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Abstract

In this work, I present the implementations of two processes of electroweak (EW)
boson pair production from hadronic scattering within two different Monte Carlo
event generators at next-to-next-to-leading order (NNLO) in quantum chromo-
dynamics (QCD) combined with parton showers (PS).

In the first part of the work, I discuss the implementation of the process
of production of two same-flavor opposite-charge pairs of massless leptons from
proton-proton scattering within the Geneva Monte Carlo event generator. After
briefly introducing the Geneva method, I provide a detailed description of two of
its newly-implemented features. After passing the events through the Pythia8

parton shower, I finally show several distributions of phenomenological interest
and compare them with the data from the ATLAS and CMS experiments at the
Large Hadron Collider (LHC).

The Geneva event generator provides a framework for matching the NNLO
calculation with the next-to-next-to-leading logarithmic prime (NNLL′) resum-
mation of the zero-jettiness and next-to-leading logarithmic (NLL) resummation
of the one-jettiness. Since the contribution from the resummation is only dif-
ferential in the N -jettiness parameter, it can be used for generating events only
after providing its dependence on the full radiation phase space. The functions
used for this purpose are called splitting functions and must be normalized so as
not to spoil the accuracy of the resummation. In this work, I present a way of
normalizing them on the fly, which provides better stability to the Monte Carlo
integration. However, such a method requires the analytic computation of sev-
eral phase-space boundaries, which depend on the mappings used for projecting
the configurations with N + 1 final-state partons onto those with N final-state
partons. After describing all the mappings currently available in Geneva, I
present a detailed calculation of the normalization of the corresponding split-
ting functions. I then discuss the next-to-leading order (NLO) subtraction of
the infrared QCD singularities for any process of production of a color singlet.
Since Geneva requires the on-the-fly Monte Carlo integration of the subtracted
real amplitudes, I show a way to optimize the efficiency of the integration, which
can be particularly useful for processes where the evaluation of the real matrix
elements is computationally demanding.

In the second part of the work, I discuss the implementation of the pro-
cess of production of a photon pair from a proton-proton scattering within the
Powheg Box+MiNNLOPS Monte Carlo event generator. Such a process requires
a dedicated treatment since it is plagued by quantum electrodynamics (QED)
divergences in the limit where any photons become collinear to a quark. Af-
ter briefly introducing the Powheg Box event generator and the MiNNLOPS

method, I present the dedicated tools devised for this calculation. I begin by
describing a generic way to deal with any process with a divergent Born cross
section in the Powheg Box event generator without applying any generation-
level cuts. I then present a mapping that prevents QED-finite configurations



with one final-state parton from being projected to singular configurations with
no final-state partons. Finally, I discuss several modifications to the original
version of the MiNNLOPS method aimed at reducing the size of spurious con-
tributions beyond NNLO. After passing the events through the Pythia8 parton
shower, I conclude by showing several distributions of phenomenological interest
and comparing them with the most recent LHC data from the ATLAS experi-
ment.

Keywords: NNLO, QCD, Event Generator, Parton Shower, EW Bosons



Sommario

In questo lavoro presento le implementazioni di due processi di produzione di una
coppia di bosoni elettrodeboli (EW) dallo scattering di due adroni in due diversi
generatori di eventi Monte Carlo all’ordine next-to-next-to-leading (NNLO)
nella cromodinamica quantistica (QCD) combinati con la parton shower (PS).

Nella prima parte della tesi discuto l’implementazione del processo di pro-
duzione di due coppie di leptoni privi di massa con lo stesso sapore e carica
opposta dallo scattering protone-protone all’interno del generatore di eventi
Monte Carlo Geneva. Dopo aver brevemente introdotto il metodo Geneva, for-
nisco una descrizione dettagliata di due delle sue funzioni recentemente imple-
mentate. Dopo aver passato gli eventi attraverso la parton shower di Pythia8,
mostro infine diverse distribuzioni di interesse fenomenologico e le confronto con
i dati degli esperimenti ATLAS e CMS al Large Hadron Collider (LHC).

Il generatore di eventi Geneva consente di abbinare il calcolo NNLO con
la resummazione all’ordine logaritmico next-to-next-to-leading primo (NNLL′)
della zero-jettiness e quella all’ordine logaritmico next-to-leading (NLL) della
one-jettiness. Poiché il contributo della risommazione è differenziale nel solo
parametro della N -jettiness, può essere utilizzato per generare eventi soltanto
dopo aver fornito la sua dipendenza dall’intero spazio delle fasi di radiazione. Le
funzioni utilizzate a questo scopo sono dette funzioni di splitting e devono essere
normalizzate in modo da non compromettere l’accuratezza della risommazione.
In questo lavoro presento un modo per normalizzarle on the fly, che fornisce una
migliore stabilità all’integrazione Monte Carlo. Tuttavia, tale metodo richiede il
calcolo analitico di diversi limiti dello spazio delle fasi che dipendono dalle mappe
utilizzate per proiettare le configurazioni con N + 1 partoni di stato finale su
quelle con N partoni di stato finale. Dopo aver descritto tutte le proiezioni
attualmente disponibili in Geneva, presento un calcolo dettagliato della nor-
malizzazione delle corrispondenti funzioni di splitting. Successivamente discuto
la sottrazione all’ordine next-to-leading (NLO) delle singolarità infrarosse di
QCD per qualsiasi processo di produzione di un singoletto di colore. Poiché
Geneva richiede l’integrazione Monte Carlo on-the-fly delle ampiezze reali sot-
tratte, mostro un modo per ottimizzare l’efficienza dell’integrazione che può
essere particolarmente utile per i processi in cui il calcolo degli elementi di ma-
trice reali è computazionalmente impegnativa.

Nella seconda parte della tesi discuto l’implementazione del processo di pro-
duzione di una coppia di fotoni da uno scattering protone-protone all’interno
del generatore di eventi Monte Carlo Powheg Box+MiNNLOPS. Tale processo
richiede un trattamento dedicato poiché è afflitto da divergenze di elettrodinam-
ica quantistica (QED) nel limite in cui qualsiasi fotone diventa collineare a un
quark. Dopo aver brevemente introdotto il generatore di eventi Powheg Box

e il metodo MiNNLOPS, presento gli strumenti appositamente creati per questo
calcolo. Comincio descrivendo una tecnica generale per trattare qualsiasi pro-
cesso con una sezione d’urto Born divergente nel generatore di eventi Powheg

Box senza applicare alcun taglio a livello di generazione. Presento quindi una
mappa che impedisce che le configurazioni finite dal punto di vista della QED



con un partone di stato finale siano proiettate su configurazioni singolari senza
partoni di stato finale. Infine discuto alcune modifiche alla versione originale del
metodo MiNNLOPS volte a ridurre l’impatto dei contributi spuri oltre il NNLO.
Dopo aver passato gli eventi attraverso la parton shower di Pythia8, concludo
mostrando diverse distribuzioni di interesse fenomenologico e confrontandole
con i dati di LHC più recenti dall’esperimento ATLAS.

Parole Chiave: NNLO, QCD, Event Generator, Parton Shower, EW Bosons
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Chapter 1

Introduction

Among the most useful experimental tools for investigating the subatomic struc-
ture of the matter are the colliders, machines where electromagnetic fields are
used for accelerating two beams of particles and making them collide with each
other. Currently, the world most high-energetic collider is the LHC, located at
the CERN laboratory in Geneva, Switzerland, where two beams of protons are
accelerated up to a center-of-mass energy

√
S = 13 TeV. Due to the electric

charge of the proton, most of the collisions end up in elastic scatterings. How-
ever, one of the predictions of QCD is that, at such high energies, the strong
force that is responsible for the confinement of the quarks and gluons within
the proton loses intensity, and the accelerated protons start progressively to
behave less as a bounded state and more as a superposition of free partons.
When two partons belonging to the two different beams interact (in what is
typically referred to as a hard scattering) new particles are produced. Studying
the probability with which this happens is a powerful way to expose the most
fundamental laws of nature. In particular, the mass distributions of subsets of
particles produced in the collisions offers a direct way of discovering new massive
particles by looking for their resonances. The search for large mass resonances is
indeed one of the main motivation for building colliders capable to reach higher
and higher energies.

The main success of the LHC has probably been the observation of the Higgs
boson in 2012, which at the time remained the last unobserved particle predicted
by the Standard Model. In the following years, due to the lack of a clear path
towards the discovery of new particles, because of a general good agreement
between the theoretical predictions based on the Standard Model and the ex-
perimental results, the LHC has progressively evolved into a precision machine.
The goal has then become to lower the systematic and statistical uncertainties
of the experimental results up to the point where even small discrepancies with
respect to the Standard Model predictions could be exposed, which would give
us hints on where to look for new physics. An interesting class of particles for
making precision studies are the EW vector bosons, which, due to the fact that
they do not undergo QCD interactions, have very clean signatures.
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The chances of success of the LHC as a machine for precision studies relies,
however, on the assumption that the theoretical uncertainties on the Standard
Model predictions can be lowered to a size comparable to the experimental
ones. One of the best tools for reaching such a goal are the Monte Carlo event
generators, whose aim is exactly to simulate events, the name we give to the
outcome of the collisions (i.e. the set of particles produced after the scattering
with associated momenta). Historically, the first event generators to be imple-
mented were only able to provide an accurate description of the QCD emissions
in their collinear (parton showers) and/or soft limit (dipole showers). An ex-
tension to this approach was obtained by matching the showers to the tree-level
matrix elements of the process with one or more jets (ME+PS), thus improv-
ing the accuracy of the description of the scattering also far from the soft and
collinear regions of the phase space. This can be achieved by matching LO ma-
trix elements to general purpose Monte Carlo event generators like Pythia [3],
Herwig [4, 5] or Sherpa [6] (in some cases it can even be done automatically
within such event generators).

Another direction of improvement consists instead in combining the shower
with a partonic event generator with higher accuracy. Two notable methods that
combine a QCD NLO partonic event generator with the shower (NLO+PS) are
MC@NLO [7] and Powheg [8, 9, 10]. By doing so, they are able to produce
NLO distributions for the observables that are inclusive over the real radiation,
and LO distributions for those that require one additional jet. An extension to
such methods is obtained by matching two NLO calculations, one with one more
resolved parton than the other, thus allowing to reach NLO accuracy also for
the observables that require one additional jet with respect to the Born process.
Among the methods that provide such a matching there are MiNLO [11, 12],
MEPS@NLO [13] FxFx [14] and UNLOPS [15].

The latest development in this direction has been the extension of the par-
tonic event generator to the NNLO in QCD. Two notable NNLO+PS event
generators are MiNNLOPS [16, 17] and Geneva. In the last few years several
LHC processes have been implemented in the Geneva and MiNNLOPS event
generators, covering Drell-Yan [18, 16, 19], Higgs boson [16], V H [20], γγ [21,
2], V γ [22, 23], V V [1, 24, 25, 26] and tt̄ [27] production.

In this thesis, I will present the implementations of two processes of boson
pair production from hadronic scattering in two different NNLO QCD Monte
Carlo event generators. In the first part, I will discuss the process of production
of two same-flavor opposite-charge pairs of massless leptons within the Geneva

event generator, while the second one will be on the process of production of
two photons within the MiNNLOPS+Powheg Box event generator.

The first part begins with a brief introduction to the Soft-Collinear Effective
Theory (SCET) resummation in chapter 3 and the Geneva method in chapter 4.
It continues with a detailed description of two newly-implemented features of the
Geneva event generator that can be useful also for other color-singlet production
processes. In chapter 5, I present a new implementation of the splitting func-
tions (i.e. the functions used for making the contributions from the resummation
differential over the entire phase space), which allows to compute their normal-
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ization factor on the fly. Since such a method requires us to know the analytic
expression for the boundaries of the radiation phase space for all the phase-space
mappings employed, in chapters 6 and 7 I describe the default Geneva mappings
and compute the expression for their boundaries. An alternative mapping from
the phase space with two final-state partons to that with one final-state parton
is presented in chapter A of the appendix. In chapter 8, instead I present a
way of optimizing the efficiency of the infrared NLO subtraction for the case of
color-singlet production, which can be particularly useful for processes where
the computation of the real matrix elements is computationally demanding. Fi-
nally, in chapter 9 I validate the entire implementation against the independent
results provided by the Matrix fixed-order calculation, and present the com-
parisons with the LHC data from the ATLAS and CMS experiments for several
distributions of phenomenological interest.

The second part begins with a brief introduction to the MiNNLOPS and
Powheg methods in chapters 10 and 11 respectively, and continues in chap-
ter 12 with the description of the dedicated treatment that the process of photon
pair production requires due to the presence of QED divergences. In particu-
lar, I start by discussing a general way of treating processes with a divergent
Born cross section within the Powheg Box event generator. I then introduce
a mapping that prevents QED-finite configurations with one final-state parton
from being projected to singular configurations with no final-state partons. Fi-
nally, I conclude by discussing several modifications to the original version of
the MiNNLOPS method [16, 17] aimed at reducing the size of spurious contri-
butions beyond NNLO. A detailed discussion on the way scale variations are
performed within the MiNNLOPS method to estimate the theoretical uncertain-
ties is furthermore presented in chapter B of the appendix. Finally, in chapter 13
I validate the entire implementation against the independent result provided by
the Matrix fixed-order calculation, and present the comparisons with the LHC
data from the ATLAS experiment for several distributions of phenomenological
interest.
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Chapter 2

Infrared subtraction and
resummation

In QCD, the amplitudes of any process are affected by non-integrable diver-
gences in the limit where the energy of any final-state gluon is small (soft limit)
or the momenta of two of the partons treated as massless (either belonging to
the initial or final state) are parallel, as long as they represent a valid splitting
(collinear limit). The three valid QCD splittings are the emissions of a gluon
from a quark (q → q g splitting) or a gluon (g → g g splitting), and the pro-
duction of a quark-antiquark pair from a gluon (g → q q̄ splitting). The origin
of such singularities ultimately lays in the expression of the QCD propagators,
whose denominator (in the case where all the involved partons are treated as
massless) is proportional to EiEj (1− cos θ), where we called Ei and Ej the
energies of the two partons produced in the splitting (in the following emitted
and sister partons) and θ the angle between their momenta. However, one of
the theory most important results is that, in the collinear limit, the tree-level
amplitude R(Φn+1) for the process with n + 1 final-state partons factorizes on
the underlying tree-level amplitude B(Φn) where the two collinear partons have
been substituted by one single parton (in the following emitter parton) whose
momentum is the sum of the momenta of the two original partons. This factor-
ization property is universal and can be written as

R(Φn+1)→ 8παS

t
PAP

kj (z)B(Φn) , (2.1)

where αS is the strong coupling, and we called t = (pi + pj)
2

(with pi and pj be-
ing the momenta of the emitted and sister partons, respectively) the virtuality
of the underlying parton, and z = Ej/ (Ei + Ej) the fraction of energy carried
by the sister parton. The Altarelli–Parisi splitting functions PAP

kj are four uni-
versal functions that depend on the flavor of the emitter k and the sister j.
Their expressions will be given in eq. (3.24). Since in this chapter we are more
interested in presenting the concept of resummation, rather than studying its
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details, we focus on the simplest case where the emitted parton is a gluon close
to its soft limit (the soft-collinear limit), in which case eq. (2.1) simplifies to

R(Φn+1)→ 8παSCi
E2 (1− cos θ)

B(Φn) , (2.2)

where Ci is a Casimir factor of the SU(3) group (Ci = CF = 4/3 in case of
a q → q g splitting, Ci = CA = 3 in case of a g → g g splitting), E is the
gluon energy and θ the angle with respect to the sister parton. Since, in the
same limit, the phase space dΦn+1 for the process with n+ 1 final-state partons
factorizes on the phase space dΦn for the underlying process as

dΦn+1 =
E dE d cos θ

8π2

dφ

2π
dΦn, (2.3)

where φ is the azimuthal angle of the emission, the cross section σn+1 can be
written as

σn+1 =

∫
dΦn+1R(Φn+1)→

∫
dΦnB(Φn)

αS

π
Ci

∫
dE

E

∫
d cos θ

1− cos θ

∫
dφ

2π
,

(2.4)
which, as anticipated, is non-integrable in the limits of small E and θ.

The fact that this same problem of non-integrability arises with an opposite
sign in the computation of the one-loop correction V (Φn) to the underlying
amplitude suggests that what we are observing is not an issue of the full QCD
theory, but a problem introduced by its perturbative expansion, as shown by
the Kinoshita–Lee–Nauenberg theorem [28, 29]. However, to prove that the
singularity coming from the integral of eq. (2.4) is exactly canceled by the one-
loop correction, we need a way of regularizing it. To do that, we observe that the
singularity would not be present in a phase space defined on D > 4 space-time
dimensions, where the same integral would read

σ
(D)
n+1 →

∫
dΦnB(Φn)

αS

π
Ci

∫
dE

E

(
E

µ

)D−4 ∫
d cos θ

1− cos θ
sinD−4 θ

∫
dΩ(D−2)

2π
,

(2.5)
where we have introduced the scale µ in order not to change the physical di-
mensions of the resulting cross section, and the solid angle Ω(D−2) in D − 2
dimensions. At this point, after writing D as 4 − 2ε, the singularities of the
original integral can be exposed as ε poles. After applying the same procedure
to the loop corrections, it can be shown that they have exactly the same sin-
gular structure, with and opposite sign, which means that, provided we adopt
the prescription of computing the phase space integrals in D dimensions, we
can obtain a finite value for the NLO cross section if we sum the virtual and
real corrections V (Φn) and R(Φn+1) and take the limit ε → 0. This solution,
however, cannot be straightforwardly applied to an event generator, where the
integral of eq. (2.5) is done numerically in a fixed number of space-time dimen-
sions D = 4. The solution to this is called infrared subtraction and consists in
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introducing a counterterm C(Φn+1) that reproduces the same soft and collinear
divergences of R(Φn+1), so that the full NLO cross section can be written as

σNLO =

∫
dΦn

{
B(Φn) + lim

D→4

[
V (Φn) +

∫
dΦ

(D)
n+1

dΦn
C(Φn+1)

]}

+

∫
dΦn+1 [R(Φn+1)− C(Φn+1)] . (2.6)

The singularities of the first integral can be analytically subtracted, as long
as we know the expression of the integral of the counterterm C(Φn+1) over

the radiation phase space dΦ
(D)
n+1/dΦn, while the second integral (where the

divergences are subtracted point by point) can now be performed numerically.
The counterterm C(Φn+1), by reproducing infrared limits like that reported in
eq. (2.2) implicitly introduces the needing of a mapping between the dΦn+1 and
dΦn phase spaces. In order for the integral in the second line of eq. (2.6) to be
well defined, such a mapping is required to project the Φn+1 configurations close
to the soft and collinear limits to the underlying Φn configuration whose virtual
poles cancel the real singularities. At this point, as long as an observable O
is defined such that, in the infrared limits, O(Φn+1) → O(Φn), its distribution
is not affected by the infrared divergences. We call this class of observables
infrared safe.

Before continuing with the discussion, we observe that treating all the quarks
as massive (as they are in nature) would formally remove the collinear singu-
larities, which could make the above procedure appear as unnecessary as far
as the collinear limit is concerned. However, in such a limit, for small quark
masses m the QCD propagators would still be proportional to m2. Since the
quark masses can be as small as few MeVs, while the energies of modern days
colliders reach several TeVs, the matrix elements would still be affected by huge
enhancements in the collinear limit, meaning that we would still need a local
infrared subtraction between the virtual and real enhanced terms, in order for
the Monte Carlo integrator to be efficient.

The above discussion shows how the infrared soft and collinear divergences
are an artefact of the perturbative expansion of QCD. However, while the in-
frared subtraction by itself allows us to obtain finite predictions for all the
infrared-safe observables, the distributions that are not inclusive over radiation
(i.e. require the presence of an extra parton in the final state) will still present
unphysical features due to the divergent behavior of the real matrix elements
R(Φn+1) in the infrared limits. The solution to this problem is provided by the
resummation of contributions at all orders in the αS expansion. To explain how
this is done, we start from eq. (2.4) and rewrite the radiation integral in terms
of the virtuality t and the energy fraction z, so that it reads

dσn+1 =
αS

π
Ci

dt

t

dz

1− z
dφ

2π
B(Φn) dΦn. (2.7)

9



At this point we interpret

dp =
αS

π
Ci

dt

t

dz

1− z
dφ

2π
. (2.8)

as the probability of having an emission with virtuality t, energy fraction z
and azimuth φ for a given underlying configuration Φn, which implies that the
probability P (t0) that the hardest (i.e. with the largest virtuality) emission has
virtuality between t0 and t1 = t0 +dt0 is given by the product of the probability
of having no emissions for all the intervals dti = (ti+1 − ti) for i from 1 to N
up to the maximum kinematically allowed virtuality tmax times the probability
of emitting in the interval dt0

P (t0) =
dp

dt
(t0) dt0

N∏
i=1

(
1− dp

dt
(ti) dti

)
→ dp

dt
(t0) dt0 exp

(
−

N∑
i=1

dp

dt
(ti) dti

)
,

(2.9)
where the expression on the right-hand side of the above equation is obtained in
the limit where the intervals dti are infinite and infinitely small. Going back to
the continuous picture, where the sums becomes integrals, we can finally write
that the probability density of the hardest QCD emission as a function of its
virtuality is given by

dP

dt
=
αS

π

Ci
t

∫
dz

1− z exp

(
−
∫ tmax

t

αS

π
Ci

dt′

t′

∫
dz

1− z

)
. (2.10)

The exponential function introduced in the above equation takes the name of
Sudakov form factor. We highlight that it contains the strong coupling at the
exponent, which makes it an all-order object with respect to the perturbative
expansion. At fixed t, z belongs to the interval

(
t/Q2, 1− t/Q2

)
where Q is some

hard scale of the process, so that, in the limit of small t, the above expression
can be rewritten as

dP

dt
=
αS

π

Ci
t

log

(
Q2

t

)
exp

(
−αS

2π
Ci log2

(
Q2

t

))
, (2.11)

where we have neglected the log
(
Q2/tmax

)
, which is not enhanced. We high-

light that the above expression can be directly used as a probability density for
generating the hardest emission, since it has already the correct normalization
(i.e. its integral over t from 0 to Q is equal to 1).

From the numerical point of view, the above probability distribution is ex-
actly equal to zero at t = 0, where before we had the singularity. However, it
can be seen that its peak is still at small values of t, where the soft and collinear
approximations still hold. This is a very important observation, since such ap-
proximations greatly simplify any QCD calculations, and are the principle on
which dipole and parton showers are based. This example shows how the QCD
singular structure, from being an obstacle in the context of fixed-order calcula-
tions, has really become an advantage in the context of resummation, due to its
universal structure.
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Part I

Z boson pair production
with Geneva
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Chapter 3

Resummation in SCET

Effective field theories are a useful tool for solving perturbatively problems of
quantum field theory that involve two or more well separated scales. Such prob-
lems are generally plagued by the presence of large logarithms of the ratio of
the scales that can spoil the convergence of the perturbative expansion. In the
process of production of a color singlet at a hadronic collider, for example, the
energy scale of the hard interaction is of the order of the mass mCS of the color
singlet, while the transverse momentum of the color singlet pT,CS typically de-
fines the order of magnitude of the energy of the QCD emissions. In the simple
example of eq. (2.11) we showed that these logarithms need to be resummed
at all orders in the perturbation theory to make reliable predictions for observ-
ables that are not inclusive over the real radiation. The Soft-Collinear Effective
Theory provides a framework for doing this systematically, by separating the
perturbative expansion of the hard interaction from that of the lower-energy
QCD emissions, predicting the structure of the terms enhanced by the loga-
rithms of the ratio of the two scales, and resumming them at all perturbative
orders.

In this chapter, we present the three fundamental ingredients of the resum-
mation in the SCET formalism for the case of color-singlet production, i.e. the
soft, beam and hard functions, and discuss their evolution from their charac-
teristic scales to the common scale of the process. Finally, we prove that, by
construction, their total cumulant is not affected by the resummation. This last
property will allow us to straightforwardly match the resummed calculation to
the fixed-order results within the Geneva Monte Carlo event generator.

3.1 N -jettiness

Instead of the transverse momentum of the color singlet, SCET was historically
first developed using the so-called N -jettiness as the lower scale of the process.
Given a configuration ΦN with a color singlet and N final-state partons of
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momenta p1, ..., pN in the laboratory frame, the N -jettiness is defined as

TN =

N∑
i=1

min
a

q1, ..., qN
lightlike with q0

i = 1

(qa · p̂i, qb · p̂i, q1 · p̂i, ..., qN · p̂i) , (3.1)

where qa = (1, 0, 0, 1), qb = (1, 0, 0,−1), and q1, ..., qN can be any lightlike
vectors with q0

i = 1. Furthermore we used the ˆ symbol to refer to the momenta
longitudinally boosted from the laboratory frame to the frame where the color
singlet has zero rapidity.

The N -jettiness can be used as a resolution parameter for the radiative
emissions of the process. The qi vectors that minimize the above definition can
be thought of as the directions of the N hardest jets, so that any configuration
with N or less final-state partons has TN = 0. Any additional emission that
is neither soft nor collinear leads instead to a positive value of TN , so that we
can interpret the N -jettiness as a measure of how much the configuration differ
from a configuration with N final-state partons.

The expression for the 0-jettiness reduces to

T0 =

N∑
i=1

min
(
p̂+
i , p̂

−
i

)
, (3.2)

where we have introduced the plus and minus components of the i-th momentum
as

p̂±i = p̂0
i ∓ p̂3

i , (3.3)

and can be interpreted as a measure of the quantity of QCD radiation far from
the hadronic beams.

3.2 Zero-jettiness resummation

We consider the process of production of a color singlet (CS) of mass Q from
the scattering of two hadrons a and b, and we call xa and xb the fraction of
momenta of a and b taken by the partons ka and k̄b which undergo the hard
interaction. Using the SCET factorization theorem presented for example in
eq. (1.6) of ref. [30], we can write the T0 spectrum of the resummed cross section
differential over the Born phase space dΦ0 for such a process as

dσres

dΦ0 dT0
=
∑
kakb

Hkak̄b(Φ0, µ)

∫
dta

∫
dtbB

a
ka(ta, xa, µ)Bbk̄b(tb, xb, µ)

×Skak̄b
(
T0 −

ta + tb
Q

,µ

)
, (3.4)

where we have introduced the hard function Hkak̄b , the two beam functions Baka
and Bb

k̄b
, and the soft function Skak̄b , all of them dependent on the resummation

scale µ. The hard function describes the hard interaction from which the color
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singlet is produced and incorporates the virtual radiation. The two beam func-
tions describe the initial-state radiation collinear to the beams with virtuality
−ta and −tb respectively, in the limit ta, tb � Q. Finally, the soft function
describes the soft radiation.

To simplify the expression presented in eq. (3.4), we introduce the Laplace
transform of a function f as

L{f} = f̃(s) =

∫ ∞
0

dt e−stf(t) , (3.5)

and use it to rewrite the factorization theorem as

L
{

dσres

dΦ0 dT0

}
=
∑
kakb

Hkak̄b(Φ0, µ) B̃aka

(
s

Q
, xa, µ

)
B̃bk̄b

(
s

Q
, xb, µ

)
S̃kak̄b(s, µ) .

(3.6)
To be able to write the explicit expressions for the hard, beam and soft

functions in a compact form in the following sections of this chapter, it is useful
to define

Ln(x) = lim
β→0+

[
θ(x− β)

logn x

x
+ δ(x− β)

logn+1 β

n+ 1

]
(3.7)

and

Lη(x) = lim
β→0+

[
θ(x− β)

x1−η + δ(x− β)
βη − 1

η

]
, (3.8)

and their Laplace transforms, which read∫ ∞
0

dt e−st Lη(t) = s−η Γ(η)− 1

η
(3.9)

and ∫ ∞
0

dt e−st Ln(t) =
1

n+ 1

∫ ∞
0

dx e−x logn+1
(x
s

)
. (3.10)

The above expressions can be obtained performing the integration appearing
in the Laplace transform for a generic value of β > 0, and then taking the
limit β → 0+. In particular, in the upcoming sections we will make use of the
formulae ∫ ∞

0

dt e−st L0(t) = − (log s+ γ) (3.11)

and ∫ ∞
0

dt e−st L1(t) =
1

2

[
(log s+ γ)

2
+
π2

6

]
. (3.12)

3.3 The soft function

Following eq. (2.24) of ref. [31], the soft function can be expressed as the con-
volution

Sk ¯̀(k, µ) =

∫ k

0

dk′ Sk ¯̀(k − k′, µS)US(k′, µS, µ) . (3.13)
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The soft function for the production of a color singlet at the soft scale µS only
depends on whether the Born process is quark- or gluon-initiated. The two
expressions can be taken respectively from eq. (155) of ref. [32] and eqs. (2.22-
2.23) of ref. [31] and, at NLO, read

µS Sk ¯̀(k, µS) = δk` δ

(
k

µS

)
+
αS(µS)

2π
Ck`

[
−8L1

(
k

µS

)
+
π2

6
δ

(
k

µS

)]
+O

(
α2

S

)
,

(3.14)
where we have introduced

Cqq = CF Cgg = CA. (3.15)

By directly substituting the expression given in eq. (3.14) in the T0 spectrum
presented in eq. (3.4) we would obtain a divergent result in the limit T0 → 0.
This can be avoided by resumming the singular contributions at all orders of
the strong coupling. In the SCET formalism such a resummation is achieved by
evolving the soft function from its characteristic scale µS to the common scale
µ of the process according to the formula of eq. (3.13). The evolution kernel is
presented for example in eq. (2.25) of ref. [31] and reads

µS US(k, µS, µ) =
eKS(µS,µ)−γηS(µS,µ)

Γ(1 + ηS(µS, µ))

[
δ

(
k

µS

)
+ ηS(µS, µ)LηS(µS,µ)

(
k

µS

)]
,

(3.16)
where

KS = −4KΓ +KγS
ηS = 4ηΓ. (3.17)

The explicit expression for KΓ, KγS
and ηΓ will be given in section 3.8.

