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Abstract

In this Thesis, we apply a combination of machine learning (ML) and enhanced
sampling techniques to extend the scope of molecular dynamics (MD) simula-
tions. One of the main limitations of MD is related to the time scale that stan-
dard simulations can cover. Most relevant processes indeed belong to the cate-
gory of the so-called rare events, as they are characterized by several long-lived
metastable states separated by large free energy barriers, which result in kinetic
bottlenecks. The purpose of enhanced sampling methods is to alleviate this lim-
itation and reduce the mismatch between real and simulated time scales. This
is often done by adding external biasing potentials aimed at accelerating the
dynamics of the process. Such potentials are defined as functions of a small set
of collective variables (CVs), which are, in turn, functions of the atomic coordi-
nates and should encode the relevant degrees of freedom of the system. The
determination of proper CVs is of the utmost importance for these methods to
be effective, and in the last years, it has been proposed to apply ML techniques
to their design in a data-driven way.

In this regard, we present the Deep Targeted Discriminant Analysis (Deep-
TDA) method, in which the CVs are extracted via a classification criterion from
information limited to the metastable states. We also explore the option of in-
cluding information from the transition path ensemble into this framework to
further improve the quality of the results. Moreover, these and many other
methods from the literature were included in the mlcolvar library we created
to provide a unified framework for developing and testing data-driven CVs. We
also propose amethod inwhichML tools are used to build a bias potential to sta-
bilize the region around the transition state (TS) to increase its sampling. This
is done by approximating the behavior of the committor function of the system
with a classifier-like CV of the Deep-TDA type and expressing the bias in terms
of the gradient of such a function, thus allowing its localization on the TS region.

Finally, we showcase the impact of the synergy of ML and MD simulations,
studying the structures and mechanisms involved in the λ-transition of liquid
sulfur and its peculiar chemistry. This liquid-liquid phase transition has at-
tractedmuch interest in the last century as it is associatedwith a living polymer-
ization of eight-membered crown-shaped sulfur rings into long linear polymers.
However, despite previous studies, a detailed picture of this phenomenon and
the underlying processes is still missing. To improve in this sense, we combine
enhanced sampling simulations based on data-driven CVs and ML interatomic
potentials. This way, we perform fast simulations of quantummechanical accu-
racy that allow us to finally shed light on this puzzling process.





Riassunto

In questa Tesi, abbiamoapplicato una combinazionedimetodi dimachine learn-
ing (ML) e tecniche di campionamento potenziato per estendere la portata delle
simulazioni di dinamica molecolare (MD). Una delle principali limitazioni della
MD è legata alle scale di tempo che possono essere coperte con questo tipo di
simulazioni. Infatti, la maggior parte dei processi rilevanti in natura appar-
tiene alla categoria dei cosiddetti eventi rari, essendo caratterizzati da una se-
rie di stati metastabili separati da alte barriere energetiche che impediscono
transizioni spontanee tra di essi. Lo scopo dei metodi di campionamento poten-
ziato è quello di alleviare questa limitazione e ridurre così la discrepanza tra
le scale di tempo dei processi reali e quelle raggiungibili nelle simulazioni. In
molti casi, questo risultato viene ottenuto applicando al sistema un potenziale
esterno con la finalità di accelerarne la dinamica. Tali potenziali, solitamente,
sono definiti come funzioni di poche variabili collettive (CV), le quali sono in-
vece funzioni delle coordinate atomiche e devono codificare le informazioni rel-
ative ai principali gradi di libertà del sistema. L’identificazione di CV adeguate
è fondamentale per poter applicare in maniera efficace questi metodi di campi-
onamento potenziato e negli ultimi anni è stato proposto di impiegare tecniche
di ML per poterle determinare in maniera semi-automatica partendo dai dati
ottenuti nelle simulazioni.

A questo proposito, presentiamo ilmetodo Deep Targeted Discriminant Anal-
ysis (Deep-TDA) in cui le CVs sono estratte sulla base di un principio di clas-
sificazione a partire da informazioni limitate ai soli stati metastabili. Esplo-
riamo anche la possibilità di includere in questo approccio informazioni rela-
tive alla regione nei dintorni dello stato di transizione, al fine di migliorare le
qualità del risultato finale. Questi e diversi altri metodi sono parte della libre-
ria mlcolvar che abbiamo creato per fornire una piattaforma comune in modo
da promuoverne l’utilizzo e ulteriori sviluppi. Inoltre, presentiamo anche un
metodo in cui gli strumenti del ML sono impiegati per costruire un potenziale
esterno per stabilizzare la regione attorno allo stato di transizione in modo da
favorirne il campionamento. Per far questo, approssimiamo il comportamento
della committor function del sistema con una CV simile ad un classificatore,
nello stesso spirito di Deep-TDA, ed esprimiamo il potenziale esterno in termini
del gradiente di tale funzione, permettendo così di localizzarne l’effetto nella
zona di transizione.

Per concludere, mostriamo l’impatto della sinergia tra ML e simulazioni MD
studiando le strutture e i meccanismi coinvolti nella transizione λ osservata
nello zolfo liquido e la suaparticolare chimica. Questa transizionedi fase liquido-
liquido ha infatti attratto molta attenzione negli ultimi anni, essendo associata
con la polimerizzazione di anelli ad otto membri di zolfo per formare lunghe



catenepolimeriche lineari. Tuttavia, nonostante studi teorici precedenti, manca
ancora una descrizione dettagliata di questo fenomeno e dei processi coinvolti.
Per contribuire in tal senso, abbiamo combinato simulazioni basate su metodi
di campionamento potenziato con CV e potenziali per le interazioni atomiche
ottenuti con tecniche di ML. In questo modo, è stato possibile ottenere simu-
lazioni veloci di un’accuratezza paragonabile a quella dei metodi basati su una
descrizionequantistica delle interazioni interatomiche, permettendoci di gettare
finalmente luce su questo misterioso processo.
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1 INTRODUCTION

Introduction

Atomistic simulations, and notably Molecular Dynamics1,2 (MD), are powerful
tools that act as computational microscopes capable of shedding light on the
mechanisms of many physical-chemical processes. For this reason, their appli-
cations in modern science have been constantly increasing.

One of MD’s well-known limitations is the time scale that standard simu-
lations can cover3. Indeed, despite much algorithmic and hardware progress,
many processes of relevance, like crystallization, chemical reactions, or protein
folding, remain out of the reach of present-day simulation capabilities. Almost
all the interesting processes in nature indeed belong to the category of the so-
called rare events and are characterized by timescales that are completely out of
the practical reach of standard simulation techniques. This mismatch between
real and simulated time scales is related to the fact that many relevant dynam-
ical processes are characterized by several long-lived metastable states sepa-
rated by large energetic barriers, which result in kinetic bottlenecks that limit
our simulations4.

This has motivated the development of enhanced sampling (ES) methods
aimed at accelerating the simulated dynamics and speeding up the sampling5.
In the last decades, such methods have gained increasing popularity because of
their ability to alleviate the limitations of standard MD simulations and thus ex-
tend their scope to real life processes taking place on otherwise computationally
unaffordable timescales. To do so, many ES methods, such as the time-honored
Umbrella sampling6 andMetadynamics7,8, are based on the addition of external
biasing potentials to the system, which are meant to smooth the underlying en-
ergetic landscape to remove the undesired and detrimental kinetic bottlenecks.
Such bias potentials are typically defined as functions of a small set of collective
variables (CVs), which are, in turn, functions of the atomic coordinates. If the
CVs are appropriately chosen, the bias addedwill favor transitions between one
metastable state and another, eliminating kinetic bottlenecks and speeding up
sampling5. Moreover, besides offering a powerful computational tool, the CVs
also provide a concise representation that is precious for an understanding of
the physical process. Given these assumptions, it is easy to understand that a
great effort has been devoted to developingmethods for designing efficient bias
potentials and collective variables.
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In most recent years, it has been proposed to apply to this purpose mod-
ern data-driven techniques from the field of machine learning9 (ML). Generally
speaking, ML is a field of study oriented to developing techniques that are aimed
at automatically learning from data and making predictions without having
been explicitly programmed to do so. Lately, thanks to the constantly improv-
ing computational power and the dizzying increase in data availability, this
field has become ubiquitous in science as well as everyday life, and a plethora
of methods have been accordingly developed. Following this rapid develop-
ment, many different scientific fields have already benefited from the cross-
contamination of such methods10,11. These include the broader and generic
field of atomistic simulations12, for example, for the development of accurate
yet computer-efficient interaction potentials13,14 and also the more specific field
of the enhanced sampling15–17.

In this Thesis, we present our contribution to this collective effort with a par-
ticular focus on the development of such methods but also providing examples
of their potential impact on applications to challenging real systems.
A large part of this work will be devoted to presenting methods for the data-
driven design of efficient CVs for enhanced sampling18–20. In this regard, wewill
present the mlcolvar library20 (short forMachine Learning COLlective Variables)
we built for the easy development and dissemination of machine-learning CVs.
This will also serve as an assist to overview some of the recent developments
in this field. Among them, we will discuss in much more detail the Deep Tar-
geted Discriminant Analysis (Deep-TDA) method18, in which the CV is expressed
as the output of a Neural Network (NN) that is optimized according to a classifi-
cation criterion. In turn, the input of such an NN is meant to be a set of physical
descriptors (i.e., distances, angles, coordination numbers..). In standard Deep-
TDA, this descriptor set is supposed to be collected from the metastable states
only. However, in the Transition Path Informed (TPI-Deep-TDA) variant19 of the
method, information from the transition path ensemble is also included in the
training set to improve the specific quality of the CV at the cost of a slightlymore
laborious computational effort.

Alongside the theoretical framework of such methods and their application
to prototypical systems, we will also present an application to the much more
challenging case of the λ-transition in liquid sulfur21,22 and the underlying pe-
culiar chemistry. This liquid-liquid phase transition has indeed attracted much
interest in the last century as it is associated with a living polymerization of
eight-membered crown-shaped sulfur rings into long linear polymers, which re-
sults in an anomalous behavior of physical properties, such as the viscosity and
the heat capacity. Even if, in this case, the focus will be more on the application
itself, the importance of method development will still be evident. To account
for the complex chemistry of the liquid phases of sulfur, we will indeed design
a set of topological descriptors combining elements of graph theory23 and ma-
chine learning. In addition, to study such a complex system, we will also make
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use of state-of-the-art machine-learning interatomic potentials24, showing the
importance of CV-based enhanced sampling simulations for their optimization
in an active learning framework25–28. Armed with these tools, we will finally
shed light on the puzzling mechanisms involved in the λ-transition, which re-
mained uncertain despite previous ab initio-based theoretical studies.

Last but not least, we will move back to pure method development, but, in
this case, our goal will be the design of a bias potential for enhanced sampling
from a new perspective, which is still in its infancy but whose initial results are
so promising that we include it here nonetheless. In this approach, rather than
promoting transitions between the metastable states by filling the basins of the
energy landscape7, we aim at stabilizing the high-energy region of the phase
space associated with the transition state region (TS) to increase its sampling.
To do so, we will approximate the behavior of the committor function29 of our
system with a classifier-like CV of the Deep-TDA type and we will express our
bias as a function of the gradient of such a function, thus allowing the localiza-
tion on the TS region. Upon proper optimization, the application of such a bias
allows us to sample that delicate region of the phase space as effortlessly as the
metastable states in the unbiased scenario, providing precious data that can be
crucial to the study of complex systems’ reactivemechanisms and for effectively
training machine-learning potentials or CVs of the TPI-Deep-TDA type.

This Thesis is divided into two parts and is structured as follows. The first
part aims at providing the essential theoretical background of the computa-
tional techniques that are relevant to the development of the rest of thework. In
Chapter 1, we briefly introduce the basics of MD simulations and some essential
elements of Statistical Mechanics that are necessary for our purposes. Chapter
2 introduces the topic of rare events and the theoretical background of ES meth-
ods and CVs, which will be the central topic of the whole Thesis. In Chapter 3,
we concisely present some essential elements ofML that are used to develop the
methods presented in the following chapters, with a particular focus on using
NNs as universal interpolators.

The second part is devoted to presenting and discussing the results obtained
during this Thesis work, with the data-driven CVs being the fil rouge of this part,
both in terms of methods and of applications. In Chapter 4, we provide a gen-
eral overview of the data-driven approach to the design of CVs. This allows us
to introduce the mlcolvar library in Chapter 5, where we present the structure
and the motivations of the code alongside some practical examples and a brief
review of methods developed in this field during the last years. Among these
approaches, we then focus on classifier-like CVs in Chapter 6, where we present
the Deep-TDA method and its TPI variant, accompanied by several examples
on prototypical systems and a short note on their use in combination with ES
methods for kinetics calculations. In Chapter 7, we apply the Deep-TDA model
to a much more challenging system as we discuss our study of the complex phe-
nomena involved across the λ-transition of liquid sulfur. Finally, in Chapter 8,
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we present our new biasing scheme for the extensive sampling of the transition
state region and some prototypical applications of such an approach.
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Chapter 1

Introduction to
Molecular Dynamics

In the last decades, atomistic simulations have become increasingly important
in many fields of Science, ranging from Physics and Chemistry to Materials Sci-
ence and Biology. The value of this approach lies in the possibility of acting as
a practical bridge between theoretical and experimental approaches.

Among these methods, Molecular Dynamics (MD) plays a central role thanks
to its ability to simulate the time of evolution of groups of atoms, starting from a
description of the microscopic interactions and the fundamental laws of classi-
calmechanics. In this introduction, wewill limit to a concise introduction to this
powerful technique, dwelling only on those aspects thatwill bemore relevant to
the development of this Thesis. In particular, we will introduce those concepts
that are more relevant to the field of enhanced sampling and that benefit more
from the contributions of machine learning approaches. For any further details
and a more comprehensive formulation of the following concepts, we refer the
Reader to the vast available literature in this field1,2,4, to which this introduction
is largely inspired, and to the references provided in the specific sections.

