwxEF which is sent to the membrane immedi-
ately outside membrane i. We started from TABCDEF and
we correctly simulated the parallel application of the two
rules having target (out), and then sent the obtained string
to the membrane outside membrane i.

We now propose a direct simulation of maximal parallel P
systems with Deadlock by means of Krishna-Rama maximal
parallel P systems. In this case, the membrane structure of
the simulating systems requires just one level more than the
simulated one.

Theorem 2 EParRPk
n
(M,D) ⊆ EKRPk+1

2n
(M)

Proof We recall that the difference between Krishna-Rama
maximal parallel P systems and maximal parallel P systems
with Deadlock is related to the management of conflicting
target indications in the application of the rules in parallel.
In fact, while in maximal parallel P systems with Deadlock a
string is locked every time rules with different target indica-
tions are applied, in KR parallel P systems if a target indica-
tion is specified in exactly one rule among those applied,
then it is used to denote the used target. We thus proceed
with the simulation of parallel P systems with deadlock by
using KR P systems in which we check the use of conflicting
rules, even for the case with a single rule using a specific
target indication.

Thus, consider a parallel P system with deadlock Π . The
KR parallel P systems simulating Π can be built as follows.
Consider a generic membrane i of Π , and add inside it a
membrane labeled by Checki.

Every rule A → x(in) , B → y(out) , and C → z(here) in
membrane i is moved to membrane Checki , and replaced
by A → xII(out) , B → yOO(out) and C → zHH(out) ,
respectively. In membrane Checki we also add the rules
T → L(here) and T �

→ �(out).

176 C. Zandron

1 3

In membrane i we add the rules T → T
�

(in) , I → T(in) ,
H → T(here) , O → T(out), and T �

→ L(here) . Each initial
string w is replaced by a string TTw (i.e. we add two symbols
T to it).

All symbols I,O,H, T , T
′

, L are special symbols not
initially present.

A summary of required changes is presented in Table 2.
Consider a string TTw in membrane i. We apply the rule

T → T
�

(in) : if the string reaches a membrane j originally
present in membrane i, then the rule T �

→ L(here) is applied,
which introduces the lock symbol in the string. If, on the
contrary, the string reaches membrane Checki , then we apply
modified rules originally present in membrane i. Every such
rule introduces now two symbols, corresponding to the
target indication. These two symbols are used to avoid the
possibility that a single rule with a specific target indication
can be applied on the string. In fact, consider an application
of two conflicting rules, such that one of them is applied
exactly once (e.g., assume that a rule with target (in) is
applied exactly once and other rules with target (out) are
applied at the same time). While in a parallel system with
deadlock this would lead to a conflict, in the case of Krishna-
Rama systems this would not lead to a conflict: the target
of the rule applied exactly once will be chosen as the target
of the string.

Adding two copies of the same target allows to avoid this
problem. In fact, the string is now sent back to membrane
i, and it contains two copies of the symbols I, O, and H for
each applied rule with target In, Out, and Here, respectively.
At the same time, all symbols T ′ in the string are deleted.

If the string contains conflicting symbols (that is, at least
two different symbols among I, H, and O are present), then
the computation is blocked in membrane i. In fact, at least
two rules among I → T(in) , H → T(here) , and O → T(out),
can be applied and, moreover, each rule is applied at least
two times, since every target symbol is introduced in
couples, as explained above.

If, on the contrary, only rules with a unique target indica-
tion were applied, then only copies of one symbol among
I, O, and H are present when the string reaches membrane

i. If the symbols in the string are I, then we apply the rule
I → T(in) ; the string is sent to an inner membrane. If it is
again membrane Checki , then T is replaced by L and the
string is locked. If, instead the string reaches one of the
membrane originally inside i, then the computation can
continue, exploiting the symbols T just introduced.

If the string contains only symbols O, then they are
replaced by T and the string is sent outside. Finally, if the
string contains only symbols H, then they are replaced by
T and the string remains in i, where it is ready to simulate
another computation step.

