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Abstract 

Production planning is a challenging problem in the field of management science. It involves a wide set of 
decisions to be taken on different time ranges (long term, medium term or short term) which depends on the 
specific manufacturing system. Traditional mathematical models have been shown to be too restrictive in real 
situations characterized by uncertain and non-stationary demand. The paper shows that the Artificial Neural 
Network (ANN) systems are suitable for solving production planning problems thanks to their capability to 
adapt to the context. The literature contributions on ANN-based planning are usually applied to very specific 
aspects of the production planning, often involving assumptions which makes the model different from reality. 
The systems proposed in this paper involve instead the whole planning activity on medium-long term horizon 
and take into account essential features that are usually ignored, such as the importance of a product for the 
business strategy. In particular, two ANN-based systems are proposed, a static structure and a dynamic one, 
which are applied to a real production planning case: a paints and varnishes producer with a make-to-stock 
production system based on batch production mode. The developed ANNs provide good results in planning the 
activity on medium and long time horizons. Furthermore, the paper proves that the limited availability of data 
can be successfully faced by acting on the input parameters, on the one hand, and by developing appropriate 
scenarios on the other one. 
 
Keywords: production planning problems, artificial neural networks, applied case study, static and dynamic 
structure 
 
1. Introduction 
Nowadays all firms must deal with a strongly complicated and competitive environment 
which is continuously changing. This is a very fast market and an increasing number of firms 
is not able to follow its dynamics. Moreover, the market system is dominated by a strong 
uncertainty which brings demand and offer trends to be very unpredictable. In a similar 
situation, the companies need a more rational and organized management of the whole 
business system; this can be achieved through a structured and accurate programming activity 
(the planning activity). The production planning process aims to harmonize the market 
demand, expressed by a demand forecasting and by an order book, with the target budget and 
the potential of the production system. This must be obtained by complying (i) with the 
market constraints expressed by the size of the required mix, by the pace of demand and 
delivery terms or (ii) with the offer constraints expressed by the saturation of machinery, by 
the investment limitations on warehousing and by the specific supply relationships, paying 
attention to the environmental and security issues. In general, the production planning is a 
decision-making process that relies on mathematical techniques and heuristic methods to 
allocate limited resources (machines, labour, facilities, etc…) to the necessary activities. This 
allocation of resources has to be done in such a way that the company optimizes its objectives 
and achieves its goals (Pinedo, 2009). The main goal of the planning function is to get the 
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estimated quantity of the desired product, within the desired time to market, in the desired 
place and at the minimum global cost. Several authors have proposed mathematical 
programming models in order to develop optimal aggregated plans from an economic 
standpoint (Pinedo, 2009), (Caramia and Dell'Olmo, 2006), (Mula et al., 2006). In particular, 
some models dedicated to the cost minimization in production lines (Bowman, 1956) or to the 
resource cost minimization in short period planning (Hansmann and Hess, 1960) have been 
proposed. Other models have been developed in order to solve lot-sizing and scheduling 
problems (Manne, 1985), (Dzielinski and Gomory, 1965), (Lasbon and Terjung, 1971), 
(Eppen and R.K., 1987), (Karmarkar et al., 1987). Rajagopalan and Swaminathan (2001) 
proposed a model with the aim to coordinate production planning with changes in production 
capacity and inventory management; whereas, other models are focused on production 
management under the uncertainty resulting from the unpredictability of trends in demand or 
exchange rate (Kazaz et al., 2005). The lot sizing problems have been shown to be hard to 
solve if there is more than one level of production, more than one item to be produced or there 
are constrained resources (Bitran and Yanasse, 1982), (Florian et al., 1980). Moreover, in real 
life cases the complexity of these models is increased by the typical and strong uncertainty of 
the production environments (Mula et al., 2006). This uncertainty can be due to unexpected 
variations on demand, prices or resources constraints, inventory targets, inventory record 
errors or scrap losses. The mathematical formulation of a production planning problem can be 
very complicated: the model should face the possibility of systematic demand forecast errors 
and the desired inventory levels and it should include a timeline view extended on the basis of 
the product type and the knowledge of available production capacity. Complexity of the 
scope, uncertainty about the variables, time horizon, the need to include a large number of 
variables, the risk evaluation and risk-taking represent the real limit of the mathematical 
models (Mula et al., 2006). Moreover, even when it is possible to establish a correct model for 
a production planning problem, this is usually very complicated to solve. The choice of the 
solving algorithm plays a key role, not only in terms of processing costs, but also in terms of 
choosing an optimal solution (Florian et al., 1980).  
 