1.1 The experimental approach of Molecular
Dynamics

Molecular Dynamics represents arguably the best example of the so-called in sil-
ico experimental techniques, as it closely resembles the approach of real experi-
ments inmany aspects. In real experiments, if we are interested in studying the
behavior of a property of interest for a given sample under certain conditions,
wemeasure this quantity using a measuring instrument, e.g., a thermometer. In
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practice, the measurement is performed and averaged over a certain interval
of time, and the statistical error in the result depends on the length of this inter-
val, i.e., in many cases, provided some controlled experimental conditions, the
longer the measurement, the better the statistics.

In MD, we basically do the same thing. We prepare our sample composed of
N particles, we determine a form for the interaction between them, we let them
evolve according to classical dynamics until the properties we are interested in
no longer changewith time, and thenweperformourmeasures. In this case, the
last step is not done using measuring instruments but through equations that
relate the properties of interest to the positions and momenta of the particles.
For example, instead of a thermometer, we could use the equipartition theorem
from statistical mechanics to estimate the temperature of our system from the
average kinetic energy per degree of freedom α

⟨1
2
mv2α⟩ =

1

2
kBT (1.1)

In practice, we can thenmeasure the total kinetic energy of the system at a time
t and divide it by the number of degrees of freedom Nf (Nf = 3N − 3 for fixed
total momentum) to obtain the istantaneous temperature T(t)

T(t) =

N∑
i=1

mivi(t)
2

kBNf

(1.2)

From this expression, it is clear that, as the momenta of the atoms will fluctu-
ate over time, so will the temperature. Thus, to obtain a statistically accurate
estimate, we should average over many of such fluctuations in time.

1.2 The Molecular Dynamics algorithm

The easiest way to briefly introduceMD is to look at the essential components of
an MD code. One of the strengths of MD is, indeed, the relative simplicity of its
logic. In the simplest case, theMDprocedure reduces to a short list of operations
which involves only a few steps:

1. Initialization, performed only once at the beginning
• We read and set the parameters that determine the simulation’s con-
ditions, e.g., number of atoms, timestep, temperature, pressure…

• We initialize the system, i.e., we set the initial positions and velocities
of the particles

2. Evolution in time, repeated until the desired simulation length is reached
• We compute the forces on all the particles
• We compute the displacements of all the particles by integrating New-
ton’s equations of motion
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3. Computation of physical quantities, performed after the central loop is
completed

In the following sections, we will expand on these components to provide the
overall essential information. For an exhaustive treatment, we refer the Reader
to the relevant literature1,2.

1.2.1 Initialization

The initialization of an MD simulation clearly depends on the system we are in-
terested in studying. For example, for the study of a crystalline solid, the initial
positions of the atoms have to be chosen such that they respect the crystalline
structure of the material and avoid overlaps between the different atoms. Sim-
ilarly, the simulation parameters are dictated by the thermodynamical condi-
tions that we want to reproduce in the simulation (e.g., temperature and pres-
sure).

The nature and the complexity of the system also influence the choice of the
description of the atomic interaction we may want to adopt. The possibilities
and details in this sense are countless and will thus be discussed in more detail
in Sec. 1.5. Here, we only anticipate that this choice heavily determines the
overall cost of the simulation and its scope. For example, the study of chemical
reactions in which bonds are broken and formed requires a highly accurate
and expensive description based on quantummechanics, and this poses severe
limitations on the size and timescale one can simulate. On the other hand, the
folding of proteins can be studied using fast parametric force fields that can
tackle such huge systems even on macroscopic timescales.

In this stage, the size of the system also needs to be set, that is, the num-
ber of atoms in our simulation cell. This could be a delicate choice that, when
it comes to complex systems, requires some critical thinking to find a balance
between computational cost and accuracy. Ideally, we would surely like to sim-
ulate the evolution of macroscopic real-sized systems over long time periods.
However, as expected, the computational cost of the simulations increases with
their timespan andwith the number of simulated atoms. For this reason, in sim-
ulations, we should ideally find the best setup to ensure that the simulated sys-
tem is accurately representative of the real one while the computational costs
are minimized. For example, in the case of homogenous bulk systems, it is com-
mon practice to apply periodic boundary conditions on our simulation cell to
mimic the presence of an infinite bulk surrounding it. In this framework, our
N-particle cell is treated as the primitive cell of an infinite periodic lattice. Thus,
any given particle i will not only interact with the other particles in the simu-
lation cell but also with their periodic images. This allows mimicking the bulk
environment at an affordable computational cost, provided that we ensure to
avoid the self-interaction issue, which may easily lead to artifacts.
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One last consideration needs to be done concerning the initialization of the
velocities of the particles. Typically, they are either inherited from a previous
simulation or randomly extracted from a pre-assigned distribution (e.g., a nor-
mal or Maxwell-Boltzmann distribution). In the second case, we need to ensure
that the total momentum of the particles is zero (i.e., the momentum of the cen-
ter of mass of the system is zero) and that the kinetic energy of the system is con-
sistent with the initial temperature we want to simulate. This last constraint is,
however, not so strict as the temperature will change during the simulation any-
way, and the systemwill eventually equilibrate itself during the earlier stages of
the simulation.

1.2.2 Evolution in time

This is the core of an MD program and, at each cycle, accounts for the evolution
of the system over an interval of time ∆t. This set of operations is then cyclically
repeated until the simulated time reaches the desired length.
Force computation This step is by far the slowest of anyMD code, as we com-
pute the forces acting on all the atoms in our system starting from the descrip-
tion of the interatomic interaction between them we decided to adopt for the
simulation (see Sec. 1.5).

In general, given an interatomic interaction potential U(x), the force Fi act-
ing on the atom i with coordinates xi is proportional to the derivatives of the
potential with respect to its position

Fi = −
∂U(x)
∂xi

(1.3)

The computational cost associated with the computation of this quantity clearly
depends on the form of U(x) and the more complex it is, the more expensive
the computation. For example, we can consider the simplest case of a two-body
interatomic interaction Uij(x̄ij) that for two atoms i and j only depends only on
their scalar distance x̄ij (e.g., Lennard-Jones or Morse potentials). In order to
compute the forces in a system ofN particles, we would need to compute all the
N(N−1)/2 pairwise distances between them. In practical terms, this means that
the cost of computing the forces, even in this simple system, already scales asN2.
As one can easily imagine, this scaling law dramatically worsens as we move to
complex potentials and even more if we have to rely on quantum mechanics.
Integrating theequationsofmotion InMD, themotion of the atoms is treated
in a classicalway, in the sense that the trajectory of the ions in time obeys New-
ton’s motion laws of classical mechanics.
This means that, once we have computed the force F(t) and given the position
x(t) of an atom at time t, its evolution over an interval of time ∆t is simply ruled
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by the equation of motion

x(t+ ∆t) = x(t) + v(t)∆t+ F(t)
2m

∆t2 (1.4)

where v(t) is the velocity at time t.
In practice, the numerical integration of Newton’s equation is performed us-

ing slightly different but equivalent algorithms. The most popular choice in
this sense is the so-called Verlet algorithm, but other integration algorithms
are available, for example, the popular Leap-Frog algorithm, and we refer the
Reader to the related literature1 for more details.
In the Verlet formulation, the new positions at a timestep t + ∆t are computed
as

x(t+ ∆t) = 2x(t) − x(t− ∆t) + F(t)
m
∆t2 +O(∆t4) (1.5)

in which the error on the new positions is of order ∆t4, and they are computed
without using explicitly the velocities. However, they can still be recovered from
the positions as

v(t) = x(t+ ∆t) − x(t− ∆t)
2∆t

+O(∆t2) (1.6)

From the example of the Verlet algorithm, we can see that integrating the equa-
tions of motion using a finite timestep ∆t induces an error proportional to the
size of the timestep itself, with larger timesteps leading to larger errors. An in-
tuitive explanation for such a trend is related to the fact that the assumption
that the forces F are constant over the time interval ∆t becomes less reasonable
as this increases and completely wrong if the chosen timestep is larger than the
characteristic time of the fastest motion of the system. In general, in practice,
the choice of the integration interval is thus the result of a trade-off between
computational accuracy and speed and depends on the system at hand.

1.2.3 Computation of physical quantities

The final goal of a MD simulation is to compute some relevant properties of
interest about our many-body system, possibly allowing a direct comparison
with experimental results. As one can imagine, the spectrum of such properties
is wide and heterogeneous, and not all of them are computed with the same
approach.

For instance, some thermodynamical quantities can be directly expressed
as the average values of functions of the atomic positions and momenta. We
already discussed the example of the computation of the system’s temperature
from its average kinetic energy (see Eq. 1.2), and the pressure can be computed
with a similar approach using the virial equation for pairwise additive interac-
tions.
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However, not all the thermodynamical properties can be computed this way.
For example, the entropy S, the Helmholtz free energy H, and the Gibbs free
energy G cannot be expressed as a simple average of functions of the atomic
positions and momenta, but they shall rather be computed using the tools of
statistical thermodynamics (see Sec. 1.3).

Another worth-mentioning quantity that can be easily obtained from simu-
lations is the radial distribution function g(r). This is related to the local struc-
ture of the simulated system and, most interestingly, can be compared with the
experimental results as it can be expressed as the Fourier transform of the struc-
ture factor S(k), which can be experimentally measured using diffraction tech-
niques. In Chapter 7, for example, we will proceed this way while studying
liquid sulfur.

All the quantitiesmentioned above canbedefinedas static equilibriumquan-
tities, and, in principle, they could also be computed using different classes of
simulations, e.g., Monte Carlo simulations. However, one of the main strengths
of MD is the possibility of also accessing dynamical equilibrium quantities, e.g.,
diffusion, of the system, as it can trustfully reproduce the actual time evolution
of the system and not only its statistical behavior. Noteworthily, this feature of
MD also allows observing the real dynamics of the system, for example, for the
study of reaction mechanisms, as we will show in the case of liquid sulfur.

1.3 An essential compendium of statistical
mechanics

In previous sections, we have seen that what we can directly measure from our
simulations on the atomistic level, e.g., positions and momenta of the particles,
is quite different from what is actually measured in the experiments. Indeed,
experimental data are typically related to average properties, averaged both on
the measurement time and on the large number of particles in the sample.

In order to compare simulations and experiments, it is thus necessary to de-
fine which kind of averages we should aim to compute on our results. In prac-
tical terms, this is done by the (powerful) means of statistical mechanics. In
the following sections, we shall provide a brief and essential introduction to
the basic elements of this branch of Physics that are most functional for the
remainder of this Thesis. In this spirit, this is not meant to be a formal and rig-
orous derivation of such principles, which can be easily found elsewhere1,4,30,
but rather a quick contextualization in the statistical mechanics framework of
some concepts that will be relevant in the next chapters.
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1.3.1 A surprisingly gentle introduction with quantum
mechanics

It may sound surprising, but when it comes to introducing the basic laws of
statistical mechanics, starting from the language of quantum mechanics turns
out to be one of the easiest paths. Moreover, what we need for our introduction
does not go much further than a few basic concepts in this field.
Multiplicity of energy eigenstates First of all, we need to recall that a quan-
tum mechanical system can be found in different states. For simplicity, we will
only consider energy eigenstates, which are those states that are eigenvectors of
the Hamiltonian H of the system. Using Dirac notation31, this means that for a
state |i⟩ of such a kind, we have that H |i⟩ = Ei |i⟩, in which Ei is the energy of
the state |i⟩. The degeneracy of such energy levels is usually small for simple
systems with just a few degrees of freedom. This means that, for a given energy
E = E ′, the number of states |j⟩ such that H |j⟩ = E ′ |j⟩ is small. On the other hand,
as the complexity and the size of the system increase, so does such degeneracy.
This means that if we take a system with a fixed number of particles N and vol-
ume V , for a given energy Ewewill have a numberΩ(E) of eigenstates with that
energy in which the system is equally likely to be found.

Given these assumptions, we cannow imagine having twoweakly interacting
systems, meaning that they can exchange energy with each other, and the total
energy is given by the sum of their individual contributions E = E1 + E2. In this
case, for a given value of E1, the total degeneracy of the system is given by the
product of the single multiplicities

Ω(E1, E2) = Ω(E1)×Ω(E2) (1.7)
For convenience, we can directly move to the logarithm of the multiplicity in
order to have an additive measure of the subsystems’ degeneracy

lnΩ(E1, E− E1) = lnΩ(E1) + lnΩ(E− E1) (1.8)

The concept of thermal equilibrium Ifwenow let our subsystems exchange
energy, whatwill be themost likelydistribution of energies? Weknow that every
energy state of the total system is equally likely, as E is fixed, but the number
of eigenstates associated with a certain distribution of the subsystems’ energy
depends on the corresponding values of E1 and E2. In other terms, we want to
find the E1 that maximizes the function lnΩ(E1, E − E1), which can be found by
setting its derivatives with respect to E1 to zero(

∂ lnΩ(E1, E− E1)

∂E1

)
N,V,E

= 0 (1.9)

that corresponds to (
∂ lnΩ1(E1)

∂E1

)
N1,V1

=

(
∂ lnΩ2(E2)

∂E2

)
N1,V2

(1.10)
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which we can also write for convenience in a more compact form

β(E1, V1,N1) = β(E1, V1,N1) with β(E, V,N) =

(
∂ lnΩ(E, V,N)

∂E

)
N,V

(1.11)

If we imagine placing all the energy in one subsystem, such that E = E1, there
will be an energy flow from system 1 to system 2 until the above condition is
satisfied and the lnΩ of the total system ismaximized. This happenswhen there
is no net exchange of energy between the two systems, which are said to be in
thermal equilibrium.
A microscopic definition of entropy and temperature At this point, we
can reconnect ourselves to classical thermodynamics32,33, from which we know
that a system is in thermal equilibrium when its entropy S is maximized. This
suggests that we can express the entropy of our total system S(N,V, E) as related
to lnΩ

S(N,V, E) = kB lnΩ(N,V, E) (1.12)

where kB is the so-called Boltzmann factor.
From classical thermodynamics, we also know that thermal equilibrium be-
tween two systems is reached when they are at the same temperature T1 = T2.
This macroscopic equilibrium condition can be readily compared with our mi-
croscopic criterion β1 = β2, which suggests that we can relate β (see Eq. 1.11)to
the absolute temperature T . Indeed, if we consider the classical thermodynam-
ics definition of temperature

1

T
=

(
∂S

∂E

)
V,N

(1.13)

and we apply it with the microscopic definition of entropy from Eq.1.12, we
obtain that

β =
1

kBT
(1.14)

which provides us with a microscopic definition of the absolute temperature of
our system.
The Boltzmann distribution Now, we can consider the case of a system A,
which is in contact with a large heat bath B. If we assume that they are weakly
interacting, as we did in the previous example, the total energy of the system
will be E = EA + EB. If we now suppose to consider a specific quantum state i of
system A that has energy Ei, it follows that the thermal bath degeneracy will be
Ω(EB) = Ω(E− EA).

