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Summary
Nuclear fusion represents one of the most promising energy sources due to its high en-
ergy density, abundant fuels, and intrinsic safety. The process involves two light nuclei
that fuse, producing energy that can be gathered and converted into electricity. The tem-
perature necessary to achieve nuclear fusion forces the matter to the state of plasma, a
system of charged particles, globally neutral, with collective behaviour. The tokamaks
are machines used to confine a plasma of hydrogen isotopes, employing a combination of
magnetic fields, allowing the plasma to be heated until the energy of the particles over-
comes the coulomb barrier and the nuclei fuse.
The plasma exhibits instabilities that develop over various time and spatial scales. This
thesis focuses on a resistive magnetohydrodynamical instability called the neoclassical
tearing mode ((N)TM). The onset of the (N)TM manifests with a change in the topology
of the confining magnetic field, forming a magnetic island that can grow, reducing perfor-
mance and possibly leading to a complete loss of confinement of the plasma (disruption).
The investigation of the (N)TM involves different aspects: the trigger of the mode, its evo-
lution and control, and the role (N)TM can play in disruptive phenomena. In this work,
different aspects addressed above have been investigated by exploiting both experimental
data from the Joint European Torus (JET) and predictive simulations of (N)TM evolution
and control based on available scenarios from the Divertor Tokamak Test (DTT).
After a general introduction (Chapter 1) and a description of DTT and JET (Chapter 2), a
detailed theoretical analysis related to the physics of (N)TM is set in Chapter 3.
Chapter 4 covers the topic of NTM control. The (N)TM evolution can be controlled by
injecting powerful Electron Cyclotron Waves that drive a current within the island. Predic-
tive simulations in the DTT full power scenario were carried out to address some require-
ments for designing the electron cyclotron systems and investigate possible suppression
strategies.
The onset of the pre-disruptive (N)TM has been modeled in JET disruptive plasma. A
physical picture where the ion polarization current covers a role in the trigger of tearing
instabilities has been proposed in a published work (Appendix A) and introduced in Chap-
ter 5.
The topic of the early identification of disruptive conditions with deep learning is ad-
dressed in Chapter 6 using a dataset composed of JET disruptive plasma preceded by the
onset of an (N)TM. The classification of a deep neural network has been analyzed via
explainable artificial intelligence (XAI) methods to verify if the network can distinguish
between different disruptive patterns that involve the trigger of a 2/1 mode. Section 6.4
presents the published work (reported in Appendix B)
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Chapter 1

Introduction

The controlled fusion of hydrogen isotopes in plasma is considered one of the most promis-
ing future energy sources, offering high efficiency and improved environmental safety
compared to nuclear fission. In laboratory settings, the most energetically favorable reac-
tion for thermonuclear fusion involves the fusion of deuterium (D) and tritium (T), which
produces a α particle and a neutron, releasing 17.6 MeV of energy per reaction:

D1
2 +T1

3 → He2
4 +n0

1 (1.1)

This reaction is particularly advantageous because it has the highest fusion cross-section
at relatively low energies, making it more accessible than other potential fusion reactions.
The Coulomb barrier, which causes repulsion between positively charged nuclei, typically
limits the fusion probability, especially at low energies. However, the deuterium-tritium
reaction can proceed at temperatures achievable in current experimental setups thanks to
quantum mechanical tunneling, which allows nuclei to overcome the Coulomb barrier
more easily. As shown in Fig.1.1, other fusion reactions, such as deuterium-deuterium (D-
D) and deuterium-helium-3 (D-He3), are possible but at significantly lower cross-sections
at equivalent energy levels. For instance, the D-D reaction, which can yield either a pro-
ton and tritium or a neutron and helium-3, requires higher temperatures and delivers less
energy per reaction (around 4 MeV). Similarly, the D-He3 reaction produces a proton and
helium-4 but necessitates even higher plasma temperatures than D-T fusion, offering a
peak energy output of 18.3 MeV. These alternatives are less feasible in current technol-
ogy due to their higher energy thresholds and lower reaction rates. In a future D-T fusion
reactor, the neutrons produced in the fusion process would be used to breed tritium from
lithium, which is abundant on Earth, through interactions with the reactor’s walls. The α

particles produced in the fusion reaction contribute to heating the plasma. When confine-
ment conditions are sufficiently optimized, the temperature can be maintained by this α

particle heating alone, overcoming energy losses. When this occurs, the plasma reaches
the “ignited” state. The progress toward ignition is commonly described by the triple
product of density (n), temperature (T ), and energy confinement time (τE) as:

nT τE > 3 ·1021m−3KeV s (1.1)
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Figure 1.1: Reaction rate of the main nuclear fusion reactions as a function of the temper-
ature [116].

At the extremely high temperatures necessary for fusion, on the order of hundreds of mil-
lions of degrees Celsius, the hydrogen isotopes transition into a plasma state. A plasma is
a state of matter in which the particles are fully ionized, consisting of free electrons and
nuclei. In this state, the high kinetic energy of the particles can overcome the Coulomb
barrier, which repels positively charged nuclei. The tokamak is currently the most ad-
vanced prototype of a nuclear fusion reactor. It uses powerful magnetic fields to confine
plasma in a toroidal shape, creating conditions for fusion reactions. The tokamak’s mag-
netic confinement helps sustain the plasma at the extremely high temperatures—around
150 million degrees Celsius—required for efficient fusion.

1.1 Tokamak
As pointed out before, the energy required to overcome the coulomb barrier forces the
particles to change state in a plasma. The energy must be confined for a time τE sufficient
to satisfy Lawson’s criteria and reach the condition for the ignition. Two approaches are
currently followed: inertial confinement fusion, where the plasma is confined for a time
that depends on its diffusion (and hence connected to its inertia), and magnetic confine-
ment fusion, which tries to maximize the confinement time by means of a magnetic field.
Indeed, the plasma, composed of charged particles, interacts with the magnetic field so
that, in principle, it is possible to think of a magnetic configuration where the plasma is
detached from the cold wall, maintaining the temperature necessary for achieving a suf-
ficient amount of fusion reactions. As the motion of the charged particles is unbounded
along the magnetic field lines, the plasma needs to be confined over surfaces where, at ev-
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Figure 1.2: Illustration of a tokamak, showing the toroidal magnetic field line, produced by
the toroidal field coils. The plasma current, induced by the central solenoid, that produces
the poloidal field, twisting the magnetic field lines [67]

ery point, the confining magnetic field is non-vanishing and tangent to the surface. How-
ever, the well-known Poincare’s theorem constrains the possible geometries that can be
used, stating that the only topology where it is possible to define a non-vanishing tangent
field in every point is a torus. One of the most promising configurations for obtaining a
future fusion reactor prototype is the tokamak, a toroidal chamber where a magnetic field
confines the plasma. The primary component of the magnetic field, denoted as Bφ , is ori-
ented in the toroidal direction and is generated by conducting coils encircling the chamber.
The plasma particles move along the field lines following a helical trajectory, with their
radius determined by the Larmor radius rL = mv⊥

eBφ
. According to Ampere’s law, Bφ fol-

lows the curvature of the machine and scales as 1/R. These inhomogeneities in curvature
and intensity produce drifts that depend on the charge of the particles, leading to charge
separation and generating an electric field. This electric field causes the plasma column to
move vertically, quickly disrupting the confinement. This behavior, known as vertical dis-
placement instability, can be handled by introducing a secondary magnetic field pointing
in the poloidal direction. The poloidal magnetic field Bθ is generated by a current induced
within the plasma, functioning analogously to the secondary circuit of a transformer. In
this context, the primary circuit is constituted by a central solenoid through which the pri-
mary current flows. This configuration is stable (actually metastable, as explained at the
end of the chapter), and the equilibrium can be described through the magnetohydrody-
namics (MHD), a single-fluid model. In the next section, a brief description of the MHD
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equilibrium will be given.

1.2 Ideal magnetohydrodynamics
As pointed out before, toroidal geometry is the only topology in which it is possible to
define a field tangent to the surface everywhere. A surface densely covered by a magnetic
field in a tokamak is called irrational flux surface. In a toroidal geometry, the plasma is
confined on a flux surface, and a particle can pass from one surface to another solely due
to collisions. The equilibrium of the plasma on the flux surfaces can be described using
the MHD, derived in terms of single-fluid quantities:

ρ = min (1.2)

v⃗ = u⃗i (1.3)

J⃗ = en(⃗ui − u⃗e) (1.4)

p = pi + pe (1.5)

T =
(Ti +Te)

2
(1.6)

where the subscripts e, i indicate the electrons and ions,n is the density, p is the pressure,
T is the temperature, u is the species velocity. These definitions are derived under the
assumption of quasi-neutral plasma (ni = ne). Two fluid equations, derived from kinetic
models, are added to create a set of single fluid equations containing the single fluid quan-
tities:

∂ρ

∂ t
+∇ · (ρ v⃗) = 0 (1.7)

ρ
d⃗v
dt

− J⃗× B⃗+∇p = 0 (1.8)

E⃗ + v⃗× B⃗ = 0 (1.9)

∇× E⃗ =−∂ B⃗
∂ t

(1.10)

∇× B⃗ = µ0J⃗ (1.11)

∇ · B⃗ = 0 (1.12)

Eq. 1.7 represents the mass continuity equation without considering any possible source
or sink of particles (nuclear fusion, recombination, charge exchange). Eq. 1.8 is the
ideal limit of the balance momentum equation. Eq. 1.9 is the Ohm’s law, neglecting the
resistivity. The system is closed by Maxwell’s equation, neglecting the ∇ ·E because,
due to quasi-neutrality, the equation is trivial. The MHD equilibrium inside a tokamak
is represented by nested closed toroidal magnetic flux surfaces. The magnetic field lines
covering the flux surfaces define two different kinds of magnetic surfaces depending on
the winding step: if the magnetic field line closes on itself after an integer number of
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Figure 1.3: Illustration of the surfaces Sp and St that define respectively the poloidal and
toroidal magnetic field flux.

toroidal turns, the surface is said to be rational. Otherwise, the surface is called irrational.
A function that is constant along a flux surface is called flux function, and its value can be
used to “label” the flux function. A flux function must satisfy the relation:

B⃗ ·∇ f = 0 (1.13)

For a particular magnetic field line that defines the strength of the magnetic field B⃗ in
a specific part of the magnetic surface, the relation 1.13 expresses the propriety of the
quantity f to vary only perpendicularly to the field line. The first relevant flux functions
are the poloidal and toroidal magnetic fluxes defined as:

Ψt =
∫

St

dS n⃗ · B⃗ (1.14)

Ψp =
∫

Sp

dS n⃗ · B⃗ (1.15)

Of course, the definition of flux function is automatically satisfied for a sufficiently regular
magnetic field so that the toroidal and poloidal magnetic fluxes are flux functions and
can be used to label the magnetic surfaces. The fundamental outcome of ideal MHD is
that the magnetic flux enclosed by any arbitrary open surface moving with the plasma
remains constant, implying that the flux is “frozen” into the plasma. This can be shown
by evaluating the time derivative of the poloidal flux across a general surface Sp:

dψp

dt
=
∫

Sp

∂ B⃗
∂ t

· n⃗dS−
∮

v⃗× B⃗ ·dl (1.16)

Using Eq.1.10:
dψp

dt
=−

∮
(E⃗ + v⃗× B⃗ ·dl (1.17)
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Figure 1.4: Illustration of the volume considered in [63] to provide a physical interpre-
tation of the safety factor q. The red line represents a single field line at ζ = 0 and the
same field line at ζ = 2π . After a toroidal turn, there is a difference ∆θ in the field line in
the poloidal plane. The flux across the surface Sp is equal to the flux across St , leading to
the interpretation that the rotational transform indicates the winding step of the magnetic
surface.

Eq. 1.17 is identically equal to zero, according to the ideal approximation of Ohm’s law
(Eq.1.9). Considering the proprieties of the flux label, for a fixed flux surface, it is possible
to express the poloidal flux as a function of the toroidal flux:

Ψp = Ψp(Ψt) (1.18)

and define the rotational transform as:

ι = 2π
dΨp

dΨt
(1.19)

The rotational transform defines the average ∆θ in the poloidal plane between a magnetic
field line at ζ = 0 and ζ = 2π , namely after a toroidal turn. In general, the ∆θ that
characterized the field line is not uniform, and its average gives a measure of the twist of
the magnetic field line over the rational surface. A physical picture is provided in [63].
Choosing a magnetic surface ergodically covered by a magnetic field line. Following a
field-line segment, it is possible to build a volume composed by the surface dSt that covers
the angle ∆θ at a fixed ζ , and the surface dSp at a fixed θ that intersects the field line as
shown in Fig. 1.4. As no flux can flow across the surface by definition, the divergence-
free condition for the magnetic field (that applies also to the flux for a sufficiently regular
magnetic field) states that:

dΨt = dΨp (1.20)

The volume, in general, can change as ∆θ in principle is not uniform; however, every time
the field line passes, the condition 1.20 holds. The field line will complete a certain number
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of toroidal and poloidal turns after one can say that the line closes on itself with a certain
accuracy. Defining as m and n respectively the number of toroidal and poloidal circuits
before the line closes on itself and iteratively increasing ∆θ following the trajectory of the
field line with the same procedure defined before, when the line closes on itself:

n dΨt = m dΨp (1.21)

So that:
ι

2π
=

dΨp

dΨt
=

n
m

(1.22)

gives the average pitch of the magnetic field lines of a magnetic surface. Of course, the
rotational transform is a flux function. For historical reasons, the considered quantity is
the inverse of the rotational transform:

q =
2π

ι
=

dΨt

dΨp
=

m
n

(1.23)

this quantity is called safety factor. In general, q can be a rational or irrational number. If
q is irrational, the magnetic field line covers ergodically the magnetic surface (this is why,
in the previously adopted procedure, the line was considered to close on itself, “within a
certain accuracy”). On the other hand, if q is a rational number, the line closes on itself.
Physically, the equilibrium of the magnetic surfaces is described by the ideal MHD:

J⃗× B⃗ = ∇p (1.24)

It is straightforward to show that the flux surfaces are also isobaric:

B⃗ ·∇p = J⃗× B⃗ · B⃗ = 0 (1.25)

that states that the pressure is a surface function.

1.2.1 MHD equilibrium: the Grad-Shafranov equation

The bidimensional shape of the flux surfaces assuming axial symmetry can be obtained by
solving an elliptic partial differential equation, the Grad-Shafranov, whose solution pro-
vides an expression for the function ψ(R,Z), where ψ represents a label function. Consid-
ering an axisymmetric system, described by cylindrical coordinates (R,Z,φ) (∂/∂φ = 0),
the magnetic field can be written as a function ψ , defined as:

B⃗ = Bφ êφ + B⃗pol (1.26)

where Bpol:

Bpol =
1
R

∇ψ × êφ (1.27)
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It can be shown easily that Eq. 1.26 satisfies the divergence-free condition ∇ · B⃗ = 0.
Current density J⃗ is defined by the Ampere’s law:

µ0J⃗ = ∇× B⃗ (1.28)

using Eq. 1.26, the current becomes:

µ0J =− 1
R

∆
∗
ψ êφ +

1
R

∇(RBφ )× êφ (1.29)

∆
∗
ψ ≡ R2

∇ ·
(

∇ψ

R2

)
= R

∂

∂R

(
1
R

∂ψ

∂R

)
+

∂ 2ψ

∂Z2 (1.30)

Putting Eqs. 1.26 and 1.29 in Eq. 1.28 and combining the solutions projected along the
∇ψ , B⃗ and J⃗ directions:

∆
∗
ψ =−µ0R2 d p

dψ
− 1

2
dF2

dψ
(1.31)

where F ≡ Bφ R. Eq. 1.31 is the Grad-Shafranov equation obtained in static axisymmetric
equilibrium. The ideal MHD model cannot express the pressure profile p(ψ) and the
function F(ψ) related to the toroidal magnetic field. For this reason, the Grad-Shafranov
equation is considered an underdetermined equation that needs another model involving
plasma transport to define these free functions. The Grad-Shafranov equation is obtained
assuming a static equilibrium condition, namely, the time derivatives equal zero. However,
the equilibrium in a plasma is unstable, and the plasma is subjected to instabilities that can
break the confinement, leading to disruptions. In the next section, a brief introduction to
plasma instabilities is presented.

1.3 Plasma stability
The MHD equilibrium of the plasma is obtained by balancing the pressure gradient and
the J⃗ × B⃗ force. Despite the ideal MHD admits an equilibrium, namely d/dt = 0, it does
not guarantee a stable equilibrium. A system is said to be in stable equilibrium if, for
every perturbation, the system remains in a neighborhood of the equilibrium point. This is
exemplified by a pendulum: when displaced from its equilibrium position, the pendulum
begins to oscillate around that equilibrium point. In unstable systems, small deviations
from equilibrium favour the onset of instabilities that can grow, diverging the system from
its initial conditions. The plasma can become unstable because of the large gradients
(current and pressure) typical of the tokamak equilibria, and the onset of instabilities is fa-
cilitated by the free energy available in the system. There are various instabilities, and this
work will focus on those that can be described using the MHD model. A key distinction is
based on the physical models required to explain these instabilities. Some are ideal mag-
netohydrodynamic instabilities, meaning they do not require resistivity for their modeling.
Examples include the internal or external kink, which are particularly dangerous as they
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grow on an Alfvén timescale and can quickly destroy confinement. The inclusion of the
resistivity breaks the frozen field line theorem and allows to account for phenomena that
involve a diffusion of the magnetic field lines. This occurs in various resistive instabili-
ties, which, despite their differing characteristics, share a common underlying mechanism:
magnetic reconnection. Examples are the Sawtooth instabilities and the Edge Localized
Mode (ELM) instabilities. This thesis will be focused on the (neoclassical) tearing mode
(NTM) and in the next section, a brief physical, phenomenological description will be
given.

1.3.1 Neoclassical tearing mode

The NTM instabilities arise at rational surfaces, where magnetic field lines, over resistive
timescales, undergo magnetic reconnection through a diffusion process. This reconnec-
tion changes the topology of the magnetic surfaces, resulting in the formation of what is
known as a magnetic island. The very first phase of the evolution of the magnetic island
is linear and the stability of the rational surface is quantified by an index, the ∆′

0, related
to the logarithmic jump of the perturbed magnetic flux across the rational surface. In this
context, the literature refers to the instability as Tearing Instability (TM). The resistive
diffusion admits forming a new topology, called magnetic island. Beyond a certain width,
the dynamic of the TM becomes non-linear, influenced by neoclassical effects such as
the bootstrap current and the curvature of the magnetic field lines. These effects will be
extensively analysed in Chapter 3. The nonlinearities give rise to characteristic behav-
iors in the tearing mode dynamics, such as the emergence of a threshold width required
to trigger the mode and the establishment of a saturation width for the magnetic island.
Nonlinearities also allow the trigger of the mode as a consequence of the interaction be-
tween different plasma instabilities, such as the sawtooth crash. The plasma within the
magnetic island rapidly equilibrates, causing the temperature and the pressure profile to
flatten. This enhances radial energy transport, reduces the plasma β , and weakens the
confinement. If the magnetic island exceeds a certain threshold size, the plasma geometry
becomes so distorted that confinement is significantly compromised. This could poten-
tially cause the plasma to disrupt, unloading the energy on the first wall of the tokamak.
This rapid event occurs on extremely short timescales and poses a serious threat, especially
for the future generation of nuclear fusion reactors. One approach to NTM control is the
injection of radio-frequency waves, particularly using Electron Cyclotron Current Drive
(ECCD), which targets the resonant surface to compensate for the loss of bootstrap current
within the island. This thesis will focus on the study of the m = 2, n = 1 NTM, the most
alarming instability that can grow and lead to disruption. This thesis aims to investigate
neoclassical tearing modes (NTMs) across different phases. First, the triggering of disrup-
tive NTMs in JET will be analyzed, offering an interpretation based on the role of the ion
polarization current in triggering the mode. Next, the evolution of the instability will be
simulated in DTT scenarios using the integrated transport code JETTO-Jintrac, providing
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useful indication for the design of the stabilizing ECCD. Finally, innovative techniques
will be applied to a neural network trained for disruption prediction, providing insights
into the most significant physical quantities involved in the disruption prediction.
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Chapter 2

DTT and JET

This thesis primarily relies on a simulated scenario performed on the Divertor Tokamak
Test (DTT) facility, currently under construction in Italy, and experimental data from the
Joint European Torus (JET) in England. This chapter will provide a brief description
of these devices. The DTT has been designed as a machine dedicated to studying the
divertor, a component for managing heat and impurities in the plasma. Its purpose is to
tackle the challenges associated with heat dissipation in future reactors like ITER and
DEMO. Specifically, the DTT aims to test advanced solutions for controlling plasma-wall
interactions, ensuring efficient power flux management, and extending the operational life
of wall materials. On the other hand, JET, which was the largest operational tokamak for
many years, has been an important contributor to nuclear fusion research since the 1980s.
Thanks to its design and capabilities, JET has served as a testing ground for many of
the technologies and discoveries that are now driving the development of ITER. Among
its contributions is its ability to operate with deuterium-tritium fuel mixtures, critical for
replicating the conditions required for large-scale fusion reactions.

2.1 The Divertor Tokamak Test (DTT)
The Divertor Tokamak Test (DTT) project addresses one of the key challenges in fu-
sion energy research: managing heat and particle fluxes in future reactors like ITER and
DEMO [1]. As these reactors will operate at much higher power levels, ensuring efficient
heat dissipation and maintaining the integrity of plasma-facing materials are critical for
their success. In particular, DTT aims to develop advanced solutions for heat exhaust and
plasma-wall interactions (PWI), essential for the long-term operation of fusion devices.
In the framework of the European Fusion Roadmap [27] and the eight missions proposed
to realize fusion energy, DTT specifically contributes to Mission 2, which focuses on de-
veloping a power exhaust system capable of sustaining the large heat loads expected in
fusion reactors. The roadmap highlights the need to optimize a conventional divertor for
detached conditions (such as in ITER) and to explore alternative, more advanced config-
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Figure 2.1: Illustration of DTT facility, showing its main components [87].

urations supporting DEMO design. To fill the gap between ITER and DEMO in terms
of power handling capabilities, DTT is designed to test solutions that include advanced
magnetic configurations, making it a highly flexible and integrated testbed for plasma ex-
haust research. The DTT’s flexibility will allow it to test various divertor solutions while
maintaining the ability to adapt to unforeseen technical challenges that might arise during
the development of DEMO. In addition to testing conventional and alternative divertor
designs, the DTT project aims to assess the performance of various plasma-facing materi-
als, including liquid metals, to ensure the durability and efficiency of the divertor systems
under extreme conditions. DTT is characterized by its flexible divertor design, which al-
lows for testing both conventional and advanced divertor configurations. The primary goal

Figure 2.2: Divertor configurations available in DTT [1]
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of the divertor system is to manage the heat and particle fluxes generated by the plasma,
which in future fusion reactors are expected to exceed 10 MW/m2. To address this, the
DTT can accommodate a variety of divertor geometries, including [1] Single Null configu-
ration, used in most tokamaks, X-Divertor, Snowflake Divertor and Negative triangularity.
Various divertor configurations are shown in Fig. 2.2. In addition to these configura-
tions, the DTT is designed to test liquid metal divertors [83], which represent a promising
approach for handling heat loads. The liquid metal can absorb and dissipate heat more ef-
fectively than solid materials, offering a solution to one of the most important challenges
in fusion reactor design. The DTT divertor system emphasizes flexibility and ease of
replacement. The divertor modules can be changed rapidly through remote handling sys-
tems, ensuring that different configurations can be tested quickly, minimizing downtime
between experiments. The DTT employs a combination of Electron Cyclotron Resonance
Heating (ECRH), Ion Cyclotron Resonance Heating (ICRH), and Neutral Beam Injection
(NBI) to achieve the necessary plasma heating [47]. Each system contributes to the total
installed heating power, which in the final operational stage will reach 45 MW. The ECRH
system comprises four clusters of eight gyrotrons, each operating at 170 GHz with a power
output of 1 MW per gyrotron, providing 32 MW of heating power. The ICRH system de-
livers 8 MW of heating via two antenna modules, which operate in the frequency range
of 60 to 90 MHz. Finally, the NBI system injects 10 MW of power through negative ion
injection, operating at an energy level of 500 keV. The magnetic confinement system of
the DTT is based on a combination of superconducting and normal conducting magnets,
designed to provide control over the plasma and enable long-pulse operations. The mag-
netic confinement system in DTT includes several key components. The Toroidal Field
(TF) coils consist of 18 superconducting Nb3Sn coils, capable of generating a toroidal
field of 6 T at the plasma major radius, which contributes to maintaining stable plasma
confinement. The Central Solenoid (CS) is divided into six independently fed modules,
each made from Nb3Sn. The Poloidal Field (PF) coils system consists of six independent
coils made from NbTi and Nb3Sn conductors. These coils are responsible for shaping

Scenario Ip (MA) BT (T) Divertor ECRH ICRH NBI
A 2 3 SN/XD 8 0 0
B 2 3 SN/XD 16 4.75 0
C 4 6 SN/XD 16 4.75 0
D 5.5 6 SN 16 4.75 5-10
E 5.5 6 SN 32 9.5 10

Table 2.1: DTT Operational Scenarios

the plasma and controlling the plasma current during operation, which is critical in main-
taining plasma stability. Additionally, two copper coils inside the vacuum vessel provide
fast control over vertical instabilities, permitting real-time adjustments of the plasma po-
sition and improving the plasma’s confinement and overall stability. DTT’s operational

16



scenarios will evolve as the heating capabilities are incrementally enhanced, allowing for
higher-power experiments over time. In the first phase (scenario A) of the machine’s life,
8MW of ECRH will be used, focusing on reaching an H-mode baseline plasma. During
this phase, DTT will explore the single null and X-Divertor configurations using a 3T
toroidal magnetic field and 2MA plasma current. From phase B to phase D, the additional
power will progressively increase, reaching the full power in scenario E. Tab. 2.1 shows
the plasma current, toroidal magnetic field, and the strength of every additional heating
system.