As for the previous proof, we point out that for the skin
membrane we simply need one small change: the rule
O → T(out) is replaced by O → �(out) , which removes the
symbol used to manage the movement of the string, and
sends the string in the environment. If the string contains
only terminal symbols, then it is a valid output.

It is easy to see that the computation produces the same
results as the original parallel P system without target con-
flicts Π.

As for the previous case, we consider now a simple
example illustrating the simulation.

Example 2 Let us consider a maximally parallel P system
with deadlock Π = (V , T ,�,M0,… ,Mn, (R0, �0),… , (Rn, �n))
and a string ABCEF inside a generic membrane i of Π.

Moreover, let us assume that the rules in membrane i are
the following:

• A → u(in)

• B → v(in)

• C → w(out)

• E → y(here)

• F → z(here)

We recall that in a KR parallel P system rules are applied
in a maximally parallel way and, if a target indication is
specified in exactly one rule among those applied, then it
is used to select the used target.

Table 2 Summary of
modifications required

Rules A → x(in) in membr. i Replaced by A → xII(out) in Check
i

Rules B → y(out) in membr. i Replaced by B → yOO(out) in Checki
Rules C → z(here) in membr. i Replaced by C → zHH(out) in Checki

Add T → L(here) , T �

→ �(out) to Checki
Add rules T → T

�

(in) , I → T(in) , H → T(here)

O → T(out), and T �

→ L(here) to membrane i
Each initial string w in i Replaced by TTw

177On maximal parallel application of rules in rewriting P systems

1 3

In the example above, while in P systems with deadlock
we would have a conflict, that would result in a locked
string, in KR systems the (unique) rule with the target out
would select the target where the string is sent, allowing the
computation to proceed.

In order to correctly simulate the parallel system with
deadlock, we thus need to produce a KR P systems in which
we check the use of conflicting rules, even for the case with
a single rule using a specific target indication.

As explained above, the KR parallel P system simulat-
ing Π is built adding inside each membrane i a membrane
labeled by Checki . Then, all rules in membrane i are moved
to membrane Checki , with some added symbols:

• A → uII(out)

• B → vII(out)

• C → wOO(out)

• E → yHH(out)

• F → zHH(out)

In membrane Checki we have the rules T → L(here) and
T

�

→ �(out) , while in membrane i we have the rules
T → T

�

(in) , I → T(in) , H → T(here) , O → T(out), and
T

�

→ L(here) . The original string ABCEF is replaced by the
string TABCEF.

The only applicable rule in membrane i is now the rule
T → T

�

(in) , which produces the string T ′

ABCEF , and then
send it in an inner membrane, non-deterministically chosen
among all membranes inside membrane i.

If it reaches one membrane originally present in membrane
i, then the rule T �

→ L(here) is applied, thus producing the
string LABCEF; since this string contains the lock symbol L it
will not produce any output. Let’s assume, on the contrary, that
the string reaches membrane Checki.Here, we apply all rules in
parallel, thus obtaining the string uIIvIIwOOyHHzHH, that is
then sent back to membrane i. In this membrane, each symbol
I, O, and H is replaced by T, thus obtaining the string uTTvT-
TwTTyTTzTT; since the rules replacing those symbols have
conflicting target indications, the string is then locked, thus
producing no output; as one can notice, this happens even if
the original rule with target out is unique, since we introduced
two symbols O in the string, to avoid this problem.

Of course, considering a combination of these two simula-
tions is possible: starting from a Parallel Rewriting P System
without Target Conflicts, we first obtain an equivalent system
using Deadlock, and then we simulate this one by means of
a Krishna-Rama parallel system. A direct consequence of the
previous two theorems is thus the following:

Corollary 1 EMPRPk
∗
⊆ EKRPk+3

∗
(M)

Regarding simulations in the opposite direction, the fol-
lowing points should be noted. Firstly, we recall that paral-
lel P systems without target conflicts are strictly included by
parallel P systems with Deadlock. Therefore, it is not possible
to simulate all systems in the opposite direction in this case.