It is clear that the probability Pi to find system A in state i will be related to
the multiplicity of the heat bath

Pi =
ΩB(E− Ei)∑
jΩB(E− Ej)

(1.15)
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If we expand ΩB(E − Ei) around Ei = 0, which is a reasonable condition if B is
much larger than A, and we exploit Eqs. 1.12 and 1.13, we obtain

Pi =
exp(−Ei/kbT)∑
j exp(−Ej/kBT)

(1.16)

which is the familiar expression of the well-known Boltzmann distribution of
the energies of a system at temperature T.
Average energy and the partition function Having an expression for the
energy distribution of our system at temperature T, we can now compute its
average energy ⟨E⟩T as a weighted average over all the states i

⟨E⟩T =
∑
i

EiPi =

∑
i Ei exp(−Ei/kBT)∑
j exp(−Ej/kBT)

(1.17)

which can be simplified by introducing the partition function

Z =
∑
i

exp(−Ei/kBT) (1.18)

to obtain

⟨E⟩T = −
∂ ln

∑
i exp(−Ei/kBT)
∂1/kBT

= −
∂ lnZ
∂1/kBT

(1.19)

Quite conveniently, the partition function can also be used to write Eq. 1.16 in a
more concise format as

Pi =
exp(−Ei/kbT)

Z
(1.20)

At this point, we recall the relation from classical thermodynamics that estab-
lishes the relation between the Helmholtz free energy F and the average energy
E of a system

E =
∂F/T

∂1/T
(1.21)

From here, we can see that F is directly related, up to a constant, to the partition
function of our system

F = −kBT lnZ = −kBT ln
(∑

i

exp(−Ei/kBT)
)

(1.22)

leading us to one of the fundamental expressions in equilibrium statistical me-
chanics, which we will largely use in the following chapters.
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1.3.2 From the quantum scenario to classical statistical
mechanics

In the previous section, we approached statistical mechanics from the point of
view of quantummechanics, leading to an expression for the probability of find-
ing the system at a given temperature T in an eigenstate with energy Ei (see
Eq. 1.16).

If we know this probability distribution and we take into account a generic
observable A, we can thus obtain the thermal average of A in our system

⟨A⟩ =
∑

i exp(−Ei/kBT) ⟨i|A |i⟩∑
j exp(−Ej/kBT)

=

∑
i ⟨i| exp(−H/kBT)A |i⟩∑
j ⟨j| exp(−H/kBT) |j⟩

(1.23)

where ⟨i|A |i⟩ is the expectation value of observable A in the eigenstate |i⟩.
Unfortunately, this expression is of little practical utility if we consider that it

would require solving the Scrhödinger equation for our system, which is clearly
an unrealistic task for all but the simplest systems. Luckily, Eq. 1.23 can be sim-
plified to a more practical form in the classical limit, in which fine quantum
effects are considered negligible. A complete derivation of the expression for
the classical thermal average can be found in Ref.1. Here, we only report the
final result

⟨A⟩ =
∫
dpNdrN exp

{
−β
[∑

i p
2
i/(2mi) +U(rN)

]}
A(rN,pN)∫

dpNdrN exp
{
−β
[∑

j p
2
j /(2mj) +U(rN)

]} (1.24)

This expression looks similar to Eq. 1.23, but, importantly, it is formulated in
terms of the positions rN andmomenta pN of the particles in our systems, which
we can access in our simulations.

1.3.3 Ergodicity

In the previous sections, we introduce the computation of average quantities for
a given system in terms of averages over all its possible quantum states, which
is usually referred to as ensemble average in the statistical mechanics jargon.
However, this approach does notmatchmuch ofwhatwe do in real experiments
or in MD simulations. Indeed, in the experiments, we measure the quantity of
interest over a certain interval of time to obtain an average value. In other
terms, for a given quantity A, what we measure is a time average

A = lim
t→∞

1

t

∫ t
0

dt ′A(t ′) (1.25)

in which we assume that if we consider a time interval long enough, any effect
of the initial conditions is negligible.
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Similarly, in simulations, we aim to simulate the system’s time evolution to
average our calculations over a sufficiently long time. However, we cannot
safely assume independence on the initial conditions in this case. In addition to
time averages, we should indeed repeat our simulations starting from different
initial configurations

{
rN(0),pN(0)

}
and average over such a number of simula-

tions.

A(rN,pN) =

∑
Initial conditions

(
lim
t→∞

1

t

∫ t
0

dt ′A(rN,pN, rN(0),pN(0), t ′)
)

Number of initial conditions (1.26)

If we consider the limiting case in which we sum over all the possible initial
conditions that are compatible with theN,V , and E values of our system, we can
replace the summation over the initial conditionswith an integral. For a generic
function f(rN(0),pN(0)) of the initial conditions we obtain∑

Initial conditions

f(rN(0),pN(0))

Number of initial conditions → ∫
E
drNdpNf(rN(0),pN(0))∫

E
drNdpN (1.27)

where the integration is restricted to the shell of constant energy E. This average
on the phase space corresponds to the classical limit of the ensemble average we
introduced in the previous section. At this point, we can switch the order of
time and initial conditions averages

A(r) = lim
t→∞

1

t

∫
dt ′⟨A(r, rN(0),pN(0), t ′)⟩NVE (1.28)

In this expression, we can soon realize that the ensemble average actually does
not depend on the time t ′ due to the deterministic nature of our simulations. We
can thus skip the time averaging in Eq. 1.28 to find

A(r) = ⟨A(r)⟩NVE (1.29)

In otherwords, we found that ifwe are interested in studying the average behav-
ior of an observable A, time averaging and ensemble averaging are equivalent
in the long time limit. This concept is usually referred to as the ergodic hypothe-
sis and assumes that if we wait for a sufficiently long period of time, our system
will eventually visit all its microstates. In MD, we generally take the ergodic
condition as true to compute averages from our simulations upon the condition
that such simulations are sufficiently long to guarantee a meaningful sampling
of the portion of the phase space we are interested in.

As a final note, we recall that the pathwe followed to arrive at Eq. 1.29 should
be seen as a plausiblemotivation rather than a proper proof, which would have
clearly been out of our interests in this work. Moreover, our derivation was ob-
tained for the so-called NVE ensemble, in which, for our system, the number of
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particles N, the volume V , and the energy E were fixed. However, often, it can
be more realistic and convenient to perform our simulations in different condi-
tions, e.g., NVT and NPT ensembles. To do this, we need to introduce some new
elements in our simulations toolbox, which we shall introduce in the following
section.

1.4 Molecular Dynamics in different ensembles

In the previous section, we introduced some elements of statistical mechanics
that are relevant to MD simulations in the so-called microcanonical ensemble
(NVE fixed). Indeed, systems that evolve according to Newton’s equations, as
we do in MD, live in this ensemble.

However, if we think about experimental conditions, we soon realize that
performing our simulations in other ensembles may be more reasonable and
practical. For example, experiments are often performed at constant tempera-
ture, which leads us to the canonical (or NVT) ensemble or constant pressure,
which brings us to the isobaric-isothermal ensemble (or NPT). In order to ex-
tendMD simulations to such ensembles and better mimic the experimental con-
ditions, two approaches have been followed, whichwewill mention in our brief
discussion in the following paragraphs. One is to introduce some stochastic dy-
namics to the systems, and the other is to modify the dynamical equations of
the system with the so-called extended Lagrangian approach.
Constant temperature simulations A number of algorithms have been pro-
posed to perform meaningful simulations at constant temperature, which go
under the name of thermostats34. We specify meaningful because only fixing
the temperature does not guarantee by itself that our simulation belongs to the
canonical ensemble we want to sample. For example, rescaling the velocities
of the particles at each step would lead to a perfectly constant kinetic tempera-
ture TK (obtained using the equipartition theorem), which is actually in contrast
with the fluctuations of TK predicted from the Maxwell-Boltzmann distribution.
In addition, a good thermostat should ensure the conservation of some quantity
to check that we are actually sampling the correct ensemble and guarantee the
ergodic conditions.

The first thermostat to be proposed was from Andersen35, and it was based
on a stochastic procedure, namely on a stochastic scattering of the particleswith
a thermal bath that would modify some of their velocities. Berendsen36, on the
other hand, proposed to add an additional equation to the equations of motion
aimed at driving the system’s kinetic energy toward a target value. Unfortu-
nately, this method does not guarantee sampling of the canonical ensemble and
should be avoided for production runs.
Both methods are simple and relatively stable but present some drawbacks,
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making other methods preferable in practice. One example is the Nose-Hoover
thermostat34, which relies on the extended Lagrangian approach. The idea in
this framework, in a nutshell, is to increase the dimensionality of our system of
N particles from 6N to 6N + 2 and to solve the equations of motion to conserve
the energy in the augmented space while the real 6N-dimensional system is rep-
resented by the canonical ensemble. Another valid and popular alternative is
the stochastic velocity rescaling thermostat37. This can be seen as an extension
of Berendsen method in which an external force is added to enforce the correct
kinetic energy distribution.
Constant pressure simulations To maintain a constant temperature in our
simulations, we rescale the velocities of the particles, whereas when we aim for
constant pressure simulations, we let the simulation box volume vary to keep
the internal pressure, on average, constant.

Some of the ideas we presented for thermostats can also be inherited in the
case of barostats, and often, the two algorithms are indeed very similar. This
is the case, for example, of Berendsen barostat36, in which pressure can be con-
trolled by means of another additional equation aimed at driving the pressure
toward the target value. The two algorithms, as one can imagine, also share
the same limitations for what concerns an accurate sampling of the correct en-
semble. In contrast, the formulation of Andersen barostat35 is different from
the thermostat as it belongs to the extended Lagrangian type. In this case, the
volume is included as an independent dynamical variable in the phase space to
mimic the effect of an external piston scaling the volume of the system. Ander-
sen’s formulation is suitable only for isotropic deformation of the simulation
box, but it was later generalized by Parrinello and Raman38 for the anisotropic
case by allowing the cell to change not only its size but also its shape.

1.5 The description of interatomic interactions

From what we have discussed in the previous section, it is clear that the qual-
ity of an MD simulation and the reliability of its results crucially depend on an
appropriate choice of the functional formU(x) used to describe the interatomic
interactions and from which the atomic forces are computed (see Eq. 1.3). As
already anticipated, different levels of theory can be adopted in this sense, and,
in general, a more accurate description corresponds to more expensive calcu-
lations and slower simulations. Luckily, not all systems require a highly accu-
rate and expensive description based on quantummechanics, but often approx-
imated potentials are enough to accurately reproduce the dynamics of interest.
In the following, wewill provide a short and high-level summary of the possible
description of the interatomic interactions and their typical use cases. A com-
prehensive discussion on this topic is indeed out of the scope of this work and
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can be found in the literature3,39–41.
Ab initio methods Starting from the most accurate methods, we have the so-
called ab initio or first principles approaches, which guarantee an extremely
high accuracy as they rely on the solution of quantummechanical problems41,42.
Different approaches can be adopted in this sense, but the arguably most pop-
ular are the ones from the Density Functional Theory (DFT) family, in which
the energy of the system is described as a functional of the electronic density.
Unfortunately, the precision of these methods comes at an extremely high com-
putational price, which severely limits the sizes and timescales that can be simu-
lated using the so-called ab initio MD (AIMD) to some thousand atoms and some
hundred picoseconds at most. For all these reasons, ab initio approaches are
typically employed whenever an extremely accurate description is needed, for
example, in the case of systems characterized by complex and reactive chem-
istry and/or whenever little, if none, information on the system is available.
Semi-Empirical methods A cheaper and much faster alternative to ab initio
calculations is provided by the so-called semi-empirical methods. They share
the same conceptual framework of ab initio methods, but they speed up the
computation by neglecting someminor integrals and compensating this approx-
imation with the addition of some empirically tuned parameters43. Like every
other approximation, this approach can be successful only if the semi-empirical
model retains the relevant physics to properly describe the system of interest.
When this is the case, for instance, in the case of simple chemical reactions, the
speed of simulations can be increased by orders of magnitude with respect to
ab initio approaches.
Force Fields Despite these great gains in terms of computational cost, even
semi-empirical methods are way too expensive or inefficient to simulate the dy-
namics of larger systems, such as bulkmaterials or biomolecules in a solvent. In
such cases, one can revert to the wide category of the so-called force field poten-
tials, in which the interatomic interactions are analytically described by para-
metric functions whose computation is fast and efficient. In this formulation,
the interaction energy is expressed as the sum of several additive contributions
that depend on a (possibly large) number of empirical parameters. The simplest
example in this category is the well-known Lennard-Jones potential ULJ

ULJ(rij) = 4ϵ

[( σ
rij

)12
−
( σ
rij

)6] (1.30)

in which the interaction energy between two atoms i and j only depends on
their distance rij and on the parameters ϵ and σ. These parameters regulate the
interaction’s intensity and characteristic distance, respectively, and depend on
the atomic species at hand. The total energy on atom i is then simply obtained
as the sum of the interactions with all the atoms j

UiLJ =
∑
j̸=i

VLJ(rij) (1.31)
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In the same spirit, more complex force fields have been proposed, in which
more complex terms, such as three-body or angular interactions, are added to
improve the expressivity of the model. Examples in this regard range from the
relatively simple Stilinger-Weber potential44, which accurately reproduces the
diamond structure of solid silicon with the addition of three-body interactions,
to themore complicated force fields used in protein dynamics, such as AMBER45

or CHARMM46, or for the description of solvent interaction, for example, the
TIP3P and TIP4P models47 for water.