2.2 The Joint European Torus (JET)
The Joint European Torus (JET) [81], located in Culham, UK, started in 1970s as an Eu-
ropean tokamak, with construction beginning in 1978. The device became operational in
1983 to investigate the behavior of plasma using deuterium-tritium fuel. JET demonstrated
the feasibility of D-T fusion, achieving the first controlled D-T fusion reactions in 1991.
This led to its 1997 record of 16 MW of fusion power output during a 1-second pulse.
In 2022, JET set a new world record by producing 59 MJ of energy over five seconds,
showing improvements in plasma confinement and heating technologies. JET’s technical
contributions include advances in plasma heating (via neutral beam injection and ion cy-
clotron resonance heating), plasma-wall interactions, and remote handling technologies.
The main aims of the JET [24] are centered on advancing the study of plasma behavior in
conditions that approximate those necessary for a functioning fusion reactor. This includes
scaling and extending plasma parameters such as temperature, density, and confinement
time to the levels required for sustained fusion reactions. Due to its iter-like wall, one
main objective was to investigate impurities’ effects on plasma stability and performance.
Since impurities can lead to significant energy losses through radiation, understanding
and mitigating these effects optimizes plasma confinement and overall efficiency. Ad-
ditionally, JET aimed to develop supplementary heating techniques, including NBI and
radiofrequency (RF) heating. These methods help achieve the high plasma temperatures
needed for fusion, as ohmic heating alone is insufficient to reach interesting temperatures.
Another important goal is to study the behavior of alpha particles generated during D-T
fusion reactions. Understanding how these particles contribute to plasma heating and how
they influence plasma stability is vital for future reactor designs. JET is characterized by
a major torus radius of 2.96 meters and a minor radius of 1.25 meters, yielding a plasma
volume of approximately 80 cubic meters. The device can produce a toroidal magnetic
field of up to 4 T and a plasma current of up to 4.8 MA. JET is equipped with auxiliary
heating systems, including 35 MW of NBI power and 6 MW of RF power for ICRH, which
provides up to 41 MW of additional power. This allows to raise the plasma temperature
to over 30 keV, placing the scenario in a thermonuclear fusion regime. JET can achieve
a plasma density of around 1× 1020 m−3, with the energy confinement time typically on
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the order of 1 second. JET is equipped with a comprehensive array of diagnostic tools, in-
cluding hundreds of magnetic probes, interferometers, and spectrometers, which measure
plasma parameters such as density, temperature, and magnetic field profiles. Advanced
control systems monitor and stabilize the plasma, providing feedback control for plasma
shape, position, and stability. These capabilities allow JET to investigate various plasma
instabilities, such as magnetohydrodynamic (MHD) instabilities, sawtooth oscillations,
and neoclassical tearing modes. JET allows for two different operational scenarios: the

Figure 2.3: Example of q-profiles from jet pulse number 67934 (hybrid) and 67946 (base-
line), at the start of the heating (solid line) and after 7s of heating, taken from Ref. [59]

baseline and the hybrid. In the baseline scenario, the normalized β , denoted as βN , typi-
cally ranges between 1.5 and 2. This scenario is designed around the standard inductive
operation envisioned for ITER. However, baseline plasmas are limited by the onset of mag-
netohydrodynamic (MHD) instabilities, particularly neoclassical tearing modes (NTMs).
In contrast, hybrid plasmas operate at higher βN values, usually between 2.5 and 3, allow-
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ing for better confinement and improved stability. This higher pressure is possible due to
a more stable current profile with lower magnetic shear, reducing MHD instabilities. The
confinement factor, represented by H98, is also significantly different between the two sce-
narios. In baseline plasmas, H98 is typically close to 1, providing adequate confinement,
but it is limited in terms of overall plasma performance. On the other hand, hybrid plasmas
achieve higher confinement with H98 values reaching up to 1.5, indicating improved en-
ergy retention and enhanced global confinement. This improvement is attributed to better
core and pedestal confinement, particularly in high-pressure operations, where the plasma
is maintained at lower density and higher temperatures. A significant difference between
the two scenarios lies in their strategies for controlling plasma current and magnetic shear.
In baseline plasmas, the current is higher, which results in a more peaked current pro-
file. Hybrid plasmas operate at lower plasma currents, which broaden the current profile
and lower the magnetic shear. Fig. 2.3 compares the hybrid and baseline scenarios. The
hybrid and baseline scenarios are distinguished by controlling current penetration. Re-
garding MHD stability, the baseline scenario is more prone to developing NTMs and other
core instabilities, which can limit the achievable βN and degrade confinement. These in-
stabilities are primarily caused by the peaked current profile in baseline plasmas, which
leads to higher magnetic shear. In the hybrid scenario, these instabilities are minimized by
the broader current profile and reduced magnetic shear. In the last experimental campaign,
JET [70] achieved a new world record related to the produced energy due to D-T reaction.
The time trace of the power gathered from the nuclear fusion reactions is shown in Fig.2.4.
The pulse 99971 obtained 59 MJ of energy from D-T reactions with an average power of
10.1 MW. The ratio between energy produced and energy injected by additional heating
is 0.33. The pulse used a tritium-rich plasma mixture where the deuterium abundance
ranges between 5% to 17% with respect to the total D and T densities. The additional
heating were pure deuterium neutral beam injection (D-NBI) and ICRH.
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Figure 2.4: Time trace of the nuclear fusion power produced in the latest world record of
nuclear fusion energy produced. Reproduced from [69]
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Chapter 3

Theoretical framework

This chapter overviews the fundamental physical processes of classical and neoclassical
tearing instability. The discussion covers all possible phases of the instability’s life cy-
cle, including onset, growth, and suppression. The analysis of the magnetic reconnection
process has been approached considering the linear stability of a current sheet; Section 3
shows how such an ideal MHD approach is insufficient. In Section 3.0.3, the cylindrical
tearing equation is introduced, with its derivation and both analytical and numerical solu-
tions, to calculate the linear stability index ∆′

0 [114]. Section 3.1 introduces the non-linear,
neoclassical terms that drive the evolution of the tearing mode within the framework of
Rutherford’s theory. In this context, in Section 3.2, the stabilizing effects of current drive
and heating, as consequences of electron cyclotron, are quantified. Section The linear
theory: slab configuration Historically, [37], the challenge of magnetic reconnection has
been approached by initially considering a simplified system: the slab configuration. This
methodology offers valuable insights into the basic mechanisms involved in magnetic re-
connection, aiming to model the magnetic configuration that leads to the trigger of a tear-
ing mode. Considering an infinite plane current layers, the slab geometry is described
by:

B⃗0 = ŷBy0(x)+ ẑBz0(x) (3.1)

where By0 and Bz0 have the form:

B0y(x) =


B′

0yx −a < x < a

−B′
0ya x <−a

B′
0ya x > a

(3.2)

B0z(x) = constant (3.3)

The behavior of the electric and magnetic fields is defined by Maxwell’s equations cou-
pled with Ohm’s law, where the ion pressure and inertia terms are neglected and quasi-
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Figure 3.1: Representation of the magnetic field in slab configuration

neutrality is assumed (the charge density σ = 0):

∇× E⃗ =−∂ B⃗
∂ t

(3.4)

∇ · E⃗ = 0 (3.5)

∇× B⃗ = µ0J⃗ (3.6)

∇ · B⃗ = 0 (3.7)

E⃗ + v⃗× B⃗ = η J⃗ (3.8)

Applying the curl to Ohm’s law and using Equation 3.4 and 3.6, recalling that ∇×∇× B⃗=

−∇2B⃗ by the divergence-free property of the magnetic field:

∂ B⃗
∂ t

= ∇× (⃗v× B⃗)+
η

µ0
∇

2B⃗ (3.9)

The equation can be simplified assuming an incompressible fluid, namely the time deriva-
tive of the density ρ in a certain volume, remains constant in time. According to the
continuity equation 1.7, a null time derivative of the density implies a null divergence
of the flow within a certain volume that, in the case of homogenous fluids, reduces to
∇ · v⃗ = 0. Eq. 3.9 becomes:

∂ B⃗
∂ t

=
η

µ0
∇

2B⃗+
[
(B⃗ ·∇)⃗v− (⃗v ·∇)B⃗

]
(3.10)

The physics of the equations used to derive Eq.3.10 describes the behaviour of the electric
and magnetic fields. The MHD model must be employed to model the velocity v⃗. The curl
of the momenta equation, neglecting the viscosity (Eq. 1.8) reads:

∇×
(

ρ
d⃗v
dt

)
= ∇×

[
1
µ0

∇× B⃗× B⃗+ρ g⃗
]

(3.11)

where ρ is the mass density, and ρ g⃗ is a term associated with a general acceleration, for
example, the gravitational effects or the pressure gradients as a result of the curvature of
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the current layer. The total derivative of the resistivity η and the term ρ g⃗ is zero so that
these functions are assumed to be modified only through convection:

∂η

∂ t
+ v⃗ ·∇η = 0 (3.12)

∂ (⃗gρ)

∂ t
+(⃗v ·∇)(⃗gρ) = 0 (3.13)

Finally, the equilibrium is assumed to be static (⃗v0 = 0). Eq. 3.10, assuming no change in
times, reduces to:

∇× (η0∇× B⃗0) = 0 (3.14)

Eqs. 3.10, 3.11, 3.12 and 3.13 are perturbed and linearized, obtaining dimensional equa-
tions describing the behavior of the perturbed magnetic field. By neglecting the resistivity,
the ideal limit (η = 0) is investigated, underlining that the ideal MHD introduces a singu-
larity that can be resolved only through the resistive MHD. The perturbed quantities are
generally defined as:

f1 = f1(y)ei(kyy+kzz)+ωt (3.15)

Perturbation is introduced in Eqs. 3.10, 3.11, 3.12 and 3.13, producing a linearized system
of equations:

ωB⃗1 = ∇× (⃗v1 × B⃗0)−
1
µ0

∇×
[
η0∇× B⃗1 +η1∇× B⃗0

]
(3.16)

ω∇×ρ0⃗v1 = ∇×
[

1
µ0

[
(B⃗0 ·∇)B⃗1 +(B⃗1 ·∇)B⃗0

]
+(⃗gρ)1

]
(3.17)

∇ · v⃗1 = ∇ · B⃗1 = 0 (3.18)

ωη1 +(⃗v1 ·∇)η0 = 0 (3.19)

ω (⃗gρ)1 +(⃗v1 ·∇)(⃗gρ)0 = 0 (3.20)

Considering a v⃗1 = (v1x,0,0) and B⃗1 = (B1x,0,0) with the spatial and temporal depen-
dences defined by Eq. 3.15, the system of equations can be reduced to a set of two equa-
tions depending on the equilibrium and perturbed quantities v1x and B1x:

ωB1x = (B0yky +B0zkz)v1x −
1
µ0

(
(∇η0 × (∇× B⃗1))x +η0∇

2B1x +
1
ω

v1x
∂η0

∂x
∂

∂x
(B0yky +B0zkz)

)
(3.21)

ωρ0⃗k× v⃗1 =
1
µ0

k⃗×

[
(B0yky +B0zkz)B⃗1 +B1x

∂ B⃗0

∂x

]
+

1
ω

k⃗×
(

v1x
∂ (⃗gρ)0

∂x

)
(3.22)
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Following the notation introduced by Furth [37], Eqs. 3.21 and 3.22 are written in terms
of adimensional quantities:

ψ =
B1x

B
W =−iv1ykτr

F =
(kyB0y + kzB0z)

kB
k =

√
k2

y + k2
z

α = ka τr =
µ0a2

< η >

τH =
a
√

µ0 < ρ >

B
S =

τr

τH

p = ωτr η̄ =
η0

< η >

ρ̄ =
ρ0

< ρ >
G = τ

2
HA

where τH and τr represent respectively the Alfvenic and resistive times, a is the width of
the current layer. The quantities < ρ >, < η >, and B refer to a measure of the density, the
resistivity, and the magnetic field in the configuration. Eqs. 3.21 and 3.22 can be rewritten
as:

ψ ′′

α2 = ψ

(
1+

p
η̄α2

)
+

W
α2

(
F
η̄
+

η̄ ′F ′

η̄ p

)
(3.23)

(ρ̄W ′)′

α2 =W
[

ρ̄ − S2G
p2 +

FS2

p

(
F
η̄
+

η̄ ′F ′

η̄ p

)]
+ψS2

(
F
η̄
− F ′′

p

)
(3.24)

where the primes correspond to the derivation with respect to the adimensional quantity
µ ≡ x/a. The zero-order equilibrium condition 3.14 can be rewritten in terms of these
quantities reads:

η̄ ′

η̄
=−F ′′

F ′ (3.25)

Using relation 3.25, Eqs. 3.24 and 3.23 can be written as:

pW
(

F
η̄
+

η̄ ′F ′

η̄P

)
= pψ

′′− pψ

(
α

2 +
p
η̄

)
(3.26)

p2

α2S2F

[
(ρ̄W ′)′+α

2W
(

S2G
p2 − ρ̄

)]
=WF

(
PF ′+

η ′

η̄

F ′

F

)
+Pψ(PF − η̄F ′) (3.27)

The parenthesis in the left-hand side of Eq. 3.26 can be rewritten exploiting Eq. 3.24:(
F
η̄
+

η̄ ′F ′

η̄ p

)
=

p
FS2

(
(ρ̄W ′)′

Wα2 − ψS2

W

(
F
η̄
− F ′

p

)
− ρ̄ +

S2G
p2

)
(3.28)

substituting in Eq. 3.26:

p2

α2S2F

[
(ρ̄W ′)′+α

2W
(

S2G
p2 − ρ̄

)]
= pψ

′′− pψ

(
α

2 +
F ′

F

)
(3.29)
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Then, for convenience, the quantity < η > is taken to satisfy the relation η̄F ′ = 1 and Eqs.
3.27 and 3.29 become:

p2

α2S2F

[
(ρ̄W ′)′+α

2W
(

S2G
p2 − ρ̄

)]
= pψ

′′− pψ

(
α

2 +
F ′

F

)
(3.30)

p2

α2S2F

[
(ρ̄W ′)′+α

2W
(

S2G
p2 − ρ̄

)]
= (pψ +WF)

(
pF ′− F ′′

F

)
(3.31)

Eqs. 3.30 and 3.31 describe the behaviour of v1y, contained in W and B1y contained in ψ .
The infinite conductivity limit is investigated by taking S → ∞. Eq. 3.31 becomes:

WG
F

= (pψ +WF)

(
pF ′− F ′′

F

)
, (3.32)

that can be used to obtain an expression for W and ψ:

W =
1
F

WG
F

1(
PF ′− F ′′

F

) − pψ

 (3.33)

ψ =
1
p

WG
F

1(
PF ′− F ′′

F

) −WF

 (3.34)

The shape of the magnetic field defined in Eq. 3.3 implies that F ′ → 0 when µ → ∞, so
the unique condition that prevents W and ψ to diverge is:

pψ ≃−WF (3.35)

It is noteworthy that, considering a system where B0z = 0, making explicit the dimensional
quantities, the condition pψ ≃−WF can be written as:

B1x = iξ1xkyB0y (3.36)

This relation between the perturbed magnetic field B1x and the displacement ξ1x can be
read as the frozen-flux theorem. As described by Equation 3.36, the perturbed magnetic
field B̃x is proportional to the displacement of the plasma column ξx, so that the magnetic
field moves with the plasma and vice versa. Eq. 3.35 must hold in every point of the
domain except a small region where F = 0, where the ideal MHD breaks and the resistivity
effect becomes important. This region, which will be investigated in the next Section, is
called the resistive layer.

3.0.1 Resistive Layer

The objective of investigating the physics of the resistive layer is to find a dispersion
relation for the perturbation. The growth rate of the perturbation is shown to depend on an
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Figure 3.2: Illustration of Eq. 3.36. The picture reflects a well-known behavior in the
framework of the ideal MHD: the frozen-flux theorem.

index ∆′, which is connected to the jump of the gradient of the perturbed B1x field. Initially,
an expression for the width of the resistive layer is derived. A general perturbation in the
plane x− y is considered: B⃗ =

[
B1x,B1y,0

]
. By integrating the z-component of Amperes’

law over the surface defined by the resistive layer, the following expression is obtained:∫
S
(∇× B⃗1)zdS =

∫
S

µ0 j1zdS (3.37)

Considering that the current density j1z is constant over the surface S, and ∂/∂x >>

∂/∂y due to the thin resistive layer, applying Stoke’s theorem to the left-hand side of the
equation yields: ∮

∂S
B1y ·dl =

∫ b

a
B1ydy+

∫ d

c
B1ydy = µ0 j1zLδ (3.38)

Equation 3.38 indicates that a discontinuity in the y-component of the perturbation of the
magnetic field is associated with a current sheet j1z flowing over the surface defined by the
resistive layer. The relationship between j1z and the discontinuity in B1y can be determined
by solving the integrals in Equation 3.38, assuming B1y is constant along the integration
path:

lim
δ→0

B1y(x+δ )−B1y(x−δ )

2δ
= µ0 j1z (3.39)

Here, δ represents the half thickness of the resistive layer. Using the divergence-free prop-
erty of the perturbed magnetic field, Eq. 3.39 can be expressed in terms of the discontinuity
of the derivative of B1x magnetic field:

∇ · B⃗ = 0 =
∂B1x

∂x
+ kB1y (3.40)

So Equation 3.38 becomes:
1

kδ

∂B1x

∂x

∣∣∣∣δ
−δ

= µ0 j1z (3.41)
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Eq. 3.41 shows that there is a strict relation between the perturbed current flowing in the z-
direction within the resistive layer and the jump of the derivative of the perturbed magnetic
field B1x across the resistive layer. This is closely related to the non-linear theory proposed
by Rutherford and treated in Sec. 3.1. Equation 3.41 is written in terms of the resistive
layer width δ . It is possible to obtain an expression for δ , examining the process from
an energetics point of view [119]. Far from the rational surface, a displacement ξ⃗ of the
plasma produces an electric field E⃗ = v⃗1 × B⃗0 with v⃗ = dξ⃗/dt. This induces a current
J⃗ = v⃗1 × B⃗0/η that causes a J⃗× B⃗0 restoring force:

F⃗J×B =
1
η
(⃗v1 × B⃗0)× B⃗0. (3.42)

where η is the resistivity. Close to the resistive layer, this corresponds to a force external
to the resistive layer:

F⃗ext =
4
η

v1x(B′
0y)

2
δ

2x̂ (3.43)

The force defined in Eq. 3.43 corresponds to a power P = Fextv1x, and that must be equal
to the rate of change of the kinetic energy within the layer. In principle, the kinetic energy
depends on both the perturbed velocities:

d
dt

Ek =
d
dt

1
2

ρ |⃗v1|2 (3.44)

however the divergence free condition imposes that v1x << v1y, because ∂/∂x ∼ 1/δ :

∇ · v⃗1 =
1

2δ
v1x + kv1y = 0 (3.45)

Recalling that the wavelength of the perturbation is much larger than the resistive layer
width, we have that δk << 1 that implies v1x << v1y. In considering Eq. 3.44, we neglect
v1x:

d
dt

Ek =
d
dt

1
2

ρv2
1y = γρv2

1y (3.46)

Eq. 3.46 can now be written in terms of v1x by exploiting the divergence-free condition
Eq. 3.45:

d
dt

Ek = γρ
v2

1x
(δk)2 (3.47)

and now Eq. 3.47 must be equated to the power flowing in the resistive layer:

Pext = F⃗ext · v⃗1 =
4
η

v2
1x(B

′
0y)

2
δ

2 = γρ
v2

1x
(2δk)2 (3.48)

obtaining an expression for the resistive layer width δ :

δ =
1
2

(
ηγρ

k2B′
0y

)1/4

(3.49)
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Using Faraday’s law, we produce an equation relating the growth rate γ with the resistive
layer δ :

jz =
1

ηk
γB1x (3.50)

Using Eq. 3.41 can be used to produce an expression for γ:

γ =
η

2µ0δ
∆
′ (3.51)

where we have defined the quantity:

∆
′ =

1
B1x

∂B1x

∂x

∣∣∣∣δ/2

−δ/2
(3.52)

Finally, putting Eq. 3.51 in Eq. 3.49 we obtain an expression for the resistive layer width:

δ =
1
2

(
η2∆′ρ

µ0k2(B′
0y)

2

)1/5

(3.53)

The quantity ∆′ is defined in terms of the perturbed magnetic field in the outer layer.
The stability of the rational surface is dependent on the sign of this term. A positive
∆′ corresponds to an unstable fluctuation, while the fluctuation is stable for ∆′ < 0. In
general, as shown in Eq. 3.41 and 3.51, the effect of every phenomenon that contributes
to change a current jz can be expressed in terms of ∆′, which modifies the stability of
the rational surface. Regarding linear stability, the linear stability index ∆′

0 can be found
by linearizing the ideal MHD equations in the outer layer and assessing the jump of the
perturbed, linearized magnetic field across x = 0. In the next Section, the calculation for
the derivation of the tearing equation in slab geometry will be carried out.

3.0.2 Tearing equation and linear stability in slab

The linear stability depends on the linear stability index, calculated as the logarithmic jump
of B1x evaluated on the boundary of the resistive layer. The so-called tearing equation can
obtain an expression for the B1x. The approximation obtained in the high conductivity
limit (Eq.3.35) provides an expression for p:

p =−WF
ψ

(3.54)

that can be put in Eq. 3.30 in the limit of infinite conductivity S → ∞:

−F
ψ

ψ
′′+F(α2 +

F ′′

F
) =

WG
F

(3.55)

that is rearranged to obtain the tearing equation:

ψ
′′−ψ

(
α

2 +
F ′′

F
− G

F2

)
= 0 (3.56)

28



Figure 3.3: Plot of the analytical value of ∆′
0 calculated in slab geometry solving Eq. 3.56

for the cases illustrated in Eq. 3.66 and 3.67.

Eq. 3.56 is obtained by exploiting the infinite conductivity condition, which holds every-
where except for the resistive layer. Indeed, the function ψ , solution of 3.56, presents a
discontinuity in µ = 0, reflecting that ideal MHD breaks and resistive MHD analysis is
needed. However, as shown in Sec. 3.0.1, the linear stability in µ ≡ x/δ = 0 (implicitly
the resistive layer width δ is assumed to be equals to the current channel width a) depends
on the parameter ∆′

0, which can be written in terms of ψ as :

∆
′
0 =

ψ ′
2

ψ2
−

ψ ′
1

ψ1
(3.57)

where ψ ′
1 = ψ ′(µ = −1) and ψ ′

2 = ψ(µ = 1). Eq. 3.56 can be solved in the region
[−∞,−1] and [1,∞] to obtain ψ ′

1 and ψ ′
2. In the limit α2 >> 1, the tearing equation

reduces the ∆′
0 can be calculated exactly. The tearing equation reduces to:

ψ
′′ = ψα

2 (3.58)

that can be integrated by imposing, as boundary conditions, that the functions ψ , ψ ′

and ψ ′′ go to zero exponentially as µ → ∞. To ensure this condition, the functions are
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multiplied by e−α|µ|. The integration in the regions [−∞,−1] and [1,∞] reads:∫ −1

−∞

eαµ
ψ

′′dµ = α
2
∫ −1

−∞

eαµ
ψdµ (3.59)∫ +∞

1
e−αµ

ψ
′′dµ = α

2
∫ +∞

1
e−αµ

ψdµ (3.60)

Integrating by parts:

ψ
′eαµ

∣∣∣∣−1

−∞

−α

∫ −1

−∞

eαµ
ψ

′dµ = α

(
eαµ

ψ

∣∣∣∣−1

−∞

−
∫ −1

−∞

eαµ
ψ

′dµ

)
(3.61)

ψ
′e−αµ

∣∣∣∣+∞

1
+α

∫ +∞

1
e−αµ

ψ
′dµ = α

(
−e−αµ

ψ

∣∣∣∣+∞

1
+
∫ +∞

1
e−αµ

ψ
′dµ

)
(3.62)

The integrals cancel out obtaining:

−
ψ ′

1
ψ1

=−α (3.63)

ψ ′
2

ψ2
=−α (3.64)

That corresponds to:
∆
′
0 =−2α (3.65)

In the case α2 << 1, the term F ′′/F cannot be neglected anymore, and an analytic expres-
sion for F must be specified to obtain an analytical expression for ∆′

0. Two cases can be
investigated [37]:

F(µ) = Ftanh = tanh µ =⇒ ∆
′
0 = 2

(
1
α
−α

)
(3.66)

F(µ) = Fstep =


−1 µ <−1

µ |µ|< 1

1 µ > 1

=⇒ ∆
′
0 = 2α

(
(1−α)−α tanhα

α − (1−α) tanhα

)
(3.67)

The values of ∆′
0 for the two cases are plotted in Fig. 3.3. The behavior of ∆′

0 is monotonic
and decreases as α increases. Recalling that α = ka, the current sheet becomes stable
to small wavelength perturbations. In a heuristic picture, a sufficient large wavelength is
necessary to bend the field line close to µ = 0, allowing them to diffuse and reconnect,
giving rise to the tearing instability.

3.0.3 Linear stability in a cylindrical tokamak

The equilibrium in slab configuration is represented by a magnetic field oriented solely
along the y-direction, which varies linearly with x. In this simplified model, it has been
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Figure 3.4: Illustration of how the slab configuration also occurs in a tokamak, where the
plasma lies over closed nested magnetic surfaces with different winding steps.

shown that at the point where the magnetic field becomes null (µ = 0), perturbations of
the magnetic field can lead to the diffusion of the field line, causing magnetic reconnection
depending on the sign of the linear stability index ∆′

0. In the context of a tokamak, the equi-
librium is characterized by a combination of toroidal and poloidal magnetic fields, which
produce closed nested magnetic surfaces with varying winding steps. These surfaces are
described in a toroidal domain. Magnetic reconnection occurs when two oppositely di-
rected magnetic field lines come into proximity, a configuration that, as seen in the slab
approximation, also arises in tokamaks. The magnetic surface’ winding steps, are defined
by the safety factor q. Considering an increasing q profile, a magnetic surface described
by q̄ will be close to surfaces with q̄+ δ and q̄− δ as depicted in Fig. 3.4(a). Then the
projection of the magnetic field, along the direction n̂, shown in Figure, perpendicular to
the magnetic field lines in q̄, will produce a magnetic field which is zero on q̄, having
opposite direction on q̄− δ and q̄+ δ . Fig.3.4(b) shows a picture of this magnetic field
component, underscoring its similarity with the slab configuration we used in the previous
Section. Now, the tearing equation in cylindrical geometry will be derived. Employing the
cylindrical coordinates (r,θ ,φ), where r is the radial coordinate, θ is the poloidal angular
coordinate, and φ is the toroidal angular coordinate, the large aspect ratio approximation is
exploited, assuming the ratio between the major radius R and the minor radius a to be large
and using its inverse, ε , as a parameter describing the degree of smallness of a quantity.
Physically, the condition ε << 1 means that the torus can locally be treated as cylindrical,
so, from now on, the set of cylindrical coordinates (r,θ ,z) will be used. Furthermore, axial
symmetry is assumed so that the derivative with respect to the z direction ∂z = 0. These
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approximations produce an ordering in the equilibrium and perturbed quantities:

Bθ ∼ 1
r

∂Bz

∂ r
∼ εBz (3.68)

Jθ ∼ εJz (3.69)

The first ordering reflects that the poloidal magnetic field and the radial variation of the
toroidal magnetic field are smaller than the toroidal magnetic field. The second ordering
highlights that the toroidal current primarily determines the equilibrium. It is noteworthy
that a tokamak, by construction, cannot allow an equilibrium magnetic field or a current in
the radial direction, so Br = Jr = 0. We define an ordering also in the perturbed quantities:

B1z ∼ εB1r ∼ εB1θ (3.70)

J1r ∼ J1θ ∼ εJ1z (3.71)

So we will consider a perturbation lying mainly in the (r,θ) plane and a perturbed current
that is consistent with Ampere’s law ∇× B⃗1 = µ0J⃗1. The MHD equilibrium in the outer
region is described by:

∇p = J⃗× B⃗ (3.72)

Following the same procedure of Sec. 3.0.2, we apply the curl and project along the z-axis,
removing the pressure from the equation, we obtain:

(B⃗ ·∇)Jz − ( j⃗ ·∇)Bz = 0 (3.73)

The ordering defined before allows us to neglect the second term as (B⃗ ·∇)Jz >> (J⃗ ·∇)Bz

[112]. We can now perturb and linearize the equation:

(B⃗ ·∇)J1z +(B⃗1 ·∇)Jz = 0 (3.74)

The scalar variable ψ is introduced:

B⃗ = ẑ×∇ψ (3.75)

where ẑ is the verse pointing on the z direction. The variable ψ is closely related to the
poloidal magnetic flux, and this is a general definition that holds both for perturbed and
equilibrium quantities. The Ampere’s law can be rewritten in terms of ψ:

∇× B⃗ = µ0J⃗ = ∇× (ẑ×∇ψ) (3.76)

The right-hand side of the equation can be rewritten by exploiting the vector calculus
identities:

µ0J⃗ = (∇2
ψ)ẑ− (ẑ ·∇)∇ψ (3.77)
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Now this expression can be used to rework the quantity J1z contained in the first term of
Eq. 3.74, assuming a perturbed quantity scaling as ei(mθ−n z

R ):

(B⃗ ·∇)J1z =
1
µ0

(
Bθ

∂

∂θ
+Bz

∂

∂ z

)(
1
r

∂

∂ r
r

∂ψ1

∂ r
+

1
r2

∂ 2ψ1

∂θ 2

)
=

=
1
µ0

(
Bθ

m
r
−Bz

n
R

)(1
r

∂

∂ r
r

∂ψ1

∂ r
+

m2

r2 ψ1

)
(3.78)

The scalar poloidal flux ψ is introduced in the second term of Eq. 3.74:

(B⃗1 ·∇)Jz =

(
(ẑ×∇ψ1)r

∂

∂ r

)
Jz =

(
−1

r
∂ψ1

∂θ

∂

∂ r

)
Jz =−m

r
ψ1

∂Jz

∂ r
(3.79)

So, using Eq. 3.78 and 3.79, Eq. 3.74 becomes:

1
µ0

(
Bθ

m
r
−Bz

n
R

)(1
r

∂

∂ r
r

∂ψ1

∂ r
+

m2

r2 ψ1

)
− m

r
ψ1

∂Jz

∂ r
= 0 (3.80)

Recalling that the cylindrical definition of the safety factor profile is q = rBz/RBθ , the
tearing equation is obtained:

1
r

∂

∂ r
r

∂ψ1

∂ r
+

m2

r2 ψ1 −
∂Jz

∂ r
1

Bθ

µ0

(
1− nq

m

)ψ1 = 0 (3.81)

Eq. 3.81 presents a singularity on magnetic surfaces described by a safety factor profile
qs(rs) that can be written as the ratio between two integer numbers that match the poloidal
and toroidal wave number of the perturbation. These surfaces are called rational surfaces
and are intrinsically susceptible to the onset of the mode. The solution ψ1 and its derivative
is illustrated in Fig.3.5. The first derivative presents a singular behavior on the position of
the rational surface rs. The linear stability index ∆′

0 is now defined in terms of the poloidal
flux ψ1 as the logarithmic jump of ψ1 across the rational surface:

∆
′
0 =

1
ψ1

∂ψ1

∂ r

∣∣∣∣rs+δ

rs−δ

(3.82)

An estimation of the linear stability index ∆′
0 can now be obtained by evaluating ψ1 and

its derivative close to the position of the rational surface rs. The discontinuity makes
dealing with the tearing equation difficult using numerical algorithms. In Ref. [74], a
numerical method to solve the tearing equation, overcoming the limitation imposed by the
discontinuity point, is proposed. The solving algorithm combines the 4-th order Runge
Kutta method and a shooting algorithm. The solution’s domain is divided into two parts,
[0,rs −δ ) and (rs +δ ,1]. A solution is obtained in every domain imposing, as bound-
ary conditions, ψ1(0) = 0, ψ1(rs − δ ) = ψ1(rs + δ ) and ψ1(1) = 0. The limitation of
the Runge-Kutta method is that the problem is posed as a Cauchy problem, specifying
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Figure 3.5: On the left the shape of the function ψ̃ obtained solving Eq. 3.81. On the right,
the plot of the first derivative underscores the singular behavior on the rational surface rs

the value of the function and its derivative at x = 0. In the context of the tearing equa-
tion, the boundary conditions are posed on the values of the solution at the boundaries of
the regions, namely a Dirichlet problem. To overcome this issue, the shooting algorithm
is employed. The first derivative of the solution ψ ′

1(0) is iteratively modified, minimiz-
ing the distance of the ψ1(rs − δ ) and the desired value of the function at the boundary.
Specifically, at every step, ψ

′(i)
1 (0) is used to calculate ψ

(i)
1 (rs −δ ) using the Runge-Kutta

algorithm. Then at the i+1-th step, ψ ′
1 is updated to minimize the function:

F(ψ ′
1(0)) = ψ1(rs −δ )−ψ

(target)
1 (3.83)

using a gradient descent method:

ψ
′(i+1)
1 = ψ

′(i)
1 −α

dF

dψ
′(i)
1

(3.84)

where α is the step size (or learning rate in the context of machine learning). An illus-
tration of how the algorithms work is shown in Fig. 3.6. The slope of the solution at the
starting point is iteratively modified to reduce the distance of the solution’s value to the
target point. In this case, the algorithm can aim at the target point after three iterations.
Combining these algorithms, the tearing equation can be solved in the first region, impos-
ing ψ1(0) = 0 and ψ1(rs −δ ) = 1 and in the second region, imposing ψ1(rs +δ ) = 1 and
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Figure 3.6: Illustration of the shooting method for solving the tearing equation posed as
a Dirichlet problem. The equation is iteratively solved by adjusting the derivative of the
solution at the starting point, reducing the distance to the target point.