In the case of P systems with Deadlock and KR parallel
P systems, it remains uncertain whether a simulation in the
opposite direction is always feasible. This uncertainty arises
from the fact that we do not have conclusive information on
whether the inclusion between these two classes is strict or
not, as mentioned earlier in this section. Establishing a direct
simulation of KR parallel P systems using P systems with
Deadlock would also solve the open problem concerning
their relationship.

4 Further results: Lindenmayer systems,
matrix grammars and Chomsky grammars

As we saw, it is known that EKRP systems are Turing
equivalent. On the contrary, the exact computing power of
maximal parallel P systems with Deadlock and of maximal
parallel P systems without conflict target indications is not
known. In this section, we present some (partial) results
in this respect.

The goal of this section is twofold. On the one hand,
we prove some specific results concerning comparison
of RP systems (in particular, using a limited amount of
membranes) with other classic computing models. On the
other hand, we show how to exploit the results obtained
in the previous section to extend the results obtained for
one type of parallel RP systems to other types of parallel
RP systems.

We start by recalling from [7] the definition of
Lindenmayer systems. An ET0L system is a tuple
G = (V , T ,w,P1,… ,Pm) , m ≥ 1 , where V is a finite alpha-
bet of symbols, T ⊆ V ,w ∈ V+ , and Pi, 1 ≤ i ≤ m , are finite
sets (usually called tables) of context-free rules defined
over the alphabet V; for each A ∈ V there is at least one
rule A → x in each set Pi (tables are complete).

In each computation step, all the symbols in the current
sentential form are rewritten by means of one table. The
l a n g u a ge ge n e r a t e d by G i s d e n o t e d by
L(G) = {x ∈ T∗ ∣ w ⟹Pj1

w1 ⟹Pj2
⋯ ⟹Pjm

wm = x,m

≥ 0, 1 ≤ ji ≤ n, 1 ≤ i ≤ m} .
The following results concerning such systems are known:
CF ⊂ ET0L ⊂ CS ; CF and CS denote, respectively, the
families of context free languages and the families of con-
text sensitive languages. Details on L systems can be found
in [52].

It is known [11] that ET0L systems are properly included
in the class of languages generated by maximal parallel P

178 C. Zandron

1 3

systems with Deadlock using at most four membranes. By
considering the relations among classes of languages gener-
ated by Lindenmayer systems, we can state the following:

Theorem 3 ED0L ⊂ E0L ⊂ ET0L ⊂ EParRP3

4
(M,D)

EDT0L ⊂ ET0L ⊂ EParRP3

4
(M,D)

By exploiting this result and the result obtained in The-
orem 2 we have:

T h e o r e m 4 ED0L ⊂ E0L ⊂ ET0L ⊂ EParRP
3

4
(M,D) ⊆ EKRP

4

8
(M)

EDT0L ⊂ ET0L ⊂ EParRP3

4
(M,D) ⊆ EKRP4

8
(M)

Proof The result in Theorem 3 is obtained by using a system
having four membranes organized so that the skin contains
a single membrane, containing a single membrane, and so
on. The corresponding membrane structure is of depth 3.
Such systems can be simulated by Krishna-Rama Parallel
P systems having twice the number of membranes of the
original systems, and requiring a membrane structure having
one added level of depth.

Considering context-free grammars in the Chomsky
hierarchy, it is easy to see that they can be generated by
maximal parallel P systems with Deadlock using a single
membrane:

Theorem 5 CF ⊆ EParRP0

1
(M,D).

Proof Consider a CF grammar G, and the axiom S. We can
generate the same language generated by G by means of a
maximal parallel P system with Deadlock Π (with a single
membrane) as follows. Add the axiom S′ to Π . For every rule
A → x in G add the rule A → x(here) in Π . Moreover, add
the rules S�

→ S�(here) and S�

→ �(out).
Context free rules are applied (in parallel, but this is not

an issue since no interactions among different non terminal
symbols are possible) on the string in Π . At the same time,
the rule S�

→ S�(here) is also applied. After some time, the
rule S�

→ �(out) is applied. If the string still contains non-
terminal symbols, then also other rules with target Here are
also applied, thus producing a deadlock. On the contrary, S′
is removed, and the terminal string is sent out, thus produc-
ing a valid output.