The purpose of this paper is to propose new methods based on Artificial Neural Networks 
(ANNs) for solving production planning problems in a dynamic, effective and efficient 
approach. This approach can be beneficial because the ANN systems are able to:  
1. Solve combinatorial optimization problems (Smith, 1999), which are often associated with 

the optimization of production scheduling; 
2. Solve nonlinear optimization problems, which are often used to formulate production 

planning problems (Florian, et al., 1980); 
3. Solve problems in a dynamic way considering rolling horizons; 
4. Solve a problem without the knowledge of the underlying mathematical model; 
5. Generalize: assuming a re-training of the network, it is possible to solve different 

problems using the same network. 
In the literature there are few ANN-based contributions to solve production planning 
problems and they are often applied only to some specific aspects of the planning activity. 
Ntuen (1991) used ANNs to map production elements such as the lead-time, time between 
orders, the service rate; Gaafar and Choueiki (2000) applied neural networks to MRP problem 
of lot sizing; other contributions show the application of ANNs to the lot-sizing problems 
considering the costs of the stock and the stock reorder (Haizan et al., 2006), (Zwietering et 
al., 1991). In other cases, the neural networks were applied to specific industries, e.g. the 
automotive (Sharma and Sinha, 2012). Wilhelm et al. (2012) proposed the use of aggregate 
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neural systems and expert systems for production planning. Rohde (2004) applied ANNs to 
the planning objectives for short-term plans for a single-stage production line. 
The main limitations of the mentioned contributions are due to the very specific aspects of the 
production planning to which the neural models have been applied. This is often done by 
making a priori assumptions which distance the model from reality and undermine an 
effective application. Moreover, some of the models mentioned above do not take into 
account some important variables for the planning decisions (e.g. the importance of a product 
for the business) and do not consider situations where the production capacity is drastically 
reduced and varies significantly over time. These models do not consider the trade-offs 
resulting from a planning activity which involves a whole production department (usually 
they consider a single product). Furthermore, they consider the demand as perfectly known 
and they do not attempt to solve the trade-off generated by targets on Service rate and on 
Inventory-level. Finally, these models do not try to balance the production during the year, 
hence they usually generate some production peaks followed by periods with no production. 
From a theoretical point of view, in some cases, the potential of neural models is not fully 
exploited. The network structures are often already assigned and no comparison is developed 
between significantly different ANNs. Many of these models are limited by the use of 
multilayer perceptron models and they do not take advantages by using time-based ANNs. 
In this work we propose two ANN models in order to overcome the limitations of the 
mentioned above approaches. The proposed models have been applied to an entire production 
department, they consider constraints on production capacity (often very stringent) that vary 
over time, the importance of each product for the company turnover and possible errors in 
forecasting demand. Furthermore, they are capable to balance the production throughout the 
considered period. The effectiveness of the models is attested by an application to a real case: 
the production planning in a varnishing company. 
The paper is organized as follows. In Section 2 a general illustration of the ANN systems and 
a deep explanation of the adopted methodology are shown. Section 3 is devoted to the case 
study description and the application of the proposed ANN models. The final section reports 
the numerical results of the applied models and a comparison between them. 
 
2. Research Methodology 
Neural Networks (Haykin, 2005) are an information processing system inspired by the 
dynamics of the biological nervous systems. Such systems are constituted by a dense network 
of simple units, called neurons, connected between them. Some of these neurons receive 
information from the external (input neurons), others provide information to the external 
network (output neurons), others exchange information between each other within the 
network (hidden neurons). Each unit is activated if the amount of signal received is higher 
than a certain threshold. In this case the unit revises the information and transmits a signal to 
the units directly connected to it. The input-output function, namely the transfer function of 
the network, is obtained through a learning process based on empirical data. In the considered 
cases two learning algorithms, belonging to the supervised learning family, have been used. 
These methods are based on the preparation of a set of inputs and desired outputs of the 
system (training set), in order to allow the network to identify the relation between the inputs 
and the outputs. Two ANN models have been analysed: the Feed-Forward Neural Network 
(FFNN) and the Nonlinear Autoregressive Network with Exogenous inputs (NARX). 
 