ψ1(1) = 0 . The parameter δ accounts for the closeness the solution reaches, and in the
current work is taken to be equal to 10−8. The solutions in the two regions are matched
in a neighborhood of rs imposing that limx→rs ψ1 = 1, meaning that the solution ψ1(r) is
normalized with respect to the value ψ1(rs). This can be done without losing generality
in the context of the calculation of ∆′

0, as, by definition, the linear stability index is not
affected by the normalization of the eigenfunction ψ1. The nature of the tearing instability
becomes very quickly non-linear, with a superimposition of multiple phenomena affecting
the evolution of the mode, so a different treatment is needed. The next Section will present
the non-linear growth of the tearing instability through the Rutherford theory.

3.1 Non Linear Theory
This Section explores the non-linear evolution of the magnetic island within the framework
of Rutherford’s theory [85]. The nonlinearity arises from the interactions, depending on
the island’s width, between the tearing mode and phenomena connected to the complex
nature of the plasma. We neglected the interaction between the magnetic island and the
conductors outside the plasma, so the nonlinearity is given by the interaction with the
bootstrap current, the pressure gradients that arises due to the curvature of the magnetic
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field lines and the differences in the electron-ion inertia that generates the so-called ion
polarization current. Considering nonlinearity allows for describing typical non-linear
behaviours like saturation of the island width and a critical width beyond which the mode
becomes unstable. First, the helical quantities required to model the magnetic island in
a tokamak are introduced. Then, the relationship between the island’s growth rate and
the non-linear factors is established through the presentation of Rutherford’s equation.
Finally, the non-linear contributions are quantified.

3.1.1 Helical description of the magnetic island

The helical quantities necessary to describe the island in a helical coordinate system are
introduced. For reference, the definition of the scalar magnetic flux ψ , defined for the first
time in the previous Section, is recalled here:

B⃗ = ẑ×∇ψ (3.85)

The scalar magnetic flux is strictly connected to the poloidal magnetic flux Ψ:

Ψ =
∫

S
Bθ · n̂dS =

∫ 2π

0
dφ

∫ r

0
dr

∂ψ

∂θ
=

ψ

2π
(3.86)

In the helical description, it is convenient to introduce a new angular variable ζ , defined
as:

ζ = mθ −nφ −
∫ t

ω(t ′)dt ′ (3.87)

This will be considered an independent variable that aggregates the poloidal angle θ and
the toroidal angle φ , considering also the poloidal mode number m and the toroidal mode
number n. The integral represents the correction due to the rotation frequency ω(t). Ap-
plying the cylindrical approximation to a torus, the helical angular variable ζ is written in
terms of (r,θ ,z) as [35]:

ζ = mθ −n
z

R0
−
∫ t

ω(t ′)dt ′ (3.88)

The helical magnetic flux can be defined in the helical coordinate system in terms of the
helical angle ζ as:

χ =−
∫ rs

r

(
1− q

qs

)
Bθ dr′−ψ(r)cos(mζ ) (3.89)

Close to the rational surface, the helical poloidal magnetic flux χ can be expanded as:

χ =−
∫ rs

r

(
1−
(

1+
x
qs

∂q
∂ r

))
Bθ dr′−ψ(r)cos(mζ )=−

∫ x

0
x

1
qs

∂q
∂ r

Bθ dx−ψ(r)cos(mζ )

(3.90)
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where q(r) = q(rs + x) with x = r − rs and |x| << 1. Considering the derivative of the
safety factor q and the poloidal magnetic field nearly constant close to the rational surface,
the helical flux becomes:

χ =
ss

rs
Bθ

x2

2
− ψ̄ cos(mζ ) (3.91)

with ss = (r(∂q/∂ r)/q)rs the magnetic shear on the rational surface. In the last derivation,
the so called constant-ψ approximation [37, 54] has been applied, considering the function
ψ to be constant within the island:

lim
r→rs

ψ(r) = ψ(rs) = ψ̄ (3.92)

The transformation defined in Eq. 3.89 yields an expression for the flux χ (Eq. 3.91) close
to the magnetic island, composed of two terms. The second one refers to the perturbation
of the equilibrium produced by the magnetic island. The first one represents the magnetic
field at the equilibrium. It is noteworthy that the equilibrium part of Eq. 3.91 has the same
form of the equilibrium flux ψ defined in slab geometry. Indeed, taking Eq. 3.85 and
applying ×ẑ yields:

B′
y0x̂ =

∂ψ

∂x
(3.93)

Considering the equilibrium configuration defined in Eq. 3.3, the flux function ψ becomes:

ψ = B′
y0

x2

2
(3.94)

which has the same form of the helical flux function χ . In this sense, the helical flux
χ can be seen as the yield of a coordinate transformation that allows to transform from
cylindrical/toroidal coordinates to a system of coordinates where the flux has the same
form as the flux in slab geometry. Using the cylindrical definition of q = rBz

R0Bθ
, Eq.3.91

becomes:

χ = ss
Bz

R0qs

x2

2
− ψ̄ cos(mζ ) (3.95)

Defining the island width [35, 53] as:

W = 4

√
R0qs

Bzss
ψ̄ (3.96)

the helical poloidal magnetic flux can be written as:

χ = 8
x2

W 2 ψ̄ − ψ̄ cos(mζ ) (3.97)

Finally, it is convenient to define the normalized helical magnetic flux as Ω =
χ

ψ̄
:

Ω = 8
x2

W 2 − cos(mζ ) (3.98)
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Figure 3.7: Illustration of the magnetic island in the helical plane defined by the helical
angular coordinate α and x = r−rs. The isoflux curves refer to the helical normalized flux
Ω, defined in Eq. 3.98. Ω=−1 refers to the O-point of the island, while Ω= 1 correspond
to the separatrix.

The island is described in terms of the helical coordinate system (x,Ω,ζ ). Fig. 3.7 rep-
resents a plot showing the value of the variables in the helical coordinate system referred
to the magnetic island. The normalized helical flux Ω is equal to −1 in the O-point and to
1 at the separatrix. The angular coordinate has a periodicity of 2π with ζ = 0 and ζ = 2π

corresponding to the x-point and ζ = π on the O-point.

3.1.2 The Generalized Rutherford Equation

The Generalized Rutherford Equation (GRE) describes the non-linear evolution of the
tearing mode. The equation will be derived in the following, providing the general form
of the equation without explicitly evaluating the contribution of the phenomena that affect
the evolution of the island. The combination of the Ohm’s law and the Faraday’s law
yields:

∂ B⃗
∂ t

= ∇× (⃗v× B⃗−η J⃗) (3.99)

It is noteworthy that the electron inertia has been neglected. This assumption is invalid for
m = 1 mode [115]. Writing the magnetic field B⃗ in terms of the scalar flux ψ defined in
the Eq.3.85, Eq. 3.99 becomes: Putting 3.85 in 3.99:

∂

∂ t
(ẑ×∇ψ) = ∇× (⃗v× (ẑ×∇ψ)−η J⃗) (3.100)

that can be decomposed using the vector calculus identities:

∂

∂ t
(ẑ×∇ψ) = ∇× (ẑ(⃗v ·∇ψ)−∇ψ (⃗v · ẑ)−η J⃗) (3.101)
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Ignoring the curl of the gradient and recalling that for a generic function f and a generic
vector A⃗:

∇× ( f A⃗) = f ∇× A⃗+ A⃗×∇ f (3.102)

given that the curl of a versor is null, the first term on the left-hand side can be rewritten
as:

ẑ×∇ψ =−∇× (ψ ẑ)−ψ∇× ẑ =−∇× (ψ ẑ) (3.103)

Eq. 3.101 becomes:

∇× ∂

∂ t
(ψ ẑ) =−∇× (ẑ(⃗v ·∇ψ)+η J⃗) (3.104)

So, projecting along the ẑ axis we obtain:

∂ψ

∂ t
+(⃗v ·∇ψ) = ηJz (3.105)

Introducing a perturbation such that ψ =ψ0+ψ1, with the fluctuation developed in Fourier
series as:

ψ1 =
∞

∑
n=1

ψ̃n cos(nky) (3.106)

It is possible to obtain an expression for the jz in the rational surface by considering the
diffusion Eq. 3.105 and averaging using the constant ψ approximation. It is noteworthy
to say that in the derivation of the GRE, this assumption makes the mathematical model
able to describe the physics within the island. Describing the magnetic island implies
the constant-ψ approximation, and the constant-ψ approximation implies describing the
island. This approximation is valid when ψ >> δψ , i.e. when the magnitude of ψ is
much larger than its change within the volume we are considering. This holds in a narrow
layer close to the rational surface, namely the inner layer. The current density jz can be
expressed as (Eq. 11 of Ref. [85]):

jz = jz0 +
1
η

〈
∂ψ1/∂ t

[ψ−ψ1]1/2

〉
y〈

1
[ψ−ψ1]1/2

〉
y

(3.107)

At the interface of the rational surface, the model for the inner layer must be matched with
the model for the outer layer, following the same procedure made for the linear theory.
The Ampere’s law describes the behavior of the perturbation ψ1 for the flux:

∇
2
ψ = µ0 jz (3.108)

Using equation 3.106, the Equation 3.108 becomes (∇2ψ = d2ψ/dx2):

dψ1

dx
= 4π

∫
∞

−∞

jzdx (3.109)
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The fluctuation ψ̃ is expanded in a Fourier series, and same order component in Eq. 3.109
are matched:

dψ̃n

dx
cos(nky) = 4π

∫
∞

−∞

jzdx (3.110)

Multiplying for cos(nky) and introducing the average over the y direction, Eq. 3.110
becomes:

dψ̃n

dx
cos2(nky) = 4π

∫
∞

−∞

cos(nky) jzdx (3.111)

< f >y=
1

2π

∫ 2π/k

0
f kdy (3.112)

The average of the function cos2(nky) can be exactly calculated:

< cos2(nky)>=
1

2π

∫ 2π/k

0
cos2(nky)kdy (3.113)

=
1

2π

∫ 2π/k

0

1− cos(2nky)
2

kdy =
1
2

(3.114)

By averaging along y direction, equation 3.111 becomes:

dψ̃n

dx
= 8π

〈
cos(nky)

∫
∞

−∞

jzdx
〉

y
(3.115)

By introducing the quantity:

∆
′
n =

∂ lnψn

∂x

∣∣∣∣0+
0−

(3.116)

Eq. 3.115 can be written as:

∆
′
nψ̃n = 8π

〈
cos(nky)

∫
∞

−∞

jzdx
〉

y
(3.117)

An expression for jz is provided by Eq. 3.107:

∆
′
nψ̃n =

16π

η
√

2B′
y

∫ +∞

ψmin

dψ

〈
∂ψ1/∂ t√

ψ −ψ1

〉
y

〈
cosnky√
ψ −ψ1

〉
y

1
< (ψ −ψ1)−1/2 >y

(3.118)

Defining the rescaled variable K ≡ ψ/ψ1 and writing ψ1 = ψ̃n cosnky (that corresponds
to equate the same order terms of the Fourier expansion), Eq. 3.118 becomes a relation
between the temporal derivative of ψ̃n:

∆
′
nψ̃

1/2
n =

16πC
η(2B′

y)
1/2

∂ψ̃n

∂ t
(3.119)

with:

C =
∫

∞

−1
dK
〈

cosky
(W − cosky)1/2

〉2 1
< (W − cosky)−1/2 >

≃ 0.7 (3.120)
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In general the island width scales as W = kψ
1/2
1 = k ∑n ψ̃

1/2
n where k is a proportionality

constant. Eq. 3.119 can be read in terms of W :

D
∂W
∂ t

= ∑
n

∆
′
n (3.121)

with D =
32πC

kη(2B′
y)

1/2 . Eq.3.121, known as Rutherford Equation, is the key result of

Rutherford’s non-linear theory: the evolution of the island width depends on the sum
of different phenomena, whose contribution to the growth rate is quantified in the index
∆′. The magnitude of the ∆′

n related to a certain physical phenomenon can be calculated
by solving Eq. 3.117 and quantifying how much that phenomenon contributes to modify-
ing the current jz in the right-hand side of the equation. In its modern form, in a tokamak,
Rutherford’s Equation describing the free evolution of the tearing mode is commonly writ-
ten as (neglecting the effect of the conducting vessel on the island evolution) [88]:

g1
τr

rs

∂W
∂ t

= rs(∆
′
0 +ac∆

′
bs −ac∆

′
gg j +ac∆

′
pol) (3.122)

where g1 is a constant equal to 0.82, τr is the resistive time, rs is the position of the ra-
tional surface. ∆′

0 is the linear stability index, calculated performing the linear analysis
described in Sec. 3, ∆′

bs is the destabilizing effect given by the reduction of the bootstrap
current within the island, ∆′

gg j (Green-Glasser-Johnson) is the stabilizing effect due to the
curvature of the magnetic field lines and ∆′

pol is the effect of the ion polarization cur-
rent, caused by the differences in the inertia of the electrons and ions. The coefficient ac

takes into account the degradation in the confinement time due to the growth of the island
calculated through the belt model [20, 89]:

ac = 1−4
(rs

a

)3 W
a

(3.123)

where a is the minor radius, rs the position of the rational surface, W the island width.

3.1.3 The bootstrap current: ∆′
bs

The bootstrap current is a self-generated current that flows in a tokamak due to the mo-
mentum transfer between the trapped and the passing particles. The interaction between
the magnetic island and the bootstrap current reduces the bootstrap current within the is-
land, which has a destabilizing effect. Initially, the underlying physics will be identified,
followed by quantifying the index ∆′

bs. Taking a perturbed magnetic field B⃗1 = ẑ×∇ψ1

with ψ1 = ψ̃1 cos(mζ ) with ζ the helical angle (Eq. 3.87), to account for the effect of the
bootstrap current in the evolution of the mode, the current density jz is written as [54]:

jz = jind + jbs =
< E∥ >

η
−µeneme

BzR
ψ ′

s

〈
∂ p
∂x

〉
(3.124)
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where jind represents the inductive part of the current, depending on the average of the
parallel electric field on the rational surface. The term jbs, representing the bootstrap
current, depends on the electron viscosity µe, the electron density ne, the electron mass
me and the flux surface average of the gradient in x = r− rs of the pressure. The operator
<C > is the flux surface averaging operator, defined as:

<C >=

∮ dζ

2π

C(Ω,ζ )√
2Ω+W 2 cos(mζ )/8∮ dζ

2π

1√
2Ω+W 2 cos(mζ )/8

(3.125)

where Ω is the helical normalized flux defined in Eq. 3.98. Under the hypothesis that p is
a flux function (i.e. B⃗ ·∇p = 0), then: < ∂ p/∂x >=< x > d p/dΩ. The modeling of the
interaction between the bootstrap current and the island reduces to define the effect of the
magnetic island on the gradient of the pressure profile within the island. Assuming that
the dominant diffusion process is perpendicular to the magnetic field lines and that there
is no source of pressure within the island, the pressure profile close to the rational surface
can be written as:

d p
dΩ

=
d p
dr

∣∣∣∣
eq

Θ

(
Ω− W 2

16

)
∮ dζ

2π

√
2Ω+W 2 cos(ζ )/8

(3.126)

where Θ is a step function and d p/dr|eq is the value of the gradient of the pressure profile
at the equilibrium. This definition models the flattening of the pressure profile typical of
the enhanced cross-field diffusion within the magnetic island. Due to the flattening of the
pressure gradient profiles, the bootstrap current in the O-point is reduced. The bootstrap
current flowing in the X-point generates a radial magnetic field δB(bs)

r that increases the
radial magnetic field Br1 = (ẑ×∇ψ1)r consequence of the perturbation ψ1, reinforcing the
perturbation, providing an additional, neoclassical, drive for the instability. The index ∆′

bs
can be calculated using Eq. 3.117, expressed in terms of the helical coordinates Ω and ζ

and the average flux surface operator previously defined [46]:

q′s
qs

Bθ (rs)W
16

√
2

∆
′
bs =−

∫
∞

−1
dΩ

∮ dζ jbs cos(ζ )√
2Ω+W 2 cos(mζ )/8

(3.127)

Exploiting the kinetic theory, the bootstrap current within the island can be written as:

jbs =− 1.46
√

ε

Bθ (rs)µ0

∂ p
∂ r

(3.128)

with ε = r/R the inverse aspect ratio. From Eqs. 3.127 and 3.128, the ∆′
bs can be calculated

in two regimes, namely for small island and large island:

∆
′
bs =


abs

qs

q′s
βp

√
ε

1
Te

∂Te

∂ r
W
W 2

d
W <W0

abs
qs

q′s
βp

√
ε

1
Te

∂Te

∂ r
1

W
W >W0

(3.129)
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where βp is the poloidal β and abs = 3 [91] is a constant. The term Wχ depends on the
perpendicular transport coefficient χ⊥:

Wd = 3.16qs

√√
χ⊥νR

mq′svTe

(3.130)

A general expression, written in terms of the pressure profile, that asymptotically matches
the two regimes is given by:

∆
′
bs = absβp

∣∣∣∣Lq

Lp

∣∣∣∣ W
W 2 +W 2

d
(3.131)

where the characteristic length LA = A/A′ (the prime indicates the derivative with respect
r) of the q and pressure profiles have been introduced.

3.1.4 The curvature: ∆′
GGJ

The effect of the curvature has been studied for the first time in the framework of the
linear MHD theory by Green Glasser and Johnson [42]. Their theory highlights that the
curvature’s effect on the magnetic island’s linear stability is stabilizing so that ∆′

0 must
exceed a critical value to trigger the instability. The critical width depends on the value
of β , and for low β , the critical width approaches zero, and the mode is destabilized
for ∆′

0 > 0. The linear theory of Green Glasser and Johnson can be extended through
a quasi-linear model [62]. Here, a heuristic derivation will be presented. The detailed
mathematical demonstration produces the same results. The slab configuration defined in
Eq. 3.3 is considered. The magnetic flux ψ can be written as the sum of an equilibrium
part (derived in Eq. 3.94) and a perturbed part due to the island:

ψ = B′
0y

x2

2
+Acoskyy (3.132)

where A is a function depending on the island width. In this heuristic representation, the
effect of the curvature is modeled as an external acceleration g⃗ along the x̂ direction. The
equilibrium satisfies the equation:

J⃗× B⃗ = ρ g⃗ (3.133)

A thin magnetic island is considered to affect the equilibrium of the plasma. The Ampere’s
law reads:

∇
2
ψ =

(
∂ 2

∂x2 +
∂ 2

∂y2

)
ψ = Jz (3.134)

the thin island approximation allows assuming that the equilibrium quantities close to
the island vary more in the x̂ direction than in ŷ, so that ∂ 2/∂x2 >> ∂ 2/∂y2. A Grad-
Shafranov equation describing the shape of the flux surfaces close to the magnetic island
can now be written:

∂ 2

∂x2 ψ = F(ψ)+ xg
∂ρ

∂ψ
(3.135)
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where F(ψ) is a function that needs to be specified and represents the current on a flux
surface. Averaging the current jz on a flux surface, yields [62]:

η < Jz >=

〈
∂ψ

∂ t

〉
=

〈
∂A
∂ t

cos(kyy)
〉

(3.136)

where η is the resistivity. The time derivative of the first term of the magnetic flux ψ (Eq.
3.132) is null because it represents the equilibrium. The island’s dynamic is described by
∆′, which can be calculated from Eq. 3.117. In the notation adopted in this derivation, Eq.
3.117 can be rewritten as:

A∆
′ =

〈∫ +∞

−∞

δ j cos(kyy)dx
〉

(3.137)

where δ j is the difference between the equilibrium current (without magnetic island) and
the perturbed current. The thin island assumption allows considering the relevant currents
localized in the island region, so:

A∆
′ ≃ j1W (3.138)

with W ≃
√

A/B′
0y the island width. The average over the flux surface of Eq. 3.135

produces :

< jz >y= F(ψ)+< x >y g
∂ρ

∂ψ
(3.139)

noting that, obviously, the average over the flux surface of a flux function is the function
itself. Eq. 3.136 allows to find an expression for F(ψ):

F(ψ) =
1
η

〈
∂A
∂ t

cos(kyy)
〉

y
−< x > g

∂ρ

∂ψ
(3.140)

that can be put in Eq. 3.135 to obtain an expression for δ j:

δ j =
1
η

∂A
∂ t

+Wg
∂ρ

∂ψ
(3.141)

where x− < x >≃ W and < ∂Acos(kyy)/∂ t >≃ ∂A/∂ t. The function ∂ρ/∂ψ can be
written in the island region as:

∂ρ

∂ψ
=

∂ρ/∂x
∂ψ/∂x

≃ ρ

WB′
0yLρ

(3.142)

where Lρ is the characteristic length of the density profile. Putting Eq. 3.142 in Eq. 3.141
and then Eq. 3.141 in Eq. 3.138:

A∆′

W
≃ 1

η

∂A
∂ t

+ρg
1

LnB′
0y

(3.143)
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Writing the constant A in terms of the island width W , Eq. 3.143 becomes:

1
η

∂W
∂ t

≃ ∆
′
0 −

ρg
W

L2
s

LρB2
0y

(3.144)

where B′
0y = B0y/Ls with Ls the shear length. As previously pointed out, the curvature and

the pressure effect is modeled by the ρg representing a generic acceleration along the x̂
axis. In the framework of this heuristic derivation, in Eq. 3.144, the term ρg is replaced
by the product κ p with κ the curvature and p the pressure. Eq. 3.144 becomes:

1
η

∂W
∂ t

≃ ∆
′
0 −β

κL2
s

Lρ

1
W

(3.145)

A more detailed mathematical analysis produces an evolution equation that reads [62]:

dW
dt

=
1.22
τr

(
∆
′
0 +agg j

(
1− 1

q2

)
βpε

2 L2
q

Lprs

1
W

)
(3.146)

where τr is the resistive time, q is the safety factor profile, p is the pressure profile, Lq ≡
q/q′, Lp ≡ p/p′, rs is the position of the rational surface, βp ≡ 2µ0 p/B2

p is the poloidal
β , ε2 is the inverse aspect ratio and agg j ≃ 6 is a constant. Eq. 3.146 describes the
evolution of the magnetic island in the non-linear phase, in the sense that the second term
of the equation has been derived starting from an equilibrium describing a magnetic island
with a certain width W . However, the stabilizing term introduced diverges in the limit of
W → 0, failing to describe the evolution of the island in its linear phase (when the island
width W is comparable with the linear layer δ ). This failure is caused by the fact that in
the non-linear regime, the thermal transport within the island plays an important role in
flattening the pressure profile, while in the linear regime, this phenomenon is not relevant.
Modelling of the transition between linear and non-linear phases can be performed by
introducing a characteristic diffusion length scale Wd defined as [68]:

W 4
d = 64

χ⊥
χ∥

r2
s

(
R
ns

)2

(3.147)

where χ∥ and χ⊥ are respectively the parallel and perpendicular heat transport, s = rq′/q
is the magnetic shear at the position of the resonant surface rs. Finally, the second term in
Eq.3.146 is properly modified to take into account this transition as [68, 66]:

∆gg j = agg j

(
1− 1

q2

)
βpε

2 L2
q

Lprs

1√
W 2 +0.2W 2

d

(3.148)

3.1.5 The ion polarization current: ∆′
pol

The relative motion of the island with respect to the plasma frame of reference generates
a current due to the different inertial responses of the ions and the electrons. This current,
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called ion polarization current, induces a parallel current (to preserve quasi-neutrality)
that impacts the evolution of the island according to Eq. 3.117. The effect of the ion
polarization current is quantified by the term ∆′

pol found in the Generalized Rutherford
Equation. Smoliakov [98] identifies two regimes based on the ion Larmor radius: the
small island (W << ρi) and large island (W >> ρi) regimes. The growth of the island, in
the small island regime, is written as:

∆
′
pol = G2

2τ

1+ τ

r2
s L2

s (ω −ω∗e)(ω −ω∗i)

m2d2
i

1
W

(3.149)

where G1 and G2 are a constants equal to 0.39 and 0.38. Dr = 1/(4πσ∥) where σ∥ is the
parallel conductivity, τ is defined as the ratio between the ion and electron temperatures.
Ls is the magnetic shear length. The quantities ω , ω∗e and ω∗i refer respectively to the ro-
tation of the island with respect to the plasma frame of reference, the electron diamagnetic
frequency, and the ion diamagnetic frequency [17]:

ω∗ j =−
mkbTj(d p j/dψ)

e j p jq
(3.150)

In the large island regime, the growth of the island reads:

∆
′
pol =

G3L2
s r2

s
m2W 3v2

a
ω(ω −ω∗pi) (3.151)

where G3 = 1.06 is a constant [98], ω∗pi =ω∗i(1+ηi) and ηi = ∂ lnTi/∂ lnn. The quantity
va = B2/(4πnmi) refers to the Alfven velocity. In this thesis, an expression that takes into
account the transition between these two limits will be used [66]:

∆
′
pol(W ) = apolg(ε,νii)βp

(
Lq

Lp

)2
ρ2

θ iW
W 4 +W 4

ρ

f (ω), (3.152)

f (ω) =
ω(ω −ω∗i −ω∗T)

ω2
∗e

, (3.153)

g =


ε3/2ν2

ii/ω2 νii/εω < ε−3/4

ε−3/4 ε−3/4 < νii/εω < ε−3/2

1 νii/εω > ε−3/2,

(3.154)

where βp = 2µ0 p2/B2
θ

is the poloidal component of β , ε is the inverse aspect ratio, L<∗>=
<∗>

d<∗>/dr |r=rs is the characteristic length of the pressure p and the safety factor q profile.