It is also possible to show that also some non-context
free languages can be generated by maximal parallel P
systems with Deadlock using a single membrane:

Theorem 6 L = {anbncn|n ≥ 0} ∈ EParRP0

1
(M,D)

Proof Consider the system Π = (V , T , [0]0,M0 = {S},R0) .
We a d d t o R0 t h e f o l l o w i n g r u l e s :
S → ABC,A → A′ ,B → B′ ,C → C′ ,

A′
→ Aa,B′

→ Bb,C′
→ Cc all having target Here, plus

the rules A → �(out),B → �(out),C → �(out).
Starting from the axiom S, we apply the rule

S → ABC . Now, consider a generic string of the form
AakBbkCck for some k ≥ 0 . If we apply in parallel rules
A → A

′

,B → B
′

,C → C
′ , then we obtain A′

akB
′

bkC
′

ck , and
we can only apply now the rules A′

→ Aa,B
′

→ Bb,C
′

→ Cc
thus obtaining Aak+1Bbk+1Cck+1.

At some point (or even immediately, for the string ABC)
we can apply the rules A → �(out),B → �(out),C → �(out) ,
producing the string ahbhch (for some h ≥ 0) which is then
sent out, thus producing a valid string.

In case of parallel application of rules having on the left
side the symbols A, B, C but with different target indications
on the right (Here or Out), the string produces a deadlock,
and no output is obtained.

As a consequence, context free languages are strictly
included in the class of languages generated by maximally
parallel rewriting P systems with deadlock using a single
membrane. Considering the results obtained in the previ-
ous section, such systems can be simulated by Krishna-
Rama parallel systems by simply adding a membrane
inside the unique membrane used to obtain the results just
described. Thus, we can immediately state the following:

Theorem 7 CF ⊂ EParRP0

1
(M,D) CF ⊂ EKRP1

2
(M)

Other classes of formal languages that can be considered
are those generated by Matrix grammars. A matrix grammar
is a grammar G = (N, T , S,M,C) , where N, T denote finite
disjoint alphabets of symbols, S ∈ N , M denotes a finite set
of sequences of context-free rules over N ∪ T (nonterminal
and terminal alphabets) of the form (A1 → x1, ...,An → xn) ,
n ≥ 1 , where Ai ∈ N, xi ∈ (N ∪ T)∗ , while C is a set of rules
in M.

The symbol S is called the axiom, and the elements of
the set M are the matrices. For w, z ∈ (N ∪ T)∗ , we have
w ⇒ z if and only if there is a matrix (A1 → x1, ...,An → xn)
in M and the strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1 , such
that w = w1, z = wn+1 , and, for all 1 ≤ i ≤ n , either
wi = w

�

i
Aiw

��

i
,wi+1 = w

��

i
xiw

��

i
 , for some w�

i
,w

��

i
∈ (N ∪ T)∗ ,

or wi = w
i+1

,Ai does not appear in wi , and the rule Ai → xi
appears in C (all the rules that are in a matrix must be
applied following the order; it is only possible to skip the
rules in the set C, in case they cannot be applied to the
string; these rules are said to be applied in the appearance

179On maximal parallel application of rules in rewriting P systems

1 3

checking mode.) If the set C is empty, then the matrix gram-
mar is without appearance checking.

We denote by L(G) = {w ∈ T∗|S ⇒
∗ w} the language

generated by G, where the symbol ⇒∗ denotes the reflexive
and transitive closure of the relation ⇒ . By MATac we denote
the family of languages generated in this way, and by MAT
the family generated by matrix systems without appearance
checking. We refer the reader to [19] for further details on
matrix grammars.

Relations between such classes and the class of languages
generated by maximal parallel P systems with Deadlock are
not known, but the following partial result can be shown,
proving that maximal parallel P systems with Deadlock can
generate languages not in the class MAT.