Feed-Forward Neural Network (FFNN): a feed-forward neural network is an artificial 
neural network where the connections between the units do not form a directed cycle (Fig. 1). 
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Figure 1: Model of a Feed-Forward Neural Network 

 
This structure has often one or more hidden layers of nonlinear neurons followed by an output 
layer of linear neurons. Multiple layers of neurons with nonlinear transfer functions allow the 
network to learn nonlinear and linear relationships between input and output vectors. 
 
Nonlinear Autoregressive Network with Exogenous inputs (NARX): a NARX Network is 
a recurrent dynamic network, with feedback connections enclosing several layers of the 
network. The NARX model is based on the linear ARX model, which is commonly used in 
time-series modelling. The defining equation for the NARX model is: 
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where the next value of the dependent output signal y(t)is regressed on the previous values of 
the output signal and the previous values of an independent (exogenous) input signal. Fig. 2 
shows a general scheme of a NARX Network. 
 

 
Figure 2: Model of Non Linear Autoregressive Network with exogenous inputs (NARX) 

 
The learning algorithms used for the two systems are the Levenberg-Marquardt Algorithm 
(for the FFNN model) and the so-called "Bayesian Regulation Back-propagation" (for the 
NARX model). The Levenberg-Marquardt algorithm, blending the steepest descent method 
and the Gauss-Newton algorithm, allows to overcome the problems encountered in the 
application of these methods to the ANNs. It inherits the speed advantage of the Gauss–
Newton algorithm and the stability of the steepest descent method. It is considered one of the 
most efficient training algorithms for feed-forward networks (Hagan&Menhaj, 1994). The 
Bayesian Regulation Back-propagation is a network training function that updates the weight 
and the bias values according to Levenberg-Marquardt optimization. It minimizes a 
combination of squared errors and weights and determines the correct combination in order to 
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produce a network that generalizes well (MacKay, 1992). The choice of these two models 
allows to consider and compare the contribution to the planning activity generated by a static 
neural structure (that is able to highlight the causal relationships between input and output), 
and a dynamic neural structure which includes the time variable. Both approaches should 
develop a production plan that includes all typical constraints of this activity and tries to 
overcome the limitations of the current mathematical models (see Introduction). The research 
methodology involves the steps reported in Fig. 3. 
 
 

 
Figure 3: Methodology workflow 

 
3. Case study 
The effectiveness of the proposed models is proved by the application to a real case, which 
provided positive results. The case is related to a paints and varnishes producer, sited in Italy, 
operating in the European and world market. It is a make-to-stock production system with 
batch production mode. 
 
3.1 Production process and planning constraints 
The reported case is related to the middle term planning activity. This phase starts from the 
Master Production Schedule (MPS) and determines what to produce, when to produce and in 
which quantities, with a high degree of detail. In practice, during this phase, the MPS is split 
into months and weeks, with an usual time horizon of three months and considering the 
production of each item. This planning phase must try to respect the capacity constraints and 
face the “Service Level/Inventory costs” trade-off in the short term. Specifically, the 
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production lot is constituted by a certain fixed quantity of liquid (the coating product) which 
is then packaged in a number of cans differing for size and type. The demand trend of the 
products is very different each other. Therefore, the production of a batch of liquid may not be 
efficient if it is required to meet the demand of only one of the finished products, especially if 
this product shows low sales on average. The planning activity is exposed to several technical 
constraints: the size of the production batches is fixed, the method of packaging with different 
patterns of demand for each products, the production capacity varies over time. These factors 
force the planner into complicated decisions oriented to face the multiple trade-off “demand 
satisfaction / cost of inventory / production costs / optimization of capacity utilization”. In this 
case the problem of lot-sizing becomes a problem of lot-quantity, hence it is necessary to 
decide how many liquid batches have to be produced in each period and how to package the 
quantities produced from time to time. Three types of liquid have been selected between those 
that are made on the “Water Dissipater Plant”: Transparent Base (1000 kg batch), Opaque 
White (9000 kg batch), White satin (1000 kg batch). These three liquids can be packaged in 
several cans differing by type and size obtaining 29 final products. The production capacity of 
the plant is defined as the number of batches produced per week. This value was calculated as 
the average number of batches produced in the last 4 years. 
 