νii = 4.810−8Z4niln(Λ)T
−3/2

i is the ion-ion collision frequency, ω∗T = kθ (dTi/dr)/(eB0)

takes into account the toroidal velocity of the island. Chapter 5 will provide a detailed
explanation regarding the ion polarization current.
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3.2 Island Suppression
As shown in the previous Section, the evolution of the magnetic island is mainly affected
by the modification of the currents flowing parallel to the mode. The growth of a neoclas-
sical tearing instability can lead to complete confinement loss. It is crucial to elaborate a
technique to control and eventually suppress the magnetic island. The primary approach
exploited to stabilize the mode is to replace the lack of bootstrap current caused by the
flattening of the pressure profile within the island [19]. A current can be induced in the
magnetic island through two physical mechanisms: a direct current driven by external
sources and modifying the local value of the temperature that changes the local resistivity,
inducing another current. In the following sections, the effect of the current drive and the
heating will be quantified, considering the effects related to a misalignment with respect
to the O-point and the modulation of the EC system.

3.2.1 The current drive: ∆′
cd

The effect of the current drive in the stabilization of the mode is quantified in the term ∆′
cd ,

which is calculated according to Rutherford’s theory (Eq. 3.117) [65]:

∆
′
CD =

16µ0Lq

BpπW 2

∫ +∞

−∞

dx
∮

dζ jCD cos(mζ ) (3.155)

Eq. 3.155 can be written in terms of the helical normalized flux Ω defined in Eq. 3.98:

x =
W

2
√

2

√
Ω+ cos(mζ )

dx
dΩ

=
W

4
√

2
1√

Ω+ cos(mζ )
(3.156)

∆
′
CD =

16µ0Lq

Bpπw2

∫ +∞

−∞

W
4
√

2
1√

Ω+ cos(mζ )
dΩ

∮
dζ jCD cos(mζ ) (3.157)

The term jcd can be written [65] as:

jcd = 2πRηCD
< pEC >

< 1 >
(3.158)

with ηCD = Icd/Ptot and the operator < F > defined as:

< F(σ ,ζ ,Ω)>=


m
∮ dζ

2π

W
4
√

2
F(σ ,ζ ,Ω)√
Ω+cos(mζ )

Ω > 1

m
∫ ζ̂

−ζ̂

dζ

2π

W
4
√

2

1
2 [F(−σ ,ζ ,Ω)+F(σ ,ζ ,Ω)]√

Ω+cos(mζ )
Ω ≤ 1

(3.159)

with σ = sign(x) and ζ̂ = arccos(−Ω)/m. The operator defined in Eq. 3.159 represents
a flux surface average. Note that every quantity in the domain Ω ≤ 1 is averaged in the
island topology. In this region, the operator is redefined as the mean between the value of
the quantity F for a certain x and its symmetric with respect x = 0, corresponding to the
vertical axis passing in the O-point, in Fig. 3.7. The term pEC in Eq. 3.158 is defined as:

pEC = Ptot p̃ (3.160)
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with:
p̃ =

1
2π5/2wdepRrs

e−4(x−xdep)
2/W 2

dep (3.161)

here xdep is the deposition location with respect to the rational surface. The coefficient
Wdep is the full e−1 power density width. Ptot is the total injected power. In the definition
3.160 we neglected the term related to the modulation. A more complete definition is
provided by De Lazzari [65]. Using Eqs. 3.158 and 3.159, Eq. 3.157 can now be rewritten
as:

∆
′
CD =

16µ0Lq

BpπW 2

∫ +∞

−∞

2πRηCD
< pEC >

< 1 >
< cos(mα)> dΩ (3.162)

Eq. 3.162 can be rearranged as:

rs∆
′
CD =

16µ0Lq

Bpπ

ηCDPtot

w2
dep

FCD(w∗,xdep) (3.163)

we have introduced the variable w∗ ≡W/Wdep and the function FCD(w∗,xdep). Following
De Lazzari[65], the function FCD(w∗,xdep) can be factorized into three figures of merit:

FCD(w∗,xdep) = NCD(w∗)GCD(w∗,xdep)MCD(w∗) (3.164)

The function GCD considers the misalignment of the current drive with respect to the
rational surface, the function MCD refers to the modulation of the current drive. De Lazzari
et. al [65] writes the functions NCD in terms of polynomial fraction that agrees with Sauter
et. al [90]:

NCD(w∗) =
0.25+0.24w∗

1+0.64w∗3 +0.42w∗2 +1.5w∗ (3.165)

The effect of the misalignment is modeled as:

GCD(w∗,xdep) = 1−
xdep

g(w∗)

∫ xdep/g(w∗)

0
dt e(t

2−(xdep/g(w∗))2) (3.166)

g(w∗) =
0.38w∗2 +0.26w∗+0.5

w∗+1
(3.167)

while the function MCD(w∗) taking into account the modulation, is written as:

MCD(w∗,D) =
1

w∗3

(
m1(D)w∗2 +m2(D)

)
+m3(D), (3.168)

with:

m1(D) = 2.26D4 −3.44D3 −0.99D2 +2.2D −0.02, (3.169)

m2(D) = 10−2(0.34D5 −1.02D4 +0.87D3 −0.28D2 +0.1D), (3.170)

m3(D) = (1.34D4 −3.54D3 +1.1D2 +2.09D +0.01). (3.171)

where D represents the power on-time fraction. Summarizing, Eqs. 3.163-3.168 describe
the stabilizing effect of the current drive in the Generalized Rutherford Equation, also
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considering the effect of the modulation and the misalignment. In this thesis, an analytical
expression derived in Ref. [61] will be used:

GCD(w∗,xdep) = (1+0.6)
1− tanh

(
0.75

xdep
Wmax −0.3

0.2

)
1− tanh(1.5)+2

(
xdep
Wmax

)3 −0.6e

(
−
( xdep

Wmax

)2
)

(3.172)

The expression for ∆′
CD becomes:

∆
′
CD = 16µ0

LqPecIcd

πBpolrs

1
w2

cd
GCD(w∗,xdep)MCD(w∗) (3.173)

with Icd the driven current, Pec the injected power and Wmax = max(W,Wcd). The function
for the modulation MCD(w∗,xdep) is formulated to consider a continuous wave injection
(CW) or a 50% on - 50% off modulated power (50-50) [90]:

M(CW )
CD (w∗) =

0.25
(1+2(w∗)2/3)

(3.174)

M(50−50)
CD (w∗) =

0.45tanh( w∗

2.5)

(w∗)2 (3.175)

In Chapter 4, the expression 3.173 will be exploited to simulate the stabilization of NTM
starting from the equilibrium scenario of DTT.

3.2.2 The heating: ∆′
h

The effect of the heating, in terms of the evolution of the NTM, is to change locally
the value of the resistivity. This contributes to drive a current parallel to the island and
modifying the growth rate of the island according to Eq. 3.117. The strength of the effect
of the heating is quantified in the index ∆′

H defined as [65][55]:

rs∆
′
H =

16µ0Lqrs

BpπW 2

∫
∞

−∞

dx
∮

dξ jH cos(mξ ), (3.176)

where the term jH is the current induced by the change in the resistivity within the island
defined as:

jH =
3
2

δTe

Te0
j∥0 (3.177)

where j∥0 = E∥/η0 is the current induced by the loop voltage and η0 the resistivity at Te0.
The term δTe represents the temperature fluctuation due to the external heating system. It
is worth noting that, thanks to symmetry-related arguments, we can focus solely on the
temperature fluctuations within the separatrix [55]. Modified temperature can be found
using a diffusion model for the temperature:

∇nχ⊥∇δTe =−S (3.178)
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where n is the density, χ⊥ and S is the source of energy. From Eq. 3.178 an expression for
δTe is obtained [65]:

δTe =
Ptotw

8π2Rrsχ⊥nekB
δ T̃e, (3.179)

with

δ T̃e ≡
∫ 1

Ω

dΩ
P̃

⟨|∇Ω|2⟩
8π2Rrs

w
, P̃ =

P(Ω)

Ptot
. (3.180)

Substituting Eq.3.179 in Eq. 3.176 an expression for ∆H is obtained:

rs∆
′
H ≈

16µ0LqηHPtot

Bpπw2
dep

FH(w∗,xdep,D) (3.181)

with

FH(w∗,xdep,D) =
1

2πW

∫ 1

−1
dΩδ T̃e

∫
dξ

W

4
√

2
√

Ω+ cos(mζ )
cos(mζ ) (3.182)

where xdep = r− rdep with rdep the position of the deposition, D the power on-time frac-
tion. Wdep the beam width, ηH represents the efficiency at which the power is converted
into perturbative inductive current written as[8]:

ηH =
3w2

dep

8πRneχ⊥kB

jsep

Tsep
. (3.183)

Eq. 3.181 has the same form as Eq. 3.163 with the function FH(w∗,xdep,D) that can be
factorized in three functions:

FH(w∗,xdep,D) = NH(w∗)GH(w∗,xdep)MH(w∗,D). (3.184)

with NH(w∗) representing the normalization to the geometrical function, GH(w∗,xdep) rep-
resenting the misalignment and MH(w∗,D) the modulation of the heating source:

NH(w∗) =
0.077w∗2 +0.088w∗

w∗2 +0.8w∗+2.17
, (3.185)

GH(w∗,xdep) = exp

(
−
(

xdep

g(w∗)

)2
)

(3.186)

g(w∗) = 0.00035w∗4 −0.008w∗3 +0.07w∗2 +0.02w∗+0.5 (3.187)

MH(D) = 1.2D3 −3.5D2 +3.3D−0.06. (3.188)

Finally, an expression for ∆′
h is given by:

∆
′
h =

16µ0PecLq

8π2Bpolrs

3 jsep

R0ne(rs)χ⊥Tsep
GH(w∗,xdep)MH(D) (3.189)

here D = 1 in continuous injection and D = 0.5 in 50% on - 50% off modulation.
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Chapter 4

Modelling of NTM in DTT

The Divertor Tokamak Test (DTT) is an experimental tokamak designed to explore ad-
vanced divertor configurations for the future DEMO reactor. Its primary aim is to address
heat and particle exhaust challenges in fusion devices. The DTT operates at high power
to simulate conditions expected in larger fusion reactors, providing critical insights into
plasma behavior and divertor design. This work focuses on the detailed modeling of NTMs
within DTT full-power scenarios to prevent disruptions and ensure the stability of the
plasma during operation. The NTM modeling in the full-power scenario design allows for
a comprehensive understanding of how these instabilities evolve under high-performance
conditions in DTT.

4.1 JETTO-Jintrac
The simulations here presented were carried out by integrating a module solving the
Generalized Rutherford Equation, described in Section 3.1.2, in the integrated model-
ing framework JETTO-Jintrac, which is a comprehensive simulation toolset designed for
modeling a wide range of plasma scenarios within tokamak devices. It is made up of sev-
eral key modules, each tailored to specific aspects of tokamak physics and control. The
primary modules within JETTO-Jintrac include an equilibrium module, which solves for
the magnetic equilibrium of the plasma, and a dedicated module for the Electron Cyclotron
Resonant Heating (ECRH), simulated by the code GRAY [77]. For transport simulations,
two options are available: the QualiKitz (QLKZ) code [23], which offers high precision
but slow computational performance, and Bohm-Gyro-Bohm (BgB) [30], which provides
a significantly faster but less accurate alternative. This work typically preferred the latter
due to the need for rapid simulations across multiple full-power scenarios. In addition
to these modules, JETTO-Jintrac includes several other specialized modules, such as im-
purity transport, neutral beam injection (NBI), and various MHD instability models. For
the purposes of this research, the focus was on the NTM module within JETTO-Jintrac
[12]. The NTM module was used to simulate the behaviour of tearing mode in DTT’s
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full-power scenarios, providing critical indications regarding their saturation width and
potential mitigation strategies. The following section will describe further details on the
NTM module and its specific application to the scenarios.

4.1.1 NTM module

The NTM module is designed to be integrated with the transport models, allowing for a
comprehensive analysis of magnetic island dynamics over time. The NTM module op-
erates by solving the island’s evolution equation, which describes the growth of tearing
modes within the plasma. It calculates the amplitude of the magnetic island as a function
of time, providing detailed insights into the behavior of these instabilities under various
operational conditions. JETTO-Jintrac runs simulations from time t0 to t1, with the time
step being adaptive, determined by the code itself to balance computational efficiency with
accuracy. The magnetic surface equilibrium is recalculated for each time loop, along with
the kinetic profiles through transport and the ECRH deposition profile using the GRAY
code. When the mode is triggered, the NTM module is incorporated into this loop, cal-
culating the island width and growth rate at each time step according to the Generalized
Rutherford equation. Once the initial seed width, Wseed , is defined, all the terms of the
Rutherford equation are assembled using the equilibrium quantities to compute the growth
rate, and the island width is updated using a finite difference method. It is important to
highlight that, in calculating the mode evolution, the simulation does not account for the
effect of the island on transport and, consequently, on equilibrium. This means that trans-
port phenomena within the island, such as the flattening of temperature and pressure pro-
files, cannot be observed. As described in Chapter 3, the Generalized Rutherford Equation
is composed of different terms referring to different physical effects. The linear stability
index, denoted as ∆′

0, quantifies the susceptibility of the rational surface to linear pertur-
bations. It indicates whether the surface is linearly stable or unstable. If ∆′

0 is negative,
the rational surface is considered linearly stable, while a positive ∆′

0 signifies linear in-
stability. The NTM module, allows for a calculation of the linear stability index from the
temperature profile [16], providing an analytic estimation of the linear stability of the equi-
librium. However, a reliable and accurate calculation of ∆′

0 can be challenging due to its
dependence on various plasma parameters and conditions. Furthermore, in principle, there
could be phenomena, such as impurities penetration, that break the equilibrium condition,
possibly increasing the value of the ∆′

0. In the methodology used in this study, the value
of ∆′

0 is manually specified to explore different plasma scenarios, including those where
the surface is either linearly stable or unstable. In the simulation, the terms related to the
destabilizing effect of the bootstrap current ∆′

bs and the stabilizing effect of the curvature
∆′

gg j are included. Both of them generally depend on quantities from the equilibrium, such
as the safety factor and pressure profile. The ion polarization term, whose possible impact
on the trigger of a TM is discussed in Chapter 5, is usually neglected due to its scaling as
1/W 3. This makes it relatively small when the island reaches measurable sizes that are of
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interest for the evolution of the island. Furthermore, it is possible to simulate the effect of
ECRH power injection: ∆′

CD and ∆′
h. As shown in Chapter 3, the ∆′

h term accounts for the
effects of the ECRH heating that contributes to the total current induced by altering the
plasma resistivity and has a stabilizing effect on the tearing mode evolution. Based on the
explanation provided in Chapter 3, the effects of the current drive and heating depend on
parameters, some of which are related to the plasma configuration, while others depend on
the launcher. This allows us to evaluate the impact of different mitigation strategies in var-
ious scenarios. In particular, the NTM module allows defining the beam width (i.e. how
wide the beam is when it reaches the island), through the Wcd parameter, the effects of mis-
alignment with the O-point of the island specifying xdep parameter and modulation (50%
on and 50% off), that can be set by a flag parameter provided as input. The free parameters
in the code related to the island are two: the seed island width, which represents the initial
width of the island at time zero, and the Wd parameter, contained in the denominator of
the ∆′

bs and ∆′
GGJ terms. In Chapter 3, the asymptotic behaviors of ∆′

bs and ∆′
GGJ for small

island widths were highlighted, showing that ∆′
bs ∼W and ∆′

GGJ ∼ constant. From a mod-
eling perspective, the parameter Wd defines the threshold below which the small island
regime becomes significant. Operationally, Wd is set to be equal to the marginal width
[66], corresponding to the minimal width the magnetic island can assume to maintain a
marginal equilibrium. During the simulations, the seed island width Wseed is fixed at 1.75
cm, and the parameter Wd is set to 1.8 cm.

4.2 Methodology
The simulations are based on a reference run of the full-power scenario (E1) [18] during
the flat-top phase of the shot. The transport code used is QLKZ, taking equilibrium data
from SANCO. Furthermore, the settings of this reference simulation allow to define the
power and toroidal and poloidal angles of each beam launcher. The choice of the trans-
port code plays a key role, and a preliminary study was conducted to assess whether it is
more advantageous to use a faster but less accurate code, such as Bohm-Gyro-Bohm, or to
maintain consistency with the reference simulation by utilizing the more precise QLKZ.
Directly switching the transport code is not feasible, as doing so would introduce discon-
tinuities in calculating the kinetic profiles. When altering the transport code, it is essential
to allow the simulation to stabilize and attain a new equilibrium profile that reflects the
updated model. Therefore, to compare BgB and QLKZ, we first conducted a transient
run with the new transport code, allowing the profiles to stabilize before proceeding with
further analysis. Figure 4.1 illustrates the relative average difference in the kinetic profiles
and safety factor between time t and t + dt. The kinetic profiles stabilize after approxi-
mately 2 seconds. The transient phase concludes after 6 seconds, with the average differ-
ence in the kinetic profiles approaching zero. The simulation at t = 0 will be the reference
for subsequent runs with BgB. Now, it is possible to compare the kinetic profiles with
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Figure 4.1: Average relative difference of the kinetic profiles between the profile a time t
and time t +dt, as a function of the time, for the transient simulation.

QLKZ and BgB: Fig. 4.2 shows a comparison between the kinetic profiles. The vertical
red line marks the location of the q = 2 rational surface, where equilibrium quantities are
calculated to solve the GRE. The kinetic profiles differ primarily in the plasma core, with
deviations ranging between 10% and 20%. These differences lead to slight variations in
the deposition profile of the EC in the plasma center (note that, the deposition on the q = 2
surface is the same for QLKZ and BgB). However, on a rational surface, the discrepancies
are negligible, and the results from BgB align closely with those from QLKZ. Despite
the differences near the magnetic axis, BgB offers sufficient accuracy at the rational sur-
face. As a result, this simplified model will be employed in the simulations to prioritize
computational speed. Given that, as outlined in the previous section, the code does not
account for the effect of the island on transport (thus, the island does not alter the kinetic
profiles), it is possible to consider both the equilibrium and transport as fixed. The only
element that varies throughout the simulation is the EC power deposition profile, which
is modified by the movement of the upper launchers to align with the island o-point. As
a result, significant computational speed gains can be achieved by decoupling the NTM
module from the JETTO-Jintrac time loop. This can be done by developing an offline code
that operates independently, taking the necessary parameters to solve the Rutherford equa-
tion as input and keeping them fixed throughout the simulation. This approach assumes
that the plasma remains in equilibrium and that transport does not affect this equilibrium.
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Figure 4.2: Comparison between kinetic profiles for the Bohm-Gyro-Bohm (BgB) model
and the Quasilinear Gyrokinetic model Qualikiz (QLKZ) as a function of the normalized
radius. Starting from the top, the electron pressure, the safety factor, the electron density,
the electron temperature, and the EC power deposition profile. The blue line represents
the Bohm-Gyro-Bohm, and the orange line represents QLKZ. The red vertical line corre-
sponds to the position of the rational surface.
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Figure 4.3: Comparison between the mode evolution calculated by the integrated code
JETTO-Jintrac and the offline NTM module. The accordance is good till t = 2 s, one
second after turning on the ECRH (black vertical line). After three seconds, there is an
acceptable difference of less than 10%.

These assumptions enable a significant increase in speed, as the evolution of the NTM is
no longer tied to transport and equilibrium. In particular, it becomes possible to rapidly
conduct studies by scanning the parameter space defined by ∆′

0 and Wcd , the beam width.
This approach necessitates having a reference simulation from which to extract inputs re-
lated to the kinetic profiles and the EC. It is important to emphasize that since we are not
considering impurities or other external phenomena affecting the plasma, the only source
of profile changes is the EC heating. Therefore, JETTO-Jintrac is used to perform ref-
erence simulations with various deposition profiles, from which the input parameters for
the offline NTM module are extracted. GRAY consistently computes the parameters that
describe the EC deposition, specifically Wcd (the beam width) and the induced current Jcd.
When performing simulations using the offline NTM code, the beam width Wcd is treated
independently from the GRAY code, allowing us to modify it without the need to rerun
the reference simulation of the JETTO-Jintrac code. This is based on the assumption of
a linear relationship between the EC deposition profile and the beam width: if we double
the beam width, Jcd will be halved to conserve the induced Icd. In this context, variations
of Wcd are related solely to the launcher configuration and do not depend on the plasma
physics. In particular, changing the beam width, can be seen as a change of the ECH
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Figure 4.4: Comparison between the free evolution of the mode with the ∆′
0 (green line)

calculated by JETTO-Jintrac and ∆′
0 = 0.2 (blue line)

launching antenna. The inputs provided to the offline NTM module, derived from the
reference simulation, include the gradient values of the kinetic profiles in the rational sur-
face, essential for constructing the various terms of the Generalized Rutherford Equation
(GRE). Additionally, only the current density Jcd induced on the rational surface by the
upper launchers is considered, as other current drives are not relevant in this context since
they do not directly influence the evolution of the magnetic island. Figure 4.3 compares
the evolution of the NTM calculated by JETTO-Jintrac and the offline NTM module using
the same simulation parameters. EC heating is initiated at t = 1 (indicated by the black
vertical line), injecting 1 MW of power. This reduces the growth rate, although the power
is insufficient for complete stabilization. The simulation results closely match for the first
two seconds; an acceptable discrepancy of approximately 10% is observed. The results
presented in the following section are obtained using the NTM offline module, considering
a fixed equilibrium, calculated from a reference integrated simulation employing a BgB
model for the transport according to previous considerations.
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4.3 Results

4.3.1 Free evolution of the mode

As pointed out before, it is possible to calculate the ∆′
0 using an analytical approach from

equilibrium data [16]. A computation of this index provides a value of −3.48, indicating a
linear stability state for the 2/1 rational surface. In this condition, the mode is self-healing
(orange line in Fig. 4.4), namely, even with a seed island of Wseed = 1.75cm, the mode
width decrease and after 1s disappears. This result suggests that the equilibrium of the
full-power scenario in DTT will be linearly stable. However, in principle, an increase
of the ∆′

0 as a consequence of external phenomena, such as impurities [80], should be
possible. A comparison with the mode evolution corresponding to a linearly unstable case
(∆′

0 = 0.2) is performed and represented by the blue line in Fig. 4.4. In this configuration,
the mode evolves and saturates at an amplitude of ∼ 14 cm after 3s. This represents the
worst-case scenario and will be used as a reference value in the following results.

4.3.2 Perfect alignment

The study of the stabilization follows the analysis of the free evolution of the mode. The
effect of the EC is considered in the terms ∆′

cd and ∆′
h of the Generalized Rutherford

Equation. Initially, the case of perfect stabilization alignment with the magnetic island
was considered. In this case, the Electron Cyclotron (EC) power is deposited exactly on
the resonant surface. A typical deposition profile for a perfect alignment scenario is shown
in Fig.4.2 (the last plot at the bottom), where the deposition of the upper launchers cor-
responds to the rational surface (red line). A perfectly aligned 5 MW EC injection has
been considered, starting after 1 s when the island width is approximately 10 cm. The
results are shown in Fig. 4.5. The grey line represents the free evolution of the mode.
The deposition profile, computed by GRAY in the integrated simulation, produces a beam
width of Wcd = 2.27 cm (orange line). This configuration allows a complete stabilization
of the mode after 2.2s. As specified before, the beam width is changed, corresponding to
the different focus of the launcher antenna; in particular, the Wcd computed by JETTO has
been halved (blue line) and doubled (green line). As shown in Fig. 4.5, the general behav-
ior is that the larger the beam width, the less effective the stabilization. Indeed, when the
Wcd is halved, maintaining the same power, the mode is stabilized after 1.9 s, while when
the Wcd is doubled, the mode reaches a metastable condition where Wsat = 4 cm. Then
the modulation effect is assessed with a Wcd = 2.27 cm (the reference from JETTO) and
5 MW of stabilizing power. A modulation 50% on and 50% off has been considered here.
In Fig. 4.6 the evolution with and without the effect of the modulation is compared, along
with the values of ∆′

cd and ∆′
h. As anticipated by experimental observations and literature,

modulation has a beneficial effect on stabilizing the mode: the island is stabilized earlier
when modulated power is applied. According to the model used, the physical reason is
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Figure 4.5: Evolution of the mode for different value of Wcd . The orange line represents the
beam width computed self-consistently by GRAY. The blue and the green lines represent,
respectively, the cases where the beam width is halved and doubled. The grey line, for
reference, shows the free evolution of the mode. The starting island Wseed = 1.75 cm, the
∆′

0 = 0.2 (simulating the worst case scenario), and the stabilizing power is 5 MW.

that, despite a reduction in the stabilizing contribution from heating (see the second plot,
red line), modulation increases the stabilizing contribution of ∆′

cd. This effect is particu-
larly evident as the island reduces its size. Indeed, the trajectory of the island width over
time is quite similar with and without modulation during the initial phase of stabilization.
The discrepancy becomes more pronounced when the island width falls below 8cm, due
to the increased influence of ∆′

cd in this phase.

4.3.3 Misalignment

The effect of misalignment was studied for two control cases. In the late intervention case,
stabilization of the magnetic island begins 1 s after the trigger, with the island width at the
start of stabilization being approximately 11 cm. In the early intervention case, stabiliza-
tion begins 200ms after the trigger, when the island width is about 6 cm. Specific reference
points on the magnetic island were selected to evaluate the effect of misalignment, and the
poloidal launch angle of the upper launchers was adjusted so that power was deposited at
positions other than the O-point. Specifically, positions were chosen symmetrically with
respect to the island axis at the half-width of the island (± midW), at the separatrix (±

59



Figure 4.6: Comparison between stabilizing the island with modulated and unmodulated
power. Starting from the left, a comparison of the width evolution for continuous wave
(CW), blue line, and modulated orange line. On the center and on the right, a comparison
of ∆′

h and ∆′
cd , for CW (solid line) and modulated (dotted).

sep), and at a location outside the separatrix (± ex). Considering both the inboard and
outboard sides, this approach resulted in seven different deposition profiles. To evaluate
each poloidal launch angle in both the late and early intervention scenarios,

integrated simulations were performed using the JETTO-Jintrac code. In each case,
GRAY self-consistently calculated the deposition profile. Fig. 4.7 and 4.8 show the depo-
sitions profiles for the reference position defined before. The black vertical lines represent
the radial projection of the magnetic island. For completeness also the case perfectly
aligned is shown. It is noteworthy that for every position, the shape of the profile changes
according to the calculation performed by GRAY. For every poloidal angle, the evolution
of the island has been studied, changing the beam width, following the same approach of
the case perfectly aligned.

Figs. 4.9(left) and 4.9(right) show the evolution of the island for every scenario, re-
spectively, in early intervention and late intervention. For every different position of the
deposition, the evolution of the island is evaluated, considering the beam width computed
by JETTO-Jintrac (orange), its double (green) and its half (blue). The general behavior that
the larger the beam width, the less effective the modulation is holds. According to the sim-
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Figure 4.7: Profile depositions for six different poloidal angle represented by six different
labels: ex, corresponding to shooting externally to the island, sep, the separatrix, midW,
the middle width of the island and op, the O-point. The sign before the label corresponds
to the high field side (-) or the low field side (+). The vertical black lines represent the
radial projection of the island width. The plot shows the different cases of the deposition
profile for the early intervention case

ulations, complete stabilization can be obtained only by hitting the island perfectly aligned
with the O-point, either in late or early intervention. A slight misalignment (±midW) pre-
vents the system from completely stabilizing the island, generating a metastable saturated
island of around 9 cm in late intervention and 4 cm in early intervention. The effective-
ness of stabilization rapidly decreases as the deposition moves away from the O-point,
and the EC becomes destabilizing when injected outside the island. This effect is more
pronounced when injecting power on the high-field side. Specifically, in the -ex config-
uration shown in Fig.4.9(right), the saturated island width ranges between 12 cm and 14
cm, depending on the beam width. In contrast, the corresponding behavior on the low-
field side (see the last plot on the right in Fig.4.9(right)) results in a saturated island width
ranging between 8 cm and 12 cm. Generally speaking, a misalignment oriented towards
the low-field side tends to be more effective than the corresponding deposition profile on
the high-field side. This could be attributed to the fact that, as shown in Figs. 4.7 and 4.8,
injecting EC on the low-field side results in a more focused deposition, thereby enhancing
its stabilizing effect. Modulation rapidly loses effectiveness as the deposition point moves
away from the O-point. The rate at which it becomes ineffective depends on the timing
of the intervention. Specifically, when the magnetic island is small, a slight misalignment
from the O-point (±midW) still allows the beneficial effects of modulation to be observed.
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Figure 4.8: Profile depositions for six different poloidal angle represented by six different
labels: ex, corresponding to shooting externally to the island, sep, the separatrix, midW, the
middle width of the island and op, the O-point. The sign in front of the label corresponds
to the high field side (-) or the low field side (+). The vertical black lines represent the
radial projection of the island width. The plot shows the different cases of the deposition
profile for the late intervention case.