After applying the Laplace transform defined in eq. (3.5), the convolution of
eq. 3.13 can be reduced to the product

S̃k ¯̀(s, µ) = S̃k ¯̀(s, µS) ŨS(s, µS, µ) , (3.18)

where, using eq. (3.9),

ŨS(s, µS, µ) = eKS(µS,µ)−γηS(µS,µ) (sµS)
−ηS(µS,µ)

(3.19)

and, using eq. (3.12),

S̃k ¯̀(s, µS) = δk` +
αS(µS)

2π
Ck`

{
−4

[
(log(sµS) + γ)

2
+
π2

6

]
+
π2

6

}
+O

(
α2

S

)
.

(3.20)

3.4 The beam function

Following eq. (2.17) of ref. [31], the beam function can be expressed as the
convolution

Bhk (t, x, µ) =

∫ t

0

dt′Bhk (t− t′, x, µB)UB(t′, µB, µ) . (3.21)
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The beam function Bhk (t, x, µB) for the production of a color singlet at the beam
scale µB only depends on whether the Born process is quark- or gluon-initiated.
The two expressions can be taken respectively from eqs. (2.20), (2.38) and (3.48)
of ref. [30] and eqs. (2.12-2.15) and (A.16) of ref. [31] and, at NLO, read

Bhk (t, x, µB) =
∑
j

∫ 1

x

dz

z
Ikj(t, z, µB) fhj

(x
z
, µB

)
, (3.22)

where the index j runs over all the possible partons, fhj (ξ, µ) is the parton
distribution function (PDF) of the parton j in the hadron h at momentum
fraction ξ and factorization scale µB, and

µ2
B Ikj(t, z, µB) = δ

(
t

µ2
B

)
δkj δ(1− z) +

αS(µB)

2π

{
L1

(
t

µ2
B

)
2Ckj δ(1− z)

+ L0

(
t

µ2
B

)
(1− z)PAP

kj (z)L0(1− z)

+ δ

(
t

µ2
B

)[
PAP

kj (z)

(
(1− z)L1(1− z)− log z

)
− π2

6
Ckj δ(1− z) + P ′kj(z)

]}
+O

(
α2

S

)
, (3.23)

where we have introduced the Altarelli–Parisi splitting functions

PAP

qq (z) = CF

1 + z2

1− z P ′qq(z) = CF (1− z)
∣∣∣∣

PAP

qg (z) = TF

[
z2 + (1− z)2

]
P ′qg(z) = 2TF z (1− z)

∣∣∣∣
PAP

gq (z) = CF

1 + (1− z)2

z
P ′gq(z) = CFz

∣∣∣∣
PAP

gg (z) = 2CA

[
z

1− z +
1− z
z

+ z (1− z)
]

P ′gg(z) = 0.

∣∣∣∣
(3.24)

As explained for the soft function in the previous section, the beam function
presented in eq. (3.22) needs to be resummed at all orders of the strong coupling
by evolving it from its characteristic scale µB to the common scale µ of the
process according to the formula of eq. (3.21). The evolution kernel is presented
for example in eq. (2.18) of ref. [31] and reads

µ2
B UB(t, µB, µ) =

eKB(µB,µ)−γηB(µB,µ)

Γ(1 + ηB(µB, µ))

[
ηB(µB, µ)LηB(µB,µ)

(
t

µ2
B

)
+ δ

(
t

µ2
B

)]
,

(3.25)
where

KB = 4KΓ +KγB ηB = −2ηΓ. (3.26)

The explicit expression for KΓ, KγB
and ηΓ will be given in section 3.8.
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After applying the Laplace transform defined in eq. (3.5), the convolution of
eq. 3.22 can be reduced to the product

B̃hk (s, x, µ) = B̃hk (s, x, µB) ŨB(s, µB, µ) , (3.27)

where, using eq. (3.9),

ŨB(s, µB, µ) = eKB(µB,µ)−γηB(µB,µ)
(
sµ2

B

)−ηB(µB,µ)
. (3.28)

We refrain from reporting the explicit expression for B̃k, which can be derived
by using the formulae given in eqs. (3.11) and (3.12).

3.5 The hard function

Following eq. (2.10) of ref. [31], the hard function can be expressed as the
product

Hk ¯̀(Φ0, µ) = Hk ¯̀(Φ0, µH)UH

(
Q2, µH, µ

)
. (3.29)

The hard function Hk ¯̀(Φ0, µH) evaluated at the hard scale µH depends on the
specific color-singlet production process that we are considering. It can be
written as

Hk ¯̀(Φ0, µH) = H
(0)

k ¯̀ (Φ0) +
αS(µH)

2π
H

(1)

k ¯̀ (Φ0, µH) +O
(
α2

S

)
, (3.30)

where H
(0)

k ¯̀ (Φ0) is the LO amplitude of the process and H
(n)

k ¯̀ (Φ0, µH) for n >

0 are its virtual corrections computed in the MS subtraction scheme. The
evolution kernel is given in eq. (2.11) of ref. [31] and reads

UH

(
Q2, µH, µ

)
=

∣∣∣∣∣eKH(µH,µ)

(−Q2 − i0
µ2

H

)ηH(µH,µ)
∣∣∣∣∣
2

, (3.31)

where

KH = −2KΓ +KγH ηH = ηΓ. (3.32)

The explicit expression for KΓ, KγH and ηΓ will be given in section 3.8.

3.6 The resummed cross section

At this point, we make the assumptions that

µ2
H = Q2 µ2

B = QµS (3.33)

and introduce

Ũ0(s,Q, µS, µ) = UH

(
Q2, µH, µ

)
Ũ2

B

(
s

Q
, µB, µ

)
ŨS(s, µS, µ) , (3.34)
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so that, using eqs. (3.18), (3.27) and (3.29), we can further rewrite the factor-
ization theorem as

L
{

dσres

dΦ0 dT0

}
= Ũ0(s,Q, µS, µ)

∑
kakb

Hkak̄b(Φ0, µH) B̃aka

(
s

Q
, xa, µB

)

× B̃bk̄b
(
s

Q
, xb, µB

)
S̃kak̄b(s, µS) . (3.35)

After defining
η = 2ηB + ηS, (3.36)

the explicit expression for the evolution kernel reads

Ũ0(s,Q, µS, µ) = exp(2KH + 2KB +KS − [γ + log (µSs)] η) . (3.37)

At this point, we can rewrite the Laplace transforms of eqs. (3.11) and (3.12)
under the action of the above evolution kernel as derivatives with respect to the
parameter η, so that they read

Ũ0(s,Q, µS, µ)

∫ ∞
0

dt e−sµSt L0(t) =
∂

∂η
Ũ0(s,Q, µS, µ) (3.38)

and

Ũ0(s,Q, µS, µ)

∫ ∞
0

dt e−sµSt L1(t) =
1

2

(
∂2

∂η2
+
π2

6

)
Ũ0(s,Q, µS, µ) . (3.39)

For example, the Laplace transform of the soft function given in eq. (3.20) under
the action of the evolution kernel Ũ0(s,Q, µS, µ) can be written equivalently as

S̃k ¯̀(s, µS) = δk` +
αS

2π
Ck`

[
−4

(
∂2

∂η2
+
π2

6

)
+
π2

6

]
+O

(
α2

S

)
. (3.40)

The advantage of this formulation is that the above expression does not depend
anymore on s, which simplifies the inverse Laplace transform of the factorization
theorem given in eq. (3.35). After applying the same procedure to the beam
function, we are left with taking the inverse Laplace transform of the evolution
kernel, which becomes

U0(T0, Q, µS, µ) =
1

T0

η

Γ(1 + η)
exp

(
2KH + 2KB +KS − η

[
γ + log

(
µS

T0

)])
.

(3.41)
As an example, we can apply the η-derivative appearing in the Laplace

transform of the soft function given in eq. (3.40) to the evolution kernel of
eq. (3.41) to compute the NLL′ contribution of the soft function to the T0
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spectrum of the resummed cross section, which becomes

dσsoft
res

dΦ0 dT0
=
∑
k

H
(0)

kk̄
(Φ0) fak (xa, µB) f bk̄(xb, µB)

× 1

T0

η

Γ(1 + η)
exp

(
2KH + 2KB +KS − η

[
γ + log

(
µS

T0

)])
×
(

1 +
αS(µS)

2π
Ckk

{
− 4

[(
ψ(0)(1 + η) + γ + log

(
µS

T0

))2

− ψ(1)(1 + η)

+
π2

6
− 2

η

(
ψ(0)(1 + η) + γ + log

(
µS

T0

))]
+
π2

6

}
+O

(
α2

S

))
. (3.42)

From the above equation, we can then compute the NLO contribution of the
soft function to the resummed T0 cumulant to be∫ T cut

0

0

dT0
dσsoft

res

dΦ0 dT0
=
∑
k

H
(0)

kk̄
(Φ0) fak (xa, µB) f bk̄(xb, µB)

× 1

Γ(1 + η)
exp

(
2KH + 2KB +KS − η

[
γ + log

(
µS

T cut
0

)])
×
(

1 +
αS(µS)

2π
Ckk

{
− 4

[(
ψ(0)(1 + η) + γ + log

(
µS

T cut
0

))2

− ψ(1)(1 + η) +
π2

6

]
+
π2

6

}
+O

(
α2

S

))
. (3.43)

We will use this last equation in the next section to prove that the total cumulant
of the resummed spectrum is equal to that of the resummed-expanded one
(i.e. the T0 spectrum before the resummation).

3.7 The resummed-expanded cross section

The T0 spectrum of the differential cross section before the resummation can be
simply obtained by directly substituting the expressions for the soft, beam and
hard functions presented respectively in eqs. (3.14), (3.22 and (3.30) evaluated
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at the resummation scale µ = Q in eq. (3.4), and at NLO reads

dσRE

dΦ0 dT0
=

1

2

∑
k

H
(0)

kk̄
(Φ0) fak (xa, Q) f bk̄(xb, Q) δ(T0)

+
αS(Q)

2πQ

∑
k

(
H

(0)

kk̄
(Φ0)

{
fak (xa, Q)Ckk

[
−2L1

(T0

Q

)
− π

2

12
δ

(T0

Q

)]

+
∑
j

∫ 1

xa

dz

z
faj

(xa
z
,Q
)[
L0

(T0

Q

)
(1− z)PAP

kj (z)L0(1− z)

+ δ

(T0

Q

)
PAP

kj (z)
(

(1− z)L1(1− z)− log z
)

+ δ

(T0

Q

)
P ′kj(z)

]}
+

1

2
H

(1)

kk̄
(Φ0, Q) fak (xa, Q) δ

(T0

Q

))
f bk̄(xb, Q) + (a↔ b) +O

(
α2

S

)
.

(3.44)

Since ∫ T cut
0

0

dT0 Ln
(T0

Q

)
=

Q

n+ 1
logn+1

(T cut
0

Q

)
(3.45)

the NLO T0 cumulant becomes

dσRE

dΦ0
(T cut

0 ) =
1

2

∑
k

H
(0)

kk̄
(Φ0) fak (xa, Q) f bk̄(xb, Q)

+
αS(Q)

2π

∑
k

(
H

(0)

kk̄
(Φ0)

{
fak (xa, Q)Ckk

[
− log2

(T cut
0

Q

)
− π2

12

]

+
∑
j

∫ 1

xa

dz

z
faj

(xa
z
,Q
)[

log

(T cut
0

Q

)
(1− z)PAP

kj (z)L0(1− z)

+ PAP

kj (z)
(

(1− z)L1(1− z)− log z
)

+ P ′kj(z)

]}
+

1

2
H

(1)

kk̄
(Φ0, Q) fak (xa, Q)

)
f bk̄(xb, Q) + (a↔ b) +O

(
α2

S

)
.

(3.46)

We now want to show that the total cumulant (i.e. the cumulant up to the
maximum kinematically allowed value of zero-jettiness T max

0 for the configura-
tion Φ0) of the resummed-expanded contribution equals that of the resummed
contribution. Since we have only computed the resummed cumulant of the soft
function, we need to do the same for the resummed-expanded one. In the ap-
proximation where beam and hard functions are treated at LO, the resummed-
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expanded cumulant reads

dσsoft
RE

dΦ0
(T cut

0 ) =
∑
k

H
(0)

kk̄
(Φ0) fak (xa, Q) f bk̄(xb, Q)

×
{

1 +
αS(Q)

2π
Ckk

[
−4 log2

(T cut
0

Q

)
+
π2

6

]
+O

(
α2

S

)}
.

(3.47)

Under the assumption that the soft scale becomes equal to the fixed-order scale
Q for the maximum kinematically allowed value of T0

µS(T max

0 ) = Q, (3.48)

since

ψ(0)(1) = −γ ψ(1)(1) =
π2

6
, (3.49)

from eq. (3.43) the total resummed cumulant of the soft function reads

dσsoft
res

dΦ0
(T max

0 ) =
∑
k

H
(0)

kk̄
(Φ0) fak (xa, Q) f bk̄(xb, Q)

×
{

1 +
αS(Q)

2π
Ckk

[
−4 log2

(T max
0

Q

)
+
π2

6

]
+O

(
α2

S

)}
,

(3.50)

which is exactly equal to the total resummed-expanded cumulant presented in
eq. (3.47).

3.8 Some SCET parameters

We finally report here the explicit expressions for KΓ, ηΓ and Kγ , which are
given in eq. (D.13) of ref. [30] or equivalently in eq. (B.16) of ref. [31] and read

KΓ(µ0, µ) = − Γ0

4β2
0

[
4π

αS(µ0)

(
1− 1

r
− log r

)
+

(
Γ1

Γ0
− β1

β0

)
(1− r + log r) +

β1

2β0
log2 r

]
+O(αS) (3.51)

ηΓ(µ0, µ) = − Γ0

2β0

[
log r +

αS(µ0)

4π

(
Γ1

Γ0
− β1

β0

)
(r − 1)

]
+O

(
α2

S

)
(3.52)

Kγ(µ0, µ) = − γ0

2β0
log r +O(αS) , (3.53)

where

r =
αS(µ)

αS(µ0)
, (3.54)
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and, from eqs. (D.15) of ref. [30],

β0 =
11

3
CA −

4

3
TFnf

∣∣∣∣∣
β1 =

34

3
C2

A −
(

20

3
CA + 4CF

)
TFnf .

∣∣∣∣∣
(3.55)

Finally, from eqs. (D.16-D.18) of ref. [30], in the case of quark-induced processes

Γ0 = 4CF

∣∣∣∣
Γ1 = 4CF

[(
67

9
− π2

3

)
CA −

20

9
TFnf

]
,

∣∣∣∣ (3.56)

and
γS0

= 0 γB0
= 6CF γH0

= −6CF, (3.57)

while, from eqs. (B.19-B.21) of ref. [31], in the case of gluon-induced processes

Γ0 = 4CA

∣∣∣∣
Γ1 = 4CA

[(
67

9
− π2

3

)
CA −

20

9
TFnf

]
,

∣∣∣∣ (3.58)

and
γS0

= 0 γB0
= 2β0 γH0

= −2β0. (3.59)
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Chapter 4

The Geneva Monte Carlo
differential cross section

4.1 The phase space mappings

Any event generator that aims to a QCD accuracy beyond leading order (LO)
needs to rely on mappings between phase spaces with different number of final-
state partons. If we call dΦ0, dΦ1, and dΦ2 the phase spaces with 0, 1, and 2
final-state partons respectively, for a NNLO event generator we need to intro-
duce a mapping from dΦ1 to dΦ0, and one from dΦ2 to dΦ1. The composition
of the two mappings gives the mapping from dΦ2 to dΦ0.

Such mappings allow us to define finite differential cross sections beyond LO.
In particular, we can write

dσNNLO

≥0

dΦ0
= B0(Φ0) + V0(Φ0) +W0(Φ0)

+

∫
dΦ1

dΦ0

(
B1(Φ1) + V1(Φ1) +

∫
dΦ2

dΦ1
B2(Φ2)

)
(4.1)

dσNLO

≥1

dΦ1
= B1(Φ1) + V1(Φ1) +

∫
dΦ2

dΦ1
B2(Φ2) (4.2)

dσLO

≥2

dΦ2
= B2(Φ2) . (4.3)

In the expressions above, we exploited the possibility of writing the phase space
dΦN+1 with N + 1 partons as the product of the projected phase space dΦN
with N partons times a radiation phase space. The expression

∫
dΦN+1/dΦN

denotes an integral over the radiation phase space of dΦN+1 limited to the ΦN+1

configurations which are projected onto ΦN by the N + 1 → N mapping. The
differential cross section of eq. (4.1) then contains all the contributions from the
Φ0 configurations, and those from the Φ1 and Φ2 configurations that are pro-
jectable onto dΦ0, which gives it NNLO accuracy. The differential cross section
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of eq. (4.2) contains instead all the contributions from the Φ1 configurations,
and those from the Φ2 configurations that are projectable onto dΦ1, which gives
it NLO accuracy. Finally, the differential cross section of eq. (4.3) contains all
the contributions from the Φ2 configurations, which gives it LO accuracy.

In general, not all the points of ΦN+1 can be mapped to a valid ΦN config-
uration, which makes it useful to classify the Φ1 and Φ2 configurations into two
sets: the projectable, which can be mapped to a configuration with one parton
less, and non-projectable ones, which cannot. Since all the configurations that
are close to an infrared limit need to be projectable (otherwise the mapping
would not be infrared safe), the non-projectable configurations are free from
QCD singularities. We can then write the integrated NNLO cross section for
the production of a color singlet as

σNNLO

CS =

∫
dΦ0

dσNNLO

≥0

dΦ0
+

∫
dΦ1

dσNLO

≥1,nonproj

dΦ1
+

∫
dΦ2

dσLO

≥2,nonproj

dΦ2
, (4.4)

where we have introduced the label nonproj to indicate that the integral is
limited to the non-projectable configurations.

4.2 The zero-jettiness spectrum

The goal of Geneva is to generate partonic events at NNLO in QCD match-
ing the NNLL′ resummed T0 spectrum with the fixed-order contributions. To
present the formula for the matching, we first need to introduce the fixed-order
spectrum, which from eq. (4.1) can be written as

dσNNLO

≥0

dΦ0 dT0
= [B0(Φ0) + V0(Φ0) +W0(Φ0)] δ(T0) +

∫
dΦ1

dΦ0 dT0

dσNLO
1

dΦ1
, (4.5)

and the non-singular spectrum

dσNLO1
nonsing

dΦ0 dT0
=

dσNNLO

≥0

dΦ0 dT0
− dσNNLL′

res

dΦ0 dT0

∣∣∣∣
NNLO

, (4.6)

defined as the difference between the fixed-order and the NNLO expansion in
the strong coupling of the resummed spectra. Since the terms at order α0

S cancel
in the above difference, we refer to the accuracy of the non-singular spectrum as
NLO1 (instead of NNLO): with the subscript 1 we indicate that the contribution
has an αS expansion that begins one order higher with respect to the Born cross
section of the process.

Under the assumption that the total cumulant (i.e. the integral over all the
kinematically allowed values of T0) of the NNLL′ resummed spectrum and its
NNLO expansion are equal, we can write∫ T max

0

0

dT0

dσNLO1
nonsing

dΦ0 dT0
=
dσNNLO

≥0

dΦ0
−
∫ T max

0

0

dT0
dσNNLL′

res

dΦ0 dT0
, (4.7)
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where T max
0 is the maximum kinematically allowed value of T0 for the given Φ0

configuration. From now on we will denote the T0 cumulants with the upper
integration limit between parenthesis, so that the above formula can be equiv-
alently rewritten as

dσNLO1
nonsing

dΦ0
(T max

0 ) =
dσNNLO

≥0

dΦ0
− dσNNLL′

res

dΦ0
(T max

0 ) . (4.8)

By inverting the above equations, we can write the NNLO differential cross
section of eq. (4.1) as

dσNNLO

≥0

dΦ0
=

∫ T max
0

0

dT0

(
dσNNLL′

res

dΦ0 dT0
+
dσNLO1

nonsing

dΦ0 dT0

)
. (4.9)

The above is the master formula for the matching between the resummation
and the fixed-order calculation, and allows to generate events with a NNLL′

accurate T0 spectrum without spoiling the NNLO accuracy of the distributions
that are inclusive over the radiation.

4.3 The splitting functions

The resummed spectrum appearing in eqs. (4.6) and (4.9) cannot be directly
used to generate events with one parton, since it does not have a full dependence
on the dΦ1 phase space. For this reason we need to introduce the concept of
splitting functions.

In general, a splitting function PN→N+1(ΦN+1) is a function defined on
the phase space with one extra parton dΦN+1 such that, for every function
f(ΦN , TN )∫

dΦN+1

dΦN
f(ΦN , TN )PN→N+1(ΦN+1) =

∫
dTN f(ΦN , TN ) . (4.10)

In other words the splitting function provides the dependence on the extra
variables that make the TN spectrum differential over dΦN+1 without spoiling
the distributions that depend only on ΦN and TN .

In our case we can define the NNLL′ resummed contribution differential over
dΦ1 as the product between the T0 spectrum and the 0→ 1 splitting function

dσNNLL′
res

dΦ1
=
dσNNLL′

res

dΦ0 dT0
P0→1(Φ1) . (4.11)

4.4 0-jet exclusive and 1-jet inclusive
cross sections

The formula presented in eq. (4.9) cannot be directly implemented in a Monte
Carlo event generator, unless a NLO1 local cancellation of the infrared diver-
gences appearing in the two terms of eq. (4.6) is provided.
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Since that is not currently available in Geneva, we need to introduce a reso-
lution parameter T cut

0 and divide the NNLO cross section into a 0-jet exclusive
and a 1-jet inclusive contributions. The 0-jet exclusive cross section describes
events without resolved final-state partons, and its expression is given by the
cumulant of the T0 distribution up to the resolution parameter T cut

0

dσMC
0

dΦ0
(T cut

0 ) =
dσNNLL′

res

dΦ0
(T cut

0 ) +
dσNLO1

nonsing

dΦ0
(T cut

0 ) . (4.12)

In most implementations of color-singlet production processes within Geneva,
T cut

0 is chosen to be of the order of 1 GeV. The 1-jet inclusive cross section
instead describes events with at least one resolved final-state parton. Its expres-
sion is given by the sum of the contributions coming from the projectable Φ1 con-
figurations, whose spectrum is described by eq. (4.9), and the non-projectable
ones

dσMC

≥1

dΦ1
=

(
dσNNLL′

res

dΦ1
+
dσNLO1

nonsing

dΦ1

)
θ(T0 − T cut

0 ) +
dσNLO

≥1,nonproj

dΦ1
, (4.13)

where we have implicitly used the splitting function P0→1(Φ1) to provide the
Φ1 dependence to the resummed spectrum, as described in eq. (4.11). From the
sum the 0-jet exclusive and the 1-jet inclusive contributions, upon integration
over the radiation phase space of Φ1, we recover the NNLO differential cross
section of eq. (4.9)

dσMC
0

dΦ0
(T cut

0 ) +

∫
dΦ1

dΦ0

dσMC

≥1

dΦ1
=
dσNNLO

≥0

dΦ0
. (4.14)

The third and final contribution to the total cross section is given by the non-
projectable Φ2 configurations

dσMC

≥2,nonproj

dΦ2
=
dσLO

≥2,nonproj

dΦ2
, (4.15)

so that, similarly to what we did in eq. (4.4), we can write the total cross section
for the production of a color singlet as

σNNLO

CS =

∫
dΦ0

dσMC
0

dΦ0
+

∫
dΦ1

dσMC

≥1

dΦ1
+

∫
dΦ2

dσMC

≥2,nonproj

dΦ2
. (4.16)

4.4.1 Approximation of the non-singular cumulant

The formula presented in eq. (4.12) could be directly implemented in Geneva

only if a NNLO local subtraction of the infrared divergences were available.
Since that is not the case, we need to approximate the NLO1 non-singular

cumulant with the LO1 one, and rewrite the 0-jet exclusive differential cross
section of eq. (4.12) as

dσMC
0

dΦ0
(T cut

0 ) =
dσNNLL′

res

dΦ0
(T cut

0 ) +
dσLO1

nonsing

dΦ0
(T cut

0 ) . (4.17)
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Since the non-singular spectrum is integrable up to T0 = 0, the missing contri-
butions are power corrections in T cut

0 (which means that they become smaller as
T cut

0 becomes smaller). The choice of the value of T cut
0 will then be dictated by

a compromise between minimizing the power corrections coming from the above
approximation and maximizing the stability of the integration of the inclusive
1-jet cross section, where the cancellation of the logarithmically enhanced con-
tributions is not fully local.

As we did for the 0-jet exclusive cross section, we also neglect the α2
S con-

tributions below T cut
0 appearing in the 1-jet inclusive cross section of eq. (4.13),

which becomes

dσMC

≥1

dΦ1
=

(
dσNNLL′

res

dΦ1
+
dσNLO1

nonsing

dΦ1
+
dσNLO

≥1,nonproj

dΦ1

)
θ(T0 − T cut

0 )

+
dσLO

≥1,nonproj

dΦ1
θ(T cut

0 − T0) , (4.18)

and in the non-projectable contributions of eq. (4.15), which become

dσMC

≥2,nonproj

dΦ2
=
dσLO

≥2,nonproj

dΦ2
θ(T0 − T cut

0 ) . (4.19)

Since the value of the NNLO total cross section for the processes under study
can be independently obtained from publicly available fixed-order calculations,
after the events have been generated, we can furthermore perform a reweight of
those with no final-state partons to recover the contributions lost in the above
approximation. By choosing appropriately the value of T cut

0 , the total size of
the missing contributions can be reduced below 1% of the total cross section.

4.5 1-jet exclusive and 2-jet inclusive
cross sections

The next step is to introduce a second resolution parameter T cut
1 to distinguish

between events with 1 and 2 resolved final-state partons, and divide the 1-
jet inclusive cross section given in eq. (4.18) into a 1-jet exclusive and a 2-jet
inclusive contributions, with the goals of

1. Performing the T1 resummation.

2. Preserving the 1-jet inclusive differential cross section

dσMC
1

dΦ1
(T cut

1 ) +

∫
dΦ2

dΦ1

dσMC

≥2

dΦ2
=
dσMC

≥1

dΦ1
. (4.20)

3. Giving pointwise NLO accuracy to the 1-jet exclusive cross section and
LO accuracy to the 2-jet inclusive cross section.
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We follow a multiplicative approach and, after calling U1(Φ1, T cut
1 ) the one-

jettiness Sudakov form factor and U
(1)
1 (Φ1, T cut

1 ) its first order αS expansion, we
write the exclusive 1-jet cross section as

dσMC
1

dΦ1
(T cut

1 ) =

{
dσMC

≥1

dΦ1
U1 (Φ1, T cut

1 )−
dσLO

≥1

dΦ1
U

(1)
1 (Φ1, T cut

1 )

−
∫
dΦ2

dΦ1

dσLO

≥2,proj

dΦ2
θ(T1 − T cut

1 )

}
θ(T0 − T cut

0 )

+
dσLO

≥1,nonproj

dΦ1
θ(T cut

0 − T0) . (4.21)

After calling U ′1(Φ1, T1) the derivative of the Sudakov form factor with respect

to T1, and U
(1)′
1 (Φ1, T1) its first order expansion in the strong coupling, we

can instead write the contribution to the inclusive 2-jet cross section from a
projectable Φ2 configuration as

dσMC

≥2

dΦ2
=

{[
dσMC

≥1

dΦ1
U ′1 (Φ1, T1)−

dσLO

≥1

dΦ1
U

(1)′
1 (Φ1, T1)

]
P1→2(Φ2)

+
dσLO

≥2,proj

dΦ2

}
θ(T1 − T cut

1 ) θ(T0 − T cut

0 )

+
dσLO

≥2,nonproj

dΦ2
θ(T0 − T cut

0 ) , (4.22)

where P1→2(Φ2) is the 1 → 2 splitting function, and satisfy the relation given
in eq. (4.10) with N = 1.

It can be seen that the above definitions for the 1-jet exclusive and 2-jet
inclusive contributions preserve the 1-jet inclusive differential cross section, as
stated in eq. (4.20). Furthermore, expanding eqs. (4.21) and (4.22) with respect
to the strong coupling, we obtain

dσMC
1

dΦ1
(T cut

1 ) =

[
dσNLO

≥1

dΦ1
−
∫
dΦ2

dΦ1

dσLO

≥2,proj

dΦ2
θ(T1 − T cut

1 )

]
θ(T0 − T cut

0 )

+
dσLO

≥1,nonproj

dΦ1
θ(T cut

0 − T0) +O
(
α3

S

)
, (4.23)

and

dσMC

≥2

dΦ2
=

[
dσLO

≥2,proj

dΦ2
θ(T1 − T cut

1 ) +
dσLO

≥2,nonproj

dΦ2

]
θ(T0 − T cut

0 ) +O
(
α3

S

)
, (4.24)

which show that the 1-jet exclusive differential cross section has NLO accuracy
for T0 > T cut

0 and LO accuracy for T0 < T cut
0 , and the 2-jet inclusive differential

cross section has LO accuracy for T0 > T cut
0 .
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4.5.1 Approximation of the 1-jet inclusive cross section

The computation of the 1-jet inclusive differential cross section appearing in
the formulae of eqs. (4.21) and (4.22) can become significantly time consuming
from the computational point of view, since in the fixed-order contribution it
requires a NLO1 calculation to be performed for every Φ1 or Φ2 configuration
generated by the Monte Carlo integrator.