Thanks to their parametric formulations, forcefields allow for huge speedups
at the cost of sacrificing the accuracy of finer details. However, in many cases,
such an accuracy may not be relevant. For example, in the case of protein fold-
ing, the process often involves only a conformational transformation without a
major change in the chemical structure apart from hydrogen bonds.
In general, the choice of developing and using force fields is thus motivated by
the need to have a trade-off between precision and simulation speed. Indeed,
processes involving large numbers of atoms or characterized by long timescales
would be completely unreachable with higher levels of theory40.
Machine Learning Potentials From what we have said so far, it may seem
that, in simulations, wewill always findourselves in this dilemmabetween accu-
racy and efficiency. However, in the last decade, following the pioneering work
of Behler and Parrinello13, a number ofmachine learning interatomic potentials
have been developed to provide accuracies comparable to ab initio methods
with a computational cost closer to the one of classical force fields. Such ap-
proaches are proving themselves to be game-changers in MD12, and they have
been applied to the study of many complex scenarios, from materials25 to reac-
tive chemical systems26,48 or catalytic processes27,28.

The general idea behind these approaches is to predict the energy and forces
of the system of interest using some kind of machine-learning model (see Chap-
ter 3) trained on (large) datasets of reference configurations labeled with the
energies and forces obtained with DFT calculations. Many of such methods are
based on the definition of some local environment descriptors, which are then
fed as inputs to neural networks (NNs). This is the case of the classical example
of Behler-Parrinello potentials13, which employ atom-centered symmetry func-
tions as fixed local descriptors and associate a different NN to each chemical
species in the system, and of the DeepMD24,49 potential we will use in Chapter 7
for the study of liquid Sulfur. In the DeepMD case, many different input de-
scriptors are available49, including the local frame descriptor, the two-body and
three-body embeddings, and the attention-based descriptors50 we employed for
sulfur. Other interesting approaches for neural network potential are based on
graph neural networks, in which a graph is used to represent the atomic struc-
ture. In the most intuitive way, each node of the graph is associated with an
atom, and the edges (i.e., the graph connections) are defined on the basis of the



1. INTRODUCTION TO MOLECULAR DYNAMICS 20

interatomic distances. In such a framework, the information is propagated in
the network using the message-passing scheme, in which the node values and
edge features through the different layers are determined by the application of
some convolutional filters, which are update functions that depend on the val-
ues of the neighboring elements of the graph. Examples in this sense are, for
instance, SchNet51, PhysNet52, and NequIP53, which has the additional peculiar-
ity of being based on the recently developed equivariant networks54.

However, these are just a few of the examples in a field that, in the last years,
has been continuously and dramatically evolving. For this reason and consid-
ering that an extensive review of this class of approaches is out of the scope of
this Thesis, we refer the Reader to the specific literature12,14,55–57.

Regardless of the chosen architecture, the quality of this approach crucially
depends on the quality of the dataset used for the training. First, and somehow
trivially, the level of theory employed for the reference calculations has to guar-
antee a description of the process that is sufficiently accurate. Second, andmost
importantly, the reference configurations in the dataset shall span the portion
of the phase space relevant to the process, also including configurations from
the transition state region.

For this reason, in recent years, it has been proposed to apply to the training
of machine learning potentials active learning strategies aimed at progressively
extending the dataset to improve the overall quality of the potential. Some of
such approaches, like FLARE58, are based on on-the-fly estimates of the model
uncertainty, triggering new DFT calculations for those configurations in which
it exceeds a given threshold and adding such configurations to the training set.
In another approach that has become popular in the last years, the active learn-
ing procedure is boosted with the help of enhanced sampling techniques (see
Sec. 2.2), which are aimed at improving the phase space sampling26–28. A practi-
cal example of such an approach will be provided in our study of liquid sulfur
reported in Chapter 7.
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Chapter 2

MolecularDynamics andrareevents

In the previous chapter, we introduced the basics of Molecular Dynamics, dis-
cussing how it can be used to simulate the time evolution of many particle sys-
tems at the atomistic scale. Unfortunately, such a small scale does not only apply
to the size of the systems but also to the timescales we can access with our sim-
ulations. Moreover, with respect to such timescales, most natural processes are
considered rare events, as they occur orders of magnitude slower than that.

Apparently, thismay look catastrophic for any application ofMD simulations
to real systems. However, in the last decades, many enhanced sampling tech-
niques have been developed to overcome this intrinsic limitation of standard
MD and extend its scope to real-life processes, which we introduce in this chap-
ter and will largely use in the rest of this Thesis.

2.1 The timescale problem

As we have shown in the previous sections, the MD algorithm is intrinsically
sequential as the configuration at time t + ∆t depends on the previous one at
time t (see Sec. 1.2). This means that the overall computational cost of a simu-
lation scales linearly with the number of steps. In addition, the timesteps typ-
ically used to have a meaningful integration of the equation of motion are of
the order of femtoseconds, meaning that a nanosecond-long calculation would
require roughly some 106 iterations3. Even with modern computers and fast
force fields, these conditions typically restrict the accessible timescale to the or-
der of milliseconds at most, with such limitations becoming more severe if we
increase the complexity of the system and/or if we use higher levels of theory.

Unfortunately, in contrast, several relevant microscopic natural processes
occur on the millisecond or longer timescales, which are thus completely out
of reach for standard MD simulations. This mismatch between real and simu-
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Figure 2.1: Schematic representation of the potential energy surface (PES) in a rare
event scenario and the resulting limited sampling on a generic coordinate x. The pres-
ence of a large free energy barrier ∆G compared to the available thermal energy kBT
limits the sampling to the bottom of the initial metastable state even after a long time.

lated timescales is related to the fact that many relevant dynamical processes
are characterized by several metastable states separated by large energetic bar-
riers, as depicted in Fig. 2.1. Indeed, when the energy needed to overcome these
barriers is much larger than the thermal energy available in the system, we
found kinetic bottlenecks, and the transitions between metastable basins be-
come rare events, which occur on timescales way outside the practical reach of
standard simulations3–5.
Moreover, these limitations become even more severe if we consider that, in
order to extract any significant results from our simulations, they should be
supported by some statistics. Indeed, if we want to study a given process, the
observation of a single transition has a limited value. For example, in the case of
a chemical reaction, many reactive events should be observed before drawing
any statistically meaningful conclusion.

The timescale problem is for sure one of the main problems of standard MD,
and in the last decades, a great effort has been devoted to overcoming such limi-
tations to extend the scope of simulations by accelerating the simulated dynam-
ics. This led to the development of the so-called enhanced sampling methods,
which we introduce in the following section.

2.2 Enhanced Sampling in Molecular Dynamics

As we have seen in the previous section, one of themain limitations of standard
MD is related to the mismatch between the timescales on which many relevant
processes occur and the ones we can simulate. In order to overcome this lim-
itation, a number of enhanced sampling methods have been developed in the
last decades, aimed at accelerating the simulated dynamics and thus extending
the scope of simulations to real systems. In the following, we will provide a
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brief introduction to this class of methods and refer the Reader to the available
literature5,59–62 for further details.

In our discussion, we will focus on the methods in which the potential en-
ergy surface of the system is modified to remove kinetic bottlenecks by adding
an external bias potentials. Aswe discussed above, these bottlenecks are related
to the presence of large free energy barriers between themetastable states, and
the aim of the bias potentials is to lower those barriers to facilitate the transi-
tions. In practice, such bias potentials are typically expressed as functions of a
few selected order parameters or collective variables, which are, in turn, func-
tions of the atomic coordinates whose fluctuations are relevant in the process
of interest.

2.2.1 Sampling in collective variable space

It is common both in Chemistry and Physics to formulate a description of com-
plex problems in terms of a few selected variables. This is the case, for example,
of Landau’s order parameters in his theory of phase transitions63. The need for
finding significant variables that can describe the collective behavior of a sys-
tem is true both in the case of purely theoretical approaches, as in the case of
statistical mechanics64, and probably even more in the case of computational
approaches. In the latter case, a concise description of the system is indeed of
paramount importance to limit the computational costswhile providing amean-
ingful and easily understandable representation of the system.

In practical terms, these collective variables (CVs) should be able to describe
the key features of the chemical/physical behavior of the system of interest.
Moreover, suchCVs should be able to distinguish betweenall relevantmetastable
states and to encode the slowmodes of the system, i.e., its slowest degrees of free-
dom. From a mathematical point of view, the CVs can be defined as functions,
eventually nonlinear, of the atomic coordinates r, i.e., s(r) = (s1(r), s2(r) . . . sd(r)).
In the rest of this section, we will focus more on the theoretical framework of
CV-based enhanced sampling, leaving the details about the CVs themselves and
their choice to Sec. 2.4.

Having introduced our CVs, we can now consider their equilibrium distribu-
tion

P(s) =
∫
drδ[s− s(r)]P(r) =

〈
δ[s− s(r)]

〉
(2.1)

where P(r) is the Boltzmann distribution P(r) = exp(−βU(r))
Z

determined by a po-
tential U(r in the coordinates space, β = (kBT)

−1 is the inverse temperature,
Z =

∫
dr exp(−βU(r)) is the partition function and δ[s − s(r)] denotes a delta

function centered in s.
Following statistical mechanics (see Sec. 1.3), we can express the free energy
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surface (FES) in the CV space as the logarithm of the probability distribution

F(s) = −
1

β
lnP(s) (2.2)

Such a low-dimensional FES, as it is a function of a few CVs, is usually much
smoother than the original and extremely rugged high-dimensional potential en-
ergy surface U(r). Moreover, we recall that the free energy is defined up to an
additive constant, meaning that the zero level can be shifted arbitrarily.
Upon an appropriate choice of the CVs, the FES contains all the relevant informa-
tion about the related system. Indeed, it shows the location and relative stability
of the different metastable states and the height of the free energy barriers that
may separate them. For example, if we consider two metastable states A and
B in our system, we can estimate the relative free energy difference between
them from the probabilities of the two states

∆FA,B = −
1

β
ln

∫
A
ds exp[−βF(s)]∫

B
ds exp[−βF(s)] (2.3)

where the subscripts indicate that the integration is restricted to the basins A
andB, respectively. We have seen in Sec. 1.3, that if we assume ergodic sampling
from our simulations, the FES can be equivalently computed as

F(s) = −
1

β
lim
t→∞ lnN(s, t) with N(s, t) =

∫t
0
dt ′δ[s− s(R)]∫t

0
dt ′

(2.4)

Here, N(s, t) is a normalized histogram of the data collected in a standard, or
unbiased, simulation. Despite looking promising at first, Eq. 2.4 is rather useless
in practice if we are limited to standard MD. Indeed, as we have seen, in many
physical systems, unbiased sampling is extremely limited on the timescales that
are computationally affordable and thus fails to be ergodic at all.

2.2.2 Enhanced sampling with bias potentials

Starting from the pioneering work of Torrie and Valleau6, many enhanced sam-
pling methods60–62 have been developed to overcome the sampling limitations
of standard simulations relying on the addition of an external bias potential
V to the system. Such bias potential is expressed as a function of the CVs, i.e.,
V = V(s), and is aimed at accelerating the dynamics of the process of interest
and enhancing the sampling in the CVs space. It is important to note that, even
if the bias explicitly depends on s, it still implicitly depends on the atomic coor-
dinates through the CVs themselves as s = s(r).
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Static bias potential The simplest scenario we can consider is the one in
which we apply to our system a bias potential V(s) that is constant with time.
The presence of such a bias potential modifies the energetic landscape of the
system, as we schematically depict in Fig. 2.2, thus resulting in a modified prob-
ability distribution PV

PV(s) =
∫
drδ[s− s(r)]PV(r) =

exp {−β[F(s) + V(s)]}∫
ds exp {−β[F(s) + V(s)]}

(2.5)

in which PV(r) is the Boltzmann distribution driven by the biased energy land-
scape

PV(r) =
exp [−β[U(r) + V(s(r))]]

ZV
(2.6)

with its partition function ZV =
∫
dr exp [−β[U(r) + V(s(r))]].

Comparing Eq. 2.5 and Eq.2.1, we can readily see that the unbiased FES F(s) can
be obtained from the biased data, up to a constant, as

F(s) = −
1

β
logNV(s) − V(s) = FV(s) − V(s) (2.7)

in whichNV is the histogram accumulated in the biased simulation and FV is the
(non-physical) free energy surface of the biased system. This tells us that, given
a proper sampling of the phase space in the biased simulations, we can recover

Figure 2.2: Schematic representation of the enhanced sampling approach effect on
the energy landscape (left column) and the probability distribution (right column) of
a double-well potential model. The top row depicts the unbiased scenario, character-
ized by large free energy barriers, resulting in a probability distribution peaked only in
correspondence to the metastable states. The bottom row depicts the smoothed biased
scenario with easy-to-overcome barriers, resulting in a much more spread probability
distribution, which is non-zero also in the transition state (TS) region.
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the unbiased FES by reweighting the histogram from the biased simulation. Sim-
ilarly, we can observe that the unbiased probability distribution P(r) is related
to the biased one PV(r)

P(r) ∝ PV(r) exp[βV(s(r)] (2.8)

which, in principle, allows us to recover the unbiased average value of any
generic observable O(r) by reweighting each configuration by the correspond-
ing bias

⟨O(r)⟩ =

〈
O(r) exp[βV(r)]

〉
V〈

exp[βV(r)]
〉
V

(2.9)

where the expectation values on the right-hand side are computed in the biased
ensemble.