In contrast, during late intervention, modulation quickly loses its efficacy, becoming irrel-
evant as soon as any misalignment from the O-point is introduced. This is evident from
Fig. 4.10, which shows the evolution of the island in four different conditions. The mod-
ulation conserved effectiveness both in late and early intervention when perfectly aligned
(top and bottom, right), leading to a more rapid and complete stabilization of the mode.
Introducing a slight misalignment, the modulation remains effective in the early interven-
tion case (top, left plot), while becomes ineffective if the island is larger (bottom, left plot).
The effectiveness of the modulation is quantified by an effectiveness parameter defined as:

E(Wcd) =
∫ tmax

0
WCW(t ′)dt ′−

∫ tmax

0
Wmodulated(t ′)dt ′ (4.1)

This parameter corresponds to the difference between the integrals of the curves repre-
senting the continuous-wave (CW) and modulated evolution of the island. The larger the
index defined in Eq. 4.1, the greater the difference between the curves. If the index is
positive, modulation results in faster stabilization (since the integral is smaller), making it
beneficial. Furthermore, the benefit increases as the index becomes larger. Fig. 4.11a and
4.11b represent the value of the parameter E(Wcd) as a function of the beam width Wcd .
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Figure 4.9: evolution of the island for the different cases of deposition profile. The left
panel shows early intervention, while the right panel shows late intervention. Each line
in the plots corresponds to a different Wcd value. The orange line represents the evolution
computed with the beam width Wcd calculated self-consistently by GRAY. The blue and
green curves represent a halved and double beam width.
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Figure 4.10: plot of the evolution of the mode, for the case continuous wave and mod-
ulated for different deposition profiles using different control schemes. The orange line
corresponds to a modulated stabilization and the blue line to continuous wave (CW) sta-
bilization. The plots on the left represent the evolution of the mode with a misalignment
at half width in early intervention (top) and late intervention (bottom). On the right, a
perfectly aligned stabilization is shown in early intervention (top) and late intervention
(bottom)

In the case of early intervention (Fig. 4.11a), the island is smaller, and the modulation is
more effective even for small misalignments (purple and green curves). Injecting power at
the separatrix, both on the low-field side and the high-field side, during both early and late
interventions, drastically reduces the effectiveness of modulation. The effectiveness pa-
rameter E(Wcd) approaches zero or may even become negative, indicating that modulation
does not have a beneficial effect under these conditions. In the case of late intervention
(Fig. 4.11b), the index E(Wcd) is positive only when there is perfect alignment, and it
decreases rapidly with the introduction of even slight misalignment. Notably, the value
of E(Wcd) is smaller in this scenario, indicating that it is generally more advantageous to
apply modulation to a small island.
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(a) Early intervention (b) Late intervention

Figure 4.11: Value of the effective parameter E(Wcd) as function of the beam width Wcd

for different deposition profiles.

4.4 Conclusion
To summarize, a study on the behavior of the Neoclassical Tearing Mode (NTM) in the
DTT full-power scenario was conducted. Initially, the free evolution of the mode was
analyzed using a ∆′

0 calculated through an analytical approach and by fixing ∆′
0 to simulate

a worst-case scenario where the linear stability index increases due to external phenomena.
Using the computed ∆′

0, the plasma was found to be linearly stable, resulting in the mode
evolving and disappearing within approximately 1 s. In contrast, for a fixed ∆′

0 = 0.2,
the mode saturates at an amplitude of approximately 14 cm after 3 s. The stabilization
has been simulated, firstly assuming a perfect alignment condition and then introducing a
misalignment. Considering the effects of misalignment, it is reasonable to contemplate a
trade-off between accurately targeting the center of a large island during late intervention
or targeting with less precision but at an earlier stage when the island is small. Figures
4.9(left) and 4.9(right) demonstrate that the results obtained by depositing power at the
separatrix during early intervention are comparable to those achieved by targeting the
mid-width of the island during late intervention. This indicates that, in early intervention,
a greater degree of misalignment is acceptable to achieve similar stabilization outcomes,
meaning that the less accuracy in the detection of the island, due to the small size of the
island, is balanced by the less accuracy required to suppress the island. On the other hand,
shooting accurately (on the O-point) when the island is large (late intervention) would
ensure a complete stabilization of the mode in around 2 s. Finally, the effectiveness (how
much it is evident the effect of the modulation) is evaluated, defining the index E(Wcd).
Figures 4.11a and 4.11b illustrate this parameter as a function of the beam width. In
the case of late intervention (right panel), only the red curve, representing the perfect
alignment scenario, remains visibly above zero. The other curves rapidly approach zero
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and may even become negative. In contrast, during early intervention, even with a small
misalignment (at half the island width), the effect of modulation remains positive. This
indicates that modulation is more effective in stabilizing small islands than larger ones,
implying that it can be useful to compensate the lack of accuracy in the detection in the
early intervention case.
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Chapter 5

Ion Polarization Current

The neoclassical effect caused by the favorable curvature of the magnetic field lines, mod-
eled by Green-Glasser-Johnson (∆′

GGJ), stabilizes the NTM even during the linear phase.
For this reason, linear stability ceases to be a sufficient condition for triggering the instabil-
ity, and a critical ∆′

0c must be overcome to start the non-linear growth of the tearing mode.
During plasma operation, the equilibrium can be altered by the effect of the impurities
that penetrate the plasma, providing a channel of energy dissipation through irradiation.
As explained in Chapter 6, a possible disruption path starts with the edge cooling, where
a collapse of the temperature profile at the edge of the plasma occurs. The current den-
sity profile shrinks, which is known to have a destabilizing effect, increasing the linear
stability index ∆′

0 [106, 79], which triggers the mode, leading to disruption. The linear
stability analysis focuses only on the equilibrium current density profile, neglecting all
non-linear phenomena that arise in the interaction between the magnetic island and the
plasma. Furthermore, in edge cooling, the current density profile modification and the
linear destabilization are a consequence of the change of the temperature, so it is impor-
tant to put attention to the processes that depend on the temperature and that could cover
an important role in the development of the magnetic island in the very first phase of its
development. The ion polarization current arises due to the different inertial response be-
tween the electrons and ions. The published work, Ref. [13] and reported in Appendix
A provides a detailed physical description. As shown in Chapter 3, in the Generalized
Rutherford Equation, the effect of the ion polarization current is modeled in the terms of
∆′

pol , which depends on the rotation frequency ω of the island with respect to the plasma
frame of reference. In the small island regime (W < ρi, with ρi the ion Larmor radius),
the island is dragged by the motion of the electrons, and ω corresponds to the diamag-
netic electron frequency ω∗e(T ). The collapse of the temperature at the edge suddenly
reduces ω∗e(T ), enhancing the destabilizing effect of the polarization current. Further-
more, ∆′

pol ∼ 1/W 3, so that, for a small island, the effect of the ion polarization current is
dominant, and in the published paper, an analysis on a database of disrupting JET pulses is
carried out to model the effect of the ion polarization current. The work shows that when
the flattening of the temperature profile reaches the rational surface, there is an increase in
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the destabilizing effect of the ion polarization current, and that moment corresponds to the
onset of the mode. The destabilizing effect of the ion polarization itself is not sufficient
to trigger the mode. However, it can strongly contribute to putting the rational surface
in a metastable instability condition, bypassing the stabilizing effect of the curvature and
favoring the onset of the mode when a small perturbation bends the field line close to
the rational surface. The ion polarization current makes the rational surface susceptible
to small, fast fluctuations of the plasma’s rotation frequency. Statistical analysis over a
dataset of disruptions in DIII-D [10] recently shows that the onset of the modes follows a
Poisson distribution, suggesting a stochastic behavior of the onset of the tearing mode that
can be physically explained with the ion polarization current.
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Chapter 6

Detection of disruptive precursors

When uncontrolled, the tearing instability grows, slows down, and locks with the tokamak
wall. At this stage, the confinement is highly compromised, the plasma current rapidly
decreases, and all the energy stored is released. Avoiding and mitigating this behavior,
known as disruption, is a key challenge for future power plants. Disruptive events can
occur due to various phenomena and following different patterns. Deep learning, through
data-driven approach, offers a promising way to unveil the causal chain of processes that
eventually lead to disruptions, allowing for the detection of disruptive precursors. This
chapter provides a phenomenological description of the disruption, describing different
possible disruptive patterns. Then, a general introduction to deep learning algorithms is
presented, focusing in particular on neural networks and convolutional neural networks
and their application in disruption prediction. The chapter ends with describing the ex-
plainable artificial intelligence (XAI) analysis applied to a convolutional neural network
trained to classify disruptive plasma. The analysis focuses on particular disruptive pat-
terns, edge cooling, and temperature hollowing. A detailed explanation is provided in
Ref. [14], and the paper is reported in Appendix B.

6.1 Disruption
Tokamak operations are intrinsically unstable and susceptible to events that can disrupt the
plasma confinement, quickly destroying the magnetic equilibrium. A disruption is a very
fast phenomenon in which different processes interact non-linearly. Phenomenologically,
the disruption occurs in two stages. The first phase is where the internal energy is lost,
typically due to radiation. The radiated power leads to a drop in the temperature profile,
known as the thermal quench, which lasts a few milliseconds. This rapid cooling signif-
icantly increases the plasma resistivity (which scales as ∼ T−3/2). In the first stage, this
reduction results in an increased power injection into the plasma through Ohmic heating,
arising from the release of magnetic energy due to the decrease in the poloidal magnetic
field. The low temperature of the plasma favors the dissipation of this energy in the form
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Figure 6.1: Illustration of the operational limit in the Hugill’s diagram. The hard low-q
limit is represented by the horizontal line at 1/qa = 0.5 , while the threshold due to the
density limit can be moved by introducing additional heating. [104]

of impurities radiation, which prevents the electrons from regaining energy and restoring
temperature. The current decay is very rapid, with dI/dt ∼ 200MA/s. [113]. This phase,
known as current quench, ends with the complete loss of the current and the confinement.
The very short timescale at which disruption happens makes it difficult to avoid it once
the thermal quench starts. For this reason, disruption avoidance is closely related to the
ability to predict disruptions. A statistical, empirical analysis of disruptions, allows for
identifying instability thresholds that involve global plasma parameter, thereby helping to
prevent disruption. The Hugill’s diagrams plots the pulses in the plane defined by the in-
verse of the q at the plasma edge, 1/qa with respect to the Murakami’s parameter n̄R/Bφ .
This parameter space defines two different kinds of disruptions by revealing two limits
the plasma cannot overcome to maintain stability: the low-q and the density limits. The
first limit, known as the ideal MHD low-q hard limit, is characterized by the onset of an
external kink instability, which occurs when the q = 2 rational surface reaches the plasma
edge (namely 1/qa = 0.5 in the Hugill’s diagram). In these cases, the plasma rapidly dis-
rupts, and this constraint on the value of q at the edge limits the achievable plasma current
(as qa ∼ 1/I) . The second limit is imposed by the so called density limit, and occurs
when increasing the line average density at the edge, with respect to the toroidal magnetic
field, moving to the right in the Hugill’s diagram. An increase in the density, which is not
balanced by an increment of the injected power, reduces the temperature at the edge, and
the plasma undergoes the so-called edge cooling. This favors the impurities radiation and
leads to a contraction of the temperature profile. The contraction itself is not dramatic, and
the plasma in principle could produce a new equilibrium with a decreased internal energy.
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However, reducing the current channel moves the q = 2 surface outward, destabilizing the

Figure 6.2: Illustration [108] of the different phase of a disruption. Perturbation of the
equilibrium can make the plasma unstable, starting the pre-precursor phase. This exam-
ple shows a sketch of the perturbed poloidal field, connected to MHD activities. The
pre-precursor phase is followed by the precursor phase, where the phenomena directly re-
sponsible for disruption occur. Then starts the thermal quench, with the rapid decrease of
temperature, that induces the current quench and the complete loss of confinement at the
disruption time (red line)

(2,1) tearing mode. The mode slows down during its growth until it locks with the ma-
chine wall. At this point, the thermal and current quenches start and the plasma disrupts,
terminating the discharge. While the low-q limit is a hard limit, namely, it intrinsically
affects the plasma, as shown in Fig. 6.1, the density limit can be moved if the decrease
of temperature due to the increase of density at the edge is balanced by additional heat-
ing that prevents the contraction of the current channel. While in the density limit, edge
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cooling is caused by the increase in the density at the edge, another possible disruption
path is given by impurities, which can penetrate the plasma and modify the temperature
profile through radiation. Depending on the penetration depth, the impurities can alter dif-
ferent areas of the temperature profile, causing a cooling of the edge or a hollowing of the
temperature on the plasma axis. Both the edge cooling and the temperature hollowing are
shown to be linearly destabilizing [80] for the (2,1) rational surface, triggering an NTM
leading to disruption. These limits establish operational boundaries, defining the plasma
parameters required for a safe discharge. However, disruptions may also arise from other
causes (e.g., interaction between instabilities, error fields, and impurity accumulation) that
go beyond these defined limits and are more difficult to identify in a parameter space as
Hugill’s diagram. For this reason, an effective strategy in disruption prediction involves
the detection of phenomena that precede the disruption. Fig.6.2 illustrates the disruption
that starts with the current quench, is preceded by the thermal quench, and by a phase
where the precursor perturbs measurable quantities. In JET the most frequent precursors
are MHD instabilities that can occur even when the plasma is in a stable operational region,
particularly (2,1) tearing mode [25]. Taking into account significant perturbed quantities,
such as the poloidal magnetic field measured by the Mirnov’s coils, can allow elaborating
indexes that anticipate disruptions, triggering disruptions mitigation systems. This is the
case, for example, of the mode locking index, which accounts for the locking of the (2,1)
mode as a precursor of disruption. Such systems allow for a rapid and safe discharge shut-
down when critical events occur. However, effective disruption avoidance systems must
provide extended warning times, enabling the anticipation of precursor onset and moving
the plasma in a safe operational region without the need to shut down the discharge [105].
Developing such a system is highly non-trivial due to the pronounced nonlinearity of the
sequence of events (which begins with the pre-precursor phase (Fig. 6.2) and culminates in
a disruption), which makes the causal chain difficult to reconstruct. A promising approach
to addressing the disruption avoidance problem lies in applying deep learning algorithms.
These algorithms have the potential to uncover relationships in the data that are difficult
to detect through data-driven analysis and challenging to predict with physical modeling.
In the next section, a description of the basic deep learning techniques is provided, focus-
ing in particular on deep neural networks and convolutional neural networks. Then, its
application in the prediction of disruption is shown.

6.2 Deep learning
Machine learning comprehends a range of algorithms, enabling software to ’learn’. Here,
’learning’ carries a precise meaning, specifically:

A program is said to learn from experience E with respect to a class of tasks
T and a performance measure P, if its performance at tasks in T, as measured
by P, improves with experience [72]
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Figure 6.3: An example of deep neural network is shown. The input layer accepts three-
dimensional inputs. Every node is connected to each node of the following layer and
a weight characterizes this connection. The neural network in this example produces a
monodimensional output in the output layer. Every layer between the input and the output
layers is called hidden layer. [2]

Machine learning algorithms involving the specific use of deep neural networks is known
as deep learning. In this section, the neural network (NN) architecture is first defined,
followed by a general explanation of its functionalities. The convolutional neural network
(CNN) is then presented as a generalization of the neural network that allows to elabo-
rate images. The architecture of CNN is then applied to the context of nuclear fusion,
illustrating their use in disruption prediction.

6.2.1 Deep Neural Networks

A NN can be visualized as a network of interconnected nodes, referred to as neurons,
each characterized by an activation value, y(x), which is dependent on the input x. These
neurons are organized into layers, starting with the input layer and concluding with the
output layer. Between these two, the architecture is further composed of a variable number
of hidden layers, forming the core of the network’s structure. Each neuron in the (i−1)-th
layer is connected to all neurons in the subsequent i-th layer. This connection implies that
the value of the n-th neuron in the i-th layer is determined by the values of the neurons in
the (i−1)-th layer, following the relation:

y(i)n = Ai−1

(
N(i)

∑
k=0

wkny(i−1)
k +bk

)
(6.1)
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The weights wkn correspond to how much the value of the neuron in a previous layer
determines the value of the neurons in the layer. The coefficients bi are called bias.

Activation functions Particular attention must be posed on the function A(x), called the
activation function. It determines how the values of the neurons in the previous layer
“activate” the neuron in the current layer. The form of the activation function can be cho-
sen within different functions. One of the most used activation functions is the Rectified
Linear Unit (ReLU) defined as:

A(x) = max(0,x) =

{
x x ≥ 0

0 x < 0
(6.2)

The function is continuous, but its first derivative is a piecewise constant, exhibiting a
discontinuity at x = 0. Higher-order derivatives (beyond the first) are not well-defined.
The logistic function is defined as:

A(x) =
1

1+ e−x (6.3)

The function is infinitely smooth and monotonic. Its range is (0,1), meaning it is useful for
representing probabilities. The neural network can generally be composed of layers with
different activation functions. For a given generic input x, the output of the neural network
composed by Nl layers can be expressed in terms of nested matrix multiplications:

φ(x,W ) = A(Nl)
(

W (Nl)A(Nl−1)
(

W (Nl−1) · · ·A(1)
(

W (1)x
)
· · ·
))

(6.4)

where W (i) is a weight matrix referring to the i-th layer of the neural network. The matrix
element wkn refers to the weight between the k-th neuron in the i−1-th layer and the n-th
neuron in the i-th layer. A neural network is characterized by the number of hidden layers,
the activation function, and the number of neurons in each layer; these features define the
network’s structure. Typically, they are fixed and remain constant. Beyond the structure,
a neural network is also defined by the weight matrices W (i) associated with each layer.

Universal approximation theorem The most important feature of a neural network is
demonstrated in the so-called Universal Approximation Theorem [57] of the neural net-
work. The theorem states that for every function f (x) belonging to a function space where
a norm is defined (Banach space), always exists a non-linear neural network φ(x,W ) such
that φ(x,W )→ f (x). Technically, the demonstration focuses on proving that in a defined
Banach space X , every function f ∈ X is arbitrarily closed to a neural network φ ∈ Φ

where Φ ⊂ X represents the set of all the neural networks contained in X . Φ is said to be
dense in X . A crucial condition for neural networks is nonlinearity. While the activation
function can, in principle, be linear, a linear activation would result in the network pro-
ducing an output that is a linear combination of the inputs, limiting the network to a linear
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approximation of the function f (x). Consequently, the set Φ would no longer be dense in
the Banach space X . The theorem does not suggest how a certain network must be built to
perform this approximation; however, different algorithms allow for that.

Training phase Given a NN with a certain structure, the neural network weights repre-
sent the degree of freedom that can be tuned to find the network that best approximates
a certain function. The phase where the network’s weights are tuned to approximate a
function is called the training phase. In this phase, the weights of the neural network are
iteratively adjusted to minimize a cost (also known as loss) function that takes into account
the distance of the output of the neural network φ(x,W ) to the value of the target function
f (x). The cost function can be expressed in different way, but its effectiveness depends on
the context. For a certain set of input data (x j,y j = f (x j)) with j = 1,2, ...,Ntraining sample

and a neural network output φ(xi,W ), a typical cost function is represented by the squared
deviation:

C(x,φ) =
Nsample

∑
i=1

||yi −φ(xi,W )||2 (6.5)

The set of weights W that minimizes the cost function C(x,φ), defines the neural net-
work that approximates the target function f (x), as stated by the universal approximation
theorem. In this context, the learning phase of a neural network is formulated as an opti-
mization problem, requiring the computation of the derivatives of the network’s weights
with respect to the cost function. A minimization algorithm can then be employed to min-
imize the cost function. Gradient descent is an iterative algorithm that finds the value of
a parameter that minimizes a certain function. The goal of the gradient descent is to min-
imize a given (C(x,φ)) function with respect to certain parameters (the weights w(i)

kn , for
every layer of the NN) by iteratively adjusting the parameters in the direction opposite to
the gradient. For a generic weight w:

wt+1 = wt −η
∂C(x,φ)

∂wt
(6.6)

the parameter η is called the learning rate and can be adequately tuned to optimize the
descent.

Backpropagation A crucial task is to efficiently calculate derivatives, and the backprop-
agation algorithm provides an effective approach to this. This algorithm consists of two
main steps: the forward pass and the backward pass. First, for each training data pair
(xi,yi), the cost function C(xi,φ(xi,Wt)) is evaluated by passing data through the network
in a forward direction. Then, the derivatives of the cost function with respect to each
weight in the network are computed through backpropagation, using the chain rule ap-
plied to Eq. 6.4. With these computed gradients, the weights Wt are updated according to
the gradient descent algorithm Eq. 6.6. This process is repeated for all training data pairs
(xi,yi) until the cost function is minimized.

75



6.2.2 Image processing

The convolutional neural network (CNN) [48] is an extension of the neural network, par-
ticularly suitable for analyzing input images. The problems that such a network can face
are manifold, for example, object tracking [22], face recognition [9], object recognition
and classification [117]. In the fusion context, a promising application for neural networks
applied to image processing is the disruption prediction [49, 6, 5]. A brief overview of the
methods applied to the neural network architecture to analyze images is now presented. A
greyscale image, with M×N pixels, is a M×N matrix where every element represents the
grey intensity (-1 is black and 1 is white). In principle, an image can be used as input of a
generic neural network as described in the previous section, modifying the input layer so
that it takes an input x ∈ RM·N , however, all spatial relations in the image would be lost,
resulting in a less effective neural network.

Convolutional layer A CNN introduces in the structure of the network a convolutional
layer (CL), where a convolutional operation between the input image x and a kernel func-
tion g is performed. The kernel g is represented by a matrix m×n acting over a patch of

Figure 6.4: Illustration of convolution operation between an input matrix 6 × 6 and a
convolutional kernel 3×3. The kernel acts over a patch of input matrix, whose dimensions
are defined by the dimension of the kernel. The convolution produces an output 4× 4.
[107]

the input image, which globally is M×N. The convolution operation will produce an out-
put o of dimensions (M −m)+1× (N −n)+1. The discrete convolution transformation
can be formalized as:

oi, j =
N̄

∑
m′=1

N̄

∑
n′=1

g(m′,n′)x(i+m′, j+n′) (6.7)

An illustration of the convolution transformation on an input matrix 6× 6, with a kernel
3×3 is shown in figure 6.4. In this case N̄ = 4. The convolution operation transforms the
input matrix of the convolutional layer (CL) into a feature matrix that highlights various
geometric features of the input. Each convolutional layer performs multiple convolutions
using different kernels, with each convolution producing a distinct feature map that em-
phasizes different geometric aspects of the input image. In general, the kernel matrix is a
learnable parameter so that the network learns what are the best features of an image that
allow it to minimize the cost function. An example is shown in Fig. 6.5, where various
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Figure 6.5: example of features extraction performed by different layers of the convolu-
tional unit. Every image refers to a different convolutional kernel that is able to highlight
various geometrical features of the image. [75]

geometric features of a cat’s head are highlighted. Each image corresponds to a different
convolutional kernel, emphasizing distinct characteristics of the cat. For instance, differ-
ent images highlight the horizontal and vertical lines of the fur, the eyes, and the overall
shape of the head.

Pooling The generalization of the NN in order to elaborate images introduces a new way
the layer interacts with the input image. In particular, in the convolutional layer, the input
image undergoes a convolution transformation driven by a kernel that acts on an image
patch with a specific operation defined in Eq.6.7. The same mechanism can be applied
with different operations, as in the pooling layers. There are two kinds of pooling layers:
the average and the max pooling layer. Figure 6.6 shows an example of max pooling,

Figure 6.6: Illustration of how a max pooling layer acts. The filter has 2×2 dimension and
is moved on the input matrix with a horizontal and vertical stride of 2. The max pooling
select the maximum of the values covered by the filter, reducing the dimensions of the
input matrix. The same process applies for the average pooling.[39]

where a 2× 2 pooling operation is applied to a 4× 4 matrix. The filter moves with a
stride of 2 both horizontally and vertically. Max pooling selects the highest value from
the portion of the matrix covered by the filter. Similarly, average pooling applies the
same process but takes the average value instead. Pooling layers do not aim to extract
features from the input image as convolutional layers do. They are used to reduce the
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dimensionality by filtering out the image.

6.3 Deep learning for disruption prediction
The disruption prediction is a promising application of deep learning in nuclear fusion. In
this problem, the relevant diagnostics are organized into an input matrix I of dimensions
M×N, where M represents the number of diagnostic channels, and N represents the num-
ber of time points at which the data are collected. The input matrix can be normalized
appropriately, and I is treated as a greyscale image representing a snapshot of the shot’s
history. The problem of disruption prediction is then reduced to a binary classification
problem, where the CNN is trained to distinguish between disruptive and non-disruptive
shots. In this approach, the key task is to select the data that carries most information re-

Figure 6.7: The channels of the selected quantities, measured at different times are stacked
in the y direction, producing an input image, where the x direction corresponds to the
temporal dimension. In this example, the signal from the bolometer, the temperature, and
the density are shown.

lated to the disruption. This is not a trivial challenge, as disruptions are highly non-linear
phenomena that occur over very short timescales. The optimal combination of data for a
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disruption predictor can be found following the knowledge built by the physical modeling
of disruption and its precursors or with a data-driven, empirical analysis to maximize the
predictor’s performance. In the Ref. [6] the authors proposed a CNN due to their ability
to extract spatiotemporal features analysing plasma 1-D and 0-D quantities. An example
is proposed in Fig. 6.7 where the data from the horizontal bolometer, the temperature,
and the density profiles are stacked to create a temporal snapshot of the image. Then, a
database of disrupting and non-disrupting pulses is created, and the training process de-
scribed in 6.2 is performed. The CNN produces an output between 0 and 1 for a given
input, representing the likelihood of disruption. The data used to perform the classifica-
tion are the electron density, the electron temperature, the horizontal bolometer, the mode
locking signal, and the internal inductance. This choice is noteworthy because it is con-
nected to physical quantities that are closely related to the disruptions or their precursors.
For example, the density is related to the density limit, the temperature to the temperature
quench but also to the flattening due to the effect of the magnetic island, which is a pre-
cursor of disruption. The radiation detected by the bolometer is related to the contraction
of the temperature profile in the first phase of the disruptions due to a density limit. Fi-
nally, the internal inductance li and the ML signal are particularly relevant, the first one as
emerged by a statistical data-driven analysis [50], and the second as precursor index.

The one proposed in Ref. [6]is not the only possible approach. Recent work has
obtained encouraging results using more complex neural network architectures, imple-
menting a memory able to account for temporal relation between phenomena [50] or very
recent results built on transformers [102].