To avoid that, when computing the 1-jet inclusive cross section, we approxi-
mate the matrix elements of the configurations with two final-state partons with
their infrared limit. In the formulae, we label the contributions computed under
this approximation with a C subscript. To compensate for this approximation,
we need to add back the difference between the exact and the approximated
1-jet inclusive cross section∫

dΦ2

dΦ1

[
dσLO

≥2,proj

dΦ2
−
dσLO

≥2,C,proj

dΦ2

]
θ(T0 − T cut

0 ) , (4.25)

which allows us to approximate the 1-jet exclusive differential cross section of
eq. (4.21) as

dσMC
1

dΦ1
(T cut

1 ) =

{
dσMC

≥1,C

dΦ1
U1 (Φ1, T cut

1 )−
dσLO

≥1

dΦ1
U

(1)
1 (Φ1, T cut

1 )

+

∫
dΦ2

dΦ1

[
dσLO

≥2,proj

dΦ2
θ(T cut

1 − T1)−
dσLO

≥2,C,proj

dΦ2

]}
θ(T0 − T cut

0 )

+
dσLO

≥1,nonproj

dΦ1
θ(T cut

0 − T0) , (4.26)

and the 2-jet inclusive differential cross section of eq. (4.22) as

dσMC

≥2

dΦ2
=

{[
dσMC

≥1,C

dΦ1
U ′1 (Φ1, T1)−

dσLO

≥1

dΦ1
U

(1)′
1 (Φ1, T1)

]
P1→2(Φ2)

+
dσLO

≥2,proj

dΦ2

}
θ(T1 − T cut

1 ) θ(T0 − T cut

0 )

+
dσLO

≥2,nonproj

dΦ2
θ(T0 − T cut

0 ) . (4.27)

We highlight that, after this approximation, the conditions given in eqs. (4.20),
(4.23) and 4.24 are still satisfied.

4.6 The parton shower

After generating the two hardest emissions with Geneva, we have to pass the
events to a parton shower. Ideally, we would like to use a shower strongly
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ordered in N -jettiness, such that, if we call TN−1 the (N − 1)-jettiness after N
emissions, and TN the N -jettiness after N + 1 emissions

TN � TN−1. (4.28)

In this case, the (N + 1)-th emission of the shower (on top of a ΦN configuration
with N final-state partons) would be distributed according to

SN+1 = UN (Λ, T max

N ) (4.29)

+
dΦN+1

dΦN
U ′N (TN , T max

N )PN→N+1(ΦN+1) θ(TN − Λ) θ(T max

N − TN ) ,

where UN is the Sudakov form factor, U ′N its derivative with respect to TN ,
Λ the shower cutoff, T max

N ∼ TN−1 the maximum allowed value for TN , and
PN→N+1 the splitting function used to make the event differential on ΦN+1,
such that∫

dΦN+1

dΦN
U ′N (TN , T max

N )PN→N+1(ΦN+1) θ(TN − Λ) θ(T max

N − TN )

=

∫ T max
N

Λ

dTN U ′N (TN , T max

N ) = UN (T max

N , T max

N )− UN (Λ, T max

N ) . (4.30)

We can immediately notice that, as long as UN (T max

N , T max

N ) = 1, the emission
is unitary.

Since TN -ordered parton showers are not currently available, we instead com-
bine Geneva with the Pythia8 parton shower, which is ordered in the transverse
momentum. To do that, we still need to guarantee that there is no double count-
ing, i.e. the hardest emission generated by the shower has

T2 < T allowed

1 , (4.31)

where T allowed
1 is the one-jettiness of the hard event computed after discarding

the expressions of T1 that do not select a valid QCD clustering. However, since
the Pythia8 parton shower is not ordered in N -jettiness, the first emission is
not always the one with the highest TN . Since the ideal parton shower that we
are trying to reproduce is strongly ordered in TN we can assume that the T2 of
the final event with all the emissions is similar to the would-be T2 after three
emissions of a TN -ordered parton shower. In this way we can impose the veto
given in eq. (4.31) after all the emissions have been generated.

Events generated by Geneva with no final-state partons are distributed ac-
cording to the T0 cumulant of the cross section up to T cut

0 (see eq. (4.17)), so,
after the shower, they must keep

T0 < T cut

0 . (4.32)

Furthermore, if the parton shower adds them one single emission, the resulting
configuration Φ1 must be projectable on the original configuration Φ0. Similarly,
events generated by Geneva with up to one final-state partons are distributed
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according to the T1 cumulant of the cross section up to T cut
1 (see eq. (4.26)), so,

after the shower, they must keep

T1 < T cut

1 . (4.33)

Furthermore, if the parton shower adds them one single emission, the resulting
configuration Φ2 must be projectable on the original configuration Φ1.

We are now left with fixing the starting scale of the parton shower. In an
ideal parton shower ordered in N -jettiness the starting scale T hard

N for events
with N final-state partons would be T cut

0 , T cut
1 and T allowed

1 for events with 0, 1
and 2 final-state partons, respectively. In a pT-ordered parton shower instead
it must be the maximum allowed value for the transverse momentum pT of the
hardest emission provided by the shower such that TN < T hard

N . Calling p the
momentum of such an emission and assuming that TN = p̂0 − p̂3, since

pT =
√
p̂2

0 − p̂2
3 =

√
TN (p̂0 + p̂3) ≤

√
TN
√
s <

√
T hard

N

√
s, (4.34)

if we start the shower from the scale
√
T hard

N

√
s we are covering the entire phase

space.
Finally, we have to deal with the case of processes where the maximum

number of final-state partons generated by Geneva is one, instead of two. In
this case the veto to apply to events with one final-state partons becomes

T1 < T allowed

0 . (4.35)

4.6.1 The first emission generated by the parton shower

The preservation of the NNLL′ partonic spectrum by the parton shower relies
on the assumption that for events generated by Geneva with N ≥ 1 final-state
partons, the zero-jettiness T0 computed at partonic level is spoiled by the shower
by an amount of order

TN � T0. (4.36)

Such variation is typically small enough for events with two final-state partons,
for which

T2 � T allowed

1 � T0, (4.37)

but could lead to significant numerical deviations for events generated with a
single final-state parton. In this case, we provide manually the generation of
the first shower emission, using a (quasi) T0-preserving mapping (see sections 7
and A). Such emission is distributed according to eq. (4.29), with N = 1, Λ <
T cut

1 and T max
1 = T0.
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Chapter 5

The splitting functions

To provide an explicit expression for the N → N+1 splitting function PN→N+1,
we need to write the subset of the phase space dΦN+1 with N + 1 final-state
partons projectable onto the underlying phase space dΦN with N final-state
partons as a product of dΦN times three radiation variables, one of which needs
to be the N -jettiness TN and the other two we will call z and φ. In this way
the integral over the projectable dΦN+1 phase space at fixed ΦN and TN , can
be written as∫

dΦN+1

dΦN dTN
=

N+2∑
k=1

∫ zkmax(ΦN ,TN )

zkmin(ΦN ,TN )

dz Jk(ΦN , TN , z)
∫ φkmax(ΦN ,TN ,z)

φkmin(ΦN ,TN ,z)
dφ, (5.1)

where the index k runs over the N + 2 possible emitter partons (that in the
following we will call mothers) of the ΦN configuration, and we have made the
only assumption that the Jacobian

Jk(ΦN , TN , z) =
dΦN+1

dΦN dTN dz dφ

∣∣∣∣
k

(5.2)

does not depend on φ. As we will see, this is true for the cases we are interested
in for this work (i.e. P0→1 and P1→2). We introduce here the names ISRA
(initial-state radiation A), ISRB (initial-state radiation B), and FSR (final-
state radiation), to indicate the three possible mothers we will have to deal
with: the parton from the first and second beam, and the final-state parton,
respectively. We furthermore label ISRA and ISRB collectively as ISR. The
integral over the dΦN+1 phase space summed over the nreal signatures (in the
following we will call signature the set of particles of a configuration) with N+1
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final-state partons can now be written as

nreal∑
β=1

∫
dΦN+1 =

nreal∑
β=1

∫
unprojectable ΦN+1

dΦN+1 +

nBorn∑
α=1

∫
dΦN

∫
dTN

N+2∑
k=1

∫ zkmax(ΦN ,TN )

zkmin(ΦN ,TN )

dz Jk(ΦN , TN , z)
∫ φkmax(ΦN ,TN ,z)

φkmin(ΦN ,TN ,z)
dφ

nksplit∑
j=1

,

(5.3)

where nBorn is the number of signatures with N final-state partons, and nksplit

the number of possible QCD splittings of the parton k. The unprojectable ΦN+1

configurations are those for which the two closest partons do not represent a
valid QCD splitting, or the ΦN configurations obtained from the projection is
not kinematically allowed or it is not a valid ΦN signature.

The splitting function PN→N+1(ΦN+1) has to be identically null in the un-
projectable regions of dΦN+1, and satisfy the equation

N+2∑
k=1

∫ zkmax(ΦN ,TN )

zkmin(ΦN ,TN )

dz Jk(ΦN , TN , z)
∫ φkmax(ΦN ,TN ,z)

φkmin(ΦN ,TN ,z)
dφ

nksplit∑
j=1

PN→N+1(ΦN+1) = 1.

(5.4)
We choose to define it such that in the projectable regions of dΦN+1

PN→N+1(ΦN+1) = (5.5)

fkj(ΦN , TN , z, φ)

N+2∑
k′=1

∫ zk
′

max(ΦN ,TN )

zk
′

min(ΦN ,TN )

dz′Jk′(ΦN , TN , z′)
∫ φk

′
max(ΦN ,TN ,z′)

φk
′

min(ΦN ,TN ,z′)
dφ′

nk
′

split∑
j′=1

fk′j′(ΦN , TN , z′, φ′)

where fkj(ΦN , TN , z, φ) could be in principle a fully generic function. If we
assume that fkj does not depend on φ (this is true for the expressions of fkj
discussed in this work), we can simplify the above equation to

PN→N+1(ΦN+1) =

fkj(ΦN , TN , z)
N+2∑
k′=1

∫ zk
′

max(ΦN ,TN )

zk
′

min(ΦN ,TN )

dz′ Jk′(ΦN , TN , z′) Ik
′

φ (ΦN , TN , z′)
nk
′

split∑
j′=1

fk′j′(ΦN , TN , z′)

,

(5.6)

where
Ikφ(ΦN , TN , z) = φkmax(ΦN , TN , z)− φkmin(ΦN , TN , z) . (5.7)

In section 5.1 we will discuss the explicit expressions that we use for fkj .
In the most recent version of Geneva it has been introduced the possibility

of evaluating the splitting functions on-the-fly, performing the integral at the
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denominator of eq. (5.6) for every ΦN+1 configuration generated. To do this,
we need to compute, both for the 1 → 0 and 2 → 1 mappings, the integration
limits on z and φ and the Jacobian Jk(ΦN , TN , z). We highlight that, whenever
the constraints on z and φ are in the form of an inequality involving both the
variables, computing analytically the integration limits on z is not necessary,
since they can be imposed on-the-fly setting to zero the integrand function
whenever the range of integration for φ is empty.

5.1 Altarelli–Parisi splitting functions

All the observables that can be written as a function of the N -jettiness TN and
the variables of dΦN+1 preserved by the N + 1 → N mapping do not depend
on the particular expression of the splitting function PN→N+1 as long as it
fulfills the normalization condition of eq. (5.4). This is true because every bin
of the distribution will contain all the z and φ allowed points for the given ΦN
and TN . All the other distributions will instead be sensitive to PN→N+1. In
particular, such a choice can affect significantly the efficiency of the Monte Carlo
event generator in the region of small TN , where the cancellation between the
logarithmically enhanced terms appearing in the fixed-order and the resummed
expanded contributions happens. For this reason the main criterion we follow
in the choice of the actual expression to use for the splitting functions is to
provide the most accurate possible infrared limit, which leads us to defining the
fkj functions appearing in eq. (5.5) as

fkj(ΦN , TN , z, φ) =


αS(µR) faj (xa, µF) f bp̄b(xb, µF) z PAP

kj (z) if k is ISRA

αS(µR) fap̄a(xa, µF) f bj (xb, µF) z PAP

kj (z) if k is ISRB

αS(µR) fap̄a(xa, µF) f bp̄b(xb, µF)PAP

jk (z) if k is FSR,
(5.8)

where p̄a and p̄b are the initial-state partons of the underlying signature, αS(µR)
is the strong coupling evaluated at the renormalization scale µR, fhp (xh, µF) is
the PDF of the parton p in the hadron h evaluated at the momentum fraction xh
and factorization scale µF, and PAP

kj are the Altarelli–Parisi splitting functions
given in eq. (3.24). The renormalization and factorization scales are set to

µR = µF = mCS. (5.9)

We highlight that in the definition of the splitting functions provided in eq. 5.8
we chose to evaluate the PDFs at the actual fraction of momenta carried by
the incoming partons in the configuration ΦN+1, instead of its collinear limit.
This allows to provide a better description of the tail of distributions like the
transverse momentum of the color singlet pT,CS. In the 0→ 1 splitting presented
in chapter 6, the expression of pT,CS in terms of the Φ0, T0 and z variables is
given by

p2
T,CS = mCST0

1− z
z

. (5.10)
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From this definition it can be seen that Φ1 configurations with small values
of z can have a large pT,CS despite having a small T0. Such configurations,
despite belonging to the tail of the pT,CS distribution, receive contributions from
the resummed terms, and thus depend on the explicit expressions used for the
splitting functions.
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Chapter 6

The 1→ 0 mapping

6.1 Definition of the mapping and zero-jettiness

We consider the process of production of a color singlet (that decays into n
particles) in association with one parton. In the laboratory frame, we call Pa and
Pb the momenta of the incoming beams, xa and xb the fraction of such momenta
that undergo the hard process, qi and mi for i from 1 to n the momenta and
masses of the particles that compose the color singlet, and p1 the momentum
of the final-state parton. The 1→ 0 mapping is defined such that

1. It preserves the mass mCS of the color singlet.

2. It preserves the rapidity yCS of the color singlet.

3. It does not change the momenta of the decay products in the center-of-
mass frame of the color singlet.

It can be seen that the above conditions uniquely identify the mapping.
The zero-jettiness T0 of the process can be written as

T0 = min
(
p̂+

1 , p̂
−
1

)
. (6.1)

We can assume without loss of generality that

p̂+
1 < p̂−1 , (6.2)

so that
T0 = p̂+

1 . (6.3)

If this is not the case, the results presented below still hold after exchanging the
labels of the beams.
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6.2 Phase space

The phase space for the process reads

dΦ1 = dxa dxb

n∏
i=1

d4qi

(2π)
3 δ
(
q2
i −m2

i

)
θ
(
q0
i

) d4p1

(2π)
3 δ
(
p2

1

)
θ
(
p0

1

)
× (2π)

4
δ4

(
n∑
i=1

qi + p1 − xaPa − xbPb
)
. (6.4)

After calling q the momentum of the color singlet (i.e. the sum of the momenta
of its decay products), we multiply the above expression by

dm2
CS

2π

d4q

(2π)
3 δ
(
q2 −m2

CS

)
θ
(
q0
)

(2π)
4
δ4

(
n∑
i=1

qi − q
)

= 1, (6.5)

so that we can rewrite the phase space as

dΦ1 = dxa dxb
dm2

CS

2π

d4q

(2π)
3 δ
(
q2 −m2

CS

)
θ
(
q0
) d4p1

(2π)
3 δ
(
p2

1

)
θ
(
p0

1

)
× (2π)

4
δ4(q + p1 − xaPa − xbPb) dΦCS

(
m2

CS

)
, (6.6)

with

dΦCS

(
m2

CS

)
=

n∏
i=1

d4qi

(2π)
3 δ
(
q2
i −m2

i

)
θ
(
q0
i

)
(2π)

4
δ4

(
n∑
i=1

qi − q
)
. (6.7)

At this point we can call

dΦrad =
dm2

CS

2π

d4q

(2π)
3 δ
(
q2 −m2

CS

)
θ
(
q0
) d4p1

(2π)
3 δ
(
p2

1

)
θ
(
p0

1

)
× (2π)

4
δ4(q + p1 − xaPa − xbPb) =

dm2
CS

2π

(
1− m2

CS

s

)
d cos θ dφ

32π2
,

(6.8)

where s = (xa Pa + xbPb)
2

and θ and φ are the polar angles of p1 in the partonic
center-of-mass frame. If we introduce

ξ = 1− m2
CS

s
(6.9)

y = cos θ, (6.10)

we can finally write

dΦrad =
s

64π3
ξ dξ dy dφ, (6.11)

and

dΦ1 =
Sxaxbξ

64π3
dxa dxb dξ dy dφ dΦCS, (6.12)
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where we called S = (Pa + Pb)
2
.

We have chosen to write the phase space in terms of the variables xa, xb, ξ,
y, and φ because their integration limits are constant

xa, xb, ξ ∈ (0, 1) y ∈ (−1, 1) φ ∈ (0, 2π) . (6.13)

However, at this point our goal is to rewrite dΦ1 using the new variables mCS,
yCS, T0, and

z =
mCS

mCS + p̂−1
. (6.14)

After writing them in terms of the old variables

mCS =
√
Sxaxb (1− ξ)

∣∣∣∣∣
yCS =

1

2

[
log

(
xa
xb

)
+ log

(
2− ξ (1 + y)

2− ξ (1− y)

)] ∣∣∣∣∣
T0 =

√
Sxaxb

2
ξ (1− y)

√
2− ξ (1 + y)

2− ξ (1− y)

∣∣∣∣∣
z =

1

1 +
ξ (1 + y)

2
√

1− ξ

√
2− ξ (1− y)

2− ξ (1 + y)

,

∣∣∣∣∣
(6.15)

and computing the Jacobian matrix we can write

dΦ1 =
mCS

32π3 S z2
dm2

CS dyCS dT0 dz dφ dΦCS

(
m2

CS

)
. (6.16)

Since

dΦ0 =
dm2

CS dyCS

S
dΦCS

(
m2

CS

)
(6.17)

we finally arrive to

dΦ1 =
mCS

32π3 z2
dΦ0 dT0 dz dφ. (6.18)

6.3 Integration limits

The last objects needed to compute the integral at the denominator of the
splitting functions are the integration limits on z and φ at fixed Φ0 and T0.
Since we already know from eq. (6.13) that

φ ∈ (0, 2π) , (6.19)

we are left with deriving the integration limits on z.
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To simplify the expressions in the rest of this section, we introduce the three
auxiliary variables

α =
T0

mCS

=
ξ (1− y)

2
√

1− ξ

√
2− ξ (1 + y)

2− ξ (1− y)
(6.20)

β =
1− z
z

=
ξ (1 + y)

2
√

1− ξ

√
2− ξ (1− y)

2− ξ (1 + y)
, (6.21)

and

κ =

√
S

mCS

. (6.22)

From their definition and the integration limits on ξ and y provided in eq. (6.13)
we can immediately see that they are both positive in the range of integration.
Furthermore, the condition given in eq. (6.2) imposes that

0 < α < β. (6.23)

At this point we can write the old variables xa, xb, ξ, and y in terms of κ, yCS,
α, and β as follows

xa =
eyCS

κ

(
β +

√
1 + αβ

) ∣∣∣∣∣
xb =

e−yCS

κ

(
α+

√
1 + αβ

) ∣∣∣∣∣
ξ =
−αβ (β − α)

2 −
(
α2 + β2

)
+ (α+ β)

√
1 + αβ

(1 + αβ − α2) (1 + αβ − β2)

∣∣∣∣∣
y =

(β − α)
√

1 + αβ
(
α−√1 + αβ

) (
β −√1 + αβ

)
−αβ (β − α)

2 − (α2 + β2) + (α+ β)
√

1 + αβ
,

∣∣∣∣∣

(6.24)

and derive the integration limits on the new variables κ, yCS, α, and β from
those on xa, xb, ξ, and y provided in eq. (6.13). It can be immediately seen
that, under the condition given in eq. 6.23, the requirements that ξ ∈ (0, 1),
y ∈ (−1, 1), xa > 0, and xb > 0 are automatically satisfied. We are then left
with asking that xa < 1 and xb < 1, which is equivalent to imposing β +

√
1 + αβ < κe−yCS

∣∣∣
α+

√
1 + αβ < κeyCS .

∣∣∣ (6.25)

At fixed κ, yCS, and α, the solutions to the above inequalities with respect to β
impose that 

β < β1 = κe−yCS +
α

2
−
√

1 + καe−yCS +
(α

2

)2
∣∣∣∣∣

β < β2 =
1

α

[
(κeyCS − α)

2 − 1
]
.

∣∣∣∣∣
(6.26)
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Putting the above solutions together with the original condition of eq. (6.23),
we obtain the constraints on β

α < β < min(β1, β2) , (6.27)

from which we can extract the integration limits of z

1

1 + min(β1, β2)
< z <

1

1 + α
. (6.28)

The phase space with one final-state parton is simple enough to allow us
to compute analytically the integration limits for all the variables. From the
constraints given in eq. (6.25), it can be seen that

0 < mCS <
√
S − log

√
S

mCS

< yCS < log

√
S

mCS

, (6.29)

and, at fixed Φ0,

0 < T0 <

√
S

2
e−|yCS| − m2

CS

2
√
S
e|yCS|. (6.30)
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Chapter 7

The 2→ 1 mapping

We consider a configuration Φ2 that describes the process of production of a
color singlet (that decays into n particles) in association with two partons. In
the laboratory frame, we call Pa and Pb the momenta of the incoming beams, xa
and xb the fractions of such momenta that undergo the hard process, qi and mi

for i from 1 to n the momenta and masses of the particles that are produced from
the decay of the color singlet, and p1 and p2 the momenta of the two final-state
partons. Our goal is to define a mapping that projects Φ2 onto an underlying
configuration Φ1 with one final-state parton. For such configuration, in the
laboratory frame we call x̄a and x̄b the fractions of momenta of the incoming
beams that undergo the hard process, q̄i for i from 1 to n the momenta and
masses of the particles that are produced from the decay of the color singlet, and
p̄1 the momentum of the only final-state parton. In general, the mapping does
not need to be defined throughout the entire dΦ2 phase space, but its existence is
mandatory in the singular regions of dΦ2, where the condition of infrared safety
dictates that the underlying configuration is obtained by clustering together the
two collinear partons or removing the soft one.

7.1 One-jettiness

In the dΦ2 phase space the one-jettiness is defined as

T1 =

2∑
i=1

min
n

(
p̂+
i , p̂

−
i , p̂i · n

)
, (7.1)

where n can be any lightlike vector with n0 = 1. We distinguish between two
possible cases.

1. FSR: There exists at least one vector n such that for both the final-state
partons the expression in the sum of eq. (7.1) is minimized by p̂i · n, in
which case

T1 = min
n

((p̂1 + p̂2) · n) = p̂0
12 −

∣∣∣~̂p12

∣∣∣ , (7.2)
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where we have introduced

p12 = p1 + p2. (7.3)

2. ISR: At least for one of the two final-state partons the expression in the
sum of eq. (7.1) is minimized by p̂+

i or p̂−i . In this case we can always
choose n to be parallel to the other momentum, so that

T1 = min
(
p̂+

1 , p̂
−
1 , p̂

+
2 , p̂

−
2

)
. (7.4)

Since up to now we have never distinguished between the two final-state
partons, we can limit ourselves to studying the case where

T1 = min
(
p̂+

2 , p̂
−
2

)
. (7.5)

If that is not the case, all the formulae derived in the following will still
hold after exchanging the labels of the two final-state partons. From now
on, we will call hardest the parton with momentum p1 and softest the one
with momentum p2. We are then left with two possible cases.

(a) ISRA: In this case
T1 = p̂+

2 . (7.6)

(b) ISRB : In this case
T1 = p̂−2 . (7.7)

We will only present the formulae for the ISRA case, since those for the
ISRB one can simply be obtained from a parity transformation.

7.2 Fully recursive zero-jettiness

We have seen how the expression for the one-jettiness can be used to measure
which couple of partons in the Φ2 configuration is the closest to an infrared limit.
This allows us to introduce the fully recursive zero-jettiness T FR

0 , which differs
from the exact zero-jettiness T0 since it is computed after clustering together
the two closest partons if the emission belongs to the FSR class. In other words,
in the ISR case T FR

0 has the same definition of T0 which, from eq. (3.1) can be
expressed as

T0 = min
(
p̂+

1 + p̂+
2 , p̂

+
1 + p̂−2 , p̂

−
1 + p̂+

2 , p̂
−
1 + p̂−2

)
, (7.8)

while in the FSR case T FR
0 has to be computed on a Φ1 configuration with a

single final-state parton of momentum p12, so that

T FR

0 = min
(
p̂+

12, p̂
−
12

)
. (7.9)

Ideally, we would like to use a 2→ 1 mapping that preserves the exact T0. How-
ever, due to the complicated expression of such a parameter, we limit ourselves
to preserving T FR

0 , since it has the same singular structure of T0.
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In the ISR case T FR
0 = T0, whose expression is given in eq. (7.8), and we

need to impose that it is equal to the zero-jettiness computed on the projected
Φ1 configuration, which, from eq. (6.1), reads

T0 = min
(
ˆ̄p+
1 , ˆ̄p−1

)
. (7.10)

We distinguish among four possible cases.

1. Same Hemisphere ISRA: In this case both p̂1 and p̂2 are in the hemisphere
of the first beam, so that

T FR

0 = p̂+
1 + p̂+

2 T1 = p̂+
2 . (7.11)

The condition of infrared safety imposes that, in the limit of small T1, p̂1

approaches ˆ̄p1, which imposes that the projected Φ1 configuration must
have

T0 = ˆ̄p+
1 . (7.12)

2. Opposite Hemisphere ISRA: In this case p̂1 is in the hemisphere of the
second beam, while p̂2 is in that of the first beam, so that

T FR

0 = p̂−1 + p̂+
2 T1 = p̂+

2 . (7.13)

The condition of infrared safety imposes that the projected Φ1 configura-
tion must have

T0 = ˆ̄p−1 . (7.14)

3. Same Hemisphere ISRB : In this case both p̂1 and p̂2 are in the hemisphere
of the second beam, so that

T FR

0 = p̂−1 + p̂−2 T1 = p̂−2 . (7.15)

The condition of infrared safety imposes that the projected Φ1 configura-
tion must have

T0 = ˆ̄p−1 . (7.16)

4. Opposite Hemisphere ISRB : In this case p̂1 is in the hemisphere of the
first beam, while p̂2 is in that of the second beam, so that

T FR

0 = p̂+
1 + p̂−2 T1 = p̂−2 . (7.17)

The condition of infrared safety imposes that the projected Φ1 configura-
tion must have

T0 = ˆ̄p+
1 . (7.18)

In the FSR case instead we need to impose that the zero-jettiness given in
eq. (7.10) computed on the projected Φ1 configuration is equal to the fully-
recursive zero-jettiness of eq. (7.9). We distinguish between two possible cases.
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1. FSRA: In this case

T FR

0 = p̂+
12 T1 = p̂0

12 −
∣∣∣~̂p12

∣∣∣ . (7.19)

The condition of infrared safety imposes that, in the limit of small T1, p̂12

approaches ˆ̄p1, which imposes that the projected Φ1 configuration must
have

T0 = ˆ̄p+
1 . (7.20)

2. FSRB : In this case

T FR

0 = p̂−12 T1 = p̂0
12 −

∣∣∣~̂p12

∣∣∣ . (7.21)

The condition of infrared safety imposes that the projected Φ1 configura-
tion must have

T0 = ˆ̄p−1 . (7.22)

We will only present the formulae for the FSRA case, since those for the FSRB
one can simply be obtained from a parity transformation.

As can be seen from the equations above, the difference between T0 and
T FR

0 arises only in the case where the two closest partons are the two final-
state ones (FSR case) and, despite being the closest, their momenta are in
different hemispheres, so that the expression for the exact zero-jettiness is given
by min

(
p̂+

1 + p̂−2 , p̂
−
1 + p̂+

2

)
, which is different from that for the fully recursive

zero-jettiness of eq. (7.9).

7.3 Direct mapping

The 2 → 1 mapping used in Geneva is defined under the conditions that it
preserves

1. The mass mCS of the color singlet.

2. The rapidity yCS of the color singlet.

3. The fully recursive zero-jettiness T FR
0 .

4. The momenta qi of the particles belonging to the color singlet in its center-
of-mass frame.

The remaining two conditions needed to uniquely identify the mapping are cho-
sen differently between the ISR and FSR cases.

1. ISR: We require that
p̄+

1

p̄−1
=
p+

1

p−1
, (7.23)

and the azimuthal angle of the hard parton is preserved

Φ̄1 = Φ1. (7.24)
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2. FSR: We require that
p̄−1 p̄

+
1 = p−12p

+
12, (7.25)

and the azimuthal angle of the color singlet is preserved

Φ̄1 = Φ12. (7.26)

The condition presented in eq. (7.25) ensures that in the FSR case both the
possible expressions for T FR

0 (presented in eqs. (7.19) and (7.21) are preserved,
which allows us to use the same mapping for both the FSRA and FSRB cases.
The motivations behind the condition presented in eq. (7.23) are instead more
subtle, and are discussed in section (A.5) of the appendix.

The 5 different expressions for T1 presented in eqs. (7.2) and (7.4) divide
the phase space into 5 different regions (two ISRA, two ISRB, and one FSR).
Each of the regions still admits two possible expressions for T FR

0 as discussed
in section 7.2, which takes the total number of required different expressions
for the mapping to 10. However, as explained in section 7.1, among the four
possible ISR regions we will limit ourselves to studying the ISRA one where
the softest parton has momentum p2, since the formulae for the other three
can be extracted from those for the first one through simple manipulations.
We further notice that the condition presented in eq. (7.25) ensures that both
the possible expression for T FR

0 in the FSR case are preserved, which makes
the FSRA and FSRB mappings equivalent. In the following we then present
the explicit expressions for the mapping in the three relevant regions: Same
Hemisphere ISRA, Opposite Hemisphere ISRA and FSR.