It should be noted that the reweighting relations provided so far are strictly
valid only in the case of a static bias, i.e., constant with time. One way to ob-
tain such a condition in practice is by employing a bias potential that is static by
design, as in the case of Umbrella sampling6 for instance. However, many no-
table methods, such as Metadynamics7 and its evolution OPES65 (On-the-flight
Probability Enhanced Sampling) rely on a time-dependent bias to enhance the
fluctuations of the system and thus require an extension of the formalism pro-
vided so far.
Time-dependent bias potential: the example of Metadynamics The defi-
nition of an effective static bias potential is typically difficult in most cases. In
practice, it is indeedmore common to revert to time-dependent biasing schemes
inwhich the bias potential is determined on the fly as the simulation (and the ex-
ploration of the phase space) goes on. In general, if we apply a time-dependent
bias potential V(s, t) to our system, we can still recover the unbiased statistic
upon the condition that at every instant t0 we consider in our statistics, the sys-
tem is at equilibrium with the instantaneous potential U(r) + V(s, t0). This typi-
cally implies that in our simulations, the bias is modified slowly and gently, thus
leaving enough time for the system to relax before the nextmodification, and/or
that in the long term, the bias converges to a constant value.

To showcase some features of time-dependent approaches, we will briefly
summarize the popularwell-tempered8,66 variant of theMetadynamics (WT-MetaD)
method as an example. For the sake of brevity, in the following, we will drop
the bias dependence on time in our notation, thus simply writing V(s). In WT-
MetaD, the bias potential V(s) is built by adding repulsive Gaussians at fixed
intervals, which are centered on the point sampled sk at the deposition mo-
ment k. In a naive way, this approach can be seen as we are slowly filling the
metastable basins one tiny Gaussian at a time as we proceed with our simula-
tion, as schematically depicted in Fig. 2.3.
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Figure 2.3: Schematic representation of the working principle behind Metadynamics
in a rare event scenario described by a potential energy surface (PES) presenting a large
free energy barrier ∆G. During the exploration (left panel), repulsive Gaussian bias
potentials (in green) are deposited on the fly in the visited positions. At convergence
after a relatively short time (typically ∼ns), the energetic landscape is filled by the bias
potential, thus removing the free energy barriers and promoting transition between
the different states.

In mathematical terms, the bias at the nth iteration can thus be written as

Vn(s) =
n∑
k

exp
[
−
βVk−1(sk)
γ− 1

]
G(s, sk) (2.10)

where G(s, sk) denotes a Gaussian centered in sk. The parameter γ > 1 is called
bias factor, and determines the spread of the biased probability distribution PV
with respect to the unbiased one P upon convergence

PV(s) ∝
[P(s)]1/γ∫
ds[P(s)]1/γ

(2.11)

The WT-MetaD algorithm is indeed designed to asymptotically converge in the
long term to a smooth bias Vγ defined as

Vγ(s) = −(1−
1

γ
)F(s) + c(t) (2.12)

where
c(t) =

1

β
log

∫
ds exp [−βF(s)]∫

ds exp [−β(F(s) + V(s, t))] (2.13)

which does not depend on s8,67.
Such a bias is not designed to completely fill the basins to obtain a flat and purely
diffusive energy landscape but rather to reduce the height of the free energy
barriers between the metastable states. Moreover, it can be seen that the limit
case γ → 1 corresponds to the unbiased scenario, whereas when γ → ∞, we
have that V∞(s) = −F(s) resulting in a PV that is constant everywhere.
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In the case ofWT-MetaD, the unbiased probability can still be recovered from
the biased one. However, one has to account for the time dependency of the bias
in the reweighting procedure by including the time-dependent term c(t)8,67 in
the weights

P(r) = PV(r, t) exp
[
β(V(s(r), t)) − c(t))

]
(2.14)

However, MetaD presents someflaws even in itswell-tempered andmore sta-
ble variant. For example, its effectiveness strongly depends on the quality of the
used CVs, and it may take a long time to converge in some cases. Moreover, this
approach still presents long transient stages at the beginning of the simulations
in which the bias is changing wildly. As a consequence, the configurations sam-
pled in the initial part have to be discardedwhen computing averages, somehow
wasting computational time. Fortunately, some of these limitations have been
alleviated in OPES65, a recent development of MetaD, which will be discussed
in more detail in the next section as it will be extensively used in the following
sections of this Thesis.

2.3 OPES:On-the-flyProbabilityEnhancedSampling

In the previous paragraphs, we have introduced some general features of en-
hanced sampling methods, starting from a motivation for such methods and
coming to the concepts of bias potentials and reweighting of unbiased statistics.
In the last part, we then used the example of time-honored Metadynamics to
provide a more practical example of these concepts. In the following, we will
introduce OPES65,68,69 (On-the-fly Probability Enhanced Sampling), a powerful
evolution of Metadynamics that improves on many aspects of its ancestor.

The foundational idea of OPES is rather simple, which is to build the bias
potential according to an estimate of the probability distribution rather than
based on the energy as we do in MetaD. Indeed, OPES method aims at sampling
a given target distributionptg(s) in the configurational space s, which is different
from the equilibrium Boltzmann distribution P(s) ∝ exp[−βU(s)]. This is done
by incrementally building a bias potential V(s) according to

V(s) = 1

β
ln P(s)
ptg(s) (2.15)

This biasing scheme generally allows for faster convergence of the bias. It in-
deed quickly becomes quasi-static and, as a consequence, the properties of in-
terest, such as the free energy, can be computed using standard reweighting
(see Eq. 2.9) using almost all the sampled points from our simulations as we do
not have long transient parts to discard from our trajectories.
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Depending on the type of target distribution we choose, different OPES bi-
ases can be used, each of them with specific strengths and limitations. In the
following, we will start from the first OPES formulation, OPES-MetaD, which we
will also use to showcase some of the general features of this powerful method.
OPES-MetaD InOPES-MetaD, the target distribution resembles theWT-MetaD66

one we introduced in the previous section

ptg(s) = pWT(s) ∝ [P(s)]1/γ (2.16)

in which γ is the so-called biasfactor, which determines the spread of this distri-
bution. Similarly to MetaD, the bias is optimized on the fly, but in this case, it is
obtained by reweighting the unbiased probability distribution Pn(s) at iteration
n using a Gaussian kernel density estimation70 (KDE)

Pn(s) =
∑n

k wkG(s, sk)∑n

k wk
(2.17)

As a technical detail, the number of kernels used in the simulation is kept low
by means of a kernel-merging compression algorithm.
In this framework, the bias at step n can be expressed as

Vn(s) = (1−
1

γ
)
1

β
ln
(
Pn(s)
Zn

+ ϵ

)
(2.18)

in which ϵ ≪ 1 is a regularization term to prevent the logarithm from going to
zero, and the normalization factor Zn depends on the region of the CV spaceΩn

that has been explored up to step n

Zn =
1

|Ωn|

∫
Ωn

Pn(s)ds (2.19)

Of course, as the exploration will change during the simulation, it will have an
impact on the bias. Thanks to the Zn term, in OPES-MetaD, we usually have a
very quick initial exploratory phase in which the bias is coarsely determined to
be only slightly refined to convergence in the remainder of the simulation. This
feature brings many advantages, such as faster convergence and the possibility
of using a simple reweighting scheme without cropping almost any initial tran-
sient. Another interesting consequence is that OPES-MetaD allows for a quick
evaluation of poor or suboptimal CVs, which, for example, do not really capture
the relevant modes of the system. In such a case, it will likely get stuck in one
metastable state for a long time without showing any transition because the ini-
tial coarse bias will be ineffective due to the poor CVs, and it will not change
much during the simulation.

Conveniently, in practice, OPES-MetaD depends on very few parameters: the
optimization pace, the initial bandwidth of the Gaussians kernels (which is au-
tomatically optimized on the fly thereafter), and the expected height of the free
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energy barrier that is supposed to be overcome in the process. The pace is usu-
ally determined similarly to MetaD, for instance, optimizing the bias every 500
steps. The initial kernel width can be estimated from the smaller standard de-
viation of the CVs in the minima. Whereas, as far as the barrier is concerned, a
reasonable choice is enough in most cases as it determines the choice of γ and
ϵ, with the biasfactor being much a less critical parameter here with respect to
what it is in MetaD.
Many examples of the application of OPES-Metad to prototypical systems will
be discussed in Chapters 5 and 6.
OPES-Explore As the name suggests, this variant of the model is oriented to
a faster exploration of the CV space at the cost of a slower convergence. This
approach is indeed more similar to an improved version of MetaD in terms of
sampling, and it still allows for good sampling when used with suboptimal, if
not poor, CVs at variance with OPES-Metad.

In OPES-Explore, the target distribution is still the well-tempered distribu-
tion, but the bias is not expressed as a function of the unbiased equilibrium
probability P(s), but it is built on the fly from an estimate PWT(s) ∝ [P(s)]1/γ of
the distribution that is being sampled during the simulation

pWTn (s) = 1

n

n∑
k

G(s, sk) (2.20)

where sk is the CV value sampled at step k.
The construction of the bias potential is also slightly different as, in this case, it
is slower and more gradual. The bias at iteration n in OPES-Explore is given by

Vn(s) = (γ− 1)
1

β
ln
(
pWT(s)
Zn

+ ϵ

)
(2.21)

The free energy surface (FES can be obtained fromOPES-Explore trajectories
in two ways. One is to compute it from the probability estimate directly

Fn(s) = −
γ

β
lnpWTn (s) (2.22)

The other is via importance sampling reweighting

Fn(s) = −
γ

β
ln
[

n∑
k

exp [βVk−1(sk)]
]

(2.23)

At variance with the OPES-Metad case, in which these two approaches were
equivalent, in this case, they can differ significantly, especially in the first part
of the simulation in which the bias is far from convergence.
In Chapter 7, we will discuss how we used OPES-Explore for the study of the
processes and structure involved in liquid sulfur’s λ-transition.
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OPES-Flooding TheOPES-Flooding69 variantwas developed for efficiently col-
lecting unbiased transition and studying kinetic rates by combining the OPES bi-
asing scheme and the ideas of conformational flooding71 and hyperdynamics72.
In these two works, the Authors demonstrated that kinetic and dynamical in-
formation could still be recovered from biased simulations, upon the condition
that the bias is not added in the transition state region.

Given these assumptions, the OPES-Flooding idea, which we schematically
depict in Fig. 2.4, is then rather simple as we build a bias that is aimed at par-
tially filling only one of the metastable basins such that we can escape from it in
a reasonable time and that the transition state region is not affected by the bias
itself. This last condition is ensured by the introduction of an additional param-
eter, the so-called excluded region sexc, and imposing that no bias is deposited
for s > sexc. On the other hand, for s < sexc the deposited bias still increases the
probability of observing the transition.

OPES
Flooding

ΔG P
E
S

E

CV

~kBT

ΔG P
E
S

E

sexcCV

TS

Figure 2.4: Schematic representation of the working principle of OPES-Flooding for a
potential energy surface (PES) presenting a large free energy barrier ∆G that hinders
the transitions between two basins, thus limiting the unbiased sampling to the bottom
of the metastable states (left panel). The OPES-Flooding bias is constructed to partially
fill the basin without affecting the transition state (TS) region. To do so, the bias is not
deposited beyond the excluded region value sexc of the considered collective variable
(CV). With the help of such a bias, the system can escape from the initial metastable
state following an unbiased transition trajectory (right panel).

In practice, this approach allows the collection of a number of unbiased reac-
tive trajectories fromwhich precious information on the kinetics of the process
can be extracted, as well as information on the transition-state-related config-
urations. The first outcome, however, is not relevant for the purposes of our
thesis, and we thus refer the Reader to the corresponding literature69 for fur-
ther details, whereas the second will be exploited in the methods presented in
Sec. 6.3.
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2.4 Collective variables

In the previous sections, we have seen that the concept of collective variables
(CVs) is of central importance in the context of enhanced sampling. However,
we still have not dwelt enough on this topic, which will be central to the devel-
opment of the rest of this Thesis, so we do it now.

Fromamathematical point of view, the CVs can be defined as functions, even-
tually nonlinear, of the atomic coordinates r, i.e., s(r) = (s1(r), s2(r) . . . sd(r)).
Moreover, they should be continuous, differentiable, and invariant with respect
to the symmetries of the system (e.g., translation, rotation, and permutation of
identical atoms).
Despite sounding somehow abstract, the concept of collective variables should
probably be familiar to Physicists and Chemists in practice, even if under differ-
ent names. It is indeed common both in Chemistry and Physics to describe com-
plex problems on the basis of a few selected variables. In Physics, for instance,
this is the case of the order parameters used for describing phase transitions in
Landau’s theory63. Whereas in Chemistry, the progress of a chemical reaction
is often expressed as a function of a generic reaction coordinate.

In computational approaches, however, the need for a dimensionality reduc-
tion is not only motivated by the need for a concise description of the process
from a conceptual point of view but also from the very practical problem of lim-
iting the computational costs. Indeed, in our discussion on enhanced sampling
methods, we mentioned that bias potentials are defined as functions of CVs, but
we did notmention that the overall cost of such simulations scales exponentially
with the number of CVs on which the bias is applied. Consequently, in practice,
it is uncommon to bias more than a couple of CVs at a time, whichmotivates the
interest in making our CVs as collective as possible.