6.4 eXplainable Artificial Intelligence
In this thesis, an extension of the work carried out by E. Aymerich et al. [6] will be pre-
sented. The work addresses the problem of the neural network’s reliability, investigating
the patterns it follows to classify disruptions. This is part of an essential problem regarding
how a neural network learns and how this can be investigated. The process of analysing
and explaining how a neural network generates its output is referred to as eXplainable
Artificial Intelligence (XAI). An XAI analysis is required to be adapted to the system, and
a standardized approach does not exist. In case of Ref. [6], and in general, in a CNN,
the information is passed in a manner that, in linguistics, is referred to as ostensive learn-
ing, meaning that information is provided directly (ostensed), accompanied by signals or
labels (as in case of deep learning), that makes the association explicit. In this type of
learning, the most straightforward way to determine whether information has been effec-
tively absorbed is to evaluate if the subject can recognize the object by focusing on it when
presented with a specific input. In the case of CNN for disruption predictions, an assess-
ment of how it performs predictions is to investigate what are the most relevant parts of
the input image and compare the results with the physical models to assess whether they
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are consistent with each other. Two techniques are exploited. The occlusion consists in
perturbing the system by removing a part of the input image and studying how the output
changes. The saliency map aims to compute the derivatives of the output with respect
to each pixel of the input image. Here, the gradient is computed using the backpropaga-
tion algorithm, the same used for the training of the NN, described in Sec. 6.2. These
analyses produce sensitivity maps, represented as matrices in which high values indicate
areas where the output is more sensitive. These areas highlight the part of the input that
the neural network has learned to be significant for performing classification. Compar-
ing these parts with physical modelling can be used to assess whether the CNN learns to
predict disruption following the same patterns as scientific investigation. Specifically, a
subset of the test dataset, containing disruptions that follow a known disruption path, has
been selected. The disruption path is related to modification of the temperature profile as
consequence of impurities radiation that causes a collapse of the temperature profile at the
edge, or an hollowing of the temperature profile at the centre. These chains of events are
particularly suitable for analysis as they are easily detectable from temperature changes
and mark the onset of the pre-precursor phase. Furthermore, this phase is a significant
indicator in the triggering of disruptions and represents a common disruption pathway,
allowing the database to contain a satisfactory number of related pulses. The work in the
Appendix shows evidence of the fact that the CNN changes the way the part of the input
related to the temperature affects the output when performing a classification of an edge
cooling or a temperature hollowing. Specifically, the CNN is more sensible to the inner
part of the temperature profile when a temperature hollowing occurs. On the other hand,
the sensibility in the outer part of the temperature profile is increased during edge cool-
ing. This demonstrates that, without any prior hints during the training phase about edge
cooling and temperature hollowing, the CNN learns to maximize prediction accuracy by
changing the sensibility to different parts of the profile, depending on the regions affected
by the occurring phenomena. The work does not aim to provide indications to improve
CNN’s performance but just to check whether CNN performs its classification following
common patterns, such as those in physics. This can contribute to increasing knowledge
about how CNN performs its classifications, enhancing the trustworthiness and credibility
of such a predictor. In principle, wider analyses could produce useful results to optimize
the choice of signals, showing which are the most relevant to perform the classification.
Furthermore, applying XAI analysis can help unveil hidden relationships between data
that the CNN leverages to perform the classification. This could suggest causal connec-
tions between phenomena that affect the input quantities, guiding the physical modelling.
The detailed work is reported in Appendix B.
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Conclusion

The problem of the neoclassical tearing mode instabilities has been addressed in this the-
sis. Specifically, three different works have been presented, each one guided by a general
question: “what is the phenomena involved in the trigger of the (N)TM?”, “what is the best
strategy to control the (N)TM by injecting ECW waves after the detection?” and in case
of uncontrollable magnetic island “how the neural network disruption predictors learn to
predict disruptions?”. The problem of the controllability of the NTM is faced in Chapter
4, where predictive work is performed on DTT. The evolution of the NTM is simulated
in the full power scenario, first assuming a free mode evolution and then introducing a
stabilizing system based on the current design specifics. The simulations highlight differ-
ent stabilizing strategies: in early stabilization, the island detection is harder due to the
small island size, but even without perfect alignment, stabilization is possible. On the
other hand, with a late intervention, island detection is easier, but small displacements of
the absorption position of the EC waves from the O-point reduce their stabilization. This
work will contribute to the design of the NTM stabilizing system of DTT.
This thesis addresses two experimental cases involving changes in the temperature profile,
focusing on the relationships between (N)TM triggers and disruptions: edge cooling and
temperature hollowing. The former is connected to a decrease in the value of the tempera-
ture profile at the edge, while the latter refers to a hollow of the temperature on the plasma
axis.
At the end of JET discharges, edge cooling events can trigger a 2/1 tearing instability,
which likely leads to plasma disruption. The conditions for triggering 2/1 have been an-
alyzed. A detailed analysis shows that, in such cases, the linear stability term does not
overcome the stabilizing curvature effect (Green-Glasser-Johnson term), and a critical is-
land width must be overcome to trigger the mode. In Chapter 5, the ion polarization
current is presented as a phenomenon that can favor the onset of the mode by reducing the
island’s critical width, making the rational surface susceptible to fast, sudden fluctuations
of the rotation frequency of the island with respect to the plasma. The analysis considers
the specific disruption path of the edge cooling.
In Section 6.4, the explainable artificial intelligence (XAI) is introduced in the context
of disruption predictors based on convolutional neural networks (CNN). The work in
Appendix B analyses a database of disruptions connected with the deformation of the
electron temperature profiles caused by edge cooling or temperature hollowing with XAI
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techniques. The results show that the CNN is more sensitive to the inner part of the tem-
perature profile in the case of TH and to the outer part of the temperature profile in the case
of EC. The interpretation for this behavior is that, in analogy to the physical investigation,
the CNN learns to change its focus according to the phenomena occurring in the plasma
to maximize the prediction performances. The work demonstrates for the first time the
feasibility of applying XAI methods to disruption predictors, contributing to the enhance-
ment of the reliability of deep learning algorithms in disruption avoidance. In conclusion,
this thesis contributes to understanding neoclassical tearing modes, focusing on their on-
set, control, and disruptive behavior. The ultimate goal is to enhance the performance of
future fusion power plants and reduce the risks connected to the unstable nature of the
plasma.
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Appendix A

Analysis of the role of the ion
polarization current on the onset of
pre-disruptive magnetic islands in JET

A.1 Introduction
The sudden loss of confinement of the plasma, which occurs during disruptions, may result
from the onset of a low-mode-number helical magnetic instability, which is eventually re-
sponsible for a full collapse of the magnetic equilibrium topology in the plasma. However,
the operation of modern tokamaks has been improved to the point that discharges can pro-
ceed unperturbed even in high-performance regimes and instabilities can be avoided by
keeping the safety factor q large enough, up to exhaustion of the inductive flux. Still
occasionally without easily identifiable causes (such as impurities influx and enhanced ra-
diation), an apparently quiescent equilibrium condition, collapses on a short timescale in
clear association with footprints of tearing modes onset, both classical and neoclassical
(at finite βp), occurring at q rational magnetic surfaces. The fast decrease in the magnetic
field can induce strong currents that lead to mechanical stresses on the metallic vessel,
which can damage the machine itself. As a consequence, the tokamak operability is usu-
ally limited in order to avoid disruptions. Disruptions occur following different sequence
of events,whose details depend on the primary cause and, when a plasma control system is
active, on the response to such events. The chain of primary causes and subsequent events
is an object of active research Recently, Pucella et al. [80] identified disruption paths in
JET related to the connection between heavy impurity dynamics and triggering of tearing
modes. In particular, they identified two possible paths, connected to the change in the
temperature profile. The first one (temperature hollowing) is related to the penetration of
impurities, which cools down the plasma core by radiation, producing a hollowing of the
temperature profile on the plasma axis. A second path (edge cooling) is connected to a
local flattening of the temperature profile at the edge of the plasma caused by a loss of
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radiated energy associated with impurities. Sozzi et al. [101] analyzed a database of JET
disruptions, creating a solid statistic that confirms that most pulses follow the two paths
previously identified. As highlighted by De Vries et al. [110], accidental disruptions are
in most cases preceded by the onset, the development, and the locking of a 2/1 magnetic
island. A deep understanding of the phenomena that lead to a disruption must involve
the study of the appearance of a 2/1 tearing mode (TM), which, possibly in conditions of
overcritical βp, leads to the trigger of a neoclassical tearing mode (NTM). Pucella et al.
[80] found out that the change in the temperature due to the hollowing of the tempera-
ture or to the edge cooling (EC) leads to a linear destabilization of the 2/1 tearing mode.
Despite this, the problem related to the trigger of the mode is not clear at all, as the lin-
ear stability does not completely determine the behavior of the instability. The non-linear
Rutherford’s theoty [86], predicts the onset of the mode when helical perturbation of the
magnetic flux produces a so-called seed island for which the sum of destabilizing effects
overcomes the sum of stabilizing effects. Within the different destabilizing effects, the
ion polarization current (IOPC) is thought to be particularly crucial in the problem of the
onset of the mode [82, 38]. A perpendicular current is produced as a result of the island’s
relative motion with respect to the ions. Then, because of the closure condition ∇ · J = 0,
a parallel current, called ion polarization current, appears, affecting the evolution of the
island [78, 51].Following the generalized Rutherford’s theory, the contribution of the po-
larization current can be either stabilizing or destabilizing according to the propagation
frequency ω of the island in the plasma frame with respect to the electrons and ions dia-
magnetic frequencies [66]. Furthermore, the effect of the ion polarization current is found
in the evolution of an island with width W scales as 1/W 3. This makes it a key actor able
to strongly influence the evolution of an NTM in the initial part of its development. While
in the low collisionality conditions, typical of the steady phase of operation, the effect of
the ion polarization current is reduced [71] by a factor that scales the inverse aspect ratio
ε as ε3/2, so it is negligible; according to some recent kinetic approaches [28], destabi-
lizing event such as the EC, could induce a decrease of the temperature on the rational
surface, increasing the collisionality and the contribution of the ion polarization current,
which could become destabilizing. In this work, an analysis on the non-linear phenomena,
which affects the evolution of the magnetic island according to the generalized Rutherford
theory, is performed over a database of JET disrupting pulses. In Sec. A.2.1, a description
of the model employed is given. In Sec.A.4 the results of the analysis are shown. The
first part of the analysis is focused on the destabilizing effect of the bootstrap current and
on the stabilizing effect of the curvature. Then, the ion polarization current is taken into
account for a subset of pulses. Eventually, in Sec. A.5, the analysis is summarized in order
to identify a mechanism able to explain the trigger of the mode and a stability criterion.
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A.2 Physical picture
In general, the ion polarization current is a current generated by the differences in the in-
ertial response of the ions and electrons. Here, we provide a physical picture connected to
the neoclassical geometry.The intrinsic E ×B motion of the magnetic island contributes
to generate an electric potential, which influences the motion of the particles outside the
island [78, 51]. Fig. A.1 represents a cartoon of what the particles experience: in the blue
region, the potential due to the island motion generates an E×B drift in the opposite direc-
tion of the island rotation, while in the green region, the drift velocity points in the same
direction. The interaction between the trapped and passing particles in this field generates
the neoclassical polarization current. The width of the banana orbit is proportional to the

Figure A.1: Illustration of the physical picture that leads to the onset of the ion polarization
current. The motion of the island generates a potential that affects the neoclassical transport, pro-
ducing the ion polarization current.

Larmor radius ρi,e so that the velocity of a particle lying in the green region during the
bouncing back will decrease due to the E ×B drift, reducing the Larmor radius and then
the width of the banana. On average, this corresponds to an outward drift caused by the
electric potential generated by the movement of the island. The same, but in the opposite
direction, will happen for the particles lying in the blue region. Collision between the
trapped and passing particles will generate a current perpendicular to the magnetic island,
pointing outward in the green region and inward in the blue region. Collision between
trapped and passing particles will generate a current perpendicular to the magnetic island,
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pointing outward in the green region and inward in the blue region. This current, called
polarization current, comes from the movement of trapped particles, proportional to the
Larmor radii ρi,e. Given that ρe << ρi, the contribution of electrons is very small, so
this current is called ion polarization current. A current parallel to the magnetic field is
generated in order to preserve the local quasi-neutrality close to the island. This parallel
current affects the evolution of the island.According to the physical picture we provided,
the strength of the IOPC must depend on the collisionality and rotation frequency of the
island in the frame of reference of the plasma. The former contributes to increasing the
efficiency with which the trapped particles transfer momentum to passing particles. The
latter is proportional to the electric field and the vE×B that causes the drift of the trapped
particle.

A.2.1 Generalized Rutherford Equation

The evolution of the magnetic island is described by the Rutherford theory[52, 12]. The
non-linear behavior of a magnetic island of width W is related to the currents parallel
to B. Performing a change of coordinates, from a tokamak frame of reference Perform-
ing a change of coordinates, from a tokamak frame of reference (r(ψ),θ ,φ) to a helical
coordinate system (x,ζ (θ ,φ)) such that:

ζ = θ −φ/qs (A.1)

x = r− rs (A.2)

where q is the field line winding number. We can integrate the Ampere’s law around the
island obtaining [28]:

g1τr

r2
s

dW
dt

= ∆
′
0 +

∫ 2π

0
dζ

∫ +∞

−∞

J∥(ψ)dx (A.3)

Here g1 is a constant, τr = µ0r2
s/(1.22η) is the resistive timescale, rs is the position of

the rational surface q = m/n (with m, n integer). The term ∆′
0 is the linear stability term,

calculated as the logarithmic jump of the perturbed linearized flux ψ̃ across the rational
surface, computed using the current density profile. The second term on the right-hand
side represents the non-linear component of the evolution of the magnetic island. The
integral is performed across the rational surface. The function J∥(ψ) can be split into
three contributions: the bootstrap current, the Green–Glasser–Johnson (GGJ) term, related
to the curvature of the plasma, and the ion polarization current. By computing the integral
in Eq. A.3 for every contribution to the total J∥(ψ), we obtain a form of the Generalized
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Rutherford Equation [66, 71, 52, 12, 94, 97, 88]:

g1τr

r2
s

dW
dt

= ∆
′
0 +∆

′
boot +∆

′
GGJ +∆

′
pol (A.4)

∆
′
boot(W ) = abootβp

√
ε

∣∣∣∣Lq

Lp

∣∣∣∣ W
W 2 +W 2

d
(A.5)

∆
′
GGJ(W ) =−aGGJβpε

2 L2
q

rs|Lp|

(
1− 1

q2

)
1√

W 2 + kW 2
d

(A.6)

∆
′
pol(W ) = apolg(ε,νii)βp

(
Lq

Lp

)2
ρ2

θ iW
W 4 +W 4

ρ

f (ω) (A.7)

f (ω) =
ω(ω −ω∗i −ω∗T )

ω2
∗e

(A.8)

g =


ε3/2 νii/εω < ε−3/4

εν2
ii/ω2 ε−3/4 < νii/εω < ε−3/2

1 νii/εω > ε−3/2

(A.9)

where βp = 2µ0 p2/B2
θ

is the poloidal component of β , ε is the inverse aspect ratio and
L<∗> = <∗>

d<∗>/dr |r=rs is the characteristic length of the pressure p and the safety factor q
profile. Equation A.4 represents the Generalized Rutherford Equation [66, 12, 88]. The
coefficients aboot , aGGJ and apol are constants, which can be set in order to model the
data. In this work, the values of aboot = 1.7, aGGJ = 6 are chosen following Zohm [120]
and Sauter [91]. They also proposed a value for apol ∼ O(1) , however, it comprehends
the dependence on the rotation frequency. In our model, the rotation frequency is taken
into account in the function f (ω), which varies in a wide range ( f (ω) = 10− 200) as
shown in Fig. A.8. To model suitably the IOPC effect, we choose apol = 0.01, so that
apol f (ω) ∼ O(1) consistently with Zohm and Sauter. The term [66, 52] defined in Eq
A.5, represents the destabilizing effect caused by the reduction of the bootstrap current
inside the magnetic island. As the island grows, the heat diffusion tends to produce a
flattening of the temperature and pressure profiles in the part overlapping the island. The
flattening of the pressure reduces the bootstrap current, thus producing a destabilizing
effect that boosts the growth of the island [91]. The electron temperature evolves on a fast
parallel temperature diffusive equilibration timescale, with a diffusivity χ∥ much larger
than χ⊥, characterizing the slower perpendicular diffusive transport. In the island region,
the balance of the parallel and perpendicular heat flows [35, 88] leads to a temperature
diffusion equation characterized by a scale length Wd ∝ (χ⊥/χ∥)

1/4. The term [66, 43]
∆′

GGJ , defined in Eq A.6, represents the stabilizing term related to the curvature of the
plasma inside the torus. This term is modelled heuristically so that it goes as 1/(kWd)

for W << kWd avoiding the singularity for W → 0. The constant k is introduced in order
to allow ∆′

GGJ being greater than ∆′
boot in the limit of small island. This is important

because ∆′
boot ∼

√
ε while ∆′

GGJ ∼ ε2, in which the former is intrinsically larger than
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the latter and the constant k yields models where the islands become unstable for larger
values of width, according to the experiments. The term[66, 97, 95], in Eq A.7, ∆′

pol ,
represents the effect of the IOPC. The magnitude of its contribution depends on the regime
of collisionality, according to the function g(ω,ε,νii) with νii = 4.810−8Z4niln(Λ)T

−3/2
i

[15] and ln(Λ) the Coulomb logarithm. The formulation, proposed by Mikhailovskii[71]
(Eq. A.9), admits three regimes: a low collisionality regime, where the ∆′

pol is reduced by
a factor ε3/2 due to the reduced interaction between ions flowing outside the island and
the plasma, which inhibits the generation IOPC. A mid-collisionality regime followed by
a high-collisionality regime where the IOPC is increased by the strong interaction between
the ions and the plasma. The limits of the regimes depend on the collisionality ion–ion
νii, the inverse aspect ratio ε and the rotation frequency of the island ω in the plasma
frame of reference. The effect of the ion polarization current can be both stabilizing and
destabilizing according to the sign of the function f (ω), shown in Eq. A.8 and defined by
Smolyakov [94]. ω∗e and ω∗i are respectively the electron and ion diamagnetic frequencies
defined as [17]:

ω∗ j =−
mkbTj(d p j/dψ)

e j p jq
(A.10)

with j = e, i. n is the poloidal mode number, p′j,e j and n j are respectively the radial
derivative of the pressure, the charge and the density of the species j. The coefficient
[95] ω∗T = kθ (dTi/dr)/(eB0) takes into account the toroidal velocity of the island in
the f (ω), connected to the radial derivative of the ion temperature profile Ti and which
is non-negligible at an early stage of development of the island. If 0 < ω < ω∗i +ω∗T

then ∆′
pol < 0 and its contribution is stabilizing, otherwise it is destabilizing. Finally, the

parameter wρ = O(ρθ i) is introduced in order to let the ∆′
pol vanish as W << Wρ . This

behavior can be explained heuristically by thinking that a current of ions in a magnetized
plasma must have at least a width of 2ρi, so that its contribution to the total longitudinal
current of an island with W << ρi can be neglected. This is also confirmed by theoretical
models developed by Smolyakov et al. [94] where he investigates the contribution of the
ion polarization current in the limit of W << ρi, showing that:

∆
′
pol ∼

1
W

(ω −ω∗e)(ω −ω∗i) (A.11)

Other models [36, 34, 58] showed that in this limit ω → ω∗e, so that the overall contribu-
tion of the ion polarization current cancels out. An acceptable transition formula from the
small to large width limit can be expressed as [66]:

∆
′
pol ∼

W
W 4 +W 4

ρ

(A.12)
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A.3 The role of the linear index ∆′
0

According to the model described in the previous Section, the stabilizing contribution of
the curvature does not vanish when the island width goes to zero. If the ∆′

0 is positive, then
the reconnection of a rational surface is energetically favorable, but this does not imply the
onset of an instability. Indeed, the destabilizing strength of the linear term must overcome
the stabilizing contribution of the curvature; otherwise, the magnetic island is non-linearly
stable. Figure A.2 shows the behavior of the non-linear contribution with respect to the

Figure A.2: The Figure shows how the value of ∆′ changes for the different terms in the General-
ized Rutherford Equation with respect to the island width for a real pulse (JPN 92211) where the
coefficients are calculated at the onset of the mode. The orange trace represents ∆′

boot ,the blue trace
∆′

GGJ ad the black, their sum ∆′
boot +∆′

GGJ goes to zero for small width, so that there is a region
W <Wcrit where the sum of the contributions is negative, so an island is stable.

island width W , for an unstable pulse, at the onset of the mode. If the island is smaller than
a critical width Wcrit then the stabilizing contribution of the curvature prevents the trigger
of the mode. In this picture, a linearly unstable rational surface reconnects,producing
a magnetic island with W < Wcrit and then is non-linearly stable and the mode will not
grow. The critical width defines how big the reconnection must be in order to produce
an instability so that it depends on the linear combination of the linear and non-linear
contribution in Eq. A.4. The value of Wcrit is calculated by computing the smallest zero of
the Generalized Rutherford Equation (Eq. A.4). In general, the value of the critical width
depends also on the strength of the stabilization due to the curvature, the destabilizing
contribution of the bootstrap, and the contribution of the ion polarization current. In order
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to gain a deeper insight about the mechanism that leads to the onset of the mode, the
analysis is extended to these terms.

A.4 Analysis of non-linear terms
In this section, a detailed comparison of the competing non-linear terms of the equation
governing the growth of magnetic islands is presented, to identify the reason for the onset
of the mode in a specific set of JET pulses. The Green–Glasser–Johnson and the bootstrap
terms depend on equilibrium quantities (e.g., pressure, safety factor, and current density),
so their contributions vary over an equilibrium timescale. On the other hand, the ion po-
larization current depends on the equilibrium quantities, but its dependence on the island
rotation frequency causes the ∆′

pol to be susceptible to faster fluctuation, which could sud-
denly change the strength and the sign of the term in the Rutherford’s equation. Although
the evolution of the magnetic island is affected by both linear and non-linear phenomena,
their effects sum up linearly, so that it is possible to study them separately. First, the
analysis is performed by considering only the GGJ and the bootstrap current, and then, it
is extended considering also the ion polarization current. The safety factor profile q and
the value of β are taken from an EFIT equilibrium. The electron density and temperature
are measured by the interferometer and radiometer diagnostic. The pressure is calculated
as the product of the density and the temperature. In the termination phase, data from
charge exchange diagnostic are not available because of the lack of neutral beam injec-
tion. Ion temperature is estimated from D-D reaction rate in order to evaluate the ions
diamagnetic frequency ω∗i. The ion pressure is calculated from the temperature and the
density, assuming ne = ni.

A.4.1 Curvature and Bootstrap

The analysis is performed over a database composed of 70 disrupting pulses, where the
disruption is preceded by the trigger of a magnetic island after an edge cooling. The
pulses are classified according to their value of q on the plasma axis. A reliable indicator
of the value of q on the plasma axis is the sawtooth instability, so that its presence implies
that q0 < 1. Figure A.3 shows the position of the database in the plane q95 - li. Here li
represents the internal inductance and q95 the value of the safety factor q at the 95% of
the minor radius. This allows us to identify the pulses of the database as density limits
[100]. The colormap shows that discharges terminating with sawtooth activity (q0 < 1)
can be subject to a disruption in the final phase of the current ramp down (Ionset/I f t <

0.6). As pointed out before, the curvature and the bootstrap terms depend on equilibrium
quantities, so, in order to evaluate their effect on the trigger of the mode, it is important
to compare, for a certain equilibrium, their respective strength. To do that, the ratio of
kboot = βp

√
ε|Lq/Lp| to kGGJ = βpε2L2

q/(rs|Lp|)(1−1/q2) is used as a figure of merit. The
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Figure A.3: Position of the pulses of the database in the plane li −q95. The dotted line represents
the Wesson density limit. The colorbar shows the ratio between the current at the onset and the
current during the pulse. This is a measure of how far the onset happens from the stable plasma
operation

parameter Θ ≡ kGGJ/kboot quantifies how much the coefficient for the stabilizing Green-
Glasser-Johnson term is smaller than the destabilizing term of the bootstrap current. A

Figure A.4: The Figure shows the distribution of the value of Θ for the pulses contained in the
database. The blue and the orange bars represent pulses with edge cooling, with the value of q on
axis respectively less and greater than one. The white bars represent the distribution of Θ for the
disrupting pulses, calculated during a stable phase of the pulse.
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smaller ratio means a more unstable plasma, while a larger ratio means a more stable
plasma. It is important to highlight that we are not taking the width of the island into
account. A reduction in the ratio does not imply the onset of the mode, but rather a plasma
that is more susceptible to the development of instability. The profiles are evaluated at
the position of the rational surface, and Θ is computed for every pulse at the onset of the
mode. The Figure A.4 shows a histogram of the distribution of the ratio for the pulses in
the database. The distribution Θ examined during a steady phase of the pulses is larger than
the same values tested before the onset of the mode. This is consistent with the physical
explanation we provided for the parameter Θ: as the parameter decreases, the destabilizing
bootstrap term gets larger in comparison with the stabilizing curvature term, increasing the
likelihood of the onset of the mode. The two populations of pulses are clearly separated
in the figure, showing that for the pulses with q0 less than 1, the equilibrium configuration
corresponds to a lower ratio and more unstable plasma. The magnetic islands are triggered
in a more unstable condition, suggesting that the sawtooth contributes to stabilizing the
mode. This is consistent with Fig. A.3 where the modes in a plasma with q0 < 1 are
triggered later in the termination.

A.4.2 Polarization current

The change in the temperature profile due to an edge cooling is found to provide a slight
linear destabilization [80], which is related also to a reduction of the stabilizing contri-
bution of the curvature (GGJ) with respect to the destabilizing bootstrap contribution as
shown in the previous Section. In the present section, the possible effect of the edge cool-
ing on the ion polarization current is investigated. The impact of the edge cooling changes
the equilibrium profiles, resulting in a contribution of the curvature (GGJ) and bootstrap
terms favouring instability. On the other hand, the change in the temperature profile di-
rectly modifies the contribution of the IOPC by changing the diamagnetic frequencies
contained in the f (ω). In the termination phase, the decrease of the temperature implies
an increase in the collisionality, which is taken into account in the Generalized Rutherford
Equation by means of the function g(ω,ε,νii), reported in Eq A.4. The Figure A.5 (bot-
tom) represents the value of the function g(ω,ε,νii), close to the onset of the mode, for the
pulse 91977. Just before the onset, the collisionality (Figure A.5 top) modifies the value
of ∆′

pol increasing its contribution. The exact value of the ∆′
pol depends on the value of the

rotation ω of the island with respect to the plasma. A measure of the ω in the laboratory
frame of reference, can in principle be obtained using the Mirnov coils signals. Then, in
order to obtain the rotation frequency with respect to the plasma, we have to subtract the
intrinsic E ×B [56, 51, 17, 96] motion of the plasma, so that:

ω = ωMirnov −ωE×B (A.13)

ωE×B =
−nvφ j

2πR
+

n∇p j

2πZ jn jRBθ

(A.14)
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Figure A.5: (Top) Time trace of the function νii/εω . This function determines the value
of g(µii,ω) (Bottom).

where vφ j is the toroidal velocity, n is the poloidal mode number, ∇p, e j and n j are the
radial derivative of the pressure. The index j refers to the ion specie which is used as
reference for the measure of the toroidal velocity by the charge exchange diagnostic [51].
During the current ramp down, the shutdown of the NBI makes the charge exchange diag-
nostic not available, so that a theoretical approach is needed in order to evaluate the island
rotation. According to the theory [111, 36], the island moves in the plasma close to a
value which is the viscosity weighted mean of the unperturbed electron and ion velocities.
Then it has been shown that, for small island, the island frequency tends to be close to the
electron diamagnetic frequency [34] and this is also confirmed by numerical models [58].
So the island rotation will be assumed ω = ω∗e and the analysis is focused on the factor
f (ω = ω∗e). Under this assumption, the nature of the IOPC is always destabilizing for
small island. This is consistent with some recent theoretical works [29]. The diamagnetic
frequencies are calculated using the ionic and electronic pressure profiles measured by the
diagnostics. In the majority of the pulses in the database, the ion temperature is assumed
to be equal to the electron temperature. Generally speaking, this is a reasonable approx-
imation while the species are at equilibrium, but during the termination phase, it may be
a rough approximation that hides the differences between the diamagnetic frequencies.
For this reason, the pulses of the database are filtered in order to neglect the pulses where
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pulse Bt[T] Ionset/I f t ρθ i[cm] min(wmeasured)[cm]
91977 2.69 0.95 0.88 2.92
92296 2.78 0.90 1.10 5.76
96745 2.77 0.95 0.73 4.72
91970 2.71 0.89 0.95 2.10

Table A.1: The toroidal magnetic field on the axis, the ratio between the current at the
onset of the mode and the current at the flat top and the value of the poloidal ionic Larmor
radius are reported to allow a comparison between the pulses. Furthermore, we reported
the first measured width

Te = Ti. From the starting database, we selected four disrupting pulses. The Table A.1 re-
ports the characteristic quantities of the selected pulses. In particular, it is noteworthy that
the resolution of the Mirnov coils allows us to detect the island only when the island W is
larger than the ion Larmor radius ρθ i, so that the Mirnov measures cannot be exploited to
estimate the island rotation frequency at the very beginning of the island evolution. Along
with these, we also selected three pulses, which develop an edge cooling without develop-
ing a tearing mode. In order to provide a complete physical picture of the pulses that we
analyzed, we present here a description of the behavior of the pulse 91977. The plasma
current is 3 MA and the toroidal magnetic field 2.69 T. At the beginning of the ramp down
of the current (Ionset/I f lat−top ≃ 0.95), the pulse experiences an edge cooling, that starts at
10.037s. The onset of the mode occurs at 10.055s. The spectrogram of the Mirnov coils
signals (Figure A.6) shows the magnetic perturbation caused by the 2/1 mode and by the
1/1 mode (connected to the sawtooth crashes). Figure A.7 shows the evolution of the is-
land evaluated using the magnetic perturbation measured by the magnetic coils, according
to the expression [79]:

W = 4

√
R0rs

nBT ss

1
2

(
rc

rs

)m+1

B̃θ (A.15)

where n is the toroidal mode number, BT , rs, R0 and ss are the toroidal magnetic field,
the position of the rational surface, the major radius and the magnetic shear evaluated by
the EFIT equilibrium. B̃θ is the poloidal perturbed magnetic field. The expression A.15
is valid for modes with m ≥ 2 and under the assumption that the position of the coils rc

coincides with that of the wall. The first measure of the amplitude of the magnetic field
perturbation provides an island width of 2.92 cm. During its growth, the mode slows
down, as it is evident by the reduction of the frequency in the spectrogram, which is
reported in Figure A.7 (grey line). The mode grows till 30 cm, when locks at 10.064 s and
disrupts the plasma at 10.112 s. The Figure A.8 represents the time traces of the factor
f (ω∗e) for the selected pulses. The behaviour of f (ω∗e) is similar for the safe pulses. In
particular, we have f (ω∗e) ≃ 2 meaning that |ω∗e| ≃ |ω∗i|. This represents the thermal
equilibrium value, when Te ≃ Ti. In the unstable pulses, the function f (ω∗e) shows strong
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Figure A.6: Frequency spectrogram of the signal of the Mirnov coils versus time. The 2/1
mode can be seen starting from t ≃ 10.05 s, when it slows down till the locking at t ≃
10.064. It is also possible to distinguish the magnetic activity of the 1/1 mode, connected
to the sawtooth crashes.
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Figure A.7: The Figure shows the evolution of the island width (black line) for the dis-
rupting pulse 91977. The mode starts at 10.055 s leading to disruption. The grey line
represents the rotation frequency of the mode measured by the Mirnov coils.

increment of the function before the onset. The peak of the function f (ω∗e), corresponds
to a stronger destabilizing effect of the IOPC at that time. The pulse 91970 is the only
one which does not follow this behaviour: the value of f (ω∗e) oscillates and there is no
particular increment between the edge cooling and the onset of the mode. The values of
f (ω∗e) at the onset are higher with respect to the equilibrium value for three pulses out
of four. The reason why the parameter f (ω∗e) is so high is the reduction of the electron
diamagnetic frequency compared to the ion diamagnetic frequency as a consequence of
the edge cooling. The results suggest that the effect of the edge cooling is to increase the
destabilizing effect of the ion polarization current. It is important to highlight that any kind
of fluctuations of the temperature profile could correspond to a fluctuation of the IOPC,
which could pass very quickly from stabilizing to destabilizing. In general, this analysis
suggests that the ion polarization current represents a key contribution, which leads to a
more unstable configuration and suddenly increases the probability of onset of the mode.