7.3.1 Same Hemisphere ISRA

By imposing that the zero-jettiness of eq. (7.12) computed on the projected Φ1

configuration is equal to the fully recursive zero-jettiness of eq. (7.11), and from
the conditions given in section 7.3 we find the expressions for p̄ and q̄



ˆ̄p+
1 = p̂+

1 + p̂+
2

∣∣∣∣
ˆ̄p−1 =

p̂−1
p̂+

1

(
p̂+

1 + p̂+
2

) ∣∣∣∣
ˆ̄p2
1T =

p̂−1
p̂+

1

(
p̂+

1 + p̂+
2

)2 ∣∣∣∣
Φ̄1 = Φ1.

∣∣∣∣



q̄+ = e−yCS

√
m2

CS +
p̂−1
p̂+

1

(
p̂+

1 + p̂+
2

)2∣∣∣∣∣
q̄− = eyCS

√
m2

CS +
p̂−1
p̂+

1

(
p̂+

1 + p̂+
2

)2∣∣∣∣∣
q̄2

T =
p̂−1
p̂+

1

(
p̂+

1 + p̂+
2

)2 ∣∣∣∣∣
Φ̄q = Φ1 + π.

∣∣∣∣∣
(7.27)

45



Finally, from the equations of momentum conservation we find the expressions
for x̄a and x̄b

x̄a =
eyCS

√
S

[√
m2

CS +
p̂−1
p̂+

1

(
p̂+

1 + p̂+
2

)2
+
p̂−1
p̂+

1

(
p̂+

1 + p̂+
2

)]

x̄b =
e−yCS

√
S

[√
m2

CS +
p̂−1
p̂+

1

(
p̂+

1 + p̂+
2

)2
+ p̂+

1 + p̂+
2

]
,

(7.28)

where we called S = (Pa + Pb)
2
.

7.3.2 Opposite Hemisphere ISRA

By imposing that the zero-jettiness of eq. (7.14) computed on the projected Φ1

configuration is equal to the fully recursive zero-jettiness of eq. (7.13), and from
the conditions given in section 7.3 we find the expressions for p̄ and q̄



ˆ̄p+
1 =

p̂+
1

p̂−1

(
p̂−1 + p̂+

2

) ∣∣∣∣
ˆ̄p−1 = p̂−1 + p̂+

2

∣∣∣∣
ˆ̄p2

T1 =
p̂+

1

p̂−1

(
p̂−1 + p̂+

2

)2 ∣∣∣∣
Φ̄1 = Φ1.

∣∣∣∣



q̄+ = e−yCS

√
m2

CS +
p̂+

1

p̂−1

(
p̂−1 + p̂+

2

)2∣∣∣∣∣
q̄− = eyCS

√
m2

CS +
p̂+

1

p̂−1

(
p̂−1 + p̂+

2

)2∣∣∣∣∣
q̄2

T =
p̂+

1

p̂−1

(
p̂−1 + p̂+

2

)2 ∣∣∣∣∣
Φ̄q = Φ1 + π.

∣∣∣∣∣
(7.29)

Finally, from the equations of momentum conservation we find the expressions
for x̄a and x̄b

x̄a =
eyCS

√
S

[√
m2

CS +
p̂+

1

p̂−1

(
p̂−1 + p̂+

2

)2
+ p̂−1 + p̂+

2

]

x̄b =
e−yCS

√
S

[√
m2

CS +
p̂+

1

p̂−1

(
p̂−1 + p̂+

2

)2
+
p̂+

1

p̂−1

(
p̂−1 + p̂+

2

)]
,

(7.30)

where we called S = (Pa + Pb)
2
.

7.3.3 FSR

By imposing that the zero-jettiness of eq. (7.20) computed on the projected Φ1

configuration is equal to the fully recursive zero-jettiness of eq. (7.19), and from

46



the conditions given in section 7.3 we find the expressions for p̄1 and q̄



ˆ̄p+
1 = p̂+

12

∣∣∣
ˆ̄p−1 = p̂−12

∣∣∣
ˆ̄p2
1T = p̂−12p̂

+
12

∣∣∣
Φ̄1 = Φ12.

∣∣∣



q̄+ = e−yCS

√
m2

CS + p̂−12p̂
+
12

∣∣∣∣
q̄− = eyCS

√
m2

CS + p̂−12p̂
+
12

∣∣∣∣
q̄2

T = p̂−12p̂
+
12

∣∣∣∣
Φ̄q = Φq.

∣∣∣∣
(7.31)

Finally, from the equations of momentum conservation we find the expressions
for x̄a and x̄b 

x̄a =
eyCS

√
S

(√
m2

CS + p̂−12p̂
+
12 + p̂−12

) ∣∣∣∣∣
x̄b =

e−yCS

√
S

(√
m2

CS + p̂−12p̂
+
12 + p̂+

12

)
,

∣∣∣∣∣
(7.32)

where we called S = (Pa + Pb)
2
.

7.4 Inverse mapping

7.4.1 Same Hemisphere ISRA

From the expression of T1 given in eq. (7.6) and after introducing

z =

√
Sx̄a√

Sx̄a + eyCS p̂−2
. (7.33)

we find the expression for p2. At that point p1 is obtained by inverting the
formulae for p̄1 given in eq. (7.27).



p̂+
2 = T1

∣∣∣∣
p̂−2 = e−yCS

√
S x̄a

1− z
z

∣∣∣∣
p̂2

2T = e−yCS
√
S x̄aT1

1− z
z

∣∣∣∣



p̂+
1 = ˆ̄p+

1 − T1

∣∣∣∣
p̂−1 = ˆ̄p−1

(
1− T1

ˆ̄p+
1

) ∣∣∣∣
p̂2

1T = ˆ̄p−1 ˆ̄p+
1

(
1− T1

ˆ̄p+
1

)2
∣∣∣∣∣

Φ1 = Φ̄1.

∣∣∣∣
(7.34)
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Finally, from the conservation of mCS and yCS we find
xa =

eyCS

√
S

(
p̂−1 + p̂−2 +

√
m2

CS + p̂2
1T

+ p̂2
2T

+ 2p̂1Tp̂2T cos(φ− Φ1)

) ∣∣∣∣∣
xb =

e−yCS

√
S

(
p̂+

1 + p̂+
2 +

√
m2

CS + p̂2
1T

+ p̂2
2T

+ 2p̂1Tp̂2T cos(φ− Φ1)

)
.

∣∣∣∣∣
(7.35)

Since xa and xb depend on φ, we cannot us the above expressions inside the fkj
functions presented in eq. (5.8), because otherwise we would need to perform
a numerical integration over φ (see eq. (5.5)). To avoid that, we evaluate the
PDFs inside the splitting functions at the approximated values

xa =
eyCS

√
S

(
p̂−1 + p̂−2 +

√
m2

CS + (p̂1T − p̂2T)
2

) ∣∣∣∣∣
xb =

e−yCS

√
S

(
p̂+

1 + p̂+
2 +

√
m2

CS + (p̂1T − p̂2T)
2

)
.

∣∣∣∣∣
(7.36)

The above expressions guarantees that both xa and xb are still in the allowed
interval (0, 1). Furthermore, we remind that the normalization of the splitting
functions ensures that such an approximation has no effect on the distributions
that depend only on Φ1 and T1. The effect on the other distributions has also
proven to be well below the theoretical uncertainties estimated through the
ordinary scale variations.

7.4.2 Opposite Hemisphere ISRA

The only differences with respect to the formulae presented above are in the
expression for p1, since now we need to invert the expressions of p̄1 given in
eq. (7.29) and we find 

p̂+
1 = ˆ̄p+

1

(
1− T1

ˆ̄p−1

) ∣∣∣∣
p̂−1 = ˆ̄p−1 − T1

∣∣∣∣
p̂2

1T = ˆ̄p− ˆ̄p+

(
1− T1

ˆ̄p−

)2 ∣∣∣∣
Φ1 = Φ̄1.

∣∣∣∣
(7.37)
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7.4.3 FSR

From the expression of T1 given in eq. (7.2) and by inverting the formulae for
p̄1 from eq. (7.31) we find the expression for p12

p̂+
12 = ˆ̄p+

1

∣∣∣
p̂−12 = ˆ̄p−1

∣∣∣
p̂2

12T = ˆ̄p− ˆ̄p+ − T1

(
ˆ̄p− + ˆ̄p+

)
+ T 2

1

∣∣∣
Φ12 = Φ̄1.

∣∣∣
(7.38)

Moreover, from the conservation of mCS and yCS we find
xa =

eyCS

√
S

(
ˆ̄p− +

√
m2

CS + ˆ̄p− ˆ̄p+ − T1

(
ˆ̄p− + ˆ̄p+

)
+ T 2

1

) ∣∣∣∣∣
xb =

e−yCS

√
S

(
ˆ̄p+ +

√
m2

CS + ˆ̄p− ˆ̄p+ − T1

(
ˆ̄p− + ˆ̄p+

)
+ T 2

1

)
.

∣∣∣∣∣
(7.39)

In this case we define

z =
p0

1

p0
1 + p0

2

(7.40)

and φ as the azimuthal angle of p2 in the center-of-mass frame of p12. After
calling

β0 =
|~p12|
p0

12

(7.41)

the speed of p12 in the laboratory frame, we can then rewrite

z =
1− β0y

2
, (7.42)

where y = cos θ, and θ and φ are the polar angles of p2 in the center-of-mass
frame of p12. These definitions allow us to have two simple expressions for p1

and p2 in the center-of-mass frame of p12. The corresponding formulae in the
laboratory frame can then be obtained after the appropriate Lorentz transfor-
mation.

7.5 Integration limits

The phase space for the production of the color singlet with two final-state
partons reads

dΦ2 = dxa dxb

n∏
i=1

d4qi

(2π)
3 δ
(
q2
i −m2

i

)
θ
(
q0
i

) d4p1

(2π)
3 δ
(
p2

1

)
θ
(
p0

1

)
× d4p2

(2π)
3 δ
(
p2

2

)
θ
(
p0

2

)
(2π)

4
δ4

(
n∑
i=1

qi + p1 + p2 − xaPa − xbPb
)
.

(7.43)
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As we did for the 1→ 0 mapping, we first want to write it as the product of the
phase space with the undecayed color singlet times the phase space dΦCS for the
decay presented in eq. (6.7). To do this, we multiply the above expression by

dm2
CS

2π

d4q

(2π)
3 δ
(
q2 −m2

CS

)
θ
(
q0
)

(2π)
4
δ4

(
n∑
i=1

qi − q
)

= 1, (7.44)

so that we can rewrite dΦ2 as

dΦ2 = dxa dxb
dm2

CS

2π

d4q

(2π)
3 δ
(
q2 −m2

CS

)
θ
(
q0
) d4p1

(2π)
3 δ
(
p2

1

)
θ
(
p0

1

)
× d4p2

(2π)
3 δ
(
p2

2

)
θ
(
p0

2

)
(2π)

4
δ4(q + p1 + p2 − xaPa − xbPb) dΦCS

(
m2

CS

)
.

(7.45)

7.5.1 ISRA

To compute the limits on z and φ in the ISRA case, it will prove to be useful to
use the + and − components of the momenta as integration variables. For this
reason we begin this section by writing the formulae that, given a momentum
p, allow to write

d4p =
1

2
dp− dp+ dpx dpy, (7.46)

and
δ4(p) = 2 δ

(
p−
)
δ
(
p+
)
δ(px) δ(py) . (7.47)

in terms of p+ and p−. Furthermore, given a mass m ≥ 0, it can be seen that

δ
(
p2 −m2

)
θ
(
p0
)

= δ
(
p−p+ − p2

T −m2
)
θ
(
p−
)
θ
(
p+
)
. (7.48)

Constraints imposed by the mapping

At this point, we exploit the invariance of the phase space under Lorentz trans-
formations to rewrite the expression for dΦ2 given in eq. (7.45) as

dΦ2 = dxa dxb
dm2

CS

2π

d4q

(2π)
3 δ
(
q2 −m2

CS

)
θ
(
q0
) d4p̂1

(2π)
3 δ
(
p̂2

1

)
θ
(
p̂0

1

)
× d4p̂2

(2π)
3 δ
(
p̂2

2

)
θ
(
p̂0

2

)
2 (2π)

4
δ

(
p̂−1 + p̂−2 +

√
q−q+ −

√
Sxa

√
q+

q−

)

× δ
(
p̂+

1 + p̂+
2 +

√
q−q+ −

√
Sxb

√
q−

q+

)
× δ(p̂1x + p̂2x + qx) δ(p̂1y + p̂2y + qy) dΦCS

(
m2

CS

)
, (7.49)
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where we used the formula of eq. (7.47) to decompose the δ function. After
imposing

qx = − p̂1x − p̂2x

∣∣∣
qy = − p̂1y − p̂2y

p̂2
1T = p̂−1 p̂

+
1

∣∣∣
p̂2

2T = p̂−2 p̂
+
2 .

(7.50)

we can use four of the δ functions appearing in the expression above to remove
the corresponding integrals, so that we arrive to

dΦ2 = dxa dxb dm
2
CS dq

− dq+ θ
(
q−
)
θ
(
q+
) dp̂−1 dp̂+

1 dΦ1

4 (2π)
3 θ

(
p̂−1
)
θ
(
p̂+

1

)
× dp̂−2 dp̂

+
2 dφ

4 (2π)
3 θ

(
p̂−2
)
θ
(
p̂+

2

)
δ

(
p̂−1 + p̂−2 +

√
q−q+ −

√
Sxa

√
q+

q−

)

× δ
(
p̂+

1 + p̂+
2 +

√
q−q+ −

√
Sxb

√
q−

q+

)
dΦCS

(
m2

CS

)
× δ
(
q−q+ − p̂−1 p̂+

1 − p̂−2 p̂+
2 − 2

√
p̂−1 p̂

+
1 p̂
−
2 p̂

+
2 cos(φ− Φ1)−m2

CS

)
,

(7.51)

where we also made use of the formulae of eqs. (7.46) and (7.48) to simplify the
expression. At this point we introduce the new variables q−q+ and

yCS =
1

2
log

(
q−

q+

)
, (7.52)

and rewrite

dq− dq+ θ
(
q−
)
θ
(
q+
)

= d
(
q−q+

)
dyCS θ

(
q−q+

)
. (7.53)

Since the δ function appearing in the last line of above expression for the phase
space already imposes that

q−q+ ≥
(√

p̂−1 p̂
+
1 −

√
p̂−2 p̂

+
2

)2

+m2
CS ≥ 0, (7.54)

we can remove the factor θ(q−q+). Finally, after setting

xa =
eyCS

√
S

(
p̂−1 + p̂−2 +

√
q−q+

)
(7.55)

xb =
e−yCS

√
S

(
p̂+

1 + p̂+
2 +

√
q−q+

)
, (7.56)

and

q−q+ = p̂−1 p̂
+
1 + p̂−2 p̂

+
2 + 2

√
p̂−1 p̂

+
1 p̂
−
2 p̂

+
2 cos(φ− Φ1) +m2

CS. (7.57)
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we can use the last three remaining δ functions to remove three more integrals,
and arrive to

dΦ2 =
dm2

CS dyCS

S

dp̂−1 dp̂
+
1 dΦ1

4 (2π)
3 θ

(
p̂−1
)
θ
(
p̂+

1

)dp̂−2 dp̂+
2 dφ

4 (2π)
3 θ

(
p̂−2
)
θ
(
p̂+

2

)
dΦCS

(
m2

CS

)
× θ
(√

Se−yCS − p̂−1 − p̂−2 −
√
q−q+

)
θ
(√

SeyCS − p̂+
1 − p̂+

2 −
√
q−q+

)
,

(7.58)

with the two θ functions coming from the requirements that xa and xb are
smaller than 1. The integration limits on z and φ are then given by the condi-
tions that { √

q−q+ <
√
Se−yCS − p̂−1 − p̂−2

∣∣∣√
q−q+ <

√
SeyCS − p̂+

1 − p̂+
2 .

(7.59)

The reason why it is useful to write the integral in such a way is that the integra-
tion variables mCS, yCS, p̂−1 , p̂+

1 , Φ1 and p̂+
2 are only functions of the underlying

phase space dΦ1 and the one-jettiness T1, and we can directly associate p̂−2 to
the expression of z given in eq. (7.33). The integration limits we are looking
for are then given by the solutions of the two above inequalities with respect to
φ, which exist only if both the right-hand sides of the inequalities are positive.
Since the second one does not depend neither on z nor on φ, meaning that
it does not provide any condition on such variables, we can limit ourselves to
requiring that

p̂−2 <
√
Se−yCS − p̂−1 . (7.60)

Finally, after solving the inequalities, we find that φ is constrained by the con-
ditions

cos(φ− Φ1) <

(√
Se−yCS − p̂−1 − p̂−2

)2

− p̂−1 p̂+
1 − p̂−2 p̂+

2 −m2
CS

2
√
p̂−1 p̂

+
1 p̂
−
2 p̂

+
2

cos(φ− Φ1) <

(√
SeyCS − p̂+

1 − p̂+
2

)2

− p̂−1 p̂+
1 − p̂−2 p̂+

2 −m2
CS

2
√
p̂−1 p̂

+
1 p̂
−
2 p̂

+
2

.

(7.61)

Constraints imposed by the slicing of the phase space

At this point, we have to keep in mind that the integral over z and φ should cover
only the phase space where the one-jettiness, among the five possible different
expressions presented in eqs. (7.2) and (7.4), reads T1 = p̂+

2 , and the zero-
jettiness, among the four possible different expressions presented in eq. (7.8),
reads T0 = p̂+

1 + p̂+
2 for the Same Hemisphere ISRA case or T0 = p̂−1 + p̂+

2 for
the Opposite Hemisphere ISRA case. This imposes further constraints on z and
φ to be combined with those already derived in eqs. (7.60) and (7.61). The
condition that

T1 = p̂+
2 < min

(
p̂+

1 , p̂
−
1 , p̂

−
2 , p̂

0
12 −

∣∣∣~̂p12

∣∣∣) . (7.62)
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gives us four inequalities, of which only two depend on z and φ. By solving
them, we find the two further constraints

p̂−2 > p̂+
2 (7.63)

and

cos(φ− Φ1) <
p̂+

1

(
p̂−2 − p̂+

2

)
− p̂−2 p̂+

2

2
√
p̂−1 p̂

+
1 p̂
−
2 p̂

+
2

. (7.64)

After enforcing the constraint given in eq. (7.63), the condition on the zero-
jettiness simplifies to p̂+

1 < p̂−1 in the Same Hemisphere ISRA case and p̂−1 < p̂+
1

in the Opposite Hemisphere ISRA case. Since neither p̂−1 nor p̂+
1 depend on z

and φ, this does not impose any further constraint on such variables.

7.5.2 FSR

Constraints imposed by the mapping

As we did for the ISRA case in the section above, we start from the expression
for dΦ2 given in eq. (7.45). This time we multiply it by

dM2

2π

d4p12

(2π)
3 δ
(
p2

12 −M2
)
θ
(
p0

12

)
(2π)

4
δ4(p1 + p2 − p12) = 1, (7.65)

so that we can write

dΦ2 = dxa dxb
dm2

CS

2π

dM2

2π

d4q

(2π)
3 δ
(
q2 −m2

CS

)
θ
(
q0
) d4p12

(2π)
3 δ
(
p2

12 −M2
)
θ
(
p0

12

)
× (2π)

4
δ4(q + p12 − xaPa − xbPb) dΦrad

(
M2
)
dΦCS

(
m2

CS

)
, (7.66)

factorizing out the radiation phase space

dΦrad =
d4p1

(2π)
3 δ
(
p2

1

)
θ
(
p0

1

) d4p2

(2π)
3 δ
(
p2

2

)
θ
(
p0

2

)
(2π)

4
δ4(p1 + p2 − p12) =

dy dφ

32π2
,

(7.67)
where y = cos θ, and θ and φ are the polar angles of p2 in the center-of-mass
frame of p12. At this point, we follow the steps that took us from eq. (7.45) to
eq. (7.58), which allows us to write

dΦ2 =
dm2

CS dyCS

S

dM2

2π

dp̂−12 dp̂
+
12 dΦ

4 (2π)
3 θ

(
p̂−12

)
θ
(
p̂+

12

)
dΦrad

(
M2
)
dΦCS

(
m2

CS

)
× θ
(√

Se−yCS − p̂−12 −
√
q−q+

)
θ
(√

SeyCS − p̂+
12 −

√
q−q+

)
,

(7.68)

where
q−q+ = p̂−12p̂

+
12 −M2 +m2

CS. (7.69)
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Since the dependence on z and φ is entirely within the radiation phase space
dΦrad and y ∈ (−1, 1), from the expression of z given in eq. (7.42), at fixed Φ1

and T1 the integration limits imposed by the FSR mapping on z and φ are

z ∈
(

1− β0

2
,

1 + β0

2

)
φ ∈ (0, 2π) . (7.70)

Constraints imposed by the slicing of the phase space

As we did for the ISRA case, we now need to impose that the expression for T1

in the FSR case, given in eq. (7.2), is smaller that those we would use in the
ISR case, given in eq. (7.4), or in other words

T1 < min
(
p̂+

1 , p̂
−
1 , p̂

+
2 , p̂

−
2

)
. (7.71)

However, to do that, we need first to define the offset of the azimuthal angle φ.
We begin by introducing Θ and Φ as the polar angles of p12 in the laboratory
frame, and Y = cos Θ, so that we can write

p12 =
M√

1− β2
0


1

β0


√

1− Y 2 cos Φ√
1− Y 2 sin Φ

Y


 . (7.72)

At this point we can express p1 and p2 in terms of M , β0, Y , Φ, y and φ,
thus specifying the offset of φ. Since such expressions are lengthy, we report
them separately in page 55. From them we can finally write the four additional
constraints that y and φ needs to fulfill as

e±yCS
M

2

[
1− β0y ∓ (β0 − y)Y√

1− β2
0

∓
√

1− y2
√

1− Y 2 cos(φ− Φ)

]
> T1

e±yCS
M

2

[
1 + β0y ∓ (β0 + y)Y√

1− β2
0

±
√

1− y2
√

1− Y 2 cos(φ− Φ)

]
> T1

(7.73)
where the expressions for β0 and Y in terms of the integration variables used in
eq. (7.68) are given by

β0 =

√(
eyCS p̂−12 − e−yCS p̂+

12

)2
+ p̂−12p̂

+
12 −M2

eyCS p̂−12 + e−yCS p̂+
12

(7.74)

and

Y =
eyCS p̂−12 − e−yCS p̂+

12√(
eyCS p̂−12 − e−yCS p̂+

12

)2
+ p̂−12p̂

+
12 −M2

. (7.75)
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By solving the above inequalities with respect to φ we find the four additional
constraints to impose to be

cos(φ− Φ) <
1√

1− y2
√

1− Y 2

(
1− β0y − (β0 − y)Y√

1− β2
0

− 2T1

M
e−yCS

)

cos(φ− Φ) > − 1√
1− y2

√
1− Y 2

(
1− β0y + (β0 − y)Y√

1− β2
0

− 2T1

M
eyCS

)

cos(φ− Φ) > − 1√
1− y2

√
1− Y 2

(
1 + β0y − (β0 + y)Y√

1− β2
0

− 2T1

M
e−yCS

)

cos(φ− Φ) <
1√

1− y2
√

1− Y 2

(
1 + β0y + (β0 + y)Y√

1− β2
0

− 2T1

M
eyCS

)
.

(7.76)

Constraints imposed by the signature

In the case where there are two gluons in the final state, we always call p2 the
one with less energy, so that we need to impose the extra condition

z >
1

2
. (7.77)

7.6 Jacobian

Starting from the expression of eq. (6.6) and following the same steps that took
us from eq. (7.45) to eq. (7.58), we can write the phase space with one final-state
partons as

dΦ1 = dm2
CS dyCS

d ˆ̄p−1 d ˆ̄p+
1 dΦ̄1

4 (2π)
3 θ

(
ˆ̄p−1
)
θ
(
ˆ̄p+
1

)
dΦCS

(
m2

CS

)
× θ
(√

Se−yCS − ˆ̄p−1 −
√
q̄−q̄+

)
θ
(√

SeyCS − ˆ̄p+
1 −

√
q̄−q̄+

)
,

(7.78)

where
q̄−q̄+ = ˆ̄p−1 ˆ̄p+

1 +m2
CS. (7.79)

7.6.1 ISRA

At this point, we need to factorize out the underlying phase space dΦ1 pre-
sented above from the expression of dΦ2 given in eq. (7.58). We begin by using
eqs. (7.34) and (7.37) to rewrite

dp̂−1 dp̂
+
1 dΦ1 = d ˆ̄p−1 d ˆ̄p+

1 dΦ̄1

(
1− T1

T0

)
. (7.80)
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Since dp̂+
2 = dT1 and, from eq. (7.33),

dp̂−2 =
√
Sx̄ae

−yCS
dz

z2
, (7.81)

we can finally write

dΦ2

dΦ1 dT1 dz dφ
=

√
Sx̄ae

−yCS

4 (2π)
3

(
1− T1

T0

)
1

z2
. (7.82)

7.6.2 FSR

We start the derivation of the Jacobian from the expression for dΦ2 given in
eq. (7.68). From eq. (7.38) we can write

dp̂−12 dp̂
+
12 dΦ = d ˆ̄p−1 d ˆ̄p+

1 dΦ̄1 (7.83)

and
dM2

2π
=
dT1

2π

(
ˆ̄p− + ˆ̄p+ − 2T1

)
. (7.84)

Furthermore, from eqs. (7.67) and (7.42)

dΦrad

(
M2
)

=
dz dφ

4 (2π)
2
β0

, (7.85)

so that we can finally write

dΦ2

dΦ1 dT1 dz dφ
=

ˆ̄p− + ˆ̄p+ − 2T1

4 (2π)
3
β0

. (7.86)
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Chapter 8

IR subtraction in the
non-singular cumulant

In the fixed-order contribution to the 0-jet exclusive differential cross section,
we have to deal with the subtraction of the infrared divergences appearing in
the virtual and real matrix elements. In Geneva this problem is solved by
performing a Monte Carlo integration on the radiation phase space of eq. (6.11)
parametrized with the FKS variables ξ, y and φ. However, with respect to
a pure fixed-order calculation we have a further complication due to the fact
that we need to move the real contributions with T0 > T cut

0 to the 1-jet cross
section. This amounts to giving a logarithmically-enhanced dependence on T cut

0

to the fixed-order term, which will be cancelled by the corresponding resummed-
expanded term. There are then two cancellations of different nature inside
the non-singular contribution: one is the proper subtraction of the infrared
divergences within the fixed-order term, while the other is the cancellation of
the logarithmically-enhanced (with respect to T cut

0 ) terms between the fixed-
order and resummed-expanded contributions.

The easiest way of performing the infrared subtraction discussed above would
be just to implement a θ(T cut

0 − T0) function that sets to zero the real contri-
butions with T0 > T cut

0 . In this section we will instead try to optimize the
calculation by performing an analytic separation of the terms that are not
power-suppressed with respect to T cut

0 and cancel in the sum with the resummed-
expanded contribution (which we will call counterterms) from those that enter
in the proper infrared subtraction. The first are numerically by far the larger
contribution, but their integration requires a high precision (comparable to that
used in the cumulant of the resummed-expanded term). The second can instead
become significantly time consuming from the computational point of view, since
they depend on the real matrix elements. Their separation allows us to obtain
two computational improvements.

1. By setting differently the number of points used in the integration we
can keep the computational time under control without sacrificing the

58



precision of the integral of the counterterms.

2. Since the counterterms do not depend on the real matrix elements, we can
perform the integration over y analytically.

To separate the two contributions, we need to compute the integration limits
on ξ, y and φ taking into account the constraint T0 > T cut

0 . Furthermore, since
we want to perform the integration over y analytically, we choose to compute
the limits on y at fixed ξ, instead of the opposite.

8.1 Integration limits

The constraints imposed by the 1 → 0 mapping presented in section 6 on the
FKS variables are given by eq. (6.25), and, using eqs. (6.20) and (6.21), can be
rewritten as 

xa(y) =
x̄a√
1− ξ

√
2− ξ (1− y)

2− ξ (1 + y)
< 1

xb(y) =
x̄b√
1− ξ

√
2− ξ (1 + y)

2− ξ (1− y)
< 1,

(8.1)

where
x̄a =

mCS√
S
eyCS x̄b =

mCS√
S
e−yCS . (8.2)

We notice that xa and xb are respectively a growing and a decreasing function
of y in the interval y ∈ (−1, 1), with

xa : (−1, 1)→
(
x̄a,

x̄a
1− ξ

)
xb : (−1, 1)→

(
x̄b,

x̄b
1− ξ

)
. (8.3)

In order for both the inequalities to be satisfied we need to impose that the
point y where xa(y) = xb(y) = x is such that x < 1, which imposes that

ξ ∈ (0, 1− x̄ax̄b) . (8.4)

For a fixed ξ in the above range, the integration limits for y then read

−min

(
1,

2− ξ
ξ

1− x̄2
b − ξ

1 + x̄2
b − ξ

)
< y < min

(
1,

2− ξ
ξ

1− x̄2
a − ξ

1 + x̄2
a − ξ

)
. (8.5)

The constraints imposed by the inequalities of eq. (8.1) discard the points on
the left of the blue and orange curves presented in figure 8.1.

When integrating over the radiation phase space for a given underlying con-
figuration Φ0 we need to divide dΦ1 into different regions to deal with the
different infrared limits. In this case there are two singular regions (ISRA and
ISRB), separated by the condition given in eq. (6.2), which, in terms of the
FKS variables, simply reads

y > 0. (8.6)
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Figure 8.1: The four constraints on ξ and y.