Themeaning of collective in this context refers to the idea that our CVs should
be able to combine together all the relevant degrees of freedom that describe the
key features of the chemical/physical process we are interested in. For example,
in the case of a chemical reaction in which two small organic molecules have to
react to a single product, one can try to use the distance between the center of
masses of the two molecules as a CV, which will combine information about the
atomic positions of many atoms and of the two molecules into a single variable.
A good CV is then supposed to encode the so-called slow modes of the system,
which are those degrees of freedom whose fluctuations are most relevant to
the process of interest and should also be able to distinguish between all the
relevant metastable states and the transition state as well. For example, in the
toy model reported in Fig. 2.5, we can see that a proper CV should be able to
distinguish the metastable states A and B, and also the transition state region
(TS). In this sense, it is clear that the x coordinate is an awful CV, as all such
regions are superimposed when projected on the x-axis. On the other hand, the
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y coordinate is a better CV as the overlap between the different regions is much
smaller. However, even the y coordinate is still a sub-optimal CV when it is used
in an enhanced sampling context, as it does not encode any information about
the bent path that one has to follow to go fromA to B (and back) passing through
the transition state. In other terms, even this CV does not encode all the slowest
modes of our system.

x

y
State A

State B

TS

Figure 2.5: Schematical representation of the quality of two possible collective vari-
ables (CV), i.e., x and y coordinates, for the Müller-Brown potential energy surface. The
metastable states A and B are highlighted in purple and green, respectively, whereas
the transition state (TS) region is colored in yellow. The three regions are projected
along the two CVs and represented with the same color scheme.

Traditionally, the determination of CVshas beendrivenbyphysical and chem-
ical intuition, and the choice reverted to physical descriptors such as distances,
angles, or coordination numbers or to simple mathematical functions of the co-
ordinates as in the case of the RMSD-based CVs used in protein simulations73,74.
However, this approach can fall short as the complexity of the studied systems
increases. Thismotivated the development in the last decades ofmanymachine-
learning-based approaches aimed at automatically determining CVs in a data-
driven way, as we will largely discuss in Chapters 4, 5 and 6.
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Chapter 3

Machine Learning basics

The past decade has seen an exponential rise in the application of the so-called
machine learning (ML) techniques in many fields of science as well as everyday
life. This has been possible thanks to the constantly improving computational
power at constantly decreasing prices, the dizzying increase in data availabil-
ity, and the plethora of more and more efficient algorithms and architecture
proposed by the machine-learning community. The first factor directly relates
to the time-honored Moore’s law75, which predicted back in the 60s a hardware
performance increase rate of roughly a factor of two every two years. Since
then, that empirical prediction has proven correct, and it is still likely to be
thanks to the advent of modern GPUs, which greatly contributed to the devel-
opment and widespread of ML. The increasing data availability comes as a nat-
ural consequence of this development. In everyday life, almost everyone owns a
smartphone, uses search engines on the internet, or interacts with social media,
thus generating (big) data that can be used, for instance, to tailor advertisement
campaigns based on the users’ interests. On the other hand, in the case of com-
putational science, the constantly increasing computational power now allows
the collection of huge datasets that only twenty years ago would have been im-
possible even to dream of. Last but not least, we have what is somehow both
the consequence and the drivingmotion for such vertical advancements, which
is the development of ML techniques. Indeed, large datasets are useless if we
do not have a practical way to extract the relevant information from them. In
the same way, super-fast GPU wouldn’t be needed if our algorithms were still
limited to simple linear regression.

In the following sections, we will provide a limited, to say the least, introduc-
tion to the world of ML algorithms. We do this as this Thesis vastly relies on
the contribution that ML can bring to computational science and simulations.
However, we approach this world as users, and thus, we will provide an intro-
duction that aims at beingmore practical than comprehensive. Moreover, many
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of the applications we will present in the rest of this Thesis are based on rather
basic machine-learning algorithms whose implementation in practice is greatly
simplified by the many available code libraries in this field. For all these rea-
sons, our treatment will be limited to the topics that are most relevant to the
purposes of this work, and we refer the Reader to the available literature9,76,77
for a complete overview also pointing out some references specifically tailored
to a Physicists audience10,11.

3.1 What is Machine Learning

We can define Machine Learning (ML) as a field of study oriented to the devel-
opment of techniques that are aimed at automatically learning from data and
making predictionswithout having been explicitly programmed to do so. In any
MLapproach, three key ingredients are needed: amodel, a dataset to learn from,
and an objective function (or loss function) that encodes the task that needs to
be accomplished. As the purpose of this Chapter is to provide a practical intro-
duction to some relevant elements of ML, we will introduce such ingredients in
a general way and will try to contextualize them with the help of a simple but
didactic example, such as the fitting of pairs of points (x, y) using polynomial
regression.
Themodel Themodel is typically defined as a function fθ(x) of some input fea-
tures x that depends on a set of parameters θ. Such parameters are trainable, in
the sense that they can be tuned such that the model is optimized for the given
task. The model (and also the objective function, as we will see in a moment)
often presents also non-trainable parameters, which we refer to as hyperparam-
eters. In the ML jargon, the mathematical form of fθ is typically referred to as
the architecture of the model, and different choices can be adopted for different
tasks. In the following, we will focus only on the case of feed-forward Neural
Networks (NNs), which will be discussed at length in Sec. 3.3, but many alter-
natives can be found in literature, for example, graph neural networks78 (GNN)
and convolutional neural networks9 (CNN). In our polynomial regression exam-
ple, the model is represented by the parametric form of our polynomial

fθ(x) = θ0 + θ1x+ θ2x
2 · · ·+ θnxn (3.1)

which depends on the set of trainable parameters θ = {θ0, θ1, θ2 . . . θn}, whereas
the grade n of the polymer used for fitting can be seen as a hyperparameter.
The objective function The objective function L(y) is a mathematical func-
tion as well, which typically depends on the output of the model y = fθ(x). This
quantity should formalize in mathematical terms the task that we want to ac-
complish, and, in general, it is defined in a way such that the model can be
optimized by minimizing it. As one can imagine, the nature of this function is
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determined by the problem and the task at hand. In the case of our example, the
task is rather simple: we want the output of our model y ′, for any of the given
input x in our dataset of sizeN, to be as close as possible to the corresponding y
value. Possible objective functions for this purpose are then the mean squared
error (MSE) or the root mean square error (RMSE), which are often employed
for curve fit optimization

LMSE =
1

N

N∑
i

(y− y ′)
2

LRMSE =

√√√√ 1

N

N∑
i

(y− y ′)2 (3.2)

Optimization of the model At this point, we have a model, a dataset, and
an optimization criterion. Thus, we only need to find the right combination of
parameters thatminimizes our loss function, or, in other terms, we need to train
our model for our task. But how can we do that? In general, this is done in an
iterativeway and by using some variant of the gradient descent technique9. This
optimization algorithm aims to find the local minimum of our loss function in
the space of parameters θ by moving at each iteration, or epoch, of a step in the
direction of its gradient. In practice, this is done by updating the parameters of
our model at each epoch according to

θi+1 = θi − λ∇θiL[fθi(x)] (3.3)

Here, λ is the so-called learning rate, which determines the size of the step we
make at each iteration. This hyperparameter should be chosen wisely to have a
proper optimization as if it is too small, the procedure would take much longer
than needed. On the other hand, if it is too large, it would struggle to converge.

In Eq. 3.3, we actually reported the vanilla version of the gradient descent
approach, which is referred to as steepest descent. However, even if intuitive,
this is often not the best choice and, in practice, more advanced variants are
employed. Among those, the probably most popular choice is the ADAM opti-
mizer79, but other options, such as the stochastic gradient descent80, are avail-
able.
Validation, Overfitting, and Underfitting So far, we have always said that
the goal of our model’s training is to minimize the loss function. However, this
is strictly true only if we are interested only in fitting the available and not in
making predictions with our model. However, this latter scenario is often the
case in ML.

For instance, if we imagine that in our example, x is a temperature and y
is some physical quantity that should depend on the temperature, what we are
trying to learn with our model would be the thermal dependence of such quan-
tity. In this case, we may be interested not only in a model that does not only
fit well the points we already have in our training set but that can also predict
the value of ŷ for different temperatures that were not included in our initial
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Good fitting Under fitting Over fitting

Figure 3.1: Schematic representation of different learning outcomes in machine learn-
ing in the simple example of data interpolation. The left panel reports the case of a
proper fitting of the data, with the model able to follow faithfully the trend in the train-
ing data. The central panel depicts the case of underfitting, in which the model learned
a representation of the training data that is too simple and rough to properly describe
them. The right panel shows a case of overfitting, in which the model representation is
too specific and tailored to the training data, thus losing any generalization capability.

dataset. In such a case, we may have an unpleasant experience with our model
of what is commonly known as overfitting, which is that our model performs
extremely well during the training, i.e., minimizes the loss on the training data,
but performs poorly on new data, i.e., gives wrong predictions on new data (see
right panel of Fig.3.1). Fortunately, many techniques have been developed to
monitor and prevent overfitting. For example, it is a common practice to ran-
domly split the available dataset in two parts: the training set, which usually
includes some 80%-90% of the data and is used for the parameters optimiza-
tion, and the validation set, which does not take part in the optimization but is
used for monitoring the performance on the model on unseen data. This ap-
proach often allows spotting overfitting when present. Indeed, in that case, the
score of our model would be much better on the training set than on the valida-
tion one. To limit and prevent this problem, once we have the diagnostic tool of
cross-validation, we can early-stop the training before the model starts to over-
fit the training data by monitoring the trend in training and validation losses.
Another example in this sense is the so-called dropout approach, in which, at
each iteration, we include the stochastic possibility of turning off some of the
parameters in the model, thus including an artificial noise to the training.

At the other endof the spectrumof pathological behaviors for ourMLmodels,
we have underfitting, in which the model predictions are wrong simply because
the model did not learn what it was supposed to (see central panel of Fig. 3.1).
In this case, the possible causes are usually the model being too simple or the
training time being too short. Following these considerations, it is thus safer
to say that, to consider our optimization successful, we have to find the set of
parameters that best minimizes our loss function before the eventual onset of
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overfitting (see left panel of Fig. 3.1).

3.2 Different types of Machine Learning

In general, ML approaches can be divided into three broad categories depend-
ing on the different learning approaches10,11: supervised, unsupervised, and re-
inforcement learning.
Supervised learning In supervised learning, we want to obtain a model that
can accomplish a given task after being trained on an example dataset. This
approach is called supervised because we are somehow guiding our model to-
ward the solution. This is the case of classification and regression algorithms.
For instance, image recognition algorithms are trained on labeled dataset. For
example, in such a case, we may want to train a model to predict the species
of the animal in a given picture starting from a dataset of images of different
animals (cats, cows, capybaras..) labeled with the name of the species of the an-
imal in the picture. More classical examples of supervised learning are linear
and polynomial regression and decision trees. In computational Physics and
Chemistry, supervised learning is widely used, for example, for the training of
ML interatomic potentials11, as we have mentioned in Sec. 1.5.
Unsupervised learning In unsupervised learning, we are interested in find-
ing (hopefully nontrivial) structural patterns in our data without prior knowl-
edge. This means that in our data, no labels are available. This is, for example,
the case of clustering, in which we aim to group data points in a way such that
the points in each group share some common properties. A basic example of un-
supervised learning is the time-honored principal component analysis81 (PCA)
with all its variants. In Science, such approaches are mostly used for analysis11,
with some relevant exceptions, as we will discuss, for example, in Sec. 4.2.1.
Reinforcement learning The last category is the so-called reinforcement learn-
ing, which aims at mimicking human learning more closely. In this approach,
themodel is trained to react to the environment based on some reward function.
Even if we do not use this approach in this work, a few examples are the algo-
rithms employed in the motion of robots and the models trained to play human
games such as chess or go.

3.3 Neural Networks

Until this point, we have provided only a few hints of the actual mathematical
form of our ML models. In this section, we should make up for this by intro-
ducing neural networks (NNs), also called multilayer perceptrons, which are ar-
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Figure 3.2: Schematics of the components of a feed-forward neural network that com-
bines the information of an input layer (purple) through some hidden layers (grey) into
an output layer (green). The circle depicts the network nodes, whereas the lines repre-
sent the weighted connections between them. The red circles in the upper part repre-
sent the bias applied in the hidden layers.

guably the quintessential ML models. These are indeed the models that stand
behind the ML revolution of the past decades9,11, and they will be widely used
in the remainder of this Thesis. However, for our purposes, it is enough to limit
our discussion to the simple, but yet most diffused, case of feed-forward neu-
ral networks (FFNNs), whereas we refer the Reader to the literature for other
flavors of this powerful approach9,76. In Fig. 3.2, we schematically depict the
structure of a simple NNs and we shall refer to it as we discuss its components.
The network structure The goal of feed-forward neural networks is to ap-
proximate some function f∗. In this sense, they can be seen as universal interpo-
lators, a more powerful and nonlinear extension of regression models. These
models are called feed-forward because the information flows from the inputs
x (purple in Fig. 3.2) through the model fθ, which depends on some parameters
θ, to the output y = fθ(x) (green in Fig. 3.2).
They are called networks because they are typically represented by a compo-
sition of many different functions, which are referred to as the layers of the
network. The number of such layers determines the depth of the network, and
their basic elements are the so-called neurons or nodes (circles in Fig. 3.2). Each
neuron i takes an input vector of d input features x = (x1, x2, . . . , xd) and pro-
duces a scalar output ai(x). The neurons are then stacked into the layers, with
the output of each layer serving as the input of the next one. The first layer of
the network is called the input layer, the last one is the output layer, whereas the
layers in between are usually called hidden layers. The whole layered structure
of the network, on the other hand, is usually referred to as the architecture of
our model.
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Neuron operations The output of a neuron ai(x) in essentially all cases can
be decomposed into two conceptually separated operations. One is a linear com-
bination of the inputs, and the other is a non-linear function σ(z). This second
part is usually, but not necessarily, the same for all the neurons in the network
and is usually referred to as the activation function.
For a given input x, the linear transformation has the form of the dot product
with a set of node-specific weights w(i) (lines in Fig. 3.2) which is followed by a
shift via a node-specific bias b(i) (red circles in Fig. 3.2)

z(i) = w(i) · x + b(i) (3.4)

In this framework, the set ofweightsw andbiasesb represents the set of tunable
parameters of our model θ = {w,b}.
If we now apply the nonlinear activation function, we can obtain the overall
input-output function as

ai(x) = σi(z(i)) (3.5)
Among themany available activation functions10, popular choices are sigmoids,
the hyperbolic tangent (tanh), or the rectified linear units (ReLU). In practice,
the computational and training properties of the neurons depend, of course, on
the chosen activation. For example, in some cases, we may prefer to have a
softer nonlinearity, as for the case of sigmoids and the tanh function, whereas,
in some others, we may prefer the ReLU stronger activation, which also does
not saturate for larger input values. We should also note that the derivatives
of these nonlinearities are quite different from each other. For example, the
derivatives of the hyperbolic tangent are generally smoother than the ones of
ReLU functions, and this feature could be relevant if we are interested not only
in our model’s output but also in its derivatives, as we will see in the biasing
scheme presented in Chapter 8.
OptimizationandBackpropagation Wehave already seen that the optimiza-
tion of ML models is done by minimizing an objective function via gradient de-
scent or one of its variants. In the case of NNs, the procedure is the same, but it
is made computationally more difficult due to the presence of multiple hidden
layers. The solution to this complication is the backpropagation algorithm82, or
simply backprop, which allows for efficient computation of gradients by exploit-
ing the layered structure of the network. At its core, this method is nothing
more than the ordinary chain rule for partial differentiation. The idea is then
to use the chain rule to express in a computationally efficient way the complex
derivatives over the whole network as the product of the simple derivatives of
its components, i.e., linear combinations and activations.
During each iteration of the optimization procedure, we then have different
stages9,10

1. Forward propagation: we apply our feed-forward neural network fθ to
our input x to compute the output y = fΘ(x)
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2. Compute loss: we evaluate our objective function L(y) on the output of
the model y = fθ(x)

3. Back propagation: we compute the gradients of the loss with respect to
the parameters ∇θL(y) using the chain rule

4. Parameters optimization: we update the parameters θ of the model ac-
cording to the gradients computed with backpropagation and the chosen
learning rate.