3.2 Feed Forward Neural Network (FFNN) Model  
 
Selection of significant variables 
It is very important to select the most relevant variables for the model as well as to choose the 
correct number of involved variables. A large number of variables allows a better description 
of the model, but it will be more expensive in terms of processing and requires a very large 
training set; on the contrary, a low number of variables could invalidate the results, some key 
variables may be not considered by the system and it could lead to a wrong plan. 
For the case study the following variables have been chosen: period of the year (the week), 
ABC classification (the importance of each product for the turnover), weekly sales forecast, 
stock level for each product, weekly production capacity, standard batch size. 
Since there are 29 products, the input vector is composed by 92 variables. It is clear that, a so 
large input vector would lead to the creation of a big neural network as well as to the 
preparation of a huge training set. In order to reduce the number of input variables, still 
maintaining the information provided by the chosen ones, it has been used the so-called 
“Coverage Ratio”. This quantity can be calculated as follows: 
 

�
���� = 
�(�)
��

 

 
where RCi(t) is the “Coverage Ratio” for the product i at the period t, Ci(t)is the actual 
coverage of the product i at the period t (that is, the time interval such that the stock level 
satisfies the expected sales) and Cdi is the desired coverage of the product i(that is, the 
required coverage on the basis of the product importance for the turnover).The actual 
coverage, that is the number of days (k) for which the inventory level (S) will cover the 
expected sales (B), can be expressed as follows: 
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where Si(t) is the inventory level of the product i in the period t and Bi(t) represents the 
expected sales of the product i in the period t. It is clear that the “Coverage Ratio” allows to 
include the following variables into an unique indicator: 
- the ABC classification: the desired coverage Cdi is closely linked to the ABC class of the 

product and therefore to the importance of the product for the company; 
- the sales forecast: the actual coverage Ci(t) includes the expected sales for the next periods 

(namely until the expected stock out); 
- the inventory level: it is included in the actual coverage indicator. 
 
The remaining variables (namely the batch size and the production capacity) are included in 
the training set. To summarize, the input variables are the week (t) and the “Coverage Ratio” 
(RCi(t)of each product at the end of the week t). Hence, the input vector is composed by 30 
elements (RCi(t)*29 + t) instead of 92. The Fig. 4 shows the process of reduction of the 
involved input variables. 
 

 
Figure 4: Reduction of input variables 

 
Training set preparation 
The training set is a set of input/output data pairs: input data are the Coverage Ratio (RCi(t)) 
of each product and the period (t) or week, while output data are the number of batches Pi

t to 
be produced  for each of the three liquids at each period t. These values has been calculated as 
an ideal plan based on actual sales (starting from a deterministic plan, depending on the 
coverage ratio values, the production was balanced during the year considering the production 
capacity).The examples in the training set has been arranged in order to meet the capacity 
constraints, this allows to incorporate the production capacity variable in the training set. The 
ANN systems require a large number of data for training. However, the available data for the 
case study are not enough for the purposes of an effective training and it has been necessary 
to generate the data in order to increase the size of the training set. Furthermore, the 
possibility to include the generated data increases the generalization capability of the network, 
because the ANN is less linked to the specific problem. The training set used in the numerical 
tests consists of 10,000 vectors generated as follows: 
1. Calculation of the probability distribution of stocks for each period from 2008 to 2011; 
2. Preparation of 200 samples of stocks for each period extracted from the probability 

distribution calculated in step 1; 
3. Calculation of the Coverage Ratio RCi(t) of each item for each period and for each amount 

of stock; 
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4. Estimation of the quantity to be produced for each item in order to get the Coverage Ratio 
equal to 1 (based on actual sales); 

5. Aggregation of the estimated quantities in order to decide the amount of liquid to be 
produced; 

6. Rounding to the standard production batch; 
7. Calculation of the number Pi

t of batches to be produced for each period. 
In this way the training set includes also the systematic forecast errors. This is due to the fact 
that the simulation is based on sales forecast, whereas the network has been trained using 
actual sales data. Therefore, the network forecasts itself future sales taking into account the 
actual sales. The training set data have been normalized in order to obtain mean equal to zero 
and variance equal to one. 
 