T h e o r e m 8 L = {a2
n

|n ≥ 0} ∈ EParRP0

1
(M,D)

L = {a2
n

|n ≥ 0} ∈ EKRP1

2
(M)

Proof It is known [24] that all the one-letter languages in
MAT are regular.

Consider the system Π = (V , T , [0]0,M0 = {A},R0) . We
add to R0 the following rules: A → AA(here),A → a(out).

Starting from A, if we apply in parallel on all symbols the
rule A → AA(here) , then we duplicate them. After k steps,
we have a string of the form A2k . If we then apply in parallel
on all symbols the rule A → a(out) , we produce a correct
output string. If, at some point, we apply the first rule to
some symbols and the second rule to the remaining symbols,
then a deadlock is obtained and no output is produced.

It is easy to see that the language generated by such a
system is then L = {a2

n

|n ≥ 0}.
A s f o r t h e p r e v i o u s T h e o r e m ,

L = {a2
n

|n ≥ 0} ∈ EKRP1

2
(M) follows immediately from

the result of the direct simulation obtained in the previous
section.

A direct consequence of this result is that either the class
MAT is strictly included in EParRP∗

∗
(M,D) or the two classes

are incomparable, but this is still an open problem.

5 Conclusions

In this work, we shortly recall definitions and results
concerning maximally parallel rewriting P systems, and we
illustrate relations among systems using different strategies
to solve conflict problems, by means of direct simulations.
In particular, we show how to simulate systems without
target conflicts by means of systems with deadlock, and how
to simulate systems with deadlock by means of Krishna-
Rama parallel rewriting systems. Partial results concerning

relations with standard Chomsky grammars, and with
Lindenmayer systems and Matrix grammars have also been
presented.

We conclude the work with some open problems. First,
while it is known that Krishna-Rama systems are Turing
universal, complete characterizations for systems without
target conflict or with Deadlock have not yet been defined.

As already pointed out in some previous works, another
interesting research topic is to consider other types of par-
allelism, and to consider relations among parallel systems
described in this work but using, instead of maximal paral-
lelism, different parallel semantics. Some possibilities have
been discussed in [6]: we recall them shortly.

• In unique parallel semantic, the occurrences of exactly
one symbol are substituted using exactly one rule; the
rule to be used is nondeterministically chosen among the
set of all applicable rules.

• In symbol parallel semantic, we substitute all occurrences
of one symbol according to exactly one rule, but different
symbols can be modified in parallel in the same comput-
ing step.

• In table parallel semantic, we divide the set of rewriting
rules into tables (like in Lindenmayer systems); at each
step, the rules from a single table (non-deterministically
chosen) is applied to the string.

• In limited parallel semantic, we define a constant k and,
at each step, we apply exactly k rules in parallel. Sub-
variants that can be considered are the application of at
most k rules or at least k rules.

Author contributions All the work has been done by the unique author
of this paper.

Funding Open access funding provided by Università degli Studi di
Milano - Bicocca within the CRUI-CARE Agreement. Work partially
supported by Università degli Studi di Milano-Bicocca, Fondo diAte-
neo Quota Dipartimentale (2019-ATE-0454).

Data availability Not applicable.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not

180 C. Zandron

1 3

permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Alhazov, A., Leporati, A., Manzoni, L., Mauri, G., & Zandron,
C. (2022). Alternative space definitions for P systems with active
membranes. Journal of Membrane Computing, 4(3), 251–260.

 2. Alhazov, A., Leporati, A., Manzoni, L., Mauri, G., & Zandron,
C. (2021). Evaluating space measures in P systems. Journal of
Membrane Computing, 3(2), 87–96.

 3. Alhazov, A., Freund, R., & Ivanov, S. (2021). When catalytic P
systems with one catalyst can be computationally complete. Jour-
nal of Membrane Computing, 3(3), 170–181.

 4. Alhazov, A., Leporati, A., Mauri, G., Porreca, A. E., & Zandron,
C. (2014). Space complexity equivalence of P systems with active
membranes and Turing machines. Theoretical Computer Science,
529, 69–81.