Autoencoders: the unsupervised twin of neural networks Even if neural
networks are generally employed in the case of supervised learning, they share
the general framework with the autoncoder (AE) architecture, which is usually
used in the unsupervised setting and isworthmentioning. Such an architecture,
apart from the characteristic details of specific variants9,76, is composed of two
concatenated networks: the encoder and the decoder. In the simplest scenario,
the encoder EθE is nothing more than a feed-forward neural network, which
compresses some high-dimensional input featuresx into a low-dimensional out-
put space y = EθE(x), which is commonly referred to as the latent space. The de-
coder DθD , on the other hand, is a reversed neural network, in the sense that it
maps the compressed latent space y back to a space x ′ = DθD(y), which has the
same dimension of the input one. Overall, the input-output relation in the au-
toencoder is given by the composition of the two parts fθ(x) = DθD(EθE(x)) = x ′.

Autoencoders can be used, for example, to findmaximumvariancemodes in
a set of data in a similar way to what is done in PCA. To do that, they are trained,
according to a reconstruction loss, to find a latent space representation from
which the decoder can still reconstruct the original input, i.e., x ′ = fθ(x) = x.
Then, the decoder is discarded, and the encoder is used to operate the dimen-
sionality reduction to the latent space. Another fascinating outcome is related
to their use as generative models. For example, if in our dataset we have pairs
of configurations corresponding to two different times t and t+∆t, in principle,
we could train an autoencoder to predict the evolution after the ∆t interval, i.e.,
x ′ = fθ(x(t)) = x(t+ ∆t)83.
Machine learning libraries, an honorable note We should point out that
nowadays, many technical details we discussed in the previous paragraphs are
most of the time passed under the hood as they are already implemented in high-
level open-source libraries such as PyTorch84 or Keras85. Such libraries indeed
provide all the building blocks for creating and efficiently training state-of-the-
art NN models as well as tools for dataset management. One of the founding
pillars of these codes is the automatic differentiation, which allows for fast com-
putation of the derivatives needed, for example, in backpropagation. Moreover,
it should be noted that the utility of this last feature is not limited to the ML sce-
nario but can also be exploited as a tool to access the derivatives of complex func-
tions easily. As a final note, we must highlight that such libraries have greatly
contributed to making ML accessible also to users from different backgrounds,
thus making its diffusion to many fields of Science possible.
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Chapter 4

The data-driven approach to
collective variables

As we have seen in the introductive chapters, many enhanced sampling meth-
ods depend on identifying some collective variables (CVs) that can encode the
relevant physics of the system and process we are interested in. Traditionally,
CVs have been determined on the basis of physical/chemical intuition and by
trial and error. Typical examples could be the use of simple physical descrip-
tors73 such as distances, angles, and coordination numbers in chemical reac-
tions or simple functions such as the RMSD in the case of proteins. This ap-
proach offers the advantage of a transparent physical interpretation, but it can
fail to capture the complex behavior of many molecular systems as, this way, it
is easy to overlook important slow features that might hinder convergence.
In the last decade, machine learning (ML) techniques have been applied to the
challenge of designing effective CVs, leading to a number of methods suitable
for different scenarios according to the available data.

In the following sections, we will introduce some general aspects of such an
approach in a data-oriented perspective, also mentioning some relevant meth-
ods for CVs design.

4.1 The learning scenario

Aswe have seen in Chapter 3, learning CVs in a data-drivenway implies that we
need amodel function, which depends on someparameters, a dataset, whichwe
can use to optimize this function, and an objective function, which formalizes
the criterion on which we want to build our CV.
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Dataset and input descriptors The dataset in this scenario typically consists
of samples collected from MD simulations. These can be either unbiased, i.e.,
obtained with standard MD simulations, or biased, i.e., obtained by applying
some enhanced sampling scheme (see Sec. 2.2). However, the raw cartesian
coordinates of the atoms in our simulations cannot be used directly for our
purposes as they are not invariant to the symmetries of the system (e.g., trans-
lation, rotation, permutation of identical atoms). The most popular choice is
then to pre-process them to obtain a set of input features that can satisfy such
symmetry requirements and provide an invariant description of the system. As
an alternative, alignment86 of data-augumentation87 procedures have also been
proposed. However, such approaches can become expensive and problematic
when it comes to large systems and when chemical reactions are involved. On
the other hand, the use of input features can also be helpful in incorporating
some physical knowledge into the model in the same spirit by which CVs were
historically designed. For example, physical descriptors such as distances and
angles can be used as input features if we want to describe a chemical reac-
tion88,89 or, in the case of liquid-solid phase transitions, bond order parameters90
or structure factor peaks can be used91.

Typically, in an approach based on machine learning, several of these input
features are combined together in a model function to build our CV. This alle-
viates the need to carefully choose which physical descriptors to use and also
allows including those variables thatmay account for finer details of the process
of interest. For example, if we have to pick a CV based on intuition for a chem-
ical reaction in which two small molecules have to bond together, the distance
between the bonding atoms would probably be the most obvious (and relevant)
descriptor for the process. However, it may also be that other distances are af-
fected by the reaction and thus, our CV would benefit from including also such
degrees of freedom. Indeed, in general, for our approaches to be effective, we
need the set of features we include in our dataset to carry enough information
for the description of the process, at least when considered collectively.
Functional formof themodel The functional formof themodel function typ-
ically depends on a trade-off between model expressiveness and interpretabil-
ity. For example, linear models (e.g., linear discriminant analysis LDA92, princi-
pal component analysis PCA81) are readily interpretable but they often require a
pre-identification of a set of relevant features to be effective. On the other hand,
nonlinear models are far more expressive, but additional procedures may be
needed to provide a meaningful interpretation93–95.

Among nonlinear models, neural networks (NNs, see Sec. 3.3) have become
extremely popular in recent years. We have indeed mentioned in the previ-
ous chapters that NNs can be used as universal interpolators to represent com-
plex functions of many inputs and many outputs. In practice, this provides
the right flexibility for an effective learning procedure also in the case of com-
plex systems. Moreover, in the scenario of enhanced sampling, they lend them-
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selves quite well because they are continuous and differentiable functions of
the inputs by construction, and the derivatives are also easily accessible using
the backpropagation algorithm and exploiting the automatic differentiation fea-
tures of machine learning libraries. Furthermore, NNs are designed to effort-
lessly handle even a large number of input features, thus making the choice of
the input descriptors less and less critical.
Learning objectives We have mentioned already that, in general, the design
of CVs is guided by three main learning objectives

1. Operate a dimensionality reduction of the system to maximize the informa-
tion enclosed in the CV space86,87,96,97

2. Distinguish between the different metastable states15,88,98
3. Reflect the long-term evolution of the system, that is, to describe its slowest

modes, which are related to the transitionbetweenmetastable states83,99–104

In the context of enhanced sampling, the third objective is typically the most
important, as it is related to the deeper nature of our process. However, in prac-
tice, it is not always possible to directly use this as an operational criterion, for
example, because our dataset is limited. Indeed, we often find ourselves in a
chicken-and-egg situation17,105 in which we need good data to extract good CVs,
but, at the same time, we need good CVs to collect good data. In other terms,
extracting efficient CVs typically requires a proper exploration of all the rele-
vant states and transitions between them, but this exploration typically already
requires effective CVs.

For this reason, the first two criteria have been widely used as surrogate
objectives as they don’t need extensive dynamical information about the sys-
tem. Even if this approach can eventually lead to sub-optimal CVs, it still al-
lows, in many cases, to obtain the best from limited data. Moreover, iterative
approaches can also be used to refine our CVs as new (and better) data become
available, either by performing multiple iterations following the same scheme
or by progressively enforcing more CVs objectives from the list above17,105,106.

4.2 Learning approaches

Each of the learning objectives we introduced in the previous paragraph re-
quires different types of data, which progressively become richer in informa-
tion. In the following, we discuss from this perspective the main three different
learning approaches that can be adopted for a data-driven determination of CVs,
which are summarized in Fig. 4.1.
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Figure 4.1: Type of data and the respective optimization criteria that can be used to
design data-driven collective variables

4.2.1 Working with unlabeled data: unsupervised learning

The first scenario is the one in which we only have a collection of generic sam-
ples from MD simulations. In this case, our possibilities are limited to using
unsupervised machine learning techniques, which are aimed at automatically
finding structural patterns within the data107,108. In terms of the learning objec-
tives we have listed in the previous paragraph (see Sec. 4.1), this approach only
satisfies the first and most generic one. However, an unsupervised approach
has the advantage of being applicable to any kind of MD simulation in principle.
This allows the use of data from unbiased near-equilibrium simulations as well
as those out-of-equilibrium or even those in which it is impossible to recover
the unbiased dynamics.

In this spirit, unsupervised learning has been used in atomistic simulations
to identify CVs based solely on sets of configurations obtained from MD trajec-
tories. A classical example of such an approach is the linear principal compo-
nent analysis81,109 (PCA), which aims at finding the maximum variance direc-
tions within the data. The scope of the same principle has been extended by
the use of autoencoding96,105 (AE) NNs (see Sec. 3.3), which are trained to learn
a compressed representation with the constraint that the original data can still
be reconstructed starting from there.

In order to compensate for the lack of information that can be obtained from
the data in an unsupervised setting, these approaches are often applied in iter-
ative routines, for example, by alternating cycles of enhanced sampling and CV
discovery96,105,110. This way, at each iteration, one can collect new data that can
be used to train (possibly after reweighting) amore-informed CV that will even-
tually lead to a better exploration of the phase space. For example, in the case
of chemical reactions, one may start from some reactant molecules and try to
iteratively search for possible products.



47 4. THE DATA-DRIVEN APPROACH TO COLLECTIVE VARIABLES

4.2.2 Classifying metastable states: supervised learning

The second scenario presents an additional piece of information, which is being
aware of the metastable state of interest for our system. In the example of a
chemical reaction, these can be the reactants and product basins, or, in the case
of a protein conformational equilibrium, they can be the folded and unfolded
states. Other examples can be the bound and unbound state of a ligand with
respect to a binding site or the different phases in a material.

From a machine-learning point of view, in this case, we are dealing with a
labeled dataset, which means that each configuration can be associated with a
specific metastable state of the system. Such a dataset can be easily collected in
a rare-event scenario by running standardMD simulations in each basin. In the
rare-event setting, the systemwill indeed remain trapped for a long time in that
metastable state due to the presence of large free energy barriers that prevent
spontaneous transition, making the labeling of the data straightforward.

When such data are available, we can optimize our CVs not only to oper-
ate a dimensionality reduction but also to discriminate between the metastable
states, which corresponds to the second learning objective. Among the linear
methods based on classification, support vector machines15 and linear discrimi-
nant analysis98 (LDA) have been applied for CV design. Also in the case of super-
vised approaches, nonlinear generalizations based on NNs have been proposed
(Deep-LDA88 and Deep-TDA18,19, see Chapter 6) and applied to a wide range of
systems111–114.

The strength of supervised approaches is that they provide an easy way to
insert into our model some previous knowledge, either in the form of a labeling
of the states or also regression of some physical observables. As the resulting
CVs are aware of the possible metastable states of the system, they can be a first
hypothesis for the sampling of reactive trajectories between such states, thus
giving access to even better data that can be used to further refinements of our
CV model.