Network structure 
In order to define the optimal network structure, the following iterative procedure has been 
used. First, a small size network is generated (three neurons and one hidden layer), trains the 
network, simulates the network using 2011 year data and calculates the performance (see 
equation (1)). The process is reiterated adding, each time, a neuron into the hidden layer. 
Once that the first layer of the network gets a certain size so that the performance does not 
improve significantly, the number of the first layer neurons is blocked and a second layer is 
added to the structure. The iterative process is repeated for networks with two hidden layers 
and the network with the best performance is selected.The selected network in the case study 
has been a FFNN with two hidden layers, 30 neurons in the input layer (the Coverage Ratio 
RCi(t) at timet for each of the 29 involved items and the variable t referring to the period of 
the year), 18 neurons in the first hidden layer, 19 neurons in the second hidden layer, 3 
neurons in the output layer, hyperbolic tangent transfer functions in the two hidden layers and 
a linear function in the output layer. 
 
Neural network training 
The training parameters have been set as follows: epochs=4000, performance goal=0.01, 
initial momentum=0.001, decrease momentum factor=0.1, increase momentum factor=10, 
maximum momentum value=10. The training set has been randomly divided in the following 
partitions: 80% training set, 10% validation set, 10% test set. The training performance has 
been valued by means of the following function: 
 

msereg = γmse + (1-γ)msw  (1) 
 
where γ is the performance coefficient, mse is the mean squared error and msw is the mean of 
the squared weights values, i.e. 

��� =
1����

	




���

 

 
This function measures network performance as the weight sum of two factors: the mean 
squared error and the mean squared weight and bias values. Using this performance function, 
the network tends to get lower weights values: this allows to obtain smoother values as output 
and the output is less exposed to over-fit. 
 
Simulation 
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In order to plan the weekly production for the year 2012, it is needed a system constituted by 
a series of 50 neural networks. The output of a network becomes the input of a function which 
determines how to pack the quantity of produced liquid basing on the sales forecast and 
recalculates the Coverage Ratios in the next period. This function is placed between each 
network and its consecutive one. Therefore, each network generates a “one step ahead” 
planning. The results of the simulation have been rounded to the closest integer number. 
3.3 Nonlinear Autoregressive Network with exogenous inputs Model (NARX) 
 
Selection of significant variables 
The significant variables are the sales forecast Bi(t) and the actual planning yi(t) (the weekly 
production volume during previous years for each item). 
 
Training set preparation 
The training set consists of real data (10%) and generated data (90%). Input data are sales 
forecast Bi(t) for each period t, for the years 2010-2011; output data are the actual production 
volumes yi(t) for each period t, for the years 2010-2011. The initial state is constituted by the 
same data referring to the previous years: sales forecast Bi(t) for each period t, for the years 
2008-2009; actual production volumes yi(t) for each period t, for the years 2008-2009.The real 
data refer to the ideal production volumes realized in order to satisfy the demand  and the 
production capacity during the previous years. These production volumes have been 
calculated starting from the actual inventory level at the beginning of the year. The generated 
data are based on the formulation of several “planning scenarios” elaborated as below:  
1. Probability distribution calculation of the inventory level at the beginning of each year; 
2. Elaboration of 100 possible inventory levels sampled from the probability distribution 

calculated at step 1; 
3. For each of the 29 items and inventory levels, elaboration of the weekly ideal production 

volumes during the years 2009, 2010 and 2011. 
The training set data have been normalized into the range [-1,1]. 
 
Network structure 
The iterative procedure to define the network structure is the same as in the FFNN model. The 
selected network in the case study has been a NARX with two hidden layers, 58 input neurons 
(the sales forecast for the period t, Bi(t), for each of the 29 involved items, and a delay block, 
for each of the 29 involved items, which collects the production volumes referring to the past 
periods yi(t)), tapped delay line of 100 elements, 13 neurons in the first hidden layer, 16 
neurons in the second hidden layer, 29 neurons in the output layer, hyperbolic tangent transfer 
functions in the two hidden layers and a linear function in the output layer. 
 