 5. Baquero, F., Campos, M., Llorens, C., & Sempere, J. M. (2021). P
systems in the time of COVID-19. Journal of Membrane Comput-
ing, 3, 246–257.

 6. Besozzi, D., Ferretti, C., Mauri, G., & Zandron, C. (2003). Parallel
Rewriting P Systems with Deadlock, Proc. of 8th International
Workshop on DNA Based Computers (M. Hagiya, A. Ohuchi,
eds.), Springer-Verlag, LNCS 2568, 302–314.

 7. Besozzi, D., Ferretti, C., Mauri, G., & Zandron, C. (2003). P Sys-
tems with Deadlock. Bio Systems, 70(2), 95–105.

 8. Besozzi, D., Mauri, G., & Zandron, C. (2003). Parallel Rewriting
P Systems without Target Conflicts. Proc. of Membrane Comput-
ing International Workshop WMC-CdeA2002 (Păun, G., Rozen-
berg, G., Salomaa, A., Zandron, C., (eds) Springer-Verlag, LNCS
2597, 119–133.

 9. Besozzi, D., Mauri, G., & Zandron, C. (2003). Deadlock Decid-
ability in Partial Parallel P Systems, Proc. of DNA9, LNCS 2943,
Springer-Verlag, pp 55–60.

 10. Besozzi, D., Mauri, G., Vaszil, G., & Zandron, C. (2004) Collaps-
ing Hierarchies of Parallel Rewriting P Systems without Target
Conflicts. In Membrane Computing, International Workshop,
WMC 2003, Tarragona, July 2003, Selected Papers (C. Martin-
Vide, Gh. Păun, G. Rozenberg, A. Salomaa, eds.), LNCS 2933,
Springer, Berlin, 55–69.

 11. Besozzi, D., Mauri, G., & Zandron, C. (2004). Hierarchies of par-
allel rewriting P systems - A survey. New Generation Computing,
22, 331–347.

 12. Bhuvaneswari, K., Kalyani, T., & Lalitha, D. (2019). An Intelli-
gent Solution for a Sustainable Environment: Iso-Array Rewriting
P Systems and Triangular Array Token Petri Net. Ekoloji, 107,
767–777.

 13. Bottoni, P., Labella, A., & Martín-Vide, C. (2002). Păun (pp. 325–
353). Gh.: Rewriting P systems with conditional communication,
In Formal and Natural Computing.

 14. Buiu, C., & Florea, A. (2019). Membrane computing models and
robot controller design, current results and challenges. Journal of
Membrane Computing, 1, 262–269.

 15. Buño, K., & Adorna, H. (2023). Solving 3-SAT in distributed P
systems with string objects. Theoretical Computer Science, 964,
113976.

 16. Ceterchi, R., Mutyam, M., Păun, Gh., & Subramanian, K. G.
(2003). Array-rewriting P systems. Natural Computing, 2,
229–249.

 17. Ciencialová, L., Csuhaj-Varjú, E., Cienciala, L., & Sosik, P.
(2019). P colonies. Journal of Membrane Computing, 1, 178–197.

 18. Cooper, J., & Nicolescu, R. (2022). Neighbourhood message pass-
ing computation on a lattice with cP systems. Journal of Mem-
brane Computing, 4, 120–152.

 19. Dassow, J., & Păun, Gh. (1989). Regulated Rewriting in Formal
Language Theory. Springer-Verlag.

 20. Dassow, J., & Păun, Gh. (1999). On the power of membrane com-
puting. Journal of Universal Computer Science, 5(2), 33–49.

 21. Dupaya, A. G. S., Galano, A. C. A. P., Cabarle, F. G. C., Tristan
De La Cruz, R., Ballesteros, K. J., & Lazo, P. P. L. (2022). A
web-based visual simulator for spiking neural P systems. Journal
of Membrane Computing, 4, 21–40.

 22. Ferretti, C., Mauri, G., Păun, Gh., & Zandron, C. (2003). On three
variants of rewriting P systems. Theoretical Computer Science,
301(1–3), 201–215.