In the rest of this section we will focus on the ISRA case (identified by the above
equation), since the ISRB one can be obtained from a parity transformation.
The above condition selects the points above the green line in figure 8.1. This
new constraint on y introduces the possibility that the upper integration limit
on ξ is dictated by the crossing of the blue and green lines of figure 8.1, instead
of the blue and orange ones. This imposes the new constraint

ξ < 1− x̄2
a, (8.7)

to be combined with those given in eq. (8.4).
We are now left with imposing the constraint T0 < T cut

0 , which from eq. (6.15)
reads

T0(y) =
mCS

2

ξ (1− y)√
1− ξ

√
2− ξ (1 + y)

2− ξ (1− y)
< T cut

0 . (8.8)

Since T0 is a monotonically decreasing function of y with

T0 : (0, 1)→
(

0,
mCS

2

ξ√
1− ξ

)
, (8.9)

it sets an additional lower limit on y if

mCS

2

ξ√
1− ξ > T

cut

0 . (8.10)

60



After introducing, for ease of notation, the auxiliary variables

x = ξ (1− y) ω = 1− ξ κ =
2T cut

0

mCS

, (8.11)

such a limit on y is given by the real solution to the cubic equation

x3 + 2ωx2 + κ2ωx− 2κ2ω = 0, (8.12)

which, after defining

z = x+
2

3
ω, (8.13)

can be further simplified to

z3 + pz + q = 0, (8.14)

where we have introduced

p = −ω
(

4

3
ω − κ2

)
q = 2ω

[
8

27
ω2 − κ2

(
1 +

ω

3

)]
. (8.15)

The three complex solutions to eq. (8.14) are given by

z =
3

√
−q

2
+

√
q2

4
+
p3

27
−

p

3

3

√
−q

2
+

√
q2

4
+
p3

27

, (8.16)

where the square and cubic roots have to be understood as complex multivalued
functions. There are then two possibilities.

1. If
q2

4
+
p3

27
> 0 (8.17)

the argument of the cubic root is real and we can simplify the expression
of eq. (8.16) to be

z = e
2
3kπi

3

√
−q

2
+

√
q2

4
+
p3

27
+ e−

2
3kπi

3

√
−q

2
−
√
q2

4
+
p3

27
, (8.18)

where k can be any integer number and this time the squared and cubic
roots have to be understood as real functions. Out of the three possible
values for z only one (that with k = 0) is real.

2. If instead
q2

4
+
p3

27
< 0 (8.19)
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the argument of the cubic root is not real anymore, but its squared mod-
ulus is equal to −π/3, so that we can write

3

√
−q

2
+

√
q2

4
+
p3

27
= ei(θ+

2
3kπ)

√
−p

3
, (8.20)

for some real phase θ that we can always choose such that

− π

3
< θ <

π

3
. (8.21)

At this point the expression of eq. (8.16) can be simplified to

z = 2 cos

(
θ +

2

3
kπ

)√
−p

3
, (8.22)

which gives us three different real solutions.

We now want to show that the solution with k = 0 (which we will call principal
solution) provides the lower integration limit on y we are looking for. Since such
a solution must be a continuous curve parametrized by the variables x̄a, κ and
ω, we will provide the demonstration in two steps. First, we will show that the
principal solution can never reach the boundaries of the principal region (where
θ = ±π/3), and then we will prove that there exist one choice of the parameters
for which the principal solution is the only real solution (meaning that it is the
solution we are looking for). The principal solution would reach the boundaries
of the principal region only if the argument of the cubic root became real and
negative. This would mean that

q2

4
+
p3

27
> 0

∣∣∣∣∣
−q

2
+

√
q2

4
+
p3

27
< 0.

∣∣∣∣∣
(8.23)

By solving the above inequalities in terms of κ and ω, we find that there are no
solutions. It can be immediately seen that in the limit of high κ the argument
of the cubic root is a positive number, meaning that the principal solution is
the only real solution. This completes the demonstration.

This new constraint sets the integration region on y to be above the red
curve in figure 8.1. However, it also introduces the possibility that the upper
integration limit on ξ is dictated by the crossing of the blue and red lines of
figure 8.1, instead of the blue and orange, or the blue and green ones. Similarly
to what we did for xa(y) and xb(y), we have to impose that the point y for which
x = xa(y) = T0(y) /T cut

0 is such that x < 1. This imposes the new constraint

ξ < 1− x̄a
(
−κx̄a +

√
16x̄2

a + 8κx̄a + κ2x̄2
a

2 (2x̄a + κ)

)
, (8.24)

to be combined with those given in eqs. (8.4) and (8.7).
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8.2 Fixed-order cumulant

In this section we consider a generic process of diboson production. We call p̄a
and p̄b the flavors of the incoming partons in the LO process and x̄a and x̄b
the fraction of hadronic momenta they carry. We also call fai (x) and f bi (x) the
PDFs of the parton i carrying a fraction of momentum x of the hadrons a and
b respectively, and H(0) the LO amplitude for the process. The cumulant of the
fixed-order is given by the sum of three independently finite contributions: the
soft-virtual term, the collinear remnants, and the IR-subtracted real amplitude.

8.2.1 Soft-virtual contribution

The soft-virtual contribution can be recovered from eq. (2.99) of ref. [9] and in
our case is given by

σsoftvirt = fap̄a(x̄a) f bp̄b(x̄b)
αS

2π

{[
Ck

(
log2

(
m2

CS

Q2

)
− π2

3

)
− 2γk log

(
µ2

F

Q2

)]
H(0) +H

(1)
OL

(
µ2

R, Q
2
)}

, (8.25)

where µF is the factorization scale, H
(1)
OL

(
µ2

R, Q
2
)

is the one-loop amplitude evalu-
ated at the renormalization scale µR and subtraction scale Q in the subtraction
scheme used by OpenLoops (see eq. (4.2) of ref. [33]), k = q for the quark-
initiated processes, k = g for the gluon-initiated ones, and

Cq = CF

∣∣∣
Cg = CA

∣∣ γq =
3

2
CF

∣∣∣∣
γg =

11CA − 4TFnf

6
.

∣∣∣∣ (8.26)

Since

H
(1)
OL

(
µ2

R, Q
2
)

= H
(1)

MS

(
m2

CS,m
2
CS

)
+

[
− Ck

(
log2

(
Q2

m2
CS

)
+
π2

6

)
− 2γk log

(
Q2

m2
CS

)
+ nβ0 log

(
µ2

R

m2
CS

)]
H(0), (8.27)

where n is the power of the strong coupling in the LO amplitude, we can rewrite
the soft-virtual contribution given in eq. (8.25) as

σsoftvirt = fap̄a(x̄a) f bp̄b(x̄b)
αS

2π

{[
−π

2

2
Ck − 2γk log

(
µ2

F

m2
CS

)
+ nβ0 log

(
µ2

R

m2
CS

)]
H(0) +H

(1)

MS

(
m2

CS,m
2
CS

)}
. (8.28)
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∣∣∣ Real
∣∣∣ ∣∣∣ Collinear

∣∣∣∣∣∣ξ ∈ (0, ξmax)
∣∣∣ ∣∣∣ξ ∈ (0, 1− x̄a)

∣∣∣∣∣∣y ∈ (ymin, ymax)
∣∣∣ ∣∣∣y ∈ (−1, 1)

∣∣∣∣∣∣ Soft
∣∣∣ ∣∣∣ Soft-Collinear

∣∣∣∣∣∣ξ ∈ (0, 1)
∣∣∣ ∣∣∣ξ ∈ (0, 1)

∣∣∣∣∣∣y ∈ (0, 1)
∣∣∣ ∣∣∣y ∈ (−1, 1)

∣∣∣
Table 8.1: Original integration limits on ξ and y for the unsubtracted real and
the soft, collinear and soft-collinear counterterms. The limits of the same color
should be made the same to guarantee the subtraction to be local.

8.2.2 Collinear remnants contribution

The expression for the collinear remnants can be derived from eq. (2.102) of [9]
and read

σcollremn =
αS

2π
f bp̄b(x̄b)H

(0)

∫ 1

x̄a

dz

z

∑
j

faj

( x̄a
z

){
(1− z)PAP

p̄aj(z)

×
[
L0(1− z) log

(
m2

CS

zµ2
F

)
+ 2L1(1− z)

]
+ P ′p̄aj(z)

}
, (8.29)

where PAP

kj and P ′kj are given in eq. (3.24) and we have defined

Ln(x) = lim
β→0

[
θ(x− β)

logn x

x
+ δ(x− β)

logn+1 β

n+ 1

]
. (8.30)

8.2.3 Subtracted real contribution

The subtraction of the infrared counterterms from the real contribution is done
in Geneva with a Monte Carlo integration after parametrizing the radiation
phase space with the FKS variables ξ, y and φ. For a given Φ0 configuration
the integral of the real contribution runs over all the Φ1 configurations with
T0 < T cut

0 whose projection is Φ0. These constraints restrict the integration to
the region where ξ ∈ (0, ξmax) and y ∈ (ymin, ymax), where ξmax is a function of
Φ0 and T cut

0 and ymin and ymax are functions of Φ0, T cut
0 and ξ. However, in the

FKS parametrization the integration limits on ξ and y for the collinear, soft and
soft-collinear counterterms are different. We report the values in the case of an
ISRA region in table 8.1. Since in the Monte Carlo integration the variables
ξ and y are built from two random numbers belonging to the interval (0, 1),
having different integration limits could spoil the locality of the subtraction. In
particular, we have highlighted with the same colors the integration limits which
should be the same to guarantee such locality. In the following paragraphs we
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will see how we can change the integration limits to become equal to those for
the real contribution by changing the integrand function without affecting the
subtraction.

Real contribution

The contribution to the cross section of the real matrix elements depends on the
specific process we are considering. However, in the soft (ξ → 0) and collinear
(y → 1 or y → −1) limit the real amplitude for the production of a color singlet
averaged over the azimuthal angle φ of the radiation factorizes on the Born
amplitude H(0) as

RkjIR =
32παS

m2
CS

1− ξ
ξ (1− y2)

PAP

kj (1− ξ)H(0). (8.31)

Furthermore, we can rewrite the radiation phase space of eq. (6.11) as

dΦrad =
m2

CS

64π3

ξ

(1− ξ)2 dξ dy dφ, (8.32)

where this time we have included in the definition of dΦrad also the factor (1− ξ)
coming from the ratio between dxa dxb and dx̄a dx̄b. At this point, the real
contribution to the non-singular cumulant in such an approximation can be
written as

σareal = f bp̄b(x̄b)
αS

2π
H(0)

∫ 1

εξ

dξ
∑
j

faj

(
x̄a

1− ξ

)
PAP
p̄aj

(1− ξ)
1− ξ

∫ 1−εy

0

dy
2

1− y2

× θ(1− xa) θ(1− xb) θ(T cut

0 − T0) , (8.33)

where εξ and εy are technical cuts used to avoid numerical instabilities in the
infrared region. The three θ functions in the above expression enforce the con-
straints of eqs. (8.1) and (8.8) and set the integration limits on ξ to (0, ξmax)
and those on y to (ymin, ymax), which allows us to rewrite the integral as

σareal = f bp̄b(x̄b)
αS

2π
H(0)

∫ ξmax

0

dξ
∑
j

faj

(
x̄a

1− ξ

)
PAP
p̄aj

(1− ξ)
1− ξ θ(ξ − εξ)

×
∫ ymax

ymin

dy
2

1− y2
θ(1− y − εy) . (8.34)

Collinear counterterm

From the y → 1 limit of eq. (8.31) we can see that in the collinear limit the real
amplitude factorizes on the Born one as

Rp̄ajcoll =
16παS

m2
CS

1− ξ
ξ (1− y)

PAP

p̄aj(1− ξ)H(0). (8.35)
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Using the radiation phase space introduced in eq. (8.32), the collinear countert-
erm can then be written as

σacoll = −f bp̄b(x̄b)
αS

2π
H(0)

∫ 1−x̄a

εξ

dξ
∑
j

faj

(
x̄a

1− ξ

)
PAP
p̄aj

(1− ξ)
1− ξ

∫ 1−εy

−1

dy

1− y .

(8.36)
As described before, at this point we need to modify the integration limits
on y to match those of the real contribution. After noticing that for every
ξ ∈ (0, 1− x̄a) ymax = 1, in a fully general way we can change the range of
integration on y from (−1, 1− εy) to (ymin, 1) by exploiting the relation∫ 1−εy

−1

dy

1− y =

∫ 1

ymin

dy

1− y

[
θ(1− y − εy) +

1− y
1− ymin

log

(
2

1− ymin

)]
. (8.37)

Finally, if we take the limits of integration of ξ to be (0, 1− x̄a) and the limits
of integration of y to be (ymin, 1) the collinear counterevent reads

σacoll = −f bp̄b(x̄b)
αS

2π
H(0)

∫ 1−x̄a

0

dξ
∑
j

faj

(
x̄a

1− ξ

)
PAP
p̄aj

(1− ξ)
1− ξ θ(ξ − εξ)

×
∫ 1

ymin

dy

1− y

[
θ(1− y − εy) +

1− y
1− ymin

log

(
2

1− ymin

)]
. (8.38)

Soft counterterm

From the ξ → 0 limit of eqs. (8.31) and (8.32) we can see that in the soft limit
the real amplitude factorizes on the Born one as

Rsoft =
64παS

m2
CS

Ck
ξ2 (1− y2)

H(0), (8.39)

and the soft radiation phase space reads

dΦsoft

rad =
m2

CS

64π3
ξ dξ dy dφ. (8.40)

The soft counterterm can then be written as

σasoft = −fap̄a(x̄a) f bp̄b(x̄b)
αS

2π
2CkH

(0)

∫ 1

εξ

dξ

ξ

∫ 1−εy

0

dy
2

1− y2
. (8.41)

At this point we need to modify the integration limits on ξ and y to match those
of the real contribution. In this case we can change the range of integration on
ξ from (εξ, 1) to (0, ξmax) by exploiting the relation∫ 1

εξ

dξ

ξ
=

∫ ξmax

0

dξ

ξ

[
θ(ξ − εξ) +

ξ

ξmax

log

(
1

ξmax

)]
, (8.42)
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and that on y from (0, 1− εy) to (ymin, 1) by exploiting the relation∫ 1−εy

0

dy

1− y2
=

∫ 1

ymin

dy

1− y2

[
θ(1− y − εy) +

1− y2

2 (1− ymin)
log

(
1 + ymin

1− ymin

)]
.

(8.43)
This allows us to rewrite the soft counterterm as

σasoft = −fap̄a(x̄a) f bp̄b(x̄b)
αS

2π
2CkH

(0)

∫ ξmax

0

dξ

ξ

[
θ(ξ − εξ) +

ξ

ξmax

log

(
1

ξmax

)]
×
∫ 1

ymin

dy
2

1− y2

[
θ(1− y − εy) +

1− y2

2 (1− ymin)
log

(
1 + ymin

1− ymin

)]
. (8.44)

Soft-collinear counterterm

From the ξ → 0 and y → 1 limits of eqs. (8.31) we can see that in the soft-
collinear limit the real amplitude factorizes on the Born one as

Rsoftcoll =
32παS

m2
CS

Ck
ξ2 (1− y)

H(0). (8.45)

Using the soft radiation phase space given in eq. (8.40), the soft-collinear coun-
terterm can then be written as

σasoftcoll = fap̄a(x̄a) f bp̄b(x̄b)
αS

2π
2CkH

(0)

∫ 1

εξ

dξ

ξ

∫ 1−εy

−1

dy

1− y . (8.46)

By using eqs. (8.37) and (8.42) to change the integration limits on ξ from (εξ, 1)
to (0, ξmax) and those on y from (−1, 1− εy) to (ymin, 1), the soft-collinear coun-
terterm can be rewritten as

σasoftcoll = fap̄a(x̄a) f bp̄b(x̄b)
αS

2π
2CkH

(0)

∫ ξmax

0

dξ

ξ

[
θ(ξ − εξ) +

ξ

ξmax

log

(
1

ξmax

)]
×
∫ 1

ymin

dy

1− y

[
θ(1− y − εy) +

1− y
1− ymin

log

(
2

1− ymin

)]
. (8.47)

8.2.4 Bulk of the fixed-order cumulant

To separate the fixed-order cumulant into two integrals, we begin by summing
the real contribution in the limit of small T0 given in eq. (8.34) with the collinear
counterterm given in eq. (8.38)

dσareal + dσacoll = f bp̄b(x̄b)
αS

2π
H(0) dξ θ(ξ − εξ)

∑
j

faj

(
x̄a

1− ξ

)
PAP
p̄aj

(1− ξ)
1− ξ

× dy
[
θ(1− y − εy)

1 + y
− 1

1− ymin

log

(
2

1− ymin

)]
dφ

2π
,

(8.48)
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and the soft and soft-collinear counterterms given in eqs. (8.44) and (8.47)

dσasoft + dσasoftcoll = fap̄a(x̄a) f bp̄b(x̄b)
αS

2π
2CkH

(0) dξ

ξ

[
θ(ξ − εξ) +

ξ

ξmax

log

(
1

ξmax

)]
× dy

[
−θ(1− y − εy)

1 + y
+

1

1− ymin

log

(
2

1 + ymin

)]
dφ

2π
.

(8.49)

Both the above expressions are now finite in the collinear y → 1− limit. To
check the cancellation of the soft divergences, we take the ξ → 0+ limit of the
expression given in eq. (8.48)

dσareal + dσacoll = fap̄a(x̄a) f bp̄b(x̄b)
αS

2π
2CkH

(0) dξ

ξ
θ(ξ − εξ)

× dy
[
θ(1− y − εy)

1 + y
− 1

1− ymin

log

(
2

1− ymin

)]
dφ

2π
,

(8.50)

and sum it with eq. (8.49), obtaining

dσareal + dσacoll + dσasoft + dσasoftcoll

= fap̄a(x̄a) f bp̄b(x̄b)
αS

2π
2CkH

(0) dξ

ξ
dy

{
− θ(ξ − εξ)

1− ymin

log

(
1 + ymin

1− ymin

)

+
ξ

ξmax

log

(
1

ξmax

)[
−θ(1− y − εy)

1 + y
+

1

1− ymin

log

(
2

1 + ymin

)]}
dφ

2π
.

(8.51)

The expression above is finite in the ξ → 0+ limit since, for ξ small enough,
ymin = 0. At this point, after integrating over y and φ, we define the bulk of the
real subtracted integral as

σabulk = −f bp̄b(x̄b)
αS

2π
H(0)

∫ 1−x̄a

εξ

dξ
∑
j

faj

(
x̄a

1− ξ

)
PAP
p̄aj

(1− ξ)
1− ξ log

(
1 + ymin

1− ymin

)
.

(8.52)
We now want to show that the above expression contains all the terms that

are not power suppressed in T cut
0 by matching them to those of the cumulant of

the resummed-expanded. In the limit of small T cut
0 the constraint on T0 given

in eq. (8.8) reduces to

T0 =
mCS

2
ξ (1− y) < T cut

0 . (8.53)

The expression above can be obtained equivalently by taking the limit ξ → 0+

or y → 1− in eq. (8.8), since those are the only limits for which T0 → 0. By
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solving the above inequality we find the expression of ymin in the limit of small
T cut

0 to be

ymin =

{
1− κ

ξ
if ξ > κ

0 if ξ < κ.
(8.54)

In such a limit the bulk of the integral of the subtracted real contribution
presented in eq. (8.52) becomes

σabulk = −f bp̄b(x̄b)
αS

2π
H(0)

∫ 1−x̄a

κ

dξ
∑
j

faj

(
x̄a

1− ξ

)
PAP
p̄aj

(1− ξ)
1− ξ log

(
2ξ

κ
− 1

)
.

(8.55)
At this point, we call

f(ξ) = −f bp̄b(x̄b)
αS

2π
H(0)

∑
j

faj

(
x̄a

1− ξ

)
ξ

1− ξ P
AP

p̄aj(1− ξ) (8.56)

and write
σabulk = σabulksoft + σabulkcoll, (8.57)

where

σabulksoft =

∫ 1

κ

dξ

ξ
f(0) log

(
2ξ

κ
− 1

)
(8.58)

and

σabulkcoll =

∫ 1−x̄a

κ

dξ

ξ
f(ξ) log

(
2ξ

κ
− 1

)
−
∫ 1

κ

dξ

ξ
f(0) log

(
2ξ

κ
− 1

)
. (8.59)

Since∫ 1

κ

dξ

ξ
log

(
2ξ

κ
− 1

)
= log

(
mCS

T cut
0

)
log

(
mCS

T cut
0

− 1

)
+ Li2

(
1− mCS

T cut
0

)
+
π2

12

=
1

2
log2

(
mCS

T cut
0

)
− π2

12
+O

(T cut
0

mCS

)
, (8.60)

the soft contribution to the bulk can be expressed as

σabulksoft = −fap̄a(x̄a) f bp̄b(x̄b)
αS

2π
H(0) Ck

[
log2

(
mCS

T cut
0

)
− π2

6

]
+O

(T cut
0

mCS

)
.

(8.61)
The collinear contribution can instead be written as

σabulkcoll = lim
β→0+

[∫ 1−x̄a

β

dξ

ξ
f(ξ) log

(
2ξ

κ

)
−
∫ 1

β

dξ

ξ
f(β) log

(
2ξ

κ

)]
+O(κ)

=

∫ 1−x̄a

0

dξ f(ξ)

[
log

(
mCS

T cut
0

)
L0(ξ) + L1(ξ)

]
+O

(T cut
0

mCS

)
(8.62)
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and, after introducing the new integration variable z = 1− ξ, it is finally equal
to

σabulkcoll = −f bp̄b(x̄b)
αS

2π
H(0)

∫ 1

x̄a

dz

z

∑
j

faj

( x̄a
z

)
(1− z)PAP

p̄aj(z)

×
[
log

(
mCS

T cut
0

)
L0(1− z) + L1(1− z)

]
+O

(T cut
0

mCS

)
. (8.63)

After summing half (since we are just considering ISRA emissions) of the soft-
virtual contribution from eq. (8.28) with the collinear remnants of eq. (8.29)
and the bulk of the IR-subtracted real integral given by eqs. (8.61) and (8.63),
we arrive to the final expression for the cumulant of the fixed-order contribution

σaFO(T cut

0 ) =
1

2
σsoftvirt + σacollremn + σabulksoft + σabulkcoll

=
αS

2π
f bp̄b(x̄b) H

(0)

{
fap̄a(x̄a)Ck

[
− log2

(
mCS

T cut
0

)
− π2

12

]
−
∫ 1

x̄a

dz

z

∑
j

faj

( x̄a
z

)
(1− z)PAP

p̄aj(z)

[
L0(1− z) log

(
mCS

T cut
0

)
− L1(1− z)

]

+

∫ 1

x̄a

dz

z

∑
j

faj

( x̄a
z

) [
P ′p̄aj(z)− PAP

p̄aj(z) log z
]}

+
αS

2π
fap̄a(x̄a) f bp̄b(x̄b)

1

2
H

(1)

MS
+O

(T cut
0

mCS

)
, (8.64)

where we have set µR = µF = mCS. We notice that the above expression exactly
matches the resummed-expanded cumulant presented in eq. (3.46) up to T cut

0

power corrections.
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Chapter 9

Phenomenological results

9.1 Physical parameters

The phenomenological results presented in this chapter were obtained for a
proton-proton collider with a hadronic center-of-mass energy

√
S = 13 TeV. We

used the PDF set NNPDF31_nnlo_as_0118 from LHAPDF [34] and the evolution
of αS provided by the same package, treating all the quarks except for the top
as massless (5-flavor scheme).

The EW constants are set in the Gµ scheme, where the Fermi constant Gµ
and the masses mW and mZ and widths ΓW and ΓZ of the W and Z bosons
are taken as independent parameters, from which the EW coupling αEW and
the Weinberg angle θW are derived. Furthermore, we work in the complex-mass
scheme [35] and define the complex masses of the V = W,Z bosons as

µ2
V = m2

V − iΓVmV. (9.1)

Using the above definition, the Weinberg angle θW is given by

cos2 θW =
µ2

W

µ2
Z

(9.2)

and the EW coupling reads

αEW =

√
2

π
Gµ
∣∣µ2

W sin2 θW

∣∣ . (9.3)

The physical distributions presented in this section were obtained setting the
Fermi constant to [36]

Gµ = 1.1663787× 10−5 GeV−2 (9.4)

and the on-shell masses and widths of the W and Z bosons to [37]

mOS
W = 80.379 GeV ΓOS

W = 2.085 GeV

mOS
Z = 91.1876 GeV ΓOS

Z = 2.4952 GeV.
(9.5)
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Finally, following the prescription of ref. [38], the pole masses and widths of
the V = W,Z bosons are obtained from the corresponding on-shell masses and
widths as

m2
V =

(mOS
V )

2

(mOS
V )

2
+ (ΓOS

V )
2 Γ2

V =
(ΓOS

V )
2

(mOS
V )

2
+ (ΓOS

V )
2 . (9.6)

Starting from the order α2
S in the strong coupling expansion, Feynman dia-

grams with top-quark loops appear. To evaluate them, we set the mass of the
top quark to [39]

mt = 173.1 GeV. (9.7)

Since such diagrams may contain Higgs-boson propagators, we set the mass mH

and width ΓH of the Higgs boson to [40]

mH = 125 GeV ΓH = 4.07× 10−3 GeV. (9.8)

9.2 External code and theoretical parameters

The phase space for the process is generated by the Monte Carlo integrator
Munich, also used in the Matrix NNLO calculations [41]. The matrix elements
up to one loop are instead computed by OpenLoops2 [33, 42, 43], while those
with two loops were implemented analytically within Geneva starting from the
master integrals provided by the VVamp code [44].

The phenomenological distributions presented in this chapter were obtained
using the 2 → 1 mapping that does not preserve the transverse momentum
qT of the color singlet (see section 7), and setting the N -jettiness resolution
parameters appearing in the Geneva formulae (see eqs. (4.17), (4.26) and (4.27))
to

T cut

0 = 1 GeV T cut

1 = 1 GeV. (9.9)

The factorization and renormalization scales are set to the mass of the color
singlet and the theoretical uncertainties are estimated through a 3-point scale
variation where such scales are multiplied and divided by a factor K = 1/2, 1, 2
and the minimum and maximum results are taken as the envelope of the uncer-
tainties.

9.3 Analysis cuts

In the following we will present distributions for two different final-state signa-
tures associated to the production of two Z bosons, for which we define two sets
of phase-space cuts.

1. The different-flavor signature p p→ e− e+ µ− µ+. In this case, we include
in the definition of the cross section only the configurations where the
masses of the two lepton-antilepton pairs me−e+ and mµ−µ+ are in the
range

50 GeV < m`−`+ < 150 GeV. (9.10)

72



Figure 9.1: Matrix and Geneva NLO distributions for the transverse momen-
tum pTe− of the electron and the mass m4` of the 4-lepton system in the process
p p → e− e+ µ− µ+ + X. The bands represent the theoretical uncertainties es-
timated through three-point scale variations. The lower panes show the ratio
between the two curves.

This ensures the removal of the EW singularities in the limit m`−`+ → 0.

2. The same-flavor signature p p→ e− e+ e− e+. In this case we remove the
EW singularities by asking that any electron-positron pair has mass

me−e+ > 4 GeV. (9.11)

At this point, we call Z1 the intermediate off-shell Z boson given by the
sum of the momenta of the electron-positron pair whose mass is the closest
to the physical mass mZ given in eq. (9.6), and Z2 the other pair. We limit
the definition of the cross section to the configurations where

60 GeV < mZ1
,mZ2

< 120 GeV. (9.12)

All the phase-space cuts described above are applied on observables that are
preserved by both the 1 → 0 and 2 → 1 mappings. Because of this, we can
apply them at the generation level (i.e. not generating the configurations that
are outside the boundaries), thus improving the efficiency of the event generator.

9.4 Validation

To validate the implementation of the code, we begin by comparing the two NLO
calculations on which the Geneva results are based to the fixed-order predictions
provided by Matrix. In figure 9.1 we show the comparison between the Matrix
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Figure 9.2: Matrix and Geneva NLO distributions for the transverse momen-
tum pTj and rapidity yj of the hardest jet in the process p p→ e− e+ µ− µ+ j+X.
The bands represent the theoretical uncertainties estimated through three-point
scale variations. The lower panes show the ratio between the two curves.

and Geneva NLO predictions for the transverse momentum of the electron and
the mass of the 4-lepton system in the process p p → e− e+ µ− µ+ + X. In
figure 9.2 instead we consider the process p p → e− e+ µ− µ+ j + X with one
additional jet in the final state and show the comparison between the Matrix

and Geneva NLO predictions for the transverse momentum and rapidity of such
a jet. Since we are just comparing two fixed-order calculation we expect and
observe a perfect agreement (within the statistical fluctuations) in both cases.

In figure 9.3 and 9.4 instead we compare the Geneva prediction before the
reweighting with the NNLO results from Matrix. In this case there are two
effects that can potentially introduce discrepancies between the two results.
The first is due to the missing O

(
α2

S

)
power corrections to the 0-jet exclusive

cross section. The second instead is due to the fact that the resummation moves
contributions across phase spaces with different parton multiplicities. Because
of this, only the observables that are preserved by both the 1 → 0 and 2 → 1
mappings are theoretically expected to have the same distribution they would
have in a fixed-order calculation. In figure 9.3 we show three distributions that
are preserved by the two mappings: the mass m4` and rapidity y4` of the 4-
lepton system, the mass me−e+ of the electron-positron pair and the rapidity
ye− of the electron. Despite the missing power corrections, all of them display
a good agreement with Matrix. Furthermore, we show the distribution for the
rapidity ye− of the electron, which, despite not being preserved by the mappings,
is in good agreement with the fixed-order predictions. This does not happen
instead for the two distributions presented in figure 9.4, namely the transverse
momenta of the electron-positron pair (pTe−e+) and the electron (pTe−), for
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Figure 9.3: Matrix and Geneva NNLO distributions for the mass m4` and
rapidity y4` of the 4-lepton system, the mass me−e+ of the electron-positron
pair and the rapidity ye− of the electron in the process p p→ e− e+ µ− µ+ +X.
The bands represent the theoretical uncertainties estimated through three-point
scale variations. The lower panes show the ratio between the two curves.
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Figure 9.4: Matrix and Geneva NNLO distributions for the transverse momenta
of the electron-positron pair (pTe−e+) and the electron (pTe−) in the process
p p → e− e+ µ− µ+ + X. The bands represent the theoretical uncertainties
estimated through three-point scale variations. The lower panes show the ratio
between the two curves.

which the effect of the resummation is larger.
Finally, in figure 9.5 we show the effects of the Pythia8 QCD parton shower

on the mass m4` and rapidity y4` of the four-lepton system, the transverse mo-
mentum pTe−e+ of the electron-positron pair, and the zero-jettiness T0. The
effects of the parton shower are small on all the inclusive distributions, as ex-
pected. Furthermore, the deviations introduced in the peak of the T0 distribu-
tion are numerically under control.