Neural network training 
The tapped delay line is constituted of a maximum of 100 elements, thus the network 
elaborates starting from the 101st element. Consequently, the tapped delay line must be 
charged with the first 100 values of the series and the inputs. The goal of the training is to 
plan the production volumes for the years 2010 and 2011. So the training set is structured as 
follows:  
- Initial state: sales forecast Bi(t) during the years 2008-2009 and production volumes yi(t) 

during the years 2008-2009; 
- Input: sales forecast Bi(t) during the years 2010-2011; 
- Target: production volumes yi(t) during the years 2010-2011. 
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The training parameters have been set as follows: epochs=200, performance goal=0.01, 
marquardt parameter (momentum update) =0.005, decrease momentum factor=0.1, increase 
momentum factor=10, maximum momentum value=10. 
 
Simulation 
In order to elaborate the production volumes of the three liquids for the year 2012, it is needed 
to feed the network with the following elements. Initial state: sales forecast Bi(t) during the 
years 2010-2011 and production volume yi(t) during the years 2010-2011. Input: sales 
forecast Bi(t) for the year 2012.After the simulation, the outputs are mapped out of the range 
[-1,1] on the base of the minimum and maximum values for the year 2011. The production 
volume of each liquid is calculated aggregating the production volumes of the corresponding 
items. These volumes are rounded to the standard batch size or to the half of the standard 
batch size. 
 

3.4 Numerical results 
The simulation results have been compared with both the real planning activity during the 
year 2012 and a deterministic planning activity (performed considering an unlimited 
production capacity) based on the sales forecast. An example of the simulation results is 
reported in Table 1 
 

week 

Deterministic 

Planning 

Real Planning 

2012 
FFNN Planning NARX Planning 

Production 

Capacity 

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 
Number of 

Batches 

18 1   1  1 1  1 1  1 2 

19  0,5 0,5 1  1 1 1 1 0,5 0,5 1 2 

20   1 1  1 1     1 2 

21       1  1 1   2 

22 1 1 1     1  1  1 2 

 
 

Table 1: Production planning generated by the four approaches 
 
Table 1 shows that the two proposed ANN models are capable to catch the underlying logic 
mechanism. Comparing the results obtained from the simulation with the real planning 
activity during 2012 and with the results of the deterministic planning, we notice that the 
ANN models generate a very plausible planning. The obtained production volumes respect 
the constraints dictated by the available weekly production capacity.  
Table 2 compares the four mentioned models considering the monthly service rate (calculated 
as the ratio between the ordered and the fulfilled quantity using the available inventory) and 
the inventory level (average inventory amount for each period) generated by the simulations.  
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Table 2: Service Level (SL) and Inventory Level (IL) generated by the four approaches 

 
The NARX model generates a service rate during 2012 very close to the real planning activity 
(91% vs. 92%). This good outcome is probably due to the fact that the NARX network 
identified possible systematic forecast errors (elaborating an own internal forecast). The 
FFNN model generates a service rate of 88%, which is also a good result considering that the 
real planning is regularly updated (every 2 months), whereas the ANN models plan the 
production for the whole year only in a single elaboration (at the beginning of the year). The 
deterministic planning generates the highest service rate (98%), but it must be considered that 
it does not respect the production capacity constraints, so it generates a very high inventory 
level. The ratio between the service rate and the inventory level, called RSI, accords better 
results to the NARX model (0.69). The FFNN model (RSI = 0.53) generates an RSI better 
than the deterministic planning (RSI = 0.44), although still lower than the real planning RSI 
(0.62). Concerning the inventory level, the NARX model gives once again very good results: 
it generates, on average, an inventory level lower than the other models. Nevertheless, the 
trend during the year results unstable.Table 3 compares the models on the basis of 5 
performance indicators connected to the production capacity exploitation: number of batches 
that exceed the weekly production capacity (total error),   amount of weeks in which the 
production capacity is exceeded (number of mistakes), ratio between the number of errors and 
the total number of weeks in the observed period (% of saturation), ratio between the number 
of errors and the number of weeks in which the production capacity is totally employed (Ratio 
Errors/Saturations), ratio between the employed production capacity and the maximum 
available capacity (% of capacity exploitation). 
 