 23. Garcia-Quismondo, M., Hintz, W. D., Schuler, M. S., & Relyea,
R. A. (2021). Modeling diel vertical migration with membrane
computing. Journal of Membrane Computing, 3, 35–50.

 24. Hauschildt, D., & Jantzen, M. (1994). Petri nets algorithms in the
theory of matrix grammars. Acta Informatica, 31, 719–728.

 25. Henderson, A., Nicolescu, R., Dinneen, M. J., Chan, T. N., Happe,
H., & Hinze, T. (2021). Turing completeness of water computing.
Journal of Membrane Computing, 3, 182–193.

 26. Hinze, T. (2020). Coping with dynamical reaction system topolo-
gies using deterministic P modules: a case study of photosynthe-
sis. Journal of Membrane Computing, 2, 281–289.

 27. Huang, Y., Wang, T., Wang, J., & Peng, H. (2021). Reliability
evaluation of distribution network based on fuzzy spiking neural
P system with self-synapse. Journal of Membrane Computing, 3,
51–62.

 28. Krishna, S. N., & Rama, R. (2001). A Note on Parallel Rewriting
in P Systems. Bulletin of the EATCS, 73, 147–151.

 29. Krishna, S. N., & Rama, R. (2000). On the Power of P Systems
Based on Sequential/Parallel Rewriting. International Journal of
Computer Mathematics, 77(1–2), 1–14.

 30. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2020). A Turing machine simulation by P systems without
charges. Journal of Membrane Computing, 2(2), 71–79.

 31. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2019). Characterizing PSPACE with shallow non-confluent P
systems. Journal of Membrane Computing, 1, 75–84.

 32. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2017). Characterising the complexity of tissue P systems
with fission rules. Journal of Computer and System Sciences, 90,
115–128. P systems with input in binary form.

 33. Leporati, A., Zandron, C., & Gutiérrez-Naranjo, M. A. (2006).
P systems with input in binary form. International Journal of
Foundations of Computer Science, 17(1), 127–146.

 34. Liu, X., Suo, J., Leung, S. C., Liu, J., & Zeng, X. (2015). The
power of time-free tissue P systems: Attacking NP-complete prob-
lems. Neurocomputing, 159, 151–156.

 35. Liu, Y., & Zhao, Y. (2022). Weighted spiking neural P systems
with polarizations and anti-spikes. Journal of Membrane Com-
puting, 4, 269–283.

 36. Madhu, M. (2003). Probabilistic rewriting P systems. Inter-
national Journal of Foundations of Computer Science, 14(1),
157–166.

 37. Madhu, M. (2004) Descriptional complexity of rewriting P
systems. Journal of Automata, Languages and Combinatorics,
9(2-3), 311–316.

 38. Mayne, R., Phillips, N., & Adamatzky, A. (2019). Towards
experimental P-systems using multivesicular liposomes. Jour-
nal of Membrane Computing, 1, 20–28.

 39. Nagar, A. K., Ramanujan, A., & Subramanian, K. G. (2018).
Control words of string rewriting P systems. International

http://creativecommons.org/licenses/by/4.0/

181On maximal parallel application of rules in rewriting P systems

1 3

Journal of Advances in Engineering Sciences and Applied
Mathematics, 10, 230–235.

 40. Nash, A., & Kalvala, S. (2019). A P system model of swarming
and aggregation in a Myxobacterial colony. Journal of Mem-
brane Computing, 1, 103–111.

 41. Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez, A.,
& Pérez-Jiménez, M. (2019). Minimal cooperation as a way to
achieve the efficiency in cell-like membrane systems. Journal
of Membrane Computing, 1, 85–92.

 42. Pan, L., Song, B., Subramanian, K. G., Rewriting P systems
with flat-splicing rules. In: Membrane Computing: 17th Inter-
national Conference, CMC. (2016). Milan, Italy, July 25–29,
2016, 17. Springer International Publishing, 2017, 340–351.

 43. Păun, Gh. (2000). Computing with Membranes. Journal of
Computer and System Sciences, 61(1), 108–143.

 44. Păun, Gh. (2001). P systems with active membranes: attacking
NP-complete problems. Journal of Automata, Languages and
Combinatorics, 6(1), 75–90.