A.5 Critical width
The theory of the (neoclassical) tearing mode introduces the idea of critical width: given
a seed island of width Wseed , the Wcrit is that width such that if Wseed >Wcrit , then the seed
island becomes unstable. Wcrit can be seen as an indicator of the stability condition of the
plasma because the smaller the critical width, the simpler it is for a perturbation to cause
an instability. The critical width is calculated as the zero of the generalized Rutherford
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Figure A.8: Comparison between the f (ω∗e) versus the time distance from the edge cool-
ing, for the selected pulses. Top: the red traces show the behaviour for the unstable pulses.
The arrow shows the time of the onset of the mode. Bottom: the green traces represent
the behaviour of the f (ω∗e) for the stable pulses. It is interesting to highlight that before
the onset, we have a peak of the function f (ω∗e), corresponding to an increment of the
destabilizing effect of the ion polarization current, while for the stable pulses f (ω∗e ∼ 2)

equation, evaluated by summing the contributions of the curvature (∆′
GGJ), the bootstrap

(∆′
boot), the ion polarization current (∆′

pol) and the linear contribution (∆′
0). For a given
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Figure A.9: The Figure shows the time trace of the critical width of the pulse 91977, taking
in to consideration the effect of the ion polarization current (blue trace) and neglecting it
(orange trace).

time t, the critical width Wcrit(t) is calculated by evaluating the dW/dt for every width
and taking the width such that dW/dt = 0.

In order to highlight the effect of the ion polarization current on the critical width,
Fig. A.9 shows the value of the critical width vs time,for a real pulse, considering and
neglecting the ion polarization current. The effect of the ion polarization current is to
reduce the critical width just before the onset of the mode. Figure A.10 shows the trace
of every single contribution for a fixed width (W = 0.005 ∼ Wcrit in this case). The sign
of the sum (black line) determines if the mode is stable or unstable. If the sum is positive,
then the mode is unstable, otherwise is stable. The linear contribution ∆′

0 can be calculated
using the equilibrium current density profile. However, the time resolution needed in this
phase of the pulse is high, so the data are not resolved enough to follow the evolution of
the mode in the edge cooling timescale. In order to highlight the contribution of the non-
linear terms, the plasma is taken to be linearly stable so that rs∆

′
0 =−m. The trigger of the

mode is determined by an increase in the destabilizing effect of the IOPC and a decrease in
the stabilizing curvature effect with respect to the bootstrap current. The island rotation is
fixed to be equal to the electron diamagnetic frequency, as we are focusing in the first phase
of the evolution of the mode; therefore, the island can be considered in the small width
limit described in Section A.4.2. The ion polarization current dominates the curve for
small W (Wρ ∼W <Wd) and its effect is to reduce the Wcrit from Wcrit(apol = 0) = 1.01cm
to Wcrit(apol ̸= 0) = 0.47cm. The same analysis is carried out over the selected pulses and
the results are summarized in Table A.2.

The reduction of the critical width is more evident for higher values of f (ω∗e), while it
is small for the 91970, where the destabilizing contribution of the ion polarization current
is weaker. The analysis is performed over a restricted subset of pulses due to lack of data,
but some general behavior can be inferred. The model shows that for fluctuations of the
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Figure A.10: The Figure represents the time trace of the contributions of the Generalized
Rutherford Equation for the 91977. The vertical green and red lines represent respectively
the time of the edge cooling and the time of the onset of the mode.

pulse wcrit(apol = 0) [cm] wcrit(apol ̸= 0) [cm]

91977 1.01 0.47
92296 1.18 0.60
96745 1.00 0.35
91970 0.99 0.89

Table A.2: Summary of the critical width, calculated with and without the contribution of the ion
polarization current.
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ion polarization current, a consequence of the flattening of the temperature profile due
to the edge cooling is that the value of the Wcrit decreases, leading to a more unstable
condition for the 2/1 rational surface. The effect of the fluctuation of the IOPC is higher
when the flattening due to the EC gets closer to the rational surface, as ∆′

pol depends on
local quantities, such as the rotation and the collisionality. This can be verified for the
other pulses, despite the lack of data in the termination phase. Defining a threshold κ and
a flattening width such as:

r f lattening = min(r ∈ (0,1) s.t.
∣∣∣∣dTe

dr

∣∣∣∣< κ) (A.16)

we can infer an onset criteria based on the fluctuation of the ion polarization current from
that analysis. Figure A.11 shows the position of the rational surface (red line) and the

Figure A.11: Example of the algorithm used to calculate the position of the flattening
compared to the position of the rational surface. Here, the temperature profile at the onset
of the mode for the pulse 91977 is shown. The black vertical lines show the flattening
width. The red vertical line represents the position of the rational surface.

width of the flattening (black lines) as defined in Eq A.16 at the onset of the mode, for
the pulse 91977. In particular, it has been shown that a flattening of the temperature pro-
file reduces the value of the electron diamagnetic frequency, increasing the destabilizing
contribution of the ∆′

pol . This happens when the flattening of the rational surface causes a
consistent fluctuation of the temperature, namely, when rs > γr f lattening. Here γ ∼ O(1) is
a constant that takes into account that the flattening does not necessarily have to reach the
rational surface for the temperature fluctuation to be strong enough to modify the contri-
bution of the ion polarization current and then trigger the mode.

Figure A.12 shows the position in this plane for the pulses contained in the database.
The dashed black line represents rs = r f lattening,so, according to the interpretation given
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Figure A.12: Position in the plane (r f lattening,rs) of the edge cooling pulses of the database.
The purple dots represent the edge cooling which do not trigger a mode. The blue and or-
ange dots represents respectively the edge cooling with q0 < 1 and q0 > 1. The position is
calculated at the onset of the mode for the disrupting pulses and by taking the temperature
profile with the wider flattening within 200 ms (median time of onset according to ref.
[80]) after the edge cooling for the purple dots.

by this model, we can see that the most of the pulses stay in the region rs > r f lattening. The
threshold obtained for γ = 0.81, splits the plane in two parts, so that every analyzed pulses
overcomes the threshold and then develops a neoclassical tearing mode. The stable pulses
(purple dots) do not overcome the threshold except for one pulse that slightly exceeds
the dashed line. Figure A.12 shows that, in these cases, the flattening of the temperature
profile does not reach the position of the resonant surface, reducing the fluctuation of the
ion polarization contribution and, according to the analysis, preventing the onset of the
mode.

A.6 Summary and conclusion
The stability of a tokamak equilibrium with respect to the tearing perturbations depends
on the linear stability index ∆′

0 and the non-linear terms (the curvature and the bootstrap

101



term) in the Rutherford equation. The equilibrium configuration determines the trigger of
the mode affecting the ∆′

0, ∆GGJ and ∆boot . As shown in Section A.3,the linear stability
index does not completely describe the mechanism of triggering a mode because the sta-
bilizing effect of the curvature could prevent the onset of the mode also for positive value
of ∆′

0. It is more suitable to think in terms of the critical width, which can be seen as a
quantity proportional to the likelihood of triggering a mode. In this picture, the role of
the ∆′

0 is to reduce the value of the critical width to increase the probability of onset of
a mode. On the equilibrium timescale, the value of the critical width is represented by
a balance between the Green–Glasser–Johnson term, the bootstrap term, and the linear
term. However, the value of the critical width can be affected also by faster fluctuations,
which change the rotation frequency of the island, leading to a more unstable plasma due
to the ion polarization current. Here, a database of disrupting pulses is considered. The
analysis of the neoclassical phenomena (GGJ and bootstrap), in Sec. A.4.1, pointed out
that, for the analysed pulses, the ratio Θ ≡ kGGJ/kboot is lower at the onset of the mode
than during a stable phase (Fig. A.4). This is consistent because it corresponds to a de-
crease in the stabilizing effect of the curvature with respect to the destabilizing effect of
the bootstrap current, thus raising the probability of triggering a mode. Then, the analysis
performed over a subset of selected pulses in Sec. A.4.2 highlights that fluctuations of the
temperature profiles, in consequence of the edge cooling, lead to an increase in the desta-
bilizing effect of the IOPC by increasing the value of f (ω). The interpretation proposed
for a small subset of pulses has been generalized and used to predict a general behavior
for every pulse of the database, which is consistent with the results. In fact, it has been
shown in Fig. A.12 that, after an edge cooling, a pulse tends to develop a mode whenever
the flattening, as a consequence of the edge cooling, reaches the position of the rational
surface. At this point, the function f (ω) increases due to the reduction of the electron
diamagnetic frequency, confirming that the ion polarization current has a key role in the
onset of the mode. The analysis has been carried out by treating every single contribution
of Eq. A.4 separately. This can be done due to the form of the model we are using: the
effect of every contribution, though non-linear, sums up linearly. Even though the validity
of these results is restricted to a specific case of onset (i.e., in termination phase, after
an edge cooling), the analysis suggests a new general explanation for the trigger of the
mode. A noisy fluctuation of the f (ω) could lead to a reduction of the critical width at
some time. This corresponds to a condition where it is more likely for a random resonant
helical perturbation to produce a seed island larger than the critical width, leading to an
instability. The IOPC introduces randomness [11] in the problem of the onset of the mode,
such that it is more suitable to define the stability using a probabilistic approach.
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Appendix B

eXplainable artificial intelligence
applied to algorithms for disruption
prediction in tokamak devices

B.1 Introduction
Tokamaks facilities rely on a combination of magnetic fields to confine the plasma. An
important role is played by the magnetic field generated by a net current toroidally flow-
ing in the plasma. To achieve efficient energy production in a fusion reactor, the plasma
must be maintained for a sufficient amount of time, much larger than the characteristic
energy confinement time. The plasma is sensitive over different spatial and time scales to
perturbations that can give rise to instabilities that destroy the magnetic configuration on
very small timescale. These phenomena, called disruptions, cause a sudden interruption
of the plasma current that in turn induces strong electromagnetic forces in the metallic
vessel and in the surrounding structures. Furthermore, the disruption process generates
non-thermal relativistic electrons, called run away electrons, that can damage the first wall
of the machine. Due to the intrinsic non-linearity of the phenomena involved in a disrup-
tion, it is difficult to model the interactions that lead to the termination of the plasma dis-
charge, however, it is possible to study processes that precede a disruption to identify and
avoid disruptions before they happen. ([26]) perform a complete survey over a database of
JET disruptions, identifying the chains of events, such as human errors in pulse manage-
ment, MHD instabilities, like internal kink modes or most importantly, neoclassical tear-
ing modes (NTM). In metallic wall machines, it is possible to identify the chain of events
([80]), related to the ingress of impurities or loss of density control, that determine the on-
set of an NTM and leads to disruption. Due to its fast, non-linear nature and the big range
of phenomena that can trigger a disruption, it is difficult to set up a system which is accu-
rately able to predict and avoid a disruption. Various studies have highlighted promising
applications of deep learning in the field of nuclear fusion research ([76], [31], [32]). The
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Figure B.1: Final CNN architecture, where the internal inductance (li) and the normalized
locked mode (MLnorm) serve as inputs to the second convolutional unit. These inputs are
concatenated with the output image generated by the max-pooling layer.

use of convolutional neural network (CNN) architectures have shown great potential for
disruption prediction. This can be exploited to monitor phenomena that lead to disruption,
(e.g. the locked modes ([33])) or trained specifically to predict disruptions both using raw
data from a specific tokamak ([21]), or that can be multi-machine ([60, 118]). The use of
deep CNNs proves to be especially well-suited for the analysis of plasma profiles. In ([6])
([5]), the authors propose the use of deep CNN for the early detection of disruptive events
at JET, utilizing both images constructed from 1D plasma profiles and 0D time signals.
The predictors exhibit high performance also comparing them with those of other ma-
chine learning algorithms ([7]). The use of CNN allows learning relevant spatio-temporal
information straight from 1D plasma profiles, avoiding hand-engineered feature extraction
procedures. The CNN from ([6]) is adopted in the present paper to showcase the ability
of eXplainable AI (XAI) methods to interpret the network prediction, and its architecture
is detailed in the following Section B.2. The spread of deep learning algorithms depends
on the trust that the scientific community has in these tools. One of the main causes of
scepticism is that it is not possible to provide an explanation, neither in the testing phase
nor in the training phase, of why a neural network produces a certain output. This issue be-
comes even more important when we are dealing with algorithms that are responsible for
preventing and mitigating disruptions. The eXplainable Artificial Intelligence algorithms
aim at providing an interface between humans and AI, producing results that explain the
behaviour of the neural network in a comprehensible way to humans ([41, 3]). An XAI
analysis is a very flexible tool that strongly depends on the algorithm used. There are XAI
approaches, the agnostic algorithms, that are generally applicable independently on the
kind of AI and other techniques that requires to be built ad hoc on the AI system. In deal-
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ing with CNN, the XAI algorithms provide a visual explanation, by producing heatmaps,
related to the input image, that show the most relevant part of the input in order to clas-
sify the image. This work aims at addressing the problem of explaining how a neural
network classifies a disruption, trying to fill the knowledge gap between CNN prediction
and physical insights/interpretations. The application of XAI algorithms to CNNs in the
problem of disruption prediction offers three main advantages. The first one is that there
must be consistency between the explanations offered by XAI and the physical models.
This consistency is essential to assert that the algorithm is genuinely learning to predict
disruptions. So an analysis showing that the reason why an algorithm predicts a disruption
is the same as the physical models, contributes to increase the trustworthiness of the NN.
The second reason is that XAI might be able to provide indications about which signals
are more useful for prediction, suggesting how to improve the performance of the CNN
itself. The third reason lies in the unveiling of the CNN’s prediction process, enabling the
identification of novel data patterns that may have eluded conventional physical investiga-
tions. This, in turn, offers valuable insights for the development of new physical models.
In this paper, we will start analysing a CNN trained to distinguish between disruptive and
not disruptive input data frames and compare the results with physical classification of the
disruptions, comparing how the CNN handles different disruptive paths. The description

Figure B.2: JET poloidal cross section: the 24 chords of the horizontal bolometer camera
(in green) and the 63 lines of sight of the HRTS (in blue) are numbered according to the
order in which they are taken to construct the image of the profiles in input to the CNN.

of the physical paths is provided in B.2.1. In Section B.2.1, the CNN and training and
test database are explained. The database has been analysed and reduced distinguishing
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between discharges following the two different paths. Two XAI methods are introduced
in Section B.3. Section B.4 reports about the results provided by the two methods, and the
results will be discussed and compared in Section B.5.

B.2 The architecture of the neural network
The increasing use of deep learning in research is driven by improved computer processing
power, allowing for the analysis of large datasets. Deep neural networks, known for their
high accuracy even without complex feature extraction of the input data, play a key role
in this. In image processing, Convolutional Neural Networks (CNNs) are widely favoured
for their effectiveness in handling complex image data. Supported by these significant
capabilities, Aymerich et al. ([6]) proposed the use of CNNs for extracting spatiotem-
poral features from JET 1D plasma profiles (density, temperature, and plasma radiation),
by converting them into 2D images. Particularly, density and electron temperature from
high-resolution Thompson scattering (HRTS) are pre-processed to synchronize time scales
and eliminate outliers. Furthermore, in reference to Figure B.2 showcasing the HRTS’s
63 lines of sight in blue, lines from the 54th to the 63rd were excluded because of their
inclination to generate unreliable data, due to the outboard position. Concerning plasma
radiation, in the same Figure B.2 the 24 channels of the JET bolometer horizontal camera
are depicted in green. Also, data from these chords undergoes the pre-processing steps
mentioned for HRTS data. Three spatiotemporal images are created, with each pixel rep-
resenting the measurement at the corresponding line of sight and time sample. These
images are vertically stacked and normalized based on the signal ranges in the training
set, producing an ultimate image. Figure B.3 reports two showcases referring to two JET
pulses. The generated images present, in a top-to-bottom sequence, density and temper-
ature data from 54 lines of sight measured by the HRTS, along with radiation data from
the 24 chords of the horizontal bolometer camera. In total, there are 132 channels, and
the data is presented over time. The final image is segmented using an overlapping sliding
window of 200 ms, yielding individual image slices of size 132x101. As the CNN operates
as a supervised algorithm, we explicitly assigned labels to slices in the training dataset.
Those belonging to regularly terminated discharges were labelled as ’stable.’ In contrast,
for disruptive discharges, the ’unstable’ label was automatically assigned by detecting the
pre-disruptive phase through the algorithm proposed in [4]. For balancing the two classes,
the stable phases of disrupted pulses were not included in the network training set and the
overlap durations of the sliding window were different for regularly terminated and dis-
rupted discharges. Conversely, during the testing phase, a 2 ms stride was employed for
all discharges, covering both regularly terminated and disrupted pulses. Leveraging these
diagnostics, which often exhibit behaviours linked to the onset of destabilizing physical
mechanisms like MHD precursors, a straightforward CNN disruption prediction model is
firstly deployed. In addition to the aforementioned plasma profiles, ([6]) takes into account
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0D diagnostic signals commonly used in the literature, specifically internal inductance and
locked mode signals, as inputs for the disruption predictor. The internal inductance is in-
deed a crucial parameter because it provides information about the current profile within
the plasma and it is known to be connected to the density limit ([99]). A higher inter-
nal inductance suggests a more peaked current profile, concentrated towards the plasma
core, while a lower internal inductance indicates a more distributed or flat current profile.
Moreover, at JET, mode locking indicates when a rotating (neoclassical) tearing mode
locks with the external wall, which is closely followed by the disruption typically mani-
festing in the later stages of the disruptive process. JET provides a real-time mode locking
signal. In ([6]) this signal has been normalized by the plasma current, as already done
for disruption mitigation purposes. The normalized locked mode signal contributes sig-
nificantly to the successful prediction of faster disruptions. The CNN architecture shown
in Figure B.1, comprises a series of interconnected convolutional (CU) and pooling (P)
blocks, linked by a nonlinear activation layer with a ReLU function. These blocks filter
the input image both vertically (along the spatial dimension) and horizontally (along the
temporal dimension), extracting essential features. These resulting features are fed into a
fully connected multilayer perceptron neural network (FC), where the final SoftMax layer
determines the likelihood of the input image slice belonging to either a regularly termi-
nated or a disrupted discharge. To incorporate the two 0-D signals, the CNN architecture
underwent modifications by introducing them downstream of the initial filter block. It’s
noteworthy that the first filter block was initially trained exclusively with 1-D diagnostic
data, and its weights were subsequently frozen. In a subsequent training phase, both the
second convolutional block and the FC block were trained using all plasma parameters.
Note that the network architecture enables the separation of the two dimensions, spatial
and temporal. Specifically, the first two blocks (CU1 and Pmax) filter solely across the
spatial direction, while the subsequent two (CU2 and Pavg) filter exclusively across time.
This facilitates the seamless concatenation of the 0-D signals (li and MLnorm) with the
image features processed by the initial convolutional and pooling blocks, thereby pre-
serving temporal synchronization. Figure B.1 illustrates the ultimate CNN architecture as
presented in ([6]), showcasing the dimensions of input features for various blocks. Mean-
while, Table 1 provides a comprehensive overview of the corresponding parameters. The
vertical kernel size for the convolutional and pooling blocks was designed considering a
few constraints: a kernel size equal or larger than 24 would have been larger than the
bolometer number of lines of sight, and a small size kernel would reduce the effect of the
discontinuity between the stacked diagnostic images. The small kernel size (5x1) allows
the network to still identify changes in the spatial dimension of the HRTS scattering pro-
file. Regarding the time filtering, a similar operation was performed, due to the different
time resolution of the diagnostics employed, the filter size has been chosen to mainly pro-
cess the highest frequency signals (the bolometer data). To determine the pooling type,
two networks were trained: one with only average pooling and another with only max-
pooling. Analyzing their performances on both the training and validation sets, it was
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observed that average pooling exhibited lower performance compared to max-pooling.
However, the max-pooling response proved to be overly sensitive to transient changes in
the data time traces. Consequently, the max-pooling layer was retained for spatial process-
ing (vertical pooling), while average pooling was chosen for temporal pooling (horizontal
pooling). Testing of discharges that were not included in the training phase underscores
the predictor’s applicability across diverse operational scenarios.

CNN block Dimension Output feature size
CU1 (Filter size) 5×1 128×101

Pmax (Pool size; Stride) 8×1;8×1 16×101
CU2 (Filter size) 1×11 18×91

Pavg (Pool size; Stride) 1×12;1×4 18×20
MLP (input layer) 18×20 = 360 -
MLP hidden layer 360 -

MLP output layer (likelihood) 2 2

Table B.1: CNN architecture

In this paper, the described CNN predictor is considered to demonstrate the applica-
tion of Explainable AI, aiming to enhance understanding and confidence in the decision-
making process of the CNN predictor.

B.2.1 Database

The local balance of energy flowing into and out of a system determines its temperature
profile. Impurities can break this balance by increasing the amount of energy that es-
capes as radiation. As a result, the temperature profile becomes susceptible to impurity
penetration. The bolometer can provide an integrated measure of the radiative emission
of the plasma. Strong radiation is associated with a loss of energy and so a decrease of
the temperature. Usually, changes in the temperature profile are preceded by radiative
losses measured by the bolometer, they depend on the distribution of impurity and density
inside the plasma and can be categorized in two different ways: edge cooling (EC) and
temperature hollowing (TH). Edge cooling is a collapse of the temperature profile at the
edge, while temperature hollowing is a decrease of the central value of the temperature,
often due to impurity accumulation on the plasma axis. A sketch of typical shapes of
the temperature profile during an edge cooling and a temperature hollowing is depicted in
Figure B.4. These events are known to linearly destabilize the 2/1 mode ([80]), creating
a magnetic island that rotates with the plasma. As it grows, the island experiences drag
forces that tend to slow down its motion until the island locks onto the walls, leading to
a disruption. We analysed a database composed by 87 pulses, divided both in safe and
disrupting, belonging to the train/test database of the neural network presented in Table 1
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Figure B.3: The figure shows two illustrative cases contained in the database. On the left
an edge cooling and a temperature hollowing on the right. The values on the colorbar are
expressed in terms of normalized unit [−1,1]

Figure B.4: Sketch of typical shapes of the electron temperature profile after an edge
cooling (green line) and a temperature hollowing (red line), compared with an equilibrium
profile (black line).
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Type Total EC TH THEC
Disruptive 26 17 2 7

Safe 61 – – –

Table B.2: The table represents a summary of the different phenomena occurring in the
pulses: the edge cooling (EC), the temperature hollowing (TH) and a temperature hollow-
ing followed by and edge cooling (THEC). The safe pulses do not exhibit any of these
phenomena.

of [6]. Our database is composed by pulses presented a specific disruption path, in particu-
lar, the disrupting pulses are preceded by an Edge Cooling (EC), a temperature hollowing
(TH) or a combination of TH followed by an EC (THEC). Table B.2 shows the distribution
in EC, TH and THEC. For our purpose, the pulses THEC are considered as pure TH. No
indication regarding the EC and TH has been provided to the CNN in the training phase.
The input data are composed by radiation profiles of the horizontal chords of the bolome-
ter diagnostic and the radial profile of the electron temperature from the High Resolution
Thompson Scattering and the electron density. Data from the different channels are con-
verted in images and vertically stacked. It is possible to define the time tEC/T H at which the
EC/TH starts by introducing indexes related to the shape of the temperature profile ([84]),
measured using the radiometer diagnostic, and defining the start of the event by introduc-
ing a conventional threshold. For every pulse of the database tEC/T H has been measured.
Two examples are shown in Figure B.3. In temperature and density, higher channels cor-
respond to a more external part of the profile. The temperature profile is obtained using
the Thompson scattering, which provides a measure of the electron temperature integrated
along different lines of sight placed on the radial dimension. Examples of the different
behaviour for EC and TH is shown in Figure B.3. The vertical red line represents the time
at which the EC/TH occurs. On the left side, an edge cooling is presented. The collapse of
the temperature at the edge is visible in the plot by the increase of the darker points in the
region between the channels 60 and 80, which represent the outer part of the profile. The
edge cooling starts with an increment in the radiated power, measured by the bolometer.

The plot on the right represents the input image for the neural network in case of a
temperature hollowing. Here the hollowing of the temperature profile on the plasma axis
occurs at t = 54 s and it is evident by looking at the channels between 20 and 40 that are
the part of the temperature profile on the plasma axis.

B.3 The XAI techniques
In general, an XAI algorithm is an additional layer of analysis, built by the user on a
given AI, in order to produce an explanation of the output, for a certain input. In this
work, the XAI analysis is built over an existing CNN, described in Section B.2, trained
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to predict disruptions. The input of the CNN is composed by physical quantities, and the
aim of XAI is to interpret which part of the input contributes the most in the classifica-
tion of the image as disruptive or safe. This allows us to not only build a hierarchy of
the most relevant physical quantities, but also to understand which part of the profile of
a certain physical input quantity matters most. Various methods can be used to explore
this issue. One approach is to analyse the sensitivity of the output when a perturbation is
introduced at a certain point in the classification chain. This type of analysis, known as
sensitivity analysis, produces a heat map ([109]) that shows which part of the input has
the greatest impact on the output. We can employ this approach in two modes: agnostic
or non-agnostic. In the agnostic mode, we don’t delve into the behavior of the CNN’s in-
ternal components (weights, gradients). Instead, we directly perturb the input and analyze
the resulting output changes. Conversely, the non-agnostic mode involves analyzing the
output’s sensitivity with respect to the weights within the network’s hidden layers. In Sec-
tions B.3.1 and B.3.2 we will explain the methods adopted, briefly presenting an example
of the output produced.