The same extensive checks were performed for the process where the four
final-state leptons have the same flavor p p→ e− e+ e− e+ +X.

9.5 Comparison with the experimental data

After validating the implementation of the code, we can now proceed to the
comparison with the data from the ATLAS [45] and CMS [46] experiments.
Differently from what we did in the previous section, in this case we let Pythia8

perform the QED shower, add the multiparton interactions (MPI) and perform
the hadronization of the produced partons as well as the subsequent hadron
decays. Following what is done in the two experimental analyses, we define the
momenta of the dressed leptons as the sum of their naked momenta (i.e. the
momentum that they have in the event) and the momenta of the photons within
a radius ∆R`γ = 0.1 from their direction. We refrain from describing all the
details of the two analyses (which can be found in the original papers), and limit
ourselves to reporting the relevant phase space fiducial cuts.
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Figure 9.5: Comparison between the partonic and showered Geneva NNLO dis-
tributions for the mass m4` and rapidity y4` of the four-lepton system, the trans-
verse momentum pTe−e+ of the electron-positron pair, and the zero-jettiness T0

in the process p p → e− e+ µ− µ+ + X. The bands represent the theoretical
uncertainties estimated through three-point scale variations. The lower panes
show the ratio between the two results.
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Figure 9.6: Comparison between the Geneva+Pythia8 NNLO distributions and
the ATLAS experimental results [45] for the transverse momentum pT,4` of the
four-lepton system, the absolute value |y4`| of the rapidity of the four-lepton
system, the absolute value |∆yZ1Z2

| of the rapidity difference between the two
reconstructed Z bosons, and the transverse momentum of the hardest lepton
in the process p p → `− `+ `′− `′+ + X. The bands represent the theoretical
uncertainties estimated through three-point scale variations. The lower panes
show the ratio between the two results.
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Figure 9.7: Comparison between the Geneva+Pythia8 NNLO distributions and
the CMS experimental results [46] for the transverse momentum pT,4` of the
four-lepton system, the mass m4` of the four-lepton system, the azimuthal angle
∆φZ1Z2 between the two reconstructed Z bosons, and the transverse momentum
pT,` of the leptons in the process p p → `− `+ `′− `′+ + X. Each of the above
distributions is divided by the total fiducial cross section. Furthermore, the last
bin of every distribution is an overflow bin. The bands represent the theoretical
uncertainties estimated through three-point scale variations. The lower panes
show the ratio between the two results.
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9.5.1 ATLAS

The four hard leptons `−, `+, `′− and `′+ are selected as those that minimize
the sum

|m`−`+ −mZ|+ |m`′−`′+ −mZ| (9.13)

where m`−`+ and m`′−`′+ are the virtuality of the two pairs of same-flavor
opposite-charge leptons and mZ = 91.1876 GeV. This automatically defines the
momenta of the two reconstructed Z bosons Z1 and Z2 to be given respectively
by the sums of the momenta of `− and `+ and those of `′− and `′+. Both Z1

and Z2 are required to have a mass between 66 and 116 GeV, and, if ` = `′,
the lepton-antilepton pairs `−`′+ and `′−`+ must have mass larger than 5 GeV.
Furthermore, the four leptons of the quadruplet, ordered from the hardest to
the least hard, are required to have transverse momentum larger than 20, 15,
10 and 5 GeV, respectively, and absolute value of the rapidity smaller than 2.7.
Finally each same-flavor lepton pair of the quadruplet must have an angular
separation ∆R`` > 0.1 and each opposite-flavor lepton pair of the quadruplet
must have an angular separation ∆R``′ > 0.2.

In figure 9.6 we show the comparison between the Geneva+Pythia8 NNLO
distributions and the ATLAS experimental results for the transverse momen-
tum pT,4` of the four-lepton system, the absolute value |y4`| of the rapidity
of the four-lepton system, the absolute value |∆yZ1Z2 | of the rapidity differ-
ence between the two reconstructed Z bosons, and the transverse momentum
of the hardest lepton. We observe a reasonably good agreement between the
theoretical predictions and the experimental results, even if the former tend to
underestimate the latter in the peak regions. Such a behavior has been observed
for several other event generators (see figs. 9-12 of ref. 9.6).

9.5.2 CMS

The first reconstructed Z boson (called Z1) is chosen as the same-flavor lepton-
antilepton pair `−`+ whose mass is closest to mZ = 91.2 GeV. If there are more
than four leptons in the final state, the second reconstructed Z boson (called
Z2) is chosen as the remaining same-flavor lepton-antilepton pair `′−`′+ with
the largest scalar sum of the transverse momenta of `′− and `′+. Both Z1 and
Z2 are required to have a mass between 60 and 120 GeV, and, if ` = `′, the
lepton-antilepton pairs `−`′+ and `′−`+ must have mass larger than 4 GeV.
Furthermore, the four leptons of the quadruplet, ordered from the hardest to
the least hard, are required to have transverse momentum larger than 20, 10, 5
and 5 GeV, respectively, and absolute value of the rapidity smaller than 2.5.

In figure 9.7 we show the comparison between the Geneva+Pythia8 NNLO
distributions and the CMS experimental results for the transverse momentum
pT,4` of the four-lepton system, the mass m4` of the four-lepton system, the az-
imuthal angle ∆φZ1Z2 between the two reconstructed Z bosons, and the trans-
verse momentum pT,` of the leptons. Each of the distributions is divided by the
total fiducial cross section. Furthermore, the last bin of every distribution is an
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overflow bin (i.e. it contains all the contributions up to the maximum kinemati-
cally allowed value for that observable). We observe an overall good agreement
between the theoretical predictions and the experimental results, with some dis-
crepancies in the tail of the distributions, that could be explained by the absence
of higher-order EW effects.
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Part II

Photon pair production
with MiNNLOPS

82



Chapter 10

The MiNNLOPS method

The MiNNLOPS method [16, 17] provides a framework for building a NNLO
Monte Carlo event generator and combining it with parton showers. It was
born as the natural NNLO extension of the original MiNLO method [11, 12,
47], which was able to reach NLO accuracy both for the observables inclusive
over radiation and those requiring a final-state jet. Calling Q and pT the mass
and transverse momentum of the color singlet respectively, the differential cross
section for the production of the color singlet in the MiNNLOPS approach is
given in eq. (2) of ref. [17] and reads

dσMiNNLO
CS

dΦ1
=
∑
k

d

dpT

(
e−S̃kk̄(pT)Lkk̄(pT)

)
θ(Q− pT)F corr(Φ1) +Rf , (10.1)

where dΦ1 is the phase space for the production of the color singlet accompanied
by one parton, the index k runs over the possible flavors of the initial-state

partons, the Sudakov form factor e−S̃kk̄(pT) and the luminosity factor Lkk̄ (pT)
provide the pT resummation of the differential cross section and the term Rf
contains all the contributions to the production of the color singlet in association
with one jet that are non-singular in the pT → 0 limit.1 Finally, the function
F corr(Φ1) plays the same role of the splitting function P0→1(Φ1) described for the
Geneva event generator: i.e. it provides a full Φ1 dependence to a contribution
that would be otherwise differential in pT only, without spoiling the distributions
that only depend on the underlying phase space dΦ0 and pT.

1In the implementation of the differential cross section given in eq. (10.1) in the
MiNNLOPS code, instead of using the θ(Q− pT) function, all the logarithms log(Q/pT)
are substituted by the modified logarithms 1/p log(1 + (Q/pT)p). If the value of p is large
enough (p ' 3) the differences between the two approaches in the distributions inclusive over
radiation is negligible. The results of this work were obtained with the default value p = 6.
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10.1 The resummed contribution

10.1.1 The Sudakov form factor

The expression for the exponent of the Sudakov form factor is given in eq. (2.9)
of ref. [16] and reads

S̃kk̄(pT) =

∫ Q2

p2
T

dq2

q2

[
Akk̄(q) log

(
Q2

q2

)
+ B̃kk̄(q)

]
, (10.2)

where

Akk̄(q) =
αS(q)

2π
A

(1)

kk̄
+

(
αS(q)

2π

)2

A
(2)

kk̄
+

(
αS(q)

2π

)3

A
(3)

kk̄

B̃kk̄(q) =
αS(q)

2π
B

(1)

kk̄
+

(
αS(q)

2π

)2

B̃
(2)

kk̄
,

(10.3)

and

B̃
(2)

kk̄
= B

(2)

kk̄
+ 2ζ3

(
A

(1)

kk̄

)2

+
β0

2
H

(1)

kk̄
. (10.4)

We will introduce the coefficient H
(1)

kk̄
in the next section. Since in the following

we will need the first coefficient of its αS expansion, we write it as

S̃kk̄(pT) =
αS(pT)

2π
S̃

(1)

kk̄
(pT) +O

(
α2

S

)
, (10.5)

with

S̃
(1)

kk̄
(pT) =

A
(1)

kk̄

2
log2

(
Q2

p2
T

)
+B

(1)

kk̄
log

(
Q2

p2
T

)
. (10.6)

The expressions for the Akk̄ and B̃kk̄ coefficients appearing above can be found
in eqs. (B.9) and (B.10) of ref. [16]. We limit ourselves to reporting the value

of A
(1)

kk̄
and B

(1)

kk̄
, which read

A
(1)
qq̄ = 2CF B

(1)
qq̄ = −3CF

∣∣∣∣
A

(1)
gg = 2CA B

(1)
gg = −β0.

∣∣∣∣ (10.7)

10.1.2 The luminosity factor

From eq. (23) of ref. [17], the luminosity factor Lkk̄ is given by the truncation
to order α2

S in the expansion with respect to the strong coupling of

Lkk̄(pT) = H̃kk̄(pT)
∑
jj′

[(
C̃kj ⊗ f [a]

j

)
(xa, pT)

(
C̃k̄j′ ⊗ f [b]

j′

)
(xb, pT)

+
(
Gkj ⊗ f [a]

j

)
(xa, pT)

(
Gk̄j′ ⊗ f [b]

j′

)
(xb, pT)

]
, (10.8)
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where H̃kk̄(µ), C̃kj(z, µ) and Gkj(z, µ) are respectively the hard-virtual and the
quark and gluon collinear coefficient functions evaluated at the renormalization

and factorization scales µ, and f
[h]
j (x, µ) is the PDF of the parton j carrying

a fraction x of the momentum of the hadron h evaluated at the factorization
scale µ. Finally, the convolution operator is defined so that, given two generic
functions f and g,

(f ⊗ g)(x) =

∫ 1

x

dz

z
f(z) g

(x
z

)
. (10.9)

The hard-virtual coefficient function is given by the amplitude for the production
of the color singlet with no jets computed in the MS subtraction scheme and
can be expanded as

H̃kk̄(pT) =

(
αS(pT)

2π

)nB
[
H

(0)

kk̄
+
αS(pT)

2π
H

(1)

kk̄
(pT) +

(
αS(pT)

2π

)2

H̃
(2)

kk̄
(pT)

]
,

(10.10)
where nB is the power of the strong coupling in the Born matrix elements of the
process and

H̃
(2)

kk̄
= H

(2)

kk̄
− 2ζ3A

(1)

kk̄
B

(1)

kk̄
. (10.11)

The collinear coefficient functions for color-singlet production are instead pro-
cess independent and their expansion with respect to the strong coupling is
provided in eq. (B.16) of ref. [16]. The quark coefficient functions can be writ-
ten as

C̃kj(z, pT) = δkj δ(1− z) +
αS(pT)

2π
C

(1)
kj (z) +

(
αS(pT)

2π

)2

C̃
(2)
kj (z) , (10.12)

where
C̃

(2)
kj (z) = C

(2)
kj (z)− 2ζ3A

(1)

kk̄
P

(0)
kj (z) . (10.13)

We will introduce the function P
(0)
kj (z) in the next section. In particular, from

eq. (B.17) of ref. [16] the first coefficient of the expansion reads

C
(1)
kj (z) = P ′kj(z)− Ckk

π2

12
δkj δ(1− z) , (10.14)

with the expressions for Ckk and P ′ij(z) given in eqs. (3.15) and (3.24). The
expansion of the gluon coefficient functions instead starts at order αS and can
be written as

Gkj(z, pT) =
αS(pT)

2π
G

(1)
kj (z) . (10.15)

The derivation of the additional terms proportional to ζ3 appearing in B̃
(2)

kk̄
,

H̃
(2)

kk̄
and C̃

(2)
kj (z) is provided in section 4 of ref. [16].
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Expansion with respect to the strong coupling

To expand the luminosity factor of eq. (10.8) with respect to the strong coupling,
we begin by writing the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP)
evolution equation [48], which reads

∂f
[h]
k (x, µ)

∂µ
=

2

µ

αS(µ)

2π

∑
j

(
P

(0)
kj ⊗ f

[h]
j

)
(x, µ) +O

(
α2

S

)
, (10.16)

with

P
(0)
kj (z) = P̂AP

kj (z)− B
(1)
kk

2
δkj δ(1− z) , (10.17)

where the coefficients B
(1)
kk were given in eq. (10.7) and P̂AP

kj (z) are the regular-
ized Altarelli–Parisi splitting functions defined as

P̂AP

qq (z) = CF

1 + z2

(1− z)+

∣∣∣∣
P̂AP

qg (z) = TF

[
z2 + (1− z)2

] ∣∣∣∣
P̂AP

gq (z) = CF

1 + (1− z)2

z

∣∣∣∣
P̂AP

gg (z) = 2CA

[
z

(1− z)+

+
1− z
z

+ z (1− z)
]
.

∣∣∣∣
(10.18)

In the above equations we made use of the + distribution, which for a generic
function f is defined such that∫

dz
f(z)

(1− z)+

=

∫
dz

f(z)− f(1)

1− z . (10.19)

At this point, we can use the solution to the DGLAP equation

f
[h]
k (x, µ) = f

[h]
k (x, pT) +

αS(pT)

2π

∑
j

(
P

(0)
kj ⊗ f

[h]
j

)
(x, pT) log

(
µ2

p2
T

)
+O

(
α2

S

)
,

(10.20)
to impose that the scale-dependent terms of the luminosity factor cancel order
by order in the αS expansion, so that we can write

Lkk̄(pT) = L(0)

kk̄
(pT, pT)+

αS(pT)

2π
L(1)

kk̄
(pT, pT)+

(
αS(pT)

2π

)2

L(2)

kk̄
(pT, pT) , (10.21)
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where the first two coefficients of the expansion read

L(0)

kk̄
(pT, µ) = H

(0)

kk̄
f

[a]
k (xa, µ) f

[b]

k̄
(xb, µ)

∣∣∣∣∣ (10.22)

L(1)

kk̄
(pT, µ) =

{
H

(0)

kk̄

∑
j

[(
C

(1)
kj ⊗ f

[a]
j

)
(xa, µ)−

(
P

(0)
kj ⊗ f

[a]
j

)
(xa, µ) log

(
µ2

p2
T

)]

+
1

2
H

(1)

kk̄
(pT) f

[a]
k (xa, µ)

}
f

[b]

k̄
(xb, µ) + (a↔ b) . (10.23)

Since e−S̃kk̄(Q) = 1 (see eq. (10.2)), the total pT cumulant of the resummed
contribution appearing in eq. (10.1) is given by

Lkk̄(Q) =
1

2
H

(0)

kk̄
f

[a]
k (xa, Q) f

[b]

k̄
(xb, Q) +

αS(Q)

2π

{
H

(0)

kk̄

×

∑
j

∫ 1

xa

dz

z
f

[a]
j

(xa
z
,Q
)
P ′kj(z)−

π2

12
Ckk f

[a]
k (xa, Q)


+

1

2
H

(1)

kk̄
(Q) f

[a]
k (xa, Q)

}
f

[b]

k̄
(xb, Q) + (a↔ b) +O

(
α2

S

)
.

(10.24)

10.2 The non-singular contribution

The non-singular contribution Rf appearing in eq. (10.1) contains the difference
between the fixed-order differential cross section for the process of production of
the color singlet accompanied by one jet and the expansion of the pT resummed
spectrum truncated at order α2

S. To provide an explicit expression for the latter,
we begin by writing the pT spectrum of the resummed contribution as

d

dpT

(
e−S̃kk̄(pT)Lkk̄(pT)

)
= e−S̃kk̄(pT)Dkk̄(pT) , (10.25)

where we have introduced

Dkk̄(pT) =
dLkk̄
dpT

(pT)− Lkk̄(pT)
dS̃kk̄
dpT

(pT) . (10.26)

At this point, we can expand the two derivatives appearing in the above equation
as

dS̃kk̄
dpT

(pT) =
αS(pT)

2π

[
dS̃kk̄
dpT

](1)

(pT, pT) +

(
αS(pT)

2π

)2
[
dS̃kk̄
dpT

](2)

(pT, pT) +O
(
α3

S

)
dLkk̄
dpT

(pT) =
αS(pT)

2π

[
dLkk̄
dpT

](1)

(pT, pT) +

(
αS(pT)

2π

)2[
dLkk̄
dpT

](2)

(pT, pT) +O
(
α3

S

)
,

(10.27)
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where the first orders of the expansions reads[
dS̃kk̄
dpT

](1)

(pT, µ) = − 2

pT

[
A

(1)

kk̄
log

(
Q2

p2
T

)
+B

(1)

kk̄

]
[
dLkk̄
dpT

](1)

(pT, µ) =
2

pT

H
(0)

kk̄

∑
j

(
P

(0)
kj ⊗ f

[a]
j

)
(xa, µ) f

[b]

k̄
(xb, µ) + (a↔ b) .

(10.28)
From the above results, we can write the expansion of Dkk̄(pT) as

Dkk̄(pT) =
αS(pT)

2π
D

(1)

kk̄
(pT, pT) +

(
αS(pT)

2π

)2

D
(2)

kk̄
(pT, pT) +O

(
α3

S

)
, (10.29)

where the first order of the expansion read

D
(1)

kk̄
(pT, µ) =

2

pT

H
(0)

kk̄

{
1

2

[
A

(1)

kk̄
log

(
Q2

p2
T

)
+B

(1)

kk̄

]
f

[a]
k (xa, µ)

+
∑
j

(
P

(0)
kj ⊗ f

[a]
j

)
(xa, µ)

}
f

[b]

k̄
(xb, µ) + (a↔ b) . (10.30)

Finally, from the above equation the spectrum of the resummed-expanded con-
tribution in the MiNNLOPS method can be written as

dσRE

dΦ0 dpT

=
αS(µ)

2π

2

pT

∑
k

H
(0)

kk̄

{
− Ckk log

(
p2

T

Q2

)
fak (xa, µ)

+
∑
j

∫ 1

xa

dz

z
faj

(xa
z
, µ
)
P̂AP

kj (z)

}
f bk̄(xb, µ) + (a↔ b) +O

(
α2

S

)
.

(10.31)

TheO
(
α2

S

)
term of the above expression can be found in the appendix of ref. [17].

10.2.1 Modifications to the original MiNNLOPS method

In the formulation of the MiNNLOPS method presented in ref. [17] the expression
used for the non-singular contribution is

Rf =
∑
k

e−S̃kk̄(pT)

{
dσkk̄,PWG

CS+jet

dΦ1
(pT) +

αS(pT)

2π
S̃

(1)

kk̄
(pT)

dσkk̄,LO

CS+jet

dΦ1
(pT)

−
[
αS(pT)

2π
D

(1)

kk̄
(pT, pT) +

(
αS(pT)

2π

)2

D
(2)

kk̄
(pT, pT)

]
F corr(Φ1)

}
.

(10.32)

In the above formula dσkk̄,LO

CS+jet/dΦ1(µ) and dσkk̄,PWG

CS+jet /dΦ1(µ) are the LO and
NLO (integrated over the second QCD emission) differential cross sections for
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the production of the color singlet accompanied by one jet involving partons
of flavor k evaluated at renormalization and factorization scales µ. Their ex-
plicit expressions are given by the sum over the corresponding signatures of
dσfb,LO

CS+jet/dΦ1(µ) and dσfb,PWG

CS+jet /dΦ1(µ) respectively (see eqs. (11.4) and (11.9)).
We highlight that the formula presented in eq. (10.32) is not fully expanded

with respect to αS, but keeps the exponentiated Sudakov form factor in front.
This multiplicative approach was inherited by the original MiNLO method [11,
12]. From the numerical point of view, the presence of the Sudakov form factor
increases the stability of the Monte Carlo integration of the non-singular con-
tribution up to very small values of pT, where the subtraction of the divergent
terms appearing in the fixed-order and resummed-expanded contributions is not
fully local in the phase space dΦ1. On the other hand, when comparing with the
results from a fixed-order calculation, the Sudakov form factor and the choice
of a scale µ = pT are sources of potential discrepancies, which, despite being
formally beyond the claimed NNLO accuracy, can be numerically relevant.

In ref. [2] we presented two modifications to the above expression for Rf with
the aim of minimizing the discrepancies with respect to a fixed-order calculation
(where the factorization and renormalization scales are set to Q).

1. We set the scale µ to the mass of the color singlet Q, instead of its trans-
verse momentum pT.

2. We substitute the exponent S̃kk̄ of the Sudakov form factor given in
eq. (10.2) with

S̄kk̄(pT) =

∫ Q2

p2
T

dq2

q2

αS(q)

2π

[
A

(1)

kk̄
log

(
Q2

q2

)
+B

(1)

kk̄

]
, (10.33)

truncating the expansions with respect to the strong coupling of Akk̄ and
B̃kk̄ at the first order.

After these two modifications, the expression for Rf presented in eq. (10.32) is
substituted by

Rf =
∑
k

e−S̄kk̄(pT)

{
dσkk̄,PWG

CS+jet

dΦ1
(Q) +

αS(Q)

2π
S̃

(1)

kk̄
(pT)

dσkk̄,LO

CS+jet

dΦ1
(Q)

−
[
αS(Q)

2π
D

(1)

kk̄
(pT, Q) +

(
αS(Q)

2π

)2

D
(2)

kk̄
(pT, Q)

]
F corr(Φ1)

}
.

(10.34)

Validation of the modified method

The difference between the two formulations is beyond the claimed NNLO accu-
racy and are expected to be numerically negligible for processes where the size
of the non-singular contributions is small compared to the total cross section.
To check this, we applied the modified MiNNLOPS method to the processes of
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Figure 10.1: Comparison between the predictions from the fixed-order calcu-
lation implemented in Matrix and the Les Houches partonic events generated
by the Powheg Box Res with the original and modified formulations of the
MiNNLOPS method for the rapidity of the color singlet for the processes of Drell-
Yan (y`+`−) and Higgs (yH) production. The original and modified MiNNLOPS

formulations are labeled respectively no FOatQ and FOatQ. The bands represent
the estimated theoretical uncertainties of the distributions. In the lower panes
of the figures, the ratio between the two curves is shown.

Drell-Yan and Higgs boson production and compared the results with those ob-
tained with the original method and presented in ref. [17]. For each of the three
processes (Drell-Yan, Higgs boson and γγ production) we compared the total
NNLO cross section σNNLO to the resummed contribution alone σres given by the
integral of the first term of eq. (10.1) (the non-singular contributions are given
by the difference of the two terms), finding

σNNLO
DY = 1919± 1 pb σres

DY = 1904± 3 pb

σNNLO
H = 39.64± 0.01 pb σres

H = 34.03± 0.07 pb

σNNLO
γγ = 155.7± 1.0 pb σres

γγ = 55.7± 0.6 pb.

(10.35)

For diphoton production, σres
γγ contributes to only about one third of the total

cross section, at difference with Drell-Yan and Higgs boson production, thereby
justifying the choices made in this chapter. As a further validation, in fig-
ure 10.1 we compare the rapidity distribution of the color singlet obtained with
the original and new formulations (labeled respectively as no FOatQ and FOatQ)
for Drell-Yan and Higgs boson production. The MiNNLOPS distributions shown
in the figure are from the Powheg partonic events (often called Les Houches
events). Furthermore, we show the NNLO results from the fixed-order calcu-
lation implemented in the public version of the Matrix code [41], where the
renormalization and factorization scales have been set to the mass of the color
singlet Q. For this comparison only, we use the same PDF sets used in ref. [17].
The curves show a very good agreement between the NNLO and the MiNNLOPS

results obtained with both the formulations, both for the central scale and the
uncertainty band. In particular, since the Drell-Yan process features a very
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small perturbative uncertainty band, the remarkable agreement between the
NNLO and FOatQ curves displayed in the left pane of figure 10.1 represents a
robust validation of the new formulation of the MiNNLOPS method.
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Chapter 11

The Powheg method

The generation of the events according to eq. (10.1) relies on the Powheg Box

Monte Carlo event generator [10], which also provides the resummation of the
transverse momentum of the second emission appearing in the NLO differential

cross section dσkk̄,PWG

CS+jet /dΦ1 (from now on dσPWG
CS+jet/dΦ1) for the production of

the color singlet accompanied by one jet. To give a brief introduction to the
Powheg method, discussed in details in refs. [8] and [9], we begin by describing
how the Φ2 configurations are mapped into the phase space dΦ1.

The amplitude of a Φ2 configuration diverges in the limit of small relative
transverse momentum kT between any couple of partons that represents a valid
QCD splitting. This results in a maximum of three divergent regions αr that we
call [0,1], [0,2] and [1,2] parametrized respectively by the transverse momentum

of the first (k
[0,1]
T ) or second (k

[0,2]
T ) final-state parton with respect to the beam

or the relative transverse momentum k
[1,2]
T between the two final-state partons.

Instead of assigning a fixed projection to every Φ2 configuration, the Powheg

Box event generator divides the contribution from every real signature fr into
one contribution from every divergent αr region given by

dσαr,LO

CS+2jet

dΦ2
=
dσfr,LO

CS+2jet

dΦ2
fαr (Φ2) . (11.1)

with the aid of a function fαr such that∑
αr|fr

fαr (Φ2) = 1 lim
kαrT →0

dσαr,LO

CS+2jet

dΦ2
=
dσfr,LO

CS+2jet

dΦ2
. (11.2)

This guarantees that each contribution dσfr,LO

CS+2jet
/dΦ2 is divergent in one αr

region only. At this point, a different mapping is defined for every contribution
following the requirements of infrared safety. This allows us to write the NLO
cross section for the process as

σNLO

CS+jet =
∑
fb

∫
dΦ1

dσfb,NLO

CS+jet

dΦ1
, (11.3)
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where dσfb,NLO

CS+jet /dΦ1 contains the integral over the Φ2 configurations from the
αr contributions whose projection is the configuration Φ1 with signature fb.

At this point we introduce several definitions to comply with the standard
Powheg notation. We call the LO and NLO differential cross section for the
production of the color singlet accompanied by one jet respectively

Bfb(Φ1) =
dσfb,LO

CS+jet

dΦ1
B̄fb(Φ1) =

dσfb,NLO

CS+jet

dΦ1
, (11.4)

and the LO differential cross section for the production of the color singlet
accompanied by two jets associated to the singular region αr

Rαr (Φ2) =
dσαr,LO

CS+2jet

dΦ2
. (11.5)

From eq. (4.17) of ref. [9], the Powheg master formula for the differential cross
section for the production of a color singlet accompanied by one jet reads

dσPWG

CS+jet =
∑
fb

B̄fb(Φ1) dΦ1

[
∆fb(Φ1, k

cut

T )

+
∑
αr|fb

Rαr (Φ2)

Bfb(Φ1)
∆fb(Φ1, k

αr
T ) θ(kαrT − kcut

T )
dΦ2

dΦ1

]
, (11.6)

where kcut
T is a resolution parameter (i.e. the Φ2 configurations with kT < kcut

T

are considered unresolved and only contribute to the generation of Φ1 events),
and, from eq. (4.16) of the same reference, the Powheg Sudakov form factor is
defined as

∆fb(Φ1, kT) = exp

−∑
αr|fb

∫
dΦ2

dΦ1

Rαr (Φ2)

Bfb(Φ1)
θ(kαrT − kT)

 . (11.7)

The term in the square brackets of eq. (11.6) implements the resummation of
the relative transverse momentum of the second emitted parton with a mul-
tiplicative approach. The unitarity of the approach is guaranteed by the fact
that

∆fb(Φ1, k
cut

T ) +

∫
dΦ2

dΦ1

∑
αr|fb

Rαr (Φ2)

Bfb(Φ1)
∆fb(Φ1, kT) θ(kT − kcut

T ) = 1, (11.8)

which allows us to write

dσfb,PWG

CS+jet

dΦ1
=
dσfb,NLO

CS+jet

dΦ1
= B̄fb(Φ1) . (11.9)
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Chapter 12

Handling of the QED
singularities

Any event generator that aims to reach more than LO accuracy in QCD needs
to rely on Φn+1 → Φn mappings between phase spaces dΦn+1 and dΦn with dif-
ferent parton multiplicities. Indeed, the presence of infrared QCD singularities
makes it necessary to combine contributions with different number of final-state
partons in the differential cross section of the same event. In general, because
of that, among the observables that are inclusive over the QCD radiation, only
the distributions of those that are preserved by all the mappings can be in exact
agreement with those obtained from a fixed-order calculation. All the others
may display deviations that are power-suppressed functions of the transverse
momentum kT of the radiation (i.e. they vanish in the limit of small kT, where
the requirement of infrared safety forces the observable to have the same value
when evaluated at both Φn and Φn+1).