 45. Păun, Gh. (2002). Membrane Computing. An Introduction.
Springer-Verlag.

 46. Plesa, M. I., Gheorghe, M., Ipate, F., & Zhang, G. (2022). A
key agreement protocol based on spiking neural P systems with
anti-spikes. Journal of Membrane Computing, 4, 341–351.

 47. Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2011). P
systems with active membranes: trading time for space. Natural
Computing, 10(1), 167–182.

 48. Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2011).
P systems with active membranes working in polynomial space.
International Journal of Foundations of Computer Science,
22(1), 65–73.

 49. Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2010).
P systems with elementary active membranes: Beyond NP and
coNP. Lecture Notes in Computer Science, 6501, 338–347.

 50. Porreca, A.E., Leporati, A., Mauri, G., & Zandron, C. (2013).
Sublinear-space P systems with active membranes. In: Interna-
tional Conference on Membrane Computing (CMC13), LNCS
7762, Springer, 342–357.

 51. Porreca, A. E., Mauri, G., & Zandron, C. (2010). Non-conflu-
ence in divisionless P systems with active membranes. Theoreti-
cal Computer Science, 411(6), 878–887.

 52. Rozenberg, G., & Salomaa, A. (1980). The Mathematical The-
ory of L Systems. Academic Press.

 53. Sosík, P. (2019). P systems attacking hard problems beyond NP:
a survey. Journal of Membrane Computing, 1, 198–208.

 54. Sosík, P., & Freund, R. (2003). P systems without priorities are
computationally universal. Lecture Notes in Computer Science,
2597, 400–409.

 55. Sosík, P., & Rodríguez-Patón, A. (2007). Membrane computing
and complexity theory: A characterization of PSPACE. Journal
of Computer and System Sciences, 73(1), 137–152.

 56. Subramanian, K. G., Isawasan, P., Venkat, I., & Pan, L. (2014).
Parallel array-rewriting P systems. The Romanian Journal of
Information Science and Technology, 17(1), 103–116.

 57. Yu, W., Xiao, X., Wu, J., Chen, F., Zheng, L., & Zhang, H. (2023).
Application of fuzzy spiking neural dP systems in energy coordi-
nated control of multi-microgrid. Journal of Membrane Comput-
ing, 5, 69–80.

 58. Zandron, C. (2020). Bounding the space in P systems with active
membranes. Journal of Membrane Computing, 2, 137–145.

 59. Zandron, C., Ferretti, C., & Mauri, G. (2001). Two Normal Forms
for Rewriting P Systems, in M. Margenstern, Y. Rogzhin (Eds.),
Machines, Computations and Universality, 3rd Internat. Conf.,
MCU 2001, Lecture Notes in Computer Science, Vol. 2055,
Springer, 153–164.

 60. Zhang, H., Liu, X., & Shao, Y. (2022). Chinese dialect tone’s
recognition using gated spiking neural P systems. Journal of
Membrane Computing, 4, 284–292.

 61. Zhang, G., & Pérez-Jiménez, M. J. (2017). Gheorghe, M., Real-
life applications with membrane computing, vol. 25. Springer
International Publishing

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Claudio Zandron got the Ph.D., in
computer science from the Univer-
sity of Milan in 2002. Since 2006
he is an associate professor at the
Department of Informatics, Sys-
tems and Communication of the
University of Milano-Bicocca,
Italy. His research interests concern
the areas of formal languages,
molecular computing models, DNA
computing, membrane computing,
and computational complexity.

	On maximal parallel application of rules in rewriting P systems
	Abstract
	1 Introduction
	2 Maximally parallel rewriting P systems
	2.1 Krishna–Rama parallel P systems
	2.2 Parallel rewriting P systems with deadlock
	2.3 Parallel rewriting P systems without target conflicts

	3 Simulations of systems using different types of parallelism
	4 Further results: Lindenmayer systems, matrix grammars and Chomsky grammars
	5 Conclusions
	References