 
Table 3:  performance indicators 

 
Table 3 shows that the two ANN models have very good performance indicators with respect 

  Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. AVE RSI 

Real. 

2012 

SL 0,86 0,91 0,97 1 0,89 1 0,9 0,94 0,91 0,85 0,87 0,91 0,92 
0,62 

IL 801 1.262 1.301 1.460 1.198 1.316 1.828 1.999 1.978 1.810 1.680 1.120 1.479 

Det. 
SL 0,9 1 1 0,98 0,97 1 0,93 1 0,96 1 0,98 1 0,98 

0,44 
IL 1.010 2.011 1.860 1.720 1.990 2.010 2.024 2.089 3.089 3.097 3.199 2.770 2.239 

FFNN 
SL 0,82 0,9 0,95 0,96 0,92 0,97 0,88 0,92 0,8 0,78 0,84 0,79 0,88 

0,53 
IL 990 1.680 1.011 1.888 991 1.230 2.998 891 3.010 2.770 1.660 879 1.667 

NARX 
SL 0,87 0,8 0,91 0,94 0,98 0,82 0,91 0,97 0,87 0,98 0,92 0,94 0,91 

0,69 
IL 1.680 1.390 890 2.091 2.101 2.780 987 671 1.965 721 267 378 1.327 

 

Real Planning 

2012 

Deterministic 

Planning 

FFNN 

Planning 

NARX 

Planning 

Total Error - 15,5 9 -5,5 

Num. of mistakes - 14 7 6 

% Saturation 0,6 0,12 0,64 0,42 

Ratio errors/saturations - 2,33 0,22 0,29 

% capacity exploitation 0,73 0,65 0,86 0,72 
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to both the real planning activity and the deterministic planning. Fig. 5 shows the exploitation 
of the weekly production capacity for each model. The two ANN models exploit the available 
production capacity in a more efficient way than the deterministic one, although they are still 
less effective than the real planning. Since the NARX model generates a percentage of 
exploitation lower than the FFNN one, it is clear that the first one is more flexible dealing 
with the demand peaks. However, this percentage of exploitation is really close to the real 
planning one. The NARX model chart shows a capacity exploitation trend that can be 
considered satisfactory. In particular, it correctly predicts the production volumes during the 
critical weeks (33rd, 34th, 35th in August) and those at the end of the year. Moreover, when 
the capacity is exceeded, the volumes can be anticipated/postponed without any effect both on 
capacity exploitation and service rate. 
 

 
Figure 5: Available production capacity per week vs the required one  

by the used planning methods 
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4 Conclusions 
The aim of this paper is to provide new support systems to the planning activity. These 
systems must be capable to overcome the main limitations of the traditional mathematical 
models and of the more recent ANN models. In order to achieve this aim, two new ANN 
planning models have been developed. These models allow to deal with: the constraints 
related to technical issues and to the time-varying production capacity, the importance of each 
item for the business, and the production smoothness policy.The first model employs a static 
network structure, so-called Feed-Forward, that does not include the time variable; the second 
model, the NARX one, employs a dynamic network structure, since it includes the time 
variable (delayed feedback connections in input). In order to validate the models it has been 
proposed an implementation to a real varnishing company. In particular, three liquids of the 
“Water Dissipater Plant” have been took in consideration. These liquids can be packaged as 
29 different items. The goal is to plan the weekly production volumes for the whole 2012. The 
ANN simulations have been compared to a deterministic planning (with infinite productive 
capacity) and to the real planning elaborated in 2012. The case study outcomes shows that the 
aim has been reached: the ANN systems, both static (Feed-Forward) and dynamic (NARX), 
can be efficaciously employed as a support tool for the production planning activity.As for the 
next developments, it would be interesting to investigate an integration of the proposed 
planning tools into the enterprise data flow process. The planning tool could be fed by an 
ANN-based forecasting tool and a system providing real time information from the 
production department. Furthermore, the planning system could work on all production plants 
of the considered company in order to develop an aggregated MPS capable to balance the 
whole production capacity on the basis of the long term objectives. 
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