However, in the case of production of a photon pair, the picture is com-
plicated by the presence of QED divergences, which lead to two additional
problems.

1. The configurations that are far from every QED singular region should
not be mapped into configurations close to a QED singular region, and
viceversa. If that was not the case, events that are not discarded at the
analysis level could receive contributions from unphysical divergent am-
plitudes, or events that are discarded could carry physical contributions.
The requirement can be lifted if the contributions from such configurations
are given a strong kinematic suppression.

2. The generation of events which are close to the QED singular regions
should be suppressed to keep the event generator efficient.

Furthermore, we would like to avoid introducing any hard cut or isolation criteria
at the generation level, leaving the user free to apply their own ones at the
analysis level.
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12.1 1→ 0 mapping

The projection that we use is determined by the requirements that it preserves

1. The mass of the color singlet.

2. The rapidity of the color singlet.

3. The direction of one of the photons in the laboratory frame.

By doing this we make sure that QED-finite configurations with one final-state
parton are not projected to singular configurations with no final-state partons.
As far as the MiNNLOPS formulae are concerned, we would just need to de-
fine a 1 → 0 mapping that projects the Φ1 configurations to the Φ0 ones.
Nonetheless, we will also introduce its inverse, namely a function that, given a
Φ0 configuration and three additional radiation variables, associates to them a
Φ1 configuration. In practice, we have implemented such function in the code
and use it to generate the dΦ1 phase space from the dΦ0 one. After doing that,
we save the original Φ0 configuration, so that we do not need to project it later.
This represents also a very strong check of the correctness of the mapping.

12.1.1 Preservation of mass and rapidity of the diphoton

To preserve the mass and rapidity of the diphoton, we can use the formulae for
the FKS mapping, already discussed in chapter 6. In the laboratory frame of
Φ0 the diphoton mass and rapidity read

mγγ =
√
Sx̄ax̄b yγγ =

1

2
log

(
x̄a
x̄b

)
, (12.1)

where S is the squared hadronic center-of-mass energy and x̄a and x̄b are the
fractions of hadronic momenta carried by the two partons that undergo the hard
interaction.

In the partonic center-of-mass frame of Φ1 instead the momentum of the
final-state parton can be written in terms of the FKS variables ξ, y and φ as

pj =

√
s

2
ξ
(

1,
√

1− y2 sinφ,
√

1− y2 cosφ, y
)
, (12.2)

where s is the squared partonic center-of-mass energy of the system. In such a
frame the momentum of the diphoton in Φ1 then reads

pγγ =

√
s

2

(
2− ξ,−ξ

√
1− y2 sinφ,−ξ

√
1− y2 cosφ,−ξ y

)
(12.3)

and its mass and rapidity are given by

mγγ =
√
s (1− ξ) yCM

γγ =
1

2
log

(
2− ξ (1 + y)

2− ξ (1− y)

)
. (12.4)
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Introducing xa and xb as the fractions of hadronic momenta carried by the two
partons that undergo the hard interaction so that s = Sxaxb, we can finally
write the mass and rapidity of the diphoton in the laboratory frame as

mγγ =
√
Sxaxb (1− ξ) yγγ =

1

2

[
log

(
xa
xb

)
+ log

(
2− ξ (1 + y)

2− ξ (1− y)

)]
. (12.5)

By equating the expressions of eqs. (12.5) and (12.1), we find the relation
between x̄a, x̄b and xa, xb to be

xa =
x̄a√
1− ξ

√
2− ξ (1− y)

2− ξ (1 + y)

xb =
x̄b√
1− ξ

√
2− ξ (1 + y)

2− ξ (1− y)
.

(12.6)

12.1.2 Preservation of the direction of one photon

Instead of simply boosting the momenta of the Φ0 diphoton system to give
them the total momentum of eq. (12.3), as in the FKS mapping, we now want
to enforce the preservation of the direction of one photon. To do that, we need
to express the momenta of Φ0 and Φ1 in two frames where the diphoton system
has the same rapidity. We choose to work in the partonic center-of-mass frame
of Φ1 because in such a frame the Φ1 momenta have simple expressions (see
eqs. (12.2) and (12.3)).

After writing the momenta of the two photons of the configuration Φ0 in
their center-of-mass frame as

p̄γ1
=
mγγ

2

(
1, sin θ̄ sin φ̄, sin θ̄ cos φ̄, cos θ̄

) ∣∣∣∣
p̄γ2 =

mγγ

2

(
1,− sin θ̄ sin φ̄,− sin θ̄ cos φ̄,− cos θ̄

) ∣∣∣∣ (12.7)

we apply a longitudinal boost with rapidity (12.4) and arrive to

p̄′γ1
=
mγγ

2

 2−ξ − ξy cos θ̄√
(2−ξ)2−ξ2y2

, sin θ̄ sin φ̄, sin θ̄ cos φ̄,
(2−ξ) cos θ̄ − ξy√

(2−ξ)2−ξ2y2


p̄′γ2

=
mγγ

2

 2−ξ + ξy cos θ̄√
(2−ξ)2−ξ2y2

,− sin θ̄ sin φ̄,− sin θ̄ cos φ̄,
− (2−ξ) cos θ̄ − ξy√

(2−ξ)2−ξ2y2

.
(12.8)

At this point, we can impose that the momentum pγ1
of the configuration Φ1

in the partonic center-of-mass frame has the same direction of p̄′γ1
. To do that,
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we introduce the dimensionless parameter E and write pγ1 as

pγ1 = E √s

 2− ξ − ξy cos θ̄√
(2− ξ)2 − ξ2y2

, sin θ̄ sin φ̄, sin θ̄ cos φ̄,
(2− ξ) cos θ̄ − ξy√

(2− ξ)2 − ξ2y2

 .

(12.9)
Finally, we fix the value of E by imposing that the second photon, whose mo-
mentum reads

pγ2
=
√
s

1− ξ

2
− E 2− ξ − ξy cos θ̄√

(2− ξ)2 − ξ2y2

,−ξ
2

√
1− y2 sinφ− E sin θ̄ sin φ̄,

−ξ
2

√
1− y2 cosφ− E sin θ̄ cos φ̄,−ξy

2
− E (2− ξ) cos θ̄ − ξy√

(2− ξ)2 − ξ2y2

 ,

(12.10)

is massless, which imposes

E =
1− ξ√

(2− ξ)2 − ξ2y2 + ξ
√

1− y2 sin θ̄ cos(φ− φ̄)
. (12.11)

12.1.3 Jacobian

To implement the generation of the dΦ1 phase space using x̄a, x̄b, θ̄ and φ̄
along with the FKS variables ξ, y and φ, we still need to compute analytically
the Jacobian of the transformation, which, using eqs. (6.12) and (12.6), can be
written as

dΦ1

dx̄a dx̄b dξ dy dφ d cos θ̄ dφ̄
=
Sx̄ax̄b
(4π)3

ξ

(1− ξ)2

dΦγγ
d cos θ̄ dφ̄

. (12.12)

Since dΦγγ is a Lorentz invariant, we can compute it in any suitable reference
frame. In particular, if we call θ′ and φ′ the polar angles of one photon in the
center-of-mass frame of the diphoton system, we can write

dΦγγ =
d cos θ′ dφ′

32π2
, (12.13)

so that we are left with computing the value of

J =
d cos θ′ dφ′

d cos θ̄ dφ̄
. (12.14)

To do that, we need to find the sequence of boosts that take the momenta of the
two photons from the partonic center-of-mass frame of Φ1 to the center-of-mass
frame of the diphoton system. We begin by performing a longitudinal boost on
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the momentum pγ1 given in eq. (12.9) to the frame where the diphoton system
has zero longitudinal rapidity. Using the expression for yCM

γγ given in eq. (12.4),
we find that in such a frame

p′γ1
= E √s

(
1, sin θ̄ sin φ̄, sin θ̄ cos φ̄, cos θ̄

)
. (12.15)

Since in this frame the momentum of the photon pair reads

pγγ =

√
s

2

(√
(2− ξ)2 − ξ2y2, −ξ

√
1− y2 sinφ, −ξ

√
1− y2 cosφ, 0

)
,

(12.16)
to get to the diphoton rest frame, we need to perform a transverse boost with
velocity

vT =
ξ
√

1− y2√
(2− ξ)2 − ξ2y2

(sinφ, cosφ, 0) , (12.17)

after which the spatial components of the four-vector representing the momen-
tum of the photon become

~pγ1
=
mγγ

2

E
1− ξ

(
A sinφ+B cosφ, A cosφ−B sinφ, 2

√
1− ξ cos θ̄

)
,

(12.18)
where we have introduced, for ease of notation, the two auxiliary variables

A =

√
(2− ξ)2 − ξ2y2 sin θ̄ cos

(
φ− φ̄

)
+ ξ
√

1− y2

∣∣∣∣
B = 2

√
1− ξ sin θ̄ sin

(
φ− φ̄

)
.

∣∣∣∣ (12.19)

Finally, we need to equate the result of eq. (12.18) to

~pγ1 =
mγγ

2
(sin θ′ sinφ′, sin θ′ cosφ′, cos θ′) , (12.20)

which imposes 
cos θ′ =

2E cos θ̄√
1− ξ

∣∣∣∣∣
tanφ′ =

A sinφ+B cosφ

A cosφ−B sinφ
,

∣∣∣∣∣
(12.21)

so that finally the expression for J reads

J =
4 (1− ξ)[√

(2− ξ)2 − ξ2y2 + ξ
√

1− y2 sin θ̄ cos
(
φ̄− φ

)]2 . (12.22)
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12.2 The damping function

The formula presented in eq. (11.6) cannot be directly applied to the process
of photon pair production, since events that are far from every QED singular
region (and thus not discarded by the analysis) could still receive contributions
from divergent amplitudes through the B̄fb function. In this section, we describe
a general way to deal with processes that present QED divergences at the Born
level within the Powheg formalism, with the aim of generating events without
introducing any phase space cuts or photon isolation criteria at the generation
level.1

So far, for every real signature fr, we have divided the real contribution Rfr

into up to three terms Rαr , so that each of them is divergent in one kαrT → 0
limit only. We now further split Rαr as

Rαr = RαrQED +RαrQCD, (12.23)

so that RαrQED is divergent in the QED singular regions, but QCD finite, and
viceversa. To do this, we introduce the damping function Fαr (Φ2) and define

RαrQCD = Fαr Rαr RαrQED = (1− Fαr )Rαr . (12.24)

The explicit expression for the damping function is given by

Fαr =

(
1

dαr

)p
(

1

dαr

)p
+

nc∑
i=1

nγ∑
j=1

(
1

d[ci,γj ]

)p , (12.25)

where

d[i,j] =

{
p2

Tj if i is an initial-state particle,

2 min
(
E2
i , E

2
j

)
(1− cos θij) if i and j are final-state particles,

(12.26)
and the sum in the denominator runs over the nc massless charged particles
and the nγ photons. In eq. (12.26), p is a positive real number, pTj and Ej
are the transverse momentum and energy of the particle j, and θij the angle
between the particles i and j, everything computed in the partonic center-of-
mass frame. The reason why we have not used the invariant mass of the ij pair
in the definition of d[i,j] in the case where i and j are both final-state partons
is to ensure that in the soft limits d[i,j] has the same scaling with respect to the
energy of the radiated parton both in the initial- and final-state case.

At this point, after a few modifications to the formula provided in eq. (11.6),
the Powheg differential cross section for the production of a photon pair accom-

1To the best of our knowledge, a similar procedure was first used in ref. [49].
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panied by one jet can be written as

dσPWG

γγ+jet =
∑
fb

B̄fbQCD(Φ1) dΦ1

[
∆fb

QCD(Φ1, k
cut

T ) +
∑
αr|fb

RαrQCD(Φ2)

Bfb(Φ1)
∆fb

QCD(Φ1, k
αr
T )

× θ(kαrT − kcut

T )
dΦ2

dΦ1

]
+
∑
αr

RαrQED(Φ2) dΦ2, (12.27)

where the contributions from RαrQED(Φ2) are now considered to be unprojectable

and therefore not included in B̄fbQCD(Φ1), and the new Powheg Sudakov form
factor reads

∆fb
QCD(Φ1, kT) = exp

−∑
αr|fb

∫
dΦ2

dΦ1

RαrQCD(Φ2)

Bfb(Φ1)
θ(kαrT − kT)

 . (12.28)

We now want to show that the method we have just introduced satisfies the
first requirement made in the above section. First, we have to show that it
prevents Φ2 configurations that are far from every QED singular regions from
being mapped into Φ1 configurations that are close to a QED singular region,
to avoid generating Φ2 events from a divergent B̄fb(Φ1). Let us consider a Φ2

configuration where the closest QED splitting is characterized by a transverse
momentum kQED

T . There are two possibilities.

1. The closest singularity is due to QCD (i.e. kαrT < kQED
T ). Since the map-

ping is expected to change the momenta of the particles involved in the
QED splitting by an amount of order kαrT < kQED

T , such QED-finite Φ2

configurations are not expected to be projected to QED-singular Φ1 con-
figurations.

2. The closest singularity is due to QED (i.e. kQED
T < kαrT ). In this case

there is the possibility that the projected Φ1 configuration carries a QED-
divergent contribution proportional to

Bfb ∝ 1

E2
γ

1

θ2
γq

∼ 1

dγq
. (12.29)

However, in the QED-singular limit the damping function provides a kine-
matic suppression proportional to

Fαr ∼
(
dγq
dαr

)p
. (12.30)

Even though Bfb and Fαr are computed using momenta belonging to
configurations with different multiplicities, by choosing a large enough
value for p we can guarantee that the contributions from the regions close
to the QED divergence are negligible. In our case p = 2 has proven to be
an adequate choice.
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Finally, we have to show that B̄fb(Φ1) does not take divergent contributions
from Φ2 configurations that are close to a QED singularity. This is again guar-
anteed by the fact that the Φ2 configurations that are close to a QED divergence
(i.e. have kQED

T < kαrT ) are given a kinematic suppression inside B̄fb(Φ1) pro-
portional to

Fαr ∼
(
dγq
dαr

)p
. (12.31)

12.2.1 The suppression factors

With the method described in the previous section, we have made sure that
all the events that pass the analysis cuts do not receive contributions from
configurations that are too close to the QED singular regions (and thus non
physical). We are still left with the problem that the differential cross section
presented in eq. (12.27) is not integrable over the entire dΦ1 phase space due to
the QED singularities. A way to solve this problem would be to implement the
same cuts that we adopt in the analysis at the generation level. However, unless
the cut is made on an observable preserved by the mappings, we would risk to
discard configurations that would have contributed to events that are kept by
the analysis. To avoid this problem, we could still apply generation cuts that
are much tighter than the analysis one, but we would lose efficiency generating
a lot of events that are finally discarded. To avoid this, the Powheg Box event
generator offers the possibility of applying two suppression factors SB(Φ1) and
SR(Φ1) to B̄fb(Φ1) and Rαr (Φ2) respectively, to make the product SBB̄

fb and
SRR

αr integrable over the entire phase space. The physical distribution is
finally recovered by giving to the event a weight 1/SB or 1/SR. The explicit
expressions we use for the two suppression factors are

SB =
paTγ1

paTγ1
+ p̄aTγ

paTγ2

paTγ2
+ p̄aTγ

Raj1γ1

Raj1γ1
+ R̄ajγ

Raj1γ2

Raj1γ2
+ R̄ajγ

, (12.32)

and

SR =
paTγ1

paTγ1
+ p̄aTγ

paTγ2

paTγ2
+ p̄aTγ

Raj1γ1

Raj1γ1
+ R̄ajγ

Raj1γ2

Raj1γ2
+ R̄ajγ

Raj2γ1

Raj2γ1
+ R̄ajγ

Raj2γ2

Raj2γ2
+ R̄ajγ

,

(12.33)
where pTi is the transverse momentum of the particle i with respect to the
beam axis, and Rij the angular distance between the particles i and j in the
azimuth-pseudorapidity plane

Rij =

√
(ηi − ηj)2

+ (φi − φj)2
. (12.34)

In our simulation we have set

p̄Tγ = 22 GeV R̄jγ = 0.4 a = 1. (12.35)
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Chapter 13

Phenomenological results

13.1 Physical parameters

The phenomenological results presented in this chapter were obtained for a
proton-proton collider with a hadronic center-of-mass energy

√
S = 13 TeV.

We used the LHAPDF [34] PDF set NNPDF31_nnlo_as_0118 and the evolution
of αS provided by the same package. The electromagnetic coupling for the final-
state photons has been set to α = 1/137, and the mass of the top quark to
mt = 173.2 GeV.

We apply the photon isolation prescription of Ref. [50] to the two final-state
photons. For each photon, we compute the angular distance Riγ with respect
to the i-th final-state parton. We discard the event unless, for every photon and
every R < Rc,

npart∑
i=1

pTi θ(R−Riγ) < Emax

T χ(R) , (13.1)

where npart is the number of final-state partons, pTi is the transverse momentum
of i with respect to the beam, and

χ(R) =

(
1− cosR

1− cosRcone

)n
. (13.2)

In our analysis, we have set

Emax

T = 4 GeV Rcone = 0.4 n = 1. (13.3)

In addition, the two photons have to fulfill

pTγ1
> pmin

Tγ1
, pTγ2

> pmin

Tγ2
, mγγ > mmin

γγ , (13.4)

where pTγ1
and pTγ1

are the transverse momenta of the hardest and next-to-
hardest photons, and mγγ is the mass of the photon pair, and

pmin

Tγ1
= 25 GeV, pmin

Tγ2
= 22 GeV, mmin

γγ = 25 GeV. (13.5)
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13.2 Matrix elements

The matrix elements for the process p p→ γ γ j at NLO in QCD were obtained
from OpenLoops2 [33, 42, 43, 51, 52]. The two-loop amplitudes for q q̄ → γ γ
have instead been taken from refs. [53, 54] and implemented into the code. We
work in the approximation of 5 light quarks, and neglect the contributions given
by two-loop diagrams with one massive loop. We consider instead the contri-
butions given by top-quark loops in the single-loop diagrams for the process
p p→ γ γ j.

When comparing with the experimental results from the LHC we include
in our predictions the LO contribution from the gluon-initiated process of pro-
duction of a photon pair through a closed quark loop g g → γ γ, which, besides
being of the same order α2

S of the NNLO corrections to the quark-initiated pro-
cess discussed so far, is further enhanced by the sizable gluon luminosity at the
LHC. The analytic amplitudes for this process were taken from ref. [55] and
implemented in the Powheg Box Res framework after neglecting the top-quark
loop contribution, which amounts for at most a few percent in the kinematic
distributions we are showing (see e.g. figure 3 of ref. [56]).

13.3 Validation of the code

To validate the implementation of our code, we compared some distributions of
phenomenological interest against those produced with the NNLO fixed-order
calculation implemented in the public version of the Matrix code [41, 57, 42,
58, 53, 59, 60]. The two predictions are theoretically expected to agree up to
terms beyond the NNLO accuracy.

The Matrix results presented in this section were obtained setting the slicing
parameter rcut = 0.0005 (i.e. they neglect non-singular contributions with pT <
0.0005Q)1 and the renormalization and factorization scales equal to the mass
of the photon pair µR = µF = Q. The theoretical uncertainty was estimated via
a seven-point scale variation obtained by multiplying and dividing the central
renormalization and factorization scales by a factor 2. Furthermore, we used
the PDFs, fiducial cuts and isolation criterion reported in the previous section.

The central values of the Matrix and MiNNLOPS total cross sections are in
agreement within the statistical errors and read respectively2

σMatrix

γγ = 155.7± 1.0 pb σMiNNLO

γγ = 154.9± 0.2 pb, (13.6)

while the corresponding theoretical uncertainties are given by3

σMatrix

γγ = 155.7 +5%
−4% pb σMiNNLO

γγ = 154.9 +6%
−5% pb. (13.7)

1Matrix also provides extrapolated results for the total cross section down to rcut = 0.
However, the extrapolation makes the statistical error much larger, so that we prefer to limit
ourselves to the comparison with the results for the lowest non-zero rcut value.

2The extrapolated value for the total cross section is equal to σMatrix
γγ = 153.9 ± 1.9 pb.

3The extrapolated theoretical uncertainty is equal to σMatrix
γγ = 153.9 +4%

−4%
pb.
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Figure 13.1: Comparison between the predictions from the fixed-order calcu-
lation implemented in Matrix and MiNNLOPS for the mass mγγ and rapidity
yγγ of the photon pair, and the transverse momentum of the hardest (pTγ1

) and
second-to-hardest (pTγ2

) photons. The bands represent the estimated theoreti-
cal uncertainties of the distributions. In the lower panes of the figures, the ratio
between the two curves is shown.

Both the results are in agreement with each other.
Finally, in figure 13.1 we compare the distributions of the mass mγγ and

rapidity yγγ of the photon pair, and the transverse momentum of the hardest
(pTγ1

) and second-to-hardest (pTγ2
) photons along with the corresponding es-

timated theoretical uncertainties. We find an overall good agreement between
the Matrix and MiNNLOPS curves, and a compatible size for the scale-variation
bands. We ascribe the difference in the high-mγγ region to effects beyond the
NNLO accuracy of our result.

13.4 Distribution of the partonic events

To study the phenomenology of the process, we generated about 16 million
events without any generation cuts apart from imposing a minimum mass of
the photon pair of 10 GeV. Since the mass of the photon pair is preserved by
all the mappings that we use, this generation cut has no effects on the final
distributions as long as it is smaller than the fiducial cut on the mass of the
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Figure 13.2: Comparison between the predictions from the fixed-order calcu-
lation implemented in Matrix and the Les Houches partonic events generated
by the Powheg Box Res for the mass mγγ and rapidity yγγ of the photon
pair, and the transverse momentum of the hardest (pTγ1) and second-to-hardest
(pTγ2

) photons. The bands represent the estimated theoretical uncertainties of
the distributions. In the lower panes of the figures, the ratio between the two
curves is shown.

photon pair mmin
γγ . Except for this constraint, the events can then be used for

making predictions with arbitrary fiducial cuts.
We begin by comparing the distributions obtained from the Powheg par-

tonic events (often denoted as Les Houches events) with the Matrix predic-
tions. In figure 13.2 we show the distributions of the mass mγγ and rapidity
yγγ of the photon pair, and the transverse momentum of the hardest (pTγ1

) and
second-to-hardest (pTγ2

) photons. We observe a good agreement between the
two predictions, both for the central value and the estimated theoretical uncer-
tainties. At variance with similar comparisons for other processes not involving
photons, this is not trivial due to the presence of an isolation criterion in the
definition of the cross section of the process.
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Figure 13.3: Comparison between the distributions obtained from the generated
events before and after the Pythia8 parton shower for the massmγγ and rapidity
yγγ of the photon pair, and the transverse momentum of the hardest (pTγ1

) and
second-to-hardest (pTγ2

) photons. The bands represent the estimated theoretical
uncertainties of the distributions. In the lower panes of the figures, the ratio
between the two curves is shown.

13.5 Distributions after the parton shower

After comparing the distributions of the partonic events with the fixed-order
calculation, we now want to study the effects on the same distributions of the
parton shower performed by Pythia8 [61, 62].

To interface Pythia8 to the Powheg Box Res event generator, we rely on
the main31 configuration file (distributed with Pythia8). The results presented
in this section were obtained after switching off multiparton interactions (MPI),
QED radiation and hadronization effects, and using the Monash tune presented
in ref. [63]. Furthermore, we set the Pythia8 parameter POWHEG:pThard to
2 (i.e. we used the prescription introduced in section 4 of ref. [64]), and the
SpaceShower:dipoleRecoil to 1.4

In figure 13.3 we compare the distributions obtained from the generated
events before and after the Pythia8 parton shower for the massmγγ and rapidity

4In the LO contribution from the gluon-initiated process (included only in the comparison
with data) the upper limit for the transverse momentum of the shower evolution is set equal
to the mass of the photon pair.
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Figure 13.4: Comparison between the NNLO+PS predictions from MiNNLOPS

combined with Pythia8 and the ATLAS data for the mass mγγ and transverse
momentum pTγγ of the photon pair. The bands and the bars represent respec-
tively the estimated theoretical and statistical uncertainties of the distributions.
In the lower panes of the figures, the ratio between the two curves is shown.

yγγ of the photon pair, and the transverse momentum of the hardest (pTγ1) and
second-to-hardest (pTγ2) photons. We observe a reduction of around 5–10%
of the cross sections after the parton shower, especially in the region of high
transverse momenta of the two photons. We ascribe this behavior to the fact
that, with the increased multiplicity of the partonic activity, the photons in the
events after the parton shower are less likely to satisfy the isolation criterion,
thus leading to a smaller cross section. We observed the same pattern also in a
fully independent (and significantly simpler) code implementing QCD NLO+PS
diphoton production in the Powheg Box Res. A similar behavior was observed
also in ref. [65].

13.6 Comparison with the ATLAS results

We conclude the discussion on the phenomenology of the process by comparing
the NNLO+PS predictions obtained combining MiNNLOPS with the Pythia8

parton shower to the experimental results presented by the ATLAS collabora-
tion in ref. [66]. To do this, we rely on the analysis provided by Rivet [67].
As discussed above, to make a better comparison with the data, we add to the
NNLO-accurate MiNNLOPS results for the process q q̄ → γ γ the LO contribu-
tion from the gluon-initiated process g g → γ γ. Since there are no interferences
among the Feynman diagrams of the two processes up to order α2

S we compute
the final distributions by simply adding the results from the two calculations
for every bin of the histograms and combining the errors in quadrature.

The ATLAS results were obtained at a hadronic center-of-mass energy
√
S =
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Figure 13.5: Comparison between the NNLO+PS predictions from MiNNLOPS

combined with Pythia8 and the ATLAS data for the transverse momentum of
the hardest (pTγ1

) and second-to-hardest (pTγ2
) photons. The bands and the

bars represent respectively the estimated theoretical and statistical uncertainties
of the distributions. In the lower panes of the figures, the ratio between the two
curves is shown.

13 TeV, with a fiducial volume defined by the requirements that

pTγ1
> 40 GeV pTγ2

> 30 GeV ∆Rγγ > 0.4 (13.8)

and
|yγi | < 1.37 1.52 < |yγi | < 2.37 i = 1, 2, (13.9)

where pTγ1
and pTγ2

are the transverse momenta of the hardest and second-
to-hardest photons, ∆Rγγ is the angular distance between the two photons as
defined in eq. (12.34), and yγi is the rapidity of the i-th photon. Furthermore,
the photon-isolation criterion described in section 4.1 of ref. [66] is applied.

In figure 13.4 we show the distributions for the mass mγγ and transverse
momentum pTγγ of the photon pair. We find a good agreement between the data
and theoretical predictions throughout the entire range of the pTγγ distribution
and in the bulk of the cross section for the mγγ distribution. Given the cuts
of eqs. (13.8) and (13.9), the region where mγγ < 80 GeV is populated only
by γγ accompanied by at least one jet, making our result only NLO accurate,
as confirmed also by the wider uncertainty bands. For mγγ < 40 GeV, the
MiNNLOPS results overshoot ATLAS data by an amount compatible with what
has been observed, for other predictions of similar accuracy, in ref. [66]. The
fact that this region is characterized by a large NLO K-factor [68] hints at
the possibility that the inclusion of higher-order corrections will improve the
agreement with data. At large mγγ values we observe differences up to about
15%, which might be due to higher-order contributions. Top-quark mass effects
above the threshold mγγ ' 2mt, that we are neglecting in the quark-induced
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Figure 13.6: Comparison between the NNLO+PS predictions from MiNNLOPS

combined with Pythia8 and the ATLAS data for the azimuthal separation of the
two photons ∆φγγ and φ∗η (see the definition in eq. (13.10)). The bands and the
bars represent respectively the estimated theoretical and statistical uncertainties
of the distributions. In the lower panes of the figures, the ratio between the two
curves is shown.

2-loop amplitudes as well as in the g g → γ γ channel, can also induce differences
at the percent level.

In figure 13.5 instead we show the distributions for the transverse momenta
of the hardest (pTγ1

) and second-to-hardest (pTγ2
) photons, for which we find a

good agreement between the data and theoretical predictions.
Finally, in figure 13.6 we show the distributions of two angular observables:

the azimuthal separation ∆φγγ of the two photons and φ∗η, defined as

φ∗η = tan

(
π −∆φγγ

2

)√
1−

(
tanh

∆yγγ
2

)2

, (13.10)

where ∆yγγ is the rapidity difference between the two photons. Such a variable,
first introduced for Drell-Yan processes in ref. [69], while being sensitive to the
same dynamics governing the pT spectrum, allows for a better resolution at small
values of pT. The agreement between the data and the theoretical predictions
is rather good on the whole range of the two distributions.
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Chapter 14

Conclusions

In this thesis, I’ve presented the implementations of two processes of boson
pair production in two different Monte Carlo event generators: Geneva and
MiNNLOPS+Powheg Box. Despite sharing the same formal NNLO QCD ac-
curacy, the two methods are different from each other. While the MiNNLOPS

approach relies on the pT resummation, both for the transverse momentum
of the first and the second jet (the latter is performed through the Powheg

method), the Geneva event generator is natively based on the TN resummation
(although the method itself is independent from the type of resummation and
has also been used with the pT resummation [19]).