B.3.1 Occlusion

The most straightforward agnostic approach is the occlusion ([40])([44]), where, as a per-
turbation, a constant value patch is applied in a certain part of the input and the effect of
the patch on the output is analysed. We then interpret the fluctuation of the output as how
much the part covered by the patch is important for the classification. Each input image
for the CNN is made up of 132× 101 pixels, as reported in Section B.2. Adopting the
overlapping window approach to perform the occlusion is too computational demanding,
because every time slice must be analysed for every possible position of the patch. There-
fore, the global input is divided into M non overlapping temporal slices of dimension
132×101. To split the complete input in M sub-images, a zero padding p is introduced in
order to ensure that Nt = p+ 101×M where Nt is the time length of the pulse. A patch
of dimensions W ×H is introduced in every slice, producing a perturbed image which is
the same as the original except for the area covered. The patch replaces the value of the
pixel, with a constant value V . The patch is moved with a horizontal sh and vertical sv

step. The width, the height, and the vertical and horizontal steps define the number of
positions that the patch can assume to perturb the output. N perturbed sub-images Ioccl,k,
with k = 1, . . . ,k, are obtained, where every image contains the patch in a different po-
sition. The occluded input Ioccl,k is passed to the neural network, resulting in an output
fNN(Ioccl,k) with k ∈ [1,N] where fNN : R132×101 → R is a function that represents the
CNN. Then we define ∆k = fNN(Ioccl,k)− fNN(I) (I the original input) as the difference
between the output of the occluded input and the original input. We define the fluctuation
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Figure B.5: Occlusion analysis for the JPN 96745. The heatmap as result of the occlusion
technique for the 1-D signals (top) and for the 0-D signals (middle). The red line refers
to the fluctuation as a consequence of the occlusion of the internal inductance, while the
green line is for the ML signal. The third plot (bottom) represents the output of the neural
network (black line), the signal of the internal inductance (red line) and the ML signal
(green line)
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and the counting tensors δk and ck as follows:

ck =



0 . . . 0 . . . 0 . . . 0
...

...
...

...
0 . . . 1 . . . 1 . . . 0
...

...
...

...
0 . . . 1 . . . 1 . . . 0
...

...
...

...
0 . . . 0 . . . 0 . . . 0


(B.1)

δk = ∆kck (B.2)

These are 132×101 matrices having the same dimensions (number of pixels) of the orig-
inal image, where the non-zeros elements have the same positions as the patch. The non-
zero values of δk are the values of the fluctuation ∆k. The matrix δk represents, for a given
position of the patch, the pixels that, if occluded, produce the fluctuation ∆k. The matrix ck

is built so that the sum over all the possibles k (positions of the patch), returns the number
of times that a certain pixel (i, j) is covered by the patch:

N(i, j) =
N

∑
k=1

c(i, j)k (B.3)

Finally, we define the matrix δ as that matrix where every element (i, j) is the fluctuation
∆k averaged over all the possible positions of the patch:

δ(i, j) =
1

N(i, j)

N

∑
k=1

δ(i, j)k with i ∈ (1,132), j ∈ (1,101) (B.4)

The matrix δ(i, j) represents the occlusion heat map for a single sub-image 132× 101 .
The occlusion depends on 5 free parameters related to the patch: the size (width W and
height H), the value V and the stride (horizontal sh and vertical sv). These parameters
define how the input is perturbed by the occlusion method. By applying this method
to all the slices the occlusion produces an 132×Nt output. Since the monodimensional
signals are treated as distinct inputs, their occlusion is also performed independently. A
patch of constant value V is applied to the 0-D signal region, leaving the 1-D signals
unaffected. This patch is moved along the horizontal axis with step size, sh following
the same algorithm as for the 1-D signals generating a 2 ×Nt matrix. An example is
provided in Figure B.5: at the top, the heatmap for the 1-D signals is shown. Starting from
the bottom, the image refers to the radiation, the temperature, the density. The colour
intensity corresponds to the degree to which occluding a particular input feature affects
the neural network’s output. A fluctuation of −1 indicates that occluding that input feature
reduces the network’s output by 1, from 1 to 0. This matrix highlights the importance of
each input feature for disruption classification. For visualization purpose, the fluctuation
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related to the signals is plotted in the plot in the middle, with the red line that refers to li
and the green line that refers to the ML signal. The areas where the occlusion produces the
strongest fluctuation are related to the bolometer and the central part of the temperature
profile. The monodimensional signals, on the other hand, becomes important only in the
transient phase, when the output of the neural network (black trace at the bottom) changes
from stable to unstable or viceversa. The occlusion heatmap brought out an interesting
behaviour: the neural network seems to be sensitive mostly to the right part of the input.
This behaviour is shown in Figure B.5 (top), where the areas highlighted in the bolometer
are asymmetric, with a reverse d-shape.

B.3.2 Saliency map

The previous method is coupled with a non-agnostic method to provide a more complete
and general insight into the interpretation of the neural network. There is a wide variety of
non-agnostic methods. Following ([93]), we define the saliency map as a matrix, made up
of the derivative of the output of the neural network backpropagated to every single pixel
of the input. Due to the particular architecture of the neural network we are studying,
the gradient of the output will be backpropagated till the second convolutional unit, as
indicated in Figure B.1. The second convolutional unit will produce as output a matrix
A(α,β ). A backpropagation to the input of the neural network is not possible as the network
is interrupted to add the monodimensional signals before the second convolutional layer.
The first convolutional layer reduces the image size, but the ratio between the distances
remains the same. Therefore, we can understand which areas of the input the saliency map
output refers to by simply rescaling it. The saliency map will have the same dimension as
the network layer, where every element (α,β ) will be the partial derivative of the output
with respect to Aαβ (I) and is calculated as:

gαβ = max
(

∂ fNN(I)
∂Aαβ

,0
)

(B.5)

where we have introduced the operator max(•,0), known as ReLU (Rectified Linear Unit),
in order to filter out the negative values. The derivative is calculated with a guided back-
propagation algorithm ([103]) that reduces the fluctuation of the gradient in presence of
non-linear activation layer (e.g. ReLu). The definition in Equation B.5 must be adapted to
the structure of the neural network that we are trying to analyse. In this case, the global
input Itot ∈ M132×Nt is sliced in a set of 132× 101 images by means of an overlapping
sliding window. So that every pixel of Itot appears in the sliding window 101 times. Given
a certain pixel ai j ∈ Itot with 1 ≤ i ≤ 132 and 1 ≤ j ≤ Nt we define the set of all the slices
containing a certain time j as:

I j = {Ik|ai j ∈ Ik} (B.6)
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Figure B.6: Saliency map for the JPN 94966. The plot shows the matrix G as defined
in Equation B.7. Larger value of G are connected to larger values of the gradient of the
output with respect to the output of the neuron in the second convolutional layer.

where k is the time of the right edge of the overlapping time window. For a certain time j,
we have j ≤ k ≤ j+101. Finally, we define the saliency map as:

Gαβ =
〈
gαβ

〉
I j

(B.7)

We averaged the single-frame saliency maps for all possible saliency maps that involve the
pixel (i, j). The output of the saliency map is a heat map 18×Nt . An example is provided
in Figure B.6. Specifically, channels at the bottom are related to the bolometer (0−3), then
the temperature (4− 10) and the density (11− 16), while at the top there is the gradient
with respect to the monodimensional signals (17−18). Figure B.7, shows the function g of
the saliency map for different phases of the pulse: a stable, a transient, an unstable phase.
The value of the function g in the different regimes is noteworthy: when the output of
the neural network changes, passing from stable to unstable, the sensitivity of the output
becomes larger of around three order of magnitudes. The saliency map shows that the
most sensitive part of the input are the radiation and the central part of the temperature,
while the density seems to be of secondary importance and the monodimensional signals
only relevant close to the trigger of the alarm.

B.4 Results
The sensitivity map and occlusion provide consistent results: there is a strong indication
that the neural network relies mainly on the bolometer signal to make its predictions.
The central part of the temperature profile is the second most important feature for the
neural network, while 0-D signals play a role in the classification only near the alarm. The
density seems to be of secondary importance for the disruption prediction. The saliency
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Figure B.7: Example of the matrix g as defined in Equation B.5, for different time. The
plot in the middle represents the output of the neural network. The images show saliency
maps in different times.

map tends to show a significant gradient in the bolometer even when there is no relevant
signal in that area of the input. A comparison between different methods is shown in
Figure B.6 and B.8. The heat maps turn on in the same moment, but in the saliency map
the area of the bolometer is much more important than the occlusion. The temperature is
relevant for the occlusion, even though a peak in the inner part of the temperature profile
can be seen also in the saliency map. In both heat maps, there is an increase in sensitivity
in the part connected to the density near the alarm, that anyway remains less relevant
than the temperature and the radiation. The network does not recognize the change in
the temperature profile that characterizes the EC/TH as the first event in the chain of
phenomena that leads to disruption, as the alarm is often triggered before the EC/TH.
This is the reason why the network usually is able to predict the disruption before the
event of EC/TH. However, it is interesting to understand whether the NN is sensitive to
the change in the temperature that physically is responsible for triggering the instability, as
described in Section B.2.1. Since the occlusion technique includes several free parameters,
it is suitable for analysing individual discharges, but there is the risk of not being able to
obtain a uniform procedure when comparing different discharges. For this reason, a local
systematic analysis has been carried out using only the saliency map approach near the

117



Figure B.8: Occlusion analysis for the JPN 94966. The colorbar represent the fluctuation
δ as defined in Equation B.4. The blue corresponds to a stronger fluctuation as a con-
sequence of the occlusion of that part of input, which is interpreted as more importance
given to that part of input. White areas do not produce any fluctuation of the output. The
colour are in logarithmic scale.

time of EC/TH, measured as reported in Section B.2.1. Saliency maps are calculated close
to the event of edge cooling and temperature hollowing. The maps are superimposed, and
the gradient is averaged for every pixel. The result is shown in Figure B.9. The plots
show the aggregated heat map for the EC (left) and TH (right). The two plots exhibit
different behaviours: the edge cooling highlights multiple areas (in the red circles) in the
outer part of the profile where there are peaks in the gradient. On the other hand, the
temperature hollowing exhibits multiple peaks at the centre of the profile, with a reduced
value of the gradient at the edge. Also, the plot for the EC shows an important gradient at
the centre of the profile, but it has a more continuous behaviour and lights up close to the
peaks at the edge. The Figure B.9 shows that the gradient increase occurs in an interval
200 ms before the event of EC/TH. This is also confirmed in Figure B.11 where it is
plotted the distribution of the temporal differences between the closest peak of the gradient
and the time of EC/TH for all the analysed pulses. The distribution is peaked around
t − tEC/T H = 0, confirming the strong correlation between the EC/TH and the gradient
increase. Furthermore, the distribution is strongly asymmetric, reflecting the tendency of
the neural network to anticipate the EC/TH. The Figure B.12 shows the position of every
pulse of the database in the space composed by the average of the gradient in the inner
and outer half of the profile. The average gradient is calculated as the arithmetic mean of
the elements of the matrix G around the time of the edge cooling/temperature hollowing.
The inner region refers to the temperature profile with r/a ∈ (0,0.5) and the outer refers
to the region r ∈ (0.5,1). The Figure B.12 shows that when analyzing edge cooling, the
neural network tends to produce a heat map with a non-zero gradient in the outer region,
indicating that it maintains its focus on the edge in the presence of a physical phenomenon
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Figure B.9: The plots show the average of the saliency maps of every pulse of the database
for the edge cooling (left) and temperature hollowing (right)

that affects that portion of the profile. On the other hand, temperature hollowing produces a
heatmap with a zero average gradient on the edge, indicating that the neural network does
not consider the outer region of the temperature profile to be important for classifying
the disruption. Finally, we analysed the safe pulses. Figure B.10 shows the average of
the sensitivity maps of all safe pulses around a reference time in the stable phase of the
discharge. The plot does not show any peaks in the gradient, but rather a continuous
area in the radiation and the 0-D signals. This indicates that the neural network does not
focus on any particular phenomenon, but maintains its attention on the radiation and the
one-dimensional signals, waiting for some event that could represent a precursor to the
disruption.

B.5 Discussion of results
The XAI analyses provide insight about what the neural network considers important in
the classification of a disruption given a certain input. One of the objectives of this work
is to understand if the neural network considers important a class of phenomena (edge
cooling and temperature hollowing) that involve areas of the input and not only single
points. For this reason, we decided to perform the analysis using sensitivity approaches,
that tend to produce results that highlight extensive areas rather than single pixels. Other
approaches, as the decomposition, can in principle be used (an example is the layer-wise
relevance propagation ([73])). These methods assign a “relevance score” to every pixel
of the input by decomposing the output of the network in series, generating heatmaps
that pinpoint the most critical pixels, offering a granular view of the input’s impact on
the final result. Between the algorithms following the sensitivity approach, we developed
the saliency map and the occlusion. More complicated algorithms are available, even if
more suitable for larger CNN. For example the GRAD-CAM algorithm ([92]) foresees
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Figure B.10: The plot show the average saliency map for the safe pulses around a reference
time during the stable phase.

to make a sum of the output of every feature map in a convolutional layer, weighted on
an average pooling of the gradient of the final output with respect to the output of the
feature map. However, this is thought to be applied on CNN composed by convolutional
layer with many feature maps. The CNN we used is relatively simple, containing two
convolutional layers with only one feature map, so GRAD-CAM would not provide any
additional insights. The occlusion method is an agnostic method, easy to develop and to
interpret, but intrinsically it depends on different free parameters such as the size of the
occluded region. An in-depth analysis of the effect of occlusion parameters is beyond the
scope of this work. The primary goal in using two methods was to compare them and find
a set of parameters for which the results obtained are consistent with each other.

B.5.1 General results and comparison

As explained in Section B.2, the CNN is fed with inputs composed by physical data mea-
sured by the diagnostics. At first, the analysis is performed over the entire input, taking
into consideration all the quantities in the input. The comparison between the two meth-
ods (Figures B.6 and B.8) allows us to identify the radiation as the most relevant part of
the input for the classification. The central part of the temperature profile is also found
to be particularly crucial. The monodimensional signals are important only close to the
alarm time, and the density seems not to be important in the classification. The compar-
ison produces consistent results, even though some differences should be discussed. The
occlusion method seems to produce maps that are more sensitive to the right part of an
input image, as shown in Figure B.5. Since the neural network is trained on temporally

120



Figure B.11: The figure shows the temporal distance between the TH (red)/EC (blue) and
the closest peak in the gradient in the inner/outer part of the temperature profile

ordered input images, when a disruption occurs, its evidences appear at first in the right
part of the input. As a result, in the training phase, the CNN learns to be more sensitive to
the right side of the input. This right-side bias is particularly evident in the occlusion tech-
nique because, in the saliency map approach, the final heatmap is the average of multiple
heat maps produced with the sliding window, so the effect eventually averages out. The
saliency map can be applied systematically to the data, but often produces biased results.
In particular, the saliency map tends to have a strong gradient on the radiation, even when
there is no significant signal. This could be because the CNN, in the training phase, adjusts
its weights to give more importance to the radiation, since it has learned that it is an im-
portant feature. This implies that the gradient of the radiation, when backpropagated, are
stronger with respect to the gradient coming from other diagnostics. It also reflects in the
XAI analysis as the gradient in the radiation part of the input are highlighted with respect
to the gradient of the other diagnostics, even if no relevant signals are present in the input.
So the second part of the analysis focuses specifically on the temperature profile.

B.5.2 Analysis on the temperature

The main result of this paper is that there are strong evidences that the neural network
is able to identify the edge cooling and temperature hollowing. This is shown in Figure
B.9 where the average of the gradient matrix G (as defined in Section B.3.2), close to the
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Figure B.12: Plot of the points of the database in the space composed by the average of the
gradient as defined in equation B.7 in the inner and outer part of the temperature profile

EC/TH, is shown for all the disruptions. This is confirmed also in Figure B.11 and Figure
B.12. In the latter, it is also evident that the gradient’s average is greater in the inner region
of the profile than in the outer. This confirms that, in general, the neural network places
more emphasis on the temperature profile on the axis than on the edge. Furthermore, in
Figure B.12 there are five points that represent edge cooling, but the gradient in the outer
region is zero. Figure B.13 shows that the network gives the alarm close to the edge cool-
ing (∼ 100ms before). In this phase, there is a strong gradient on the radiation, meaning
that the NN is keeping its attention on that part of the profile. So the reason why the outer
average gradient of the edge coolings in Figure B.12 is zeros is that the edge cooling hap-
pens when the NN is focusing on the radiation. When the edge cooling starts, the output
is already 1 and the neural network has already triggered the alarm. This is consistent to
the fact that the neural network does not consider the temperature profile to be the most
relevant feature to identify the disruption, and it gives more importance to the radiation.
When not close to a significant event connected to the radiation, the neural network shows
an increment of the gradient in the area interested in the edge cooling/temperature hollow-
ing. This is a strong and interesting indication that the CNN learns to consider the pattern
linked to the EC/TH as relevant for the classification of the disruption.
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Figure B.13: The plot shows an explanation for the behaviour of the points in Figure B.12.
The vertical red line represents the time of the edge cooling. The top left plot represents
the input image of the neural network. On the top right there is the saliency map that
corresponds to that input. At the bottom there is the output of the neural network.

B.6 Conclusion
This work shows the potential of XAI analysis on explaining the output of a CNN trained
for disruption prediction. Regarding disruptions having edge cooling and temperature hol-
lowing as precursors, the CNN behaves consistently with what we know from the physics,
without providing any hint in the training phase. This could contribute to enhance the
reliability of the neural network and promote its use in a disruption avoidance system.
Furthermore, in principle, this could indicate that it is possible to investigate the physics
by interpreting the way a neural network produces its output.
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ity of a sheared magnetic field, introducing the phenomena of the magnetic reconnection
and the change of topology that gives rise to magnetic islands.
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[27] Tony Donné and William Morris. European Research Roadmap to the Realisation
of Fusion Energy (Long Version). Tech. rep. Published by the European
Commission. EUROfusion, 2018. URL: https://www.euro-fusion.org/.

[28] A. V. Dudkovskaia et al. “Drift kinetic theory of neoclassical tearing modes in a
low collisionality tokamak plasma: Magnetic island threshold physics”. In:
Plasma Physics and Controlled Fusion 63 (5 2021). ISSN: 13616587. DOI:
10.1088/1361-6587/abea2e.

[29] AV Dudkovskaia et al. “Drift kinetic theory of neoclassical tearing modes in
tokamak plasmas: polarisation current and its effect on magnetic island threshold
physics”. In: Nuclear Fusion 63.12 (2023), p. 126040.

[30] M Erba et al. “Validation of a new mixed Bohm/gyro-Bohm model for electron
and ion heat transport against the ITER, Tore Supra and START database
discharges”. In: Nuclear Fusion 38.7 (1998), p. 1013.

[31] Gonzalo Farias et al. “Applying Deep Learning for Improving Image
Classification in Nuclear Fusion Devices”. In: IEEE Access 6 (2018). ISSN:
21693536. DOI: 10.1109/ACCESS.2018.2881832.

[32] Diogo R. Ferreira, Pedro J. Carvalho, and Horacio Fernandes. “Deep Learning
for Plasma Tomography and Disruption Prediction from Bolometer Data”. In:
IEEE Transactions on Plasma Science 48 (1 2020). ISSN: 19399375. DOI:
10.1109/TPS.2019.2947304.

[33] Diogo R. Ferreira et al. “Explainable deep learning for the analysis of MHD
spectrograms in nuclear fusion”. In: Machine Learning: Science and Technology
3 (1 2022). ISSN: 26322153. DOI: 10.1088/2632-2153/ac44aa.

[34] R. Fitzpatrick and F. L. Waelbroeck. “Drift-tearing magnetic islands in tokamak
plasmas”. In: Physics of Plasmas 15 (1 2008). ISSN: 1070664X. DOI:
10.1063/1.2829757.

127



[35] Richard Fitzpatrick. “Helical temperature perturbations associated with tearing
modes in tokamak plasmas”. In: Physics of Plasmas 2.3 (Mar. 1995),
pp. 825–838. ISSN: 1070-664X. DOI: 10.1063/1.871434. eprint:
https://pubs.aip.org/aip/pop/article-

pdf/2/3/825/19326142/825\_1\_online.pdf. URL:
https://doi.org/10.1063/1.871434.

[36] Richard Fitzpatrick and François L Waelbroeck. “Two-fluid magnetic island
dynamics in slab geometry. I. Isolated islands”. In: Physics of plasmas 12.2
(2005).

[37] Harold P. Furth, John Killeen, and Marshall N. Rosenbluth. “Finite-Resistivity
Instabilities of a Sheet Pinch”. In: The Physics of Fluids 6.4 (Apr. 1963),
pp. 459–484. ISSN: 0031-9171. DOI: 10.1063/1.1706761. eprint:
https://pubs.aip.org/aip/pfl/article-

pdf/6/4/459/12485401/459\_1\_online.pdf. URL:
https://doi.org/10.1063/1.1706761.

[38] X Garbet, F Mourgues, and A Samain. “Non-linear self consistency of
microtearing modes”. In: Plasma physics and controlled fusion 30.4 (1988),
p. 343.

[39] H Gholamalinezhad and H Khosravi. “Pooling methods in deep neural networks,
a review. arXiv 2020”. In: arXiv preprint arXiv:2009.07485 (2009).

[40] Leonida Gianfagna and Antonio Di Cecco. Explainable AI with python. 2021.
DOI: 10.1007/978-3-030-68640-6.

[41] Leilani H. Gilpin et al. “Explaining Explanations: An Overview of
Interpretability of Machine Learning”. In: 2018 IEEE 5th International
Conference on Data Science and Advanced Analytics (DSAA). 2018, pp. 80–89.
DOI: 10.1109/DSAA.2018.00018.

[42] A. H. Glasser, J. M. Greene, and J. L. Johnson. “Resistive instabilities in general
toroidal plasma configurations”. In: The Physics of Fluids 18.7 (July 1975),
pp. 875–888. ISSN: 0031-9171. DOI: 10.1063/1.861224. eprint:
https://pubs.aip.org/aip/pfl/article-

pdf/18/7/875/12357480/875\_1\_online.pdf. URL:
https://doi.org/10.1063/1.861224.

[43] AH Glasser, John M Greene, and JL Johnson. “Resistive instabilities in a
tokamak”. In: The Physics of Fluids 19.4 (1976), pp. 567–574.

[44] Prashant Gohel, Priyanka Singh, and Manoranjan Mohanty. “Explainable AI:
current status and future directions”. In: CoRR abs/2107.07045 (2021). arXiv:
2107.07045. URL: https://arxiv.org/abs/2107.07045.

128



[45] R.J. Goldston and P.H. Rutherford. Introduction to Plasma Physics. Introduction
to Plasma Physics. Taylor and Francis, 1995. ISBN: 9780750303255. URL:
https://books.google.it/books?id=Ji5HAQAAIAAJ.

[46] NN Gorelenkov et al. “A threshold for excitation of neoclassical tearing modes”.
In: Physics of Plasmas 3.9 (1996), pp. 3379–3385.

[47] G Granucci et al. “The DTT device: System for heating”. In: Fusion Engineering
and Design 122 (2017), pp. 349–355.

[48] Jiuxiang Gu et al. “Recent advances in convolutional neural networks”. In:
Pattern recognition 77 (2018), pp. 354–377.

[49] BH Guo et al. “Disruption prediction using a full convolutional neural network
on EAST”. In: Plasma Physics and Controlled Fusion 63.2 (2020), p. 025008.

[50] Bihao H Guo et al. “Disruption prediction on EAST tokamak using a deep
learning algorithm”. In: Plasma Physics and Controlled Fusion 63.11 (2021),
p. 115007.

[51] R. J. La Haye et al. “Propagation of magnetic islands in the Er=0 frame of
co-injected neutral beam driven discharges in the DIII-D tokamak”. In: Physics of
Plasmas 10 (9 2003). ISSN: 1070664X. DOI: 10.1063/1.1602452.

[52] C. C. Hegna and J. D. Callen. “Interaction of bootstrap-current-driven magnetic
islands”. In: Physics of Fluids B 4 (7 1992). ISSN: 08998221. DOI:
10.1063/1.860039.

[53] C. C. Hegna and James D. Callen. “On the stabilization of neoclassical
magnetohydrodynamic tearing modes using localized current drive or heating”.
In: Physics of Plasmas 4 (1997), pp. 2940–2946. URL:
https://api.semanticscholar.org/CorpusID:122070852.

[54] CC Hegna. “The physics of neoclassical magnetohydrodynamic tearing modes”.
In: Physics of Plasmas 5.5 (1998), pp. 1767–1774.

[55] Chris C Hegna and James D Callen. “On the stabilization of neoclassical
magnetohydrodynamic tearing modes using localized current drive or heating”.
In: Physics of Plasmas 4.8 (1997), pp. 2940–2946.

[56] FL Hinton and JA Robertson. “Neoclassical dielectric property of a tokamak
plasma”. In: The Physics of fluids 27.5 (1984), pp. 1243–1247.

[57] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward
networks are universal approximators”. In: Neural networks 2.5 (1989),
pp. 359–366.

[58] A. Ishizawa et al. “Magnetic island evolution in hot ion plasmas”. In: Physics of
Plasmas 19 (7 2012). ISSN: 1070664X. DOI: 10.1063/1.4739291.

129



[59] E. Joffrin. Development of the ’Hybrid’ scenario in JET. Tech. rep.
INIS-XA–08N0893. International Atomic Energy Agency (IAEA), 2008.

[60] Julian Kates-Harbeck, Alexey Svyatkovskiy, and William Tang. “Predicting
disruptive instabilities in controlled fusion plasmas through deep learning”. In:
Nature 568.7753 (2019), pp. 526–531.

[61] Mengdi Kong. “Towards integrated control of tokamak plasmas: physics-based
control of neoclassical tearing modes in the TCV tokamak”. en. PhD thesis.
Lausanne: EPFL, 2020. DOI: 10.5075/epfl-thesis-7510. URL:
https://infoscience.epfl.ch/handle/20.500.14299/166264.

[62] M Kotschenreuther, RD Hazeltine, and PJ Morrison. “Nonlinear dynamics of
magnetic islands with curvature and pressure”. In: Physics of Fluids 28.1 (1985),
p. 294.

[63] Martin David Kruskal and RM Kulsrud. “Equilibrium of a magnetically confined
plasma in a toroid”. In: (1958).

[64] James Ladyman, James Lambert, and Karoline Wiesner. “What is a complex
system?” In: European Journal for Philosophy of Science 3 (2013), pp. 33–67.

[65] D. De Lazzari and E. Westerhof. “On the merits of heating and current drive for
tearing mode stabilization”. In: Nuclear Fusion 49.7 (May 2009), p. 075002.
DOI: 10.1088/0029-5515/49/7/075002. URL:
https://dx.doi.org/10.1088/0029-5515/49/7/075002.

[66] E. Lazzaro et al. “Physics conditions for robust control of tearing modes in a
rotating tokamak plasma”. In: Plasma Physics and Controlled Fusion 60 (1
2018). ISSN: 13616587. DOI: 10.1088/1361-6587/aa8be7.

[67] Di S. Li et al. “Optimal Tracking for a Divergent-Type Parabolic PDE System in
Current Profile Control”. In: Abstract and Applied Analysis (2014). CC BY 4.0.
DOI: 10.1155/2014/940965. URL:
https://commons.wikimedia.org/w/index.php?curid=74679708.

[68] Hinrich Lütjens, Jean-François Luciani, and Xavier Garbet. “Curvature effects on
the dynamics of tearing modes in tokamaks”. In: Physics of Plasmas 8.10 (2001),
pp. 4267–4270.

[69] Costanza F Maggi. “Overview of T and DT results in JET with ITER-like wall”.
In: Nuclear Fusion (2023).

[70] M Maslov et al. “JET DT scenario with optimized non-thermal fusion”. In:
Nuclear Fusion 63.11 (2023), p. 112002.

[71] A. B. Mikhailovskii. Theory of magnetic islands in tokamaks with accenting
neoclassical tearing modes. 2003. DOI: 10.1002/ctpp.200310013.

130



[72] Tom M Mitchell and Tom M Mitchell. Machine learning. Vol. 1. 9. McGraw-hill
New York, 1997.
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