The matching between the resummation and the fixed-order matrix elements
is also performed differently in two different event generators. The Geneva

method follows an additive approach, where the resummed and fixed-order T0

spectra are added to each other after subtracting the expansion of the resummed
term to avoid double counting. This method is in principle cleaner, since, for
every underlying configuration Φ0 the resummed and resummed-expanded total
cumulants exactly cancel each other, thus making the distribution of every ob-
servable that is preserved by both the 1 → 0 and 2 → 1 phase-space mappings
(e.g. the mass and rapidity of the color singlet) identical to that obtained from a
fixed-order calculation. However, in the actual implementation of the code the
above statement is spoiled by the missing non-singular NNLO contributions for
the configurations with T0 < T cut

0 , whose computation would require the imple-
mentation of a NNLO local infrared subtraction. By choosing a small value for
T cut

0 , the size of such contributions can be typically reduced to be of the order
of or smaller than 1% of the total cross section, but cannot be completely re-
moved since a too small T cut

0 would make the calculation numerically unstable.
If the result from an independent NNLO fixed-order calculation is available, the
generated events can be reweighted so as to recover the correct integrated cross
section.

The MiNNLOPS+Powheg Box event generator follows instead a multiplica-
tive approach, building on the original MiNLO method [11, 12]. The presence of
on overall Sudakov form factor that exponentially suppresses any infrared diver-
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gence in the limit of small pT allows to avoid introducing any resolution cut, thus
formally including all the NNLO contributions in the calculation. The downside
resides in the appearance of spurious terms beyond the claimed NNLO accuracy,
which, despite being formally subleading, can become numerically relevant, as
was the case for the process of study.

Due to their complexity, every quantum field theory calculation of phe-
nomenological interest heavily relies on several approximations. The availability
of different NNLO QCD Monte Carlo event generators is an important tool for
better quantifying the effect of some of these approximations and to provide a
more accurate estimate of the theoretical uncertainties associated to the calcu-
lation. The direct comparison between the distributions produced by the two
event generators goes beyond the scope of this thesis. Nonetheless it could be
an interesting topic for future works.
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Appendix A

The 2→ 1 mapping
(qT preserving)

A.1 Direct mapping

The qT-preserving 2→ 1 mapping implemented in Geneva is defined under the
conditions that it preserves

1. The fully recursive zero-jettiness T FR
0 .

2. The momenta qi of the particles belonging to the color singlet.

A.1.1 Same Hemisphere ISRA and FSRA

We can treat together the Same Hemisphere ISRA and FSRA cases since they
share the same expressions for the fully-recursive zero-jettiness (see eqs. (7.11)
and (7.19)) and the underlying zero-jettiness computed on the projected Φ1 con-
figuration, given in eqs. (7.12) and (7.20). By imposing that the two expressions
are equal and from the equations of momentum conservation, the formulae for
p̄1, x̄a and x̄b read

ˆ̄p+
1 = p̂+

12

∣∣∣∣
ˆ̄p−1 =

p2
12T

p̂+
12

∣∣∣∣
~̄p1T = ~p12T

∣∣∣∣


x̄a = xa −

eyCS

√
S

(
p̂−12 −

p2
12T

p̂+
12

) ∣∣∣∣
x̄b = xb,

∣∣∣∣ (A.1)

where we called S = (Pa + Pb)
2
.
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A.1.2 Opposite Hemisphere ISRA

Following the same steps as above, the mapping in the Opposite Hemisphere
ISRA case reads

ˆ̄p+
1 =

p2
12T

p̂−1 + p̂+
2

∣∣∣∣
ˆ̄p−1 = p̂−1 + p̂+

2

∣∣∣∣
~̄p1T = ~p12T

∣∣∣∣


x̄a = xa −

eyCS

√
S

(
p̂−2 − p̂+

2

) ∣∣∣∣
x̄b = xb −

e−yCS

√
S

(
p̂+

12 −
p2

12T

p̂−1 + p̂+
2

)
,

∣∣∣∣ (A.2)

where we called S = (Pa + Pb)
2
.

A.2 Inverse mapping

A.2.1 Same Hemisphere ISRA

The formulae for p2 only depend on the expressions for T1, given in eq. (7.11), z,
given in eq. (7.33), and φ, so they are the same derived for the default mapping
and presented in eq. (7.34). Once we know them, we can invert the formulae of
eq. (A.1) to write the expression of the inverse mapping for the Same Hemisphere
ISRA case

p̂+
1 = ˆ̄p+

1 − p̂+
2

∣∣∣∣
p̂−1 =

(
~̄p1T − ~p2T

)2
ˆ̄p+
1 − p̂+

2

∣∣∣∣
~p1T = ~̄p1T − ~p2T

∣∣∣∣


xa = x̄a +

eyCS

√
S

(
p̂−12 −

p2
12T

p̂+
12

) ∣∣∣∣
xb = x̄b.

∣∣∣∣ (A.3)

A.2.2 Opposite Hemisphere ISRA

Similarly to what we did above, we take the formulae for p2 from eq. (7.34), and
invert the formulae of eq. (A.2) to write the expression of the inverse mapping
for the Opposite Hemisphere ISRA case

p̂+
1 =

(
~̄p1T − ~p2T

)2
ˆ̄p−1 − p̂+

2

∣∣∣∣
p̂−1 = ˆ̄p−1 − p̂+

2

∣∣∣∣
~p1T = ~̄p1T − ~p2T

∣∣∣∣


xa = x̄a +

eyCS

√
S

(
p̂−2 − p̂+

2

) ∣∣∣∣
xb = x̄b +

e−yCS

√
S

(
p̂+

12 −
p2

12T

p̂−1 + p̂+
2

)
.

∣∣∣∣ (A.4)
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A.2.3 FSRA

From the expression of T1 given in eq. (7.2), and by inverting the formulae of
eq. (A.1) we find

p̂+
12 = ˆ̄p+

1

∣∣∣∣
p̂−12 =

ˆ̄p−1 ˆ̄p+
1 + T1 ˆ̄p+

1 − T 2
1

ˆ̄p+
1 − T1

∣∣∣∣
~p12T = ~̄p1T

∣∣∣∣


xa = x̄a +

eyCS

√
S

(
p̂−12 −

p2
12T

p̂+
12

) ∣∣∣∣
xb = x̄b.

∣∣∣∣
(A.5)

A.3 Integration limits

A.3.1 FSRA

For the FSRA case we can recycle the entire calculation done in section 7.5.2
for the mapping that does not preserve qT, granted that this time M2 and p̂−12

have a different expression in terms of p̄1 and T1. The constraints on z and φ
are then the same as those given in eqs. (7.70), (7.76) and (7.77).

Additional constraint

When generating the phase space Geneva puts the Φ2 configurations that do
not satisfy the condition

p0
2 < p̄0

1 (A.6)

among the non-projectable ones for technical reasons. This is allowed since
such configurations are never divergent, but must be taken into account when
computing the integration limits on z and φ. From the definition of z given in
eq. (7.40) and the expression of p̄1 given in eq. (A.1) the condition of eq. (A.6)
translates into the further constraint

z >
p−12p

+
12 − p2

12T

p+
12

(
p−12 + p+

12

) . (A.7)

It can be seen from the expression of p̄1 in the mapping that does not preserve
qT, given in eq. (7.31), that the condition of eq. (A.6) does not impose any
further constraint on z and φ.

A.3.2 ISRA

Constraints imposed by the mapping

We start from the expression for dΦ2 given in eq. (7.49), which, using the
formulae presented in eq. (7.47) and (7.48) and imposing

p̂1x = −p̂2x − qx
∣∣

p̂1y = −p̂2y − qy
∣∣ m2

CS = q2
∣∣

p̂2
2T = p̂−2 p̂

+
2

∣∣ (A.8)
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to remove four integration variables, can be rewritten as

dΦ2 = dxa dxb
dq− dq+ dq2

T dΦq
4

θ
(
q−
)
θ
(
q+
) dp̂−1 dp̂+

1

2 (2π)
3 θ
(
p̂−1
)
θ
(
p̂+

1

)
× δ
(
p̂−1 p̂

+
1 − p̂−2 p̂+

2 − q2
T − 2

√
p̂−2 p̂

+
2 q

2
T cos(φ− Φq)

)
× dp̂−2 dp̂

+
2 dφ

4 (2π)
3 θ

(
p̂−2
)
θ
(
p̂+

2

)
δ

(
p̂−1 + p̂−2 +

√
q−q+ −

√
Sxa

√
q+

q−

)

× δ
(
p̂+

1 + p̂+
2 +

√
q−q+ −

√
Sxb

√
q−

q+

)
dΦCS

(
q−q+ − q2

T

)
. (A.9)

At this point we can use two of the three remaining δ functions to remove the
integration over xa and xb and impose

xa =

√
q−

q+

(
p̂−1 + p̂−2 +

√
q−q+

√
S

)
xb =

√
q+

q−

(
p̂+

1 + p̂+
2 +

√
q−q+

√
S

)
.

(A.10)
Since the integral over both xa and xb was limited to the interval (0, 1), we have
to enforce that the above expressions are in such a range. We can immediately
see that the positivity of q−, q+, p̂−1 , p̂+

1 , p̂−2 and p̂+
2 guarantees that the above

expressions for xa and xb are always positive. We are then left with requiring
that they are smaller than 1 by adding two more θ functions, which leads us to

dΦ2 =
dq− dq+ dq2

T dΦq
4S

θ
(
q−
)
θ
(
q+
) dp̂−1 dp̂+

1

2 (2π)
3 θ
(
p̂−1
)
θ
(
p̂+

1

)
× δ
(
p̂−1 p̂

+
1 − p̂−2 p̂+

2 − q2
T − 2

√
p̂−2 p̂

+
2 q

2
T cos(φ− Φq)

)
× dp̂−2 dp̂

+
2 dφ

4 (2π)
3 θ

(
p̂−2
)
θ
(
p̂+

2

)
θ

(
√
S

√
q+

q−
− p̂−1 − p̂−2 −

√
q−q+

)

× θ
(
√
S

√
q−

q+
− p̂+

1 − p̂+
2 −

√
q−q+

)
dΦCS

(
q−q+ − q2

T

)
. (A.11)

To compute the integration limits on z and φ, we need to have six independent
integration variables that do not depend on z and φ (i.e. they are only functions
of Φ1 and T1). The variables q−, q+, q2

T, Φq and p̂+
2 satisfy such a requirement.

We will choose the sixth variable to be p̂+
1 in the Same Hemisphere ISRA case

and p̂−2 in the Opposite Hemisphere ISRA case.

Same Hemisphere ISRA Starting from eq. (A.11), after imposing

p̂−1 =
p̂−2 p̂

+
2 + q2

T + 2
√
p̂−2 p̂

+
2 q

2
T cos(φ− Φq)

p̂+
1

(A.12)
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we can use the last δ function to remove the p̂−1 integration variable and arrive
to the final expression

dΦ2 =
dq− dq+ dq2

T dΦq

8 (2π)
3
S

θ
(
q−
)
θ
(
q+
) dp̂+

1

p̂+
1

θ
(
p̂+

1

) dp̂−2 dp̂+
2 dφ

4 (2π)
3 θ

(
p̂−2
)
θ
(
p̂+

2

)
× θ

√S√q+

q−
− p̂−2 −

√
q−q+ −

p̂−2 p̂
+
2 + q2

T + 2
√
p̂−2 p̂

+
2 q

2
T cos(φ− Φq)

p̂+
1


× θ
(
√
S

√
q−

q+
− p̂+

1 − p̂+
2 −

√
q−q+

)
dΦCS

(
q−q+ − q2

T

)
. (A.13)

The constraints on z and φ that we are looking for will then be given by the
two θ functions that depend on p̂−2 and φ. The first one just imposes that p̂−2 is
positive, which from eq. (7.33) translates into requiring that z < 1. We are left
with solving the inequality

p̂−2
(
p̂+

1 + p̂+
2

)
+ 2

√
p̂−2 p̂

+
2 q

2
T cos(φ− Φq)− p̂+

1

(
√
S

√
q+

q−
−
√
q−q+

)
+ q2

T < 0

(A.14)
with respect to φ, which imposes the constraint

cos(φ− Φq) <

p̂+
1

(
√
S

√
q+

q−
−
√
q−q+

)
− q2

T − p̂−2
(
p̂+

1 + p̂+
2

)
2

√
p̂−2 p̂

+
2 q

2
T

. (A.15)

Opposite Hemisphere ISRA Starting from eq. (A.11), after imposing

p̂+
1 =

p̂−2 p̂
+
2 + q2

T + 2
√
p̂−2 p̂

+
2 q

2
T cos(φ− Φq)

p̂−1
, (A.16)

we can use the last δ function to remove the p̂+
1 integration variable and arrive

to the final expression

dΦ2 =
dq− dq+ dq2

T dΦq

8 (2π)
3
S

θ
(
q−
)
θ
(
q+
) dp̂−1
p̂−1

θ
(
p̂−1
) dp̂−2 dp̂+

2 dφ

4 (2π)
3 θ

(
p̂−2
)
θ
(
p̂+

2

)
× θ

√S√q−

q+
− p̂+

2 −
√
q−q+ −

p̂−2 p̂
+
2 + q2

T + 2
√
p̂−2 p̂

+
2 q

2
T cos(φ− Φq)

p̂−1


× θ
(
√
S

√
q+

q−
− p̂−1 − p̂−2 −

√
q−q+

)
dΦCS

(
q−q+ − q2

T

)
. (A.17)
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This time there are three θ functions that depend on p̂−2 and φ. As we have
seen before, the first one just imposes that z < 1. The last one still does not
depend on φ and imposes that

p̂−2 <
√
S

√
q+

q−
−
√
q−q+ − p̂−1 . (A.18)

Finally the third condition reads

p̂−2 p̂
+
2 + 2

√
p̂−2 p̂

+
2 q

2
T cos(φ− Φq)− p̂−1

(
√
S

√
q−

q+
−
√
q−q+ − p̂+

2

)
+ q2

T < 0,

(A.19)
and imposes that

cos(φ− Φq) <

p̂−1

(
√
S

√
q−

q+
−
√
q−q+

)
− q2

T − p̂+
2

(
p̂−1 + p̂−2

)
2

√
p̂−2 p̂

+
2 q

2
T

. (A.20)

Constraints imposed by the slicing of the phase space

Following what we did for the mapping that does not preserve qT, we now need
to impose that p̂+

2 is the smallest among all the possible expressions for the
one-jettiness (see eq. (7.62)). Furthermore, this time p̂−1 and p̂+

1 could depend
on z and φ, meaning that we also need to enforce that the expression we are
using for T0 is the smallest among those given in eq. (7.8). To do that, we have
to distinguish between the Same Hemisphere ISRA and Opposite Hemisphere
ISRA cases.

Same Hemisphere ISRA In this case the condition on the zero-jettiness
reads

p̂+
1 < p̂−1 , (A.21)

and, together with the constraints of eq. (7.62), imposes that

p̂−2 > p̂+
2 (A.22)

and 
cos(φ− Φq) >

(
p̂+

1

)2 − p̂−2 p̂+
2 − q2

T

2
√
p̂−2 p̂

+
2 q

2
T

cos(φ− Φq) >
p̂+

1 p̂
+
2 − p̂−2

(
p̂+

1 + p̂+
2

)
2
√
p̂−2 p̂

+
2 q

2
T

.

(A.23)
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Opposite Hemisphere ISRA In this case the condition on the zero-jettiness
reads

p̂−1 < p̂+
1 , (A.24)

and, together with the constraints of eq. (7.62), imposes that

p̂−2 > p̂+
2 (A.25)

and 
cos(φ− Φq) >

(
p̂−1
)2 − p̂−2 p̂+

2 − q2
T

2
√
p̂−2 p̂

+
2 q

2
T

cos(φ− Φq) > −
(
p̂−2 p̂

+
2 + q2

T

) (
p̂−2 − p̂+

2

)
+ p̂−2 p̂

+
2 p̂
−
1

2
√
p̂−2 p̂

+
2 q

2
T

(
p̂−1 + p̂−2 − p̂+

2

) .

(A.26)

A.4 Jacobian

ISRA

Starting from the expression of eq. (6.6) and following the same steps that took
us from eq. (7.45) to eqs. (A.13) and (A.17), we can write the phase space with
one final-state parton in the Same Hemisphere ISRA case as

dΦ1 =
dq̄− dq̄+ dq̄2

T dΦ̄q

8 (2π)
3
S

θ
(
q̄−
)
θ
(
q̄+
) dT0

T0
θ(T0) dΦCS

(
q̄−q̄+ − q̄2

T

)
× θ
(
√
S

√
q̄+

q̄−
− q̄2

T

T0
−
√
q̄−q̄+

)
θ

(
√
S

√
q̄−

q̄+
− T0 −

√
q̄−q̄+

)
(A.27)

and in the Opposite Hemisphere ISRA case as

dΦ1 =
dq̄− dq̄+ dq̄2

T dΦ̄q

8 (2π)
3
S

θ
(
q̄−
)
θ
(
q̄+
) dT0

T0
θ(T0) dΦCS

(
q̄−q̄+ − q̄2

T

)
× θ
(
√
S

√
q̄+

q̄−
− T0 −

√
q̄−q̄+

)
θ

(
√
S

√
q̄−

q̄+
− q̄2

T

T0
−
√
q̄−q̄+

)
.

(A.28)

At this point, starting from the result of eqs. (A.13) and (A.17), since

dp̂+
1

p̂+
1

=
dT0

T0 − T1
. (A.29)

and dp̂+
2 = dT1, using eq. (7.81), we finally arrive to

dΦ2

dΦ1 dT1 dz dφ
=

√
Sx̄ae

−yCS

4 (2π)
3
z2

T0

T0 − T1
. (A.30)
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FSRA

In this case we start from the expression of dΦ1 and dΦ2 given in eqs. (7.68)
and (7.78). From eq. (A.5) we can write that p̂+

12 = ˆ̄p+
1 , Φ = Φ̄1, and

dp̂−12 dM
2 = T0

[
1 +

q2
T

(T0 − T1)
2

]
d ˆ̄p−1 dT1. (A.31)

At this point, from the above equation and eq. (7.85), we finally arrive to

dΦ2

dΦ1 dT1 dz dφ
=

T0

4 (2π)
3
β0

[
1 +

q2
T

(T0 − T1)
2

]
. (A.32)

We highlight that T1 is always strictly smaller than T0 so that the denominator
in the above expression is never 0.

A.5 Comparison of the two 2→ 1 mappings

The default 2→ 1 mapping used in Geneva (which was also used for producing
all the NNLO distributions presented in this work) is the one that does not pre-
serve the transverse momentum of the color singlet. Such a choice is dictated by
the effect that the mapping has on some of the exclusive distributions. Indeed,
while the distributions of the observables that only depend on ΦN and TN have,
by construction, no dependence on the N+1→ N mapping, all the others have.

In particular, the 2 → 1 qT-preserving mapping introduces an unphysical
distortion in the distribution of the rapidity difference yj1 − yCS between the
color singlet and the hardest jet. Calling p1 the momentum of the hardest
parton, we can write such observable as

yj1 − yCS =
1

2
log

p̂−1
p̂+

1

. (A.33)

The condition presented in eq. 7.23 under which the 2→ 1 mapping that does
not preserve qT is built ensures that the Φ2 configurations where the hardest
parton has p̂−1 < p̂+

1 are projected on Φ1 configurations where the parton still
has ˆ̄p−1 < ˆ̄p+

1 , thus preventing yj1 − yCS from changing sign, which would spoil
the peak of the distribution.
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Appendix B

Theoretical uncertainties in
the MiNNLOPS method

The theoretical uncertainties in the MiNNLOPS method are estimated via a
seven-point scale variation, where the factorization and renormalization scales
µF and µR are multiplied respectively by the factors KF and KR, whose values
can be 1, 2 or 1/2. Out of the nine results, those with KF = 1/2 and KR = 2 or
KF = 2 and KR = 1/2 are discarded, and the maximum and minimum values
among the remaining seven provide the estimate of the theoretical uncertainties.

B.1 RG and DGLAP equations

The explicit dependence of the luminosity factor and Sudakov form factor from
KF and KR can be derived by imposing that it cancels, order by order in
the αS expansion, the dependence of the PDFs and the strong coupling from
the same parameters. To do this, we first need to write the solution to the
renormalization-group (RG) evolution equation for the strong coupling [70, 71]

∂

∂µ

(
αS(µ)

2π

)
= − 2

µ

∑
n

β̄n

(
αS(µ)

2π

)n+2

, (B.1)

where we have introduced (with the aim of simplifying the expression of the
following equations) the coefficients β̄n = βn/2 (the latter given in eq. (3.55)),
and the DGLAP equation for the PDFs [48]

∂f
[h]
k (x, µ)

∂µ
=

2

µ

∑
n

∑
j

(
P

(n)
kj ⊗ f

[h]
j

)
(x, µ)

(
αS(µ)

2π

)n+1

, (B.2)
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where the splitting functions P
(0)
kj were given in eq. (10.17). The solution to the

RG equation is given by

αS(µ)

2π
=
αS(pT)

2π
−
(
αS(pT)

2π

)2

β̄0 log

(
µ2

p2
T

)
−
(
αS(pT)

2π

)3 [
β̄1 log

(
µ2

p2
T

)
− β̄2

0 log2

(
µ2

p2
T

)]
+O

(
α4

S

)
. (B.3)

The solution to the DGLAP equation (which improves the result of eq. (10.20)
instead reads

f
[h]
k (x, µ) = f

[h]
k (x, pT) +

αS(pT)

2π

∑
j

(
P

(0)
kj ⊗ f

[h]
j

)
(x, pT) log
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(
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2π

)2
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j

(
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[h]
j
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(x, pT) log
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(0)
j′j ⊗ f

[h]
j
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2
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1

2
log2

(
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p2
T
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+O

(
α3

S

)
. (B.4)

B.2 Scale dependence of the resummed term

Using the results of eqs. (B.3) and (B.4) to expand the strong coupling and the
PDFs around the scale pT, we can now derive the explicit dependence on µF

and µR of all the terms appearing in the resummed contribution. The scale-
dependent hard-virtual coefficient functions appearing in eq. (10.10) then reads

H
(1)

kk̄
(µR) = H

(1)

kk̄
(pT) + nB β̄0 log

(
µ2

R

p2
T

)
H

(0)

kk̄
(B.5)

H
(2)

kk̄
(µR) = H

(2)

kk̄
(pT) + (nB + 1) β̄0 log
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p2
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kk̄
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T
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− nB (nB + 1)

2
β̄2
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R

p2
T
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H

(0)

kk̄
.

(B.6)
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The quark collinear coefficient function reads

C
(1)
kj (z, µF, µR) = C

(1)
kj (z)− P (0)

kj (z) log

(
µ2

F

p2
T

) ∣∣∣∣ (B.7)
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(B.8)

and the coefficients of the Sudakov form factor

A
(2)

kk̄
(KR) = A

(2)

kk̄
+A

(1)

kk̄
β̄0 log

(
K2

R

)
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(2)

kk̄
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(2)

kk̄
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(1)

kk̄
β̄0 log

(
K2

R

)
.

(B.9)
Finally, the scale dependence of the gluon collinear coefficient function is trivial,
since it appears at LO only.

B.3 Scale dependence of the non-singular term

After using the above equations to compute the scale variations of the resummed
contribution, we are left with the doing the same for the non-singular term. The
derivatives of the Sudakov form factor and the luminosity factor up to second
order in the αS expansion reads[
dS̃kk̄
dpT

](1)

(pT, µR) = − 2

pT

{
A

(1)

kk̄
log

(
Q2
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}
(B.10)

[
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(B.11)
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and[
dLkk̄
dpT
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In the non-singular contribution Rf of the original MiNNLOPS approach pre-
sented in eq. (10.32), the presence of the Sudakov form factor and the use of
factorization and renormalization scales µF = µR = pT introduce O

(
α3

S

)
devi-

ations with respect to a fixed-order calculation that, despite being beyond the
claimed accuracy, could have sizable numerical effects. However, there is typi-
cally a numerical cancellation between the two effects, due to the fact that the
Sudakov form factor tends to reduce the total cross section and the scale pT

(instead of Q) has typically the opposite effect. If we call

dσNS,LO

kk̄

dΦ1
(µ) =

dσkk̄,LO

CS+jet

dΦ1
(µ)− αS(µ)

2π
D

(1)

kk̄
(pT, µ) (B.14)
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(B.15)
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the original Rf can be written as

Rf = e−S̃kk̄(pT)

[
dσNS,NLO

kk̄

dΦ1
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2π
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, (B.16)

and we can write

e−S̃kk̄(pT) = 1− αS(pT)
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(B.17)

where C1 and C2 are two functions that we typically expect to be positive, so
that the product reads

e−S̃kk̄(pT)
dσNS,NLO

kk̄
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kk̄
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)
, (B.18)

and we have called C̃1 the product between C1 and the Sudakov form factor.
However, this is not anymore the case once scale variations are taken into ac-
count. Indeed, both the scale variations are of order O

(
α3

S

)
e−S̃kk̄(pT,K) = e−S̃kk̄(pT) −D1
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(B.19)

where D1 and D2 are two other functions. However, after the multiplication we
find

e−S̃kk̄(pT,K)
dσNS,NLO

kk̄
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(KpT) = e−S̃kk̄(pT)
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(
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)
,

(B.20)
which means that the scale variation is dominated by one contribution alone,
and the numerical cancellation that we observed before is not there anymore.

124



Bibliography

[1] Simone Alioli et al. “Next-to-next-to-leading order event generation for
Z boson pair production matched to parton shower”. In: Phys. Lett. B
818 (2021), p. 136380. doi: 10.1016/j.physletb.2021.136380. arXiv:
2103.01214 [hep-ph].

[2] Alessandro Gavardi, Carlo Oleari, and Emanuele Re. “NNLO+PS Monte
Carlo simulation of photon pair production with MiNNLOPS”. In: JHEP
09 (2022), p. 061. doi: 10.1007/JHEP09(2022)061. arXiv: 2204.12602
[hep-ph].

[3] Christian Bierlich et al. “A comprehensive guide to the physics and usage
of PYTHIA 8.3”. In: (Mar. 2022). arXiv: 2203.11601 [hep-ph].

[4] Johannes Bellm et al. “Herwig 7.0/Herwig++ 3.0 release note”. In: Eur.
Phys. J. C 76.4 (2016), p. 196. doi: 10.1140/epjc/s10052-016-4018-8.
arXiv: 1512.01178 [hep-ph].

[5] Johannes Bellm et al. “Herwig 7.2 release note”. In: Eur. Phys. J. C
80.5 (2020), p. 452. doi: 10.1140/epjc/s10052-020-8011-x. arXiv:
1912.06509 [hep-ph].

[6] Enrico Bothmann et al. “Event Generation with Sherpa 2.2”. In: SciPost
Phys. 7.3 (2019), p. 034. doi: 10.21468/SciPostPhys.7.3.034. arXiv:
1905.09127 [hep-ph].

[7] Stefano Frixione and Bryan R. Webber. “Matching NLO QCD computa-
tions and parton shower simulations”. In: JHEP 06 (2002), p. 029. doi:
10.1088/1126-6708/2002/06/029. arXiv: hep-ph/0204244.

[8] Paolo Nason. “A New method for combining NLO QCD with shower
Monte Carlo algorithms”. In: JHEP 11 (2004), p. 040. doi: 10.1088/
1126-6708/2004/11/040. arXiv: hep-ph/0409146.

[9] Stefano Frixione, Paolo Nason, and Carlo Oleari. “Matching NLO QCD
computations with Parton Shower simulations: the POWHEG method”.
In: JHEP 11 (2007), p. 070. doi: 10.1088/1126-6708/2007/11/070.
arXiv: 0709.2092 [hep-ph].

125

https://doi.org/10.1016/j.physletb.2021.136380
https://arxiv.org/abs/2103.01214
https://doi.org/10.1007/JHEP09(2022)061
https://arxiv.org/abs/2204.12602
https://arxiv.org/abs/2204.12602
https://arxiv.org/abs/2203.11601
https://doi.org/10.1140/epjc/s10052-016-4018-8
https://arxiv.org/abs/1512.01178
https://doi.org/10.1140/epjc/s10052-020-8011-x
https://arxiv.org/abs/1912.06509
https://doi.org/10.21468/SciPostPhys.7.3.034
https://arxiv.org/abs/1905.09127
https://doi.org/10.1088/1126-6708/2002/06/029
https://arxiv.org/abs/hep-ph/0204244
https://doi.org/10.1088/1126-6708/2004/11/040
https://doi.org/10.1088/1126-6708/2004/11/040
https://arxiv.org/abs/hep-ph/0409146
https://doi.org/10.1088/1126-6708/2007/11/070
https://arxiv.org/abs/0709.2092


[10] Simone Alioli et al. “A general framework for implementing NLO calcula-
tions in shower Monte Carlo programs: the POWHEG BOX”. In: JHEP
06 (2010), p. 043. doi: 10.1007/JHEP06(2010)043. arXiv: 1002.2581
[hep-ph].

[11] Keith Hamilton, Paolo Nason, and Giulia Zanderighi. “MINLO: Multi-
Scale Improved NLO”. In: JHEP 10 (2012), p. 155. doi: 10 . 1007 /

JHEP10(2012)155. arXiv: 1206.3572 [hep-ph].

[12] Keith Hamilton et al. “Merging H/W/Z + 0 and 1 jet at NLO with no
merging scale: a path to parton shower + NNLO matching”. In: JHEP
05 (2013), p. 082. doi: 10.1007/JHEP05(2013)082. arXiv: 1212.4504
[hep-ph].

[13] Stefan Hoeche et al. “QCD matrix elements + parton showers: The NLO
case”. In: JHEP 04 (2013), p. 027. doi: 10.1007/JHEP04(2013)027.
arXiv: 1207.5030 [hep-ph].

[14] R. Frederix and S. Frixione. “Merging meets matching in MC@NLO”.
In: JHEP 12 (2012), p. 061. doi: 10.1007/JHEP12(2012)061. arXiv:
1209.6215 [hep-ph].
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