4.2.3 Extracting the slow modes: time-informed learning

The third andarguably best scenario is the one inwhichweknow themetastable
states of our system andwe already have access to reactive trajectories between
them. In the case of biophysics, this scenario can be realized by means of long
unbiased simulations performedon supercomputerswith dedicatedhardware115
or by sampling under different thermodynamic conditions (e.g., higher temepra-
ture). However, in most of the systems, such as chemical reactions and phase
transitions, the free energy barriers are often so large that cannot be overcome
with these approaches. For this reason, themost common source of reactive tra-
jectories is represented by enhanced sampling simulations. Such simulations
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can be performed either via CVs-independent methods17, or by using CVs based
on physical intuition as well as based on the data-driven approaches we have
discussed so far. In this regard, it should also be noted that in this case, it is nec-
essary to recover the unbiased dynamics from the biased simulations. This is
a task that is not always simple and some approximations have been proposed
and discussed, for example, in Ref.106

Ifwe have access to reactive trajectories, time-informed learning can be used
to find the slow modes that rule the long-term evolution of the system, thus ful-
filling the third learning objective from our list (see Sec. 4.1). In the context
of rare events we are interested in, the slow modes are indeed typically asso-
ciated with the transitions between the long-lived metastable states. One lin-
ear example of this category is the time-lagged independent component analy-
sis116–118 (TICA), which aims at finding the linear combination of the input data
that aremaximally autocorrelated. Several nonlinear extensions of such a crite-
rion have been proposedwith the aim of providingmore flexibility to themodel
function to achieve a better representation of the relevant slow modes17,102,119.
Also time-lagged autoencoders have been applied for extracting CVs from re-
active trajectories by learning a compressed representation from which future
configurations can be predicted83,120.

4.3 Combinining different approaches: multi-task
learning

All the approaches described in the previous sections are related to the optimiza-
tion of a specific loss function depending on a specific type of dataset. How-
ever, in principle, different approaches could also be combined and different
types of data can be used at the same time. Such a practice is common in the
machine learning field and is usually referred to as multi-task learning. Typ-
ically, this approach is used to improve the model’s generalization capability
and to better exploit all the available data. By multi-task learning, we refer to a
broad class of algorithms that are applied for the optimization ofmachine learn-
ing models on multiple objective functions at the same time. This concept has
been explicitly used in the context of supervised learning of CVs121, and other
CVs from the literature can also be framed in a multi-task format, for example,
neural-network-based CVs that are optimized on a linear combination of loss
functions. One example in this sense is the EncoderMapmethod97, in which the
normal reconstruction loss used for the training of autoencoders is paired with
the Sketch-map122 loss. The aim of the Sketch-map loss is to give more structure
to the learned CV by enforcing that the distances in the low-dimensional latent
space are proportional to the real distances in the high-dimensional space of
the input features. In a similar way, in the Variational Dynamics Encoder (VDE)
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method120, a function that aims at maximizing the autocorrelation of the CV is
added to the optimization of a time-lagged variational autoencoder (VAE).

Even if following a multi-task learning approach on the same dataset can
already bring some advantages to our CVs, more information can be encoded in
the model if we consider using different types of data. For instance, for a given
system, we may have both labeled and unlabeled data, which, of course, carry
different types of information. For example, imagine that we start our study on
a system from some labeled data from the metastable states, and we use such
data to find a first CVwith a supervised learning approach. Then, by performing
enhanced sampling simulation on this CV, we can explore the phase space a
little bit more, thus generating new data with our simulations that should not
be wasted but rather used to obtain a better CV, for example, by incorporating a
new loss based on unsupervised learning methods to our previous supervised
CV model.
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Chapter 5

The mlcolvar library

In the previous sections, we have provided a description of the construction
of data-driven CVs, focusing on the dependence of the optimization tasks on
the type of available data and mentioning the possibility of combining them to
improve our models. From this discussion, it is already clear that the range
of possible approaches and methodologies in this field is extremely wide and
heterogeneous. Even if this flourishing ofmethods in the last years has certainly
been beneficial for the enhanced sampling community, it still lacks a common
framework. Indeed, the available implementations typically support only one
or, at best, a few of the methods reported in the literature, and the interfaces
with enhanced sampling codes are limited to specific cases. This, of course, has
detrimental effects on the further development of these methodologies as well
as on their utilization in practice.

These considerations, accompanied by the experience of Prof. Parrinello’s
group inmethods for CV design, led us to the development of mlcolvar, a Python
library aimed at simplifying the construction of data-driven CVs and their de-
ployment in the context of enhanced sampling. The goal ofmlcolvar, short for
Machine Learning COLlective VARiables, is twofold. On one hand, to have a uni-
fied framework to help test and utilize (some of) the CVs proposed in the litera-
ture. On the other, to have a modular interface that simplifies the development
of new approaches and the contamination between them.

The library is based on the machine learning library PyTorch84 and the high-
level Lightning package123, which simplifiesmany aspects of the overall training
procedure. This provides a simpler user interface and allows focusing only on
the CV design and optimization. The library is an open-source project that is
accessible on Github1 or on the Python Package Index (PyPI)2. In principle, the
library can also be used as a standalone tool, for example, for analysis of MD

1https://github.com/luigibonati/mlcolvar
2pip install mlcolvar

https://github.com/luigibonati/mlcolvar
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Figure 5.1: Logo of the mlcolvar library, which is meant to be interfaced with PLUMED
enhanced sampling plugin, whose logo is a pigeon. To symbolize the bond between the
two codes, we chose a capybara, a graceful rodent known to have pseudo-symbiotic
friendships with small birds.

trajectories, but its main purpose is to be employed to create CVs that can be
used in combination with enhanced sampling methods through the PLUMED
C++ software124,125.

In the following sections, wewill present themain aspects of the library, such
as the general optimization workflow and the structure of the code. In doing so,
we will also review some of the recent methods in the field that are already (or
that can easily be) implemented in the library. At the end of the chapter, we will
then provide a series of prototypical examples in different learning scenarios.
However, a complete description of the library is provided in the documentation
and the tutorials3 available online.

5.1 The CVs optimization workflow

The best way to introduce mlcolvar is by showing how it can be used for our
purposes. For this reason, we will show the typical workflow used for CVs opti-
mization with the help of the library, starting from the raw data to an optimized
model ready to be used in enhanced sampling simulations. In this section, we
will just set the context, providing a practical overview while leaving the tech-
nical details of the individual components of the workflow to the next sections.

The mlcolvarworkflow consists of only a few steps, which are schematically
depicted in Fig. 5.2. To provide a more practical reference to our discussion, we
also provide in Listing 5.1 a working example of the corresponding few lines of
code that are necessary for the implementation of such a workflow at the user
level.

As a starting point in our workflow, we have the collection of data from MD
simulations with the help of PLUMED124,125. These data are then imported into
the Python ecosystem by means of the utils functions available in the library
(step 1). They are then framed in a DictModule object (step 2), which allows ef-
ficient handling of the data in the training process. For example, it optionally

3https://mlcolvar.readthedocs.io/en/

https://mlcolvar.readthedocs.io/en/
https://mlcolvar.readthedocs.io/en/
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Figure 5.2: Schematic summary of the workflow for the construction of data-driven
CVs in mlcolvar. Data from MD simulations are loaded and framed in a datamodule.
A CV is selected from ready-to-use ones (mlcolvar.cvs) or built from the implemented
building blocks (mlcolvar.core). After training, the model is compiled with the Torch-
Script language to be deployed to PLUMED for using it as CV to enhance sampling. A
corresponding example of code is given in list. 5.1.

1 # Setup
2 import torch ,lightning
3 from mlcolvar.data import DictModule
4 from mlcolvar.cvs import AutoEncoderCV
5 from mlcolvar.utils.io import create_dataset_from_files
6

7 # 1. Import training data (e.g. PLUMED COLVAR files)
8 dataset = create_dataset_from_files('./ COLVAR ')
9 # 2. Create a Lightning datamodule which splits dataset in train/valid
10 datamodule = DictModule(dataset , lenghts =[0.8 ,0.2])
11 # 3. Choose a model and hyper -parameters
12 cv_model = AutoEncoderCV(encoder_layers =[45 ,30 ,15 ,2])
13 # 4. Define a trainer object
14 trainer = lightning.Trainer(max_epochs =1000)
15 # 5. Optimize parameters
16 trainer.fit(cv_model , datamodule)
17 # 6. Compile the model with TorchScript
18 cv_model.to_torchscript('model.ptc')
19 # 7. Use it in PLUMED via the pytorch module

Listing 5.1: Example of the typical workflow of CVs optimization with mlcolvar, as
schematically depicted in Fig. 5.2. The input features are calculated by PLUMED and
the end result is a serialized model that can be deployed in PLUMED via the LibTorch
C++ interface.

divides the data into training and validation datasets (e.g., for early stopping
or hyperparameter searching9) and sets up the mini-batches for the training
(step 3). During the training, we optimize the cv_model we decided to use. In
most cases, this can be initialized as one of the ready-to-use CV classes already
implemented in the library. As an alternative, a custom model class can be im-
plemented by the user starting from the core building blocks and the template
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CV classes.
The cv_model object contains the trainable parameters of the model, the defi-

nition of the loss functionwewant to optimize on, and the optimizer used for the
training. The whole optimization procedure is made extremely simple thanks
to the Lightning package123. All the required operations are indeed automati-
cally handled by the Lightning Trainer object (step 4). Conveniently, Lightning
takes care not only of the optimization tasks but also of ancillary features such
as the application of early stopping, storing metrics, generating log files and
checkpoints, and automatically managing the process acceleration with GPUs,
thus greatly simplifying the final user experience.

Once our cv_model has been optimized on the data, we can deploy it via the
TorchScript language tomake it transferable and accessible for production (step
6). Indeed, the frozen model can be imported in PLUMED using the pytorch
model interface and used as CV for our enhanced sampling simulations (step 7).

We must stress that the workflow we discussed can be implemented by a
mlcolvar user in 6 lines of code, with none of them requiring any in-depth cod-
ing knowledge. In order to make the process simpler, we also initialized all
the defaults so as to offer reasonable starting points that can work well in most
cases. Nevertheless, all the classes in the library are easily customizable and
offer a flexible framework to control, for example, input standardization, net-
work architecture, loss functions, and training hyperparameters. The technical
details of such customizations are out of the purposes of this Thesis, but they
are discussed at length in the documentation and the tutorials available online.

5.2 High-level structure of the code

We now proceed to present the overall structure of the mlcolvar library. This is
designed to be modular in order to facilitate the implementation of new meth-
ods by only adding the necessary building blocks while inheriting the common
elements of CVmodels. As we have said, the library relies on themachine learn-
ing libraries PyTorch84 and Lightning123. However, we reimplemented some fea-
tures to make themmore flexible and suitable for our purposes and to simplify
the overall interpretability of the code.
The library contains four main modules, which are data, core, cvs, and utils.
mlcolvar.data In mlcolvar.data, we provide PyTorch- andLightning-compatible
classes that simplify and improve the efficiency of data access. Moreover, to sim-
plify the readability of the code, we based the implementation of these elements
on a dictionary-like structure. The key elements are:

• DictDataset: A dictionary-like PyTorch Dataset that maps keys (e.g., data,
labels, targets, weights) to tensors.
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• DictLoader: A PyTorch DataLoader that wraps a DictDataset. This class is
optimized to significantly reduce the data access time during training and
to combine multiple datasets for multi-task training.

• DictModule: A Lightning DataModule that takes care of automatically split-
ting a DictDataset into training and validation (and optionally test) sets
and returning the corresponding dataloaders.

mlcolvar.core In mlcolvar.core, we implemented the building blocks that are
used for the construction of the CV classes. We organized them into the follow-
ing submodules:

• nn: learnable modules (e.g., neural networks).
• loss: loss functions for the CVs optimization.
• stats: statistical analysis methods (e.g., PCA, LDA, TICA).
• transform: non-learnable transformations of data (e.g., normalization, de-
scriptors calculation).

All of themare implemented as Python classes that inherit from torch.nn.Module.
In particular, the mlcolvar.nn module contains a class that constructs a general
feed-forward neural network which can be customized in several aspects, such
as activation functions, dropout, and batch-normalization.
mlcolvar.cvs The mlcolvar.cvsmodule includes ready-to-use CV classes, grouped
by the type of data used for their optimization in the following sub-packages:

• unsupervised: methods that require input data characterizing single MD
snapshots.

• supervised: require labels of the data (e.g., the metastable states they be-
long to) or a target to be matched in a regression task.

• timelagged: require pairs of time-lagged configurations, typically from re-
active trajectories, to extract the slow modes.

Since they are the key element of this library, the structure of CVs is described
in more detail in Sec. 5.3.
mlcolvar.utils Finally, in mlcolvar.utils, one can find a set of miscellaneous
tools for a smoother workflow. For example, we implemented here helper func-
tions to create datasets from text files, as well as to compute free energy profiles
along the CVs.

5.3 The structure of CV models

The CVs in mlcolvar are defined as classes that inherit from a BaseCV class and
LightningModule. The former defines a template for all the CVs along with com-
mon helper functions, including the handling of data pre- and post-processing.
The latter is a Lightning class, which adds several functionalities to simplify
training and exporting the CV. In particular, LightningModule not only encap-
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sulates the model with its architecture and parameters but also implements the
training step (and hence defines the loss function) as well as the optimization
method.

The structure of the CVs in mlcolvar is designed to be modular. The core of
each model is defined as a series of building blocks (typically implemented in
mlcolvar.core) that are by default executed sequentially, although this can easily
be changed by overloading the forward functions in BaseCV. An example where
this is necessary are AutoEncoders-based CVs. In this case, the building blocks
are normalization, encoder and decoder, but the CV is the output of the encoder,
not the final output of all the blocks.

New CVs require implementing a training_step method that contains the
steps that are executed at each iteration of the optimization. Moreover, the loss
function and the optimizer settings are saved as classmembers to allow for easy
customization and it is possible to add preprocessing and postprocessing layers.
This allows to speed up the training by applying the transformations only once
to the dataset and later including them in the final model for production. In ad-
dition, it allows post-processing to be performed on themodel after the training
stage (e.g., standardizing the outputs).

Finally, multi-task learning is supported through the MultiTaskCV class that
takes as input a givenmodel CV as themain task togetherwith a list of (auxiliary)
loss functions which will be evaluated on a list of datasets. The samples from
different datasets go through the same network but enter only one of the loss
functions (see panel d of Table 5.1). The loss function used in this case is a linear
combination of each specific loss. Each loss function can optionally be preceded
by task-specific layers that are also optimized during the training but are not
evaluated to compute the CV. Examples of task-specific models are the decoder
used for the reconstruction task in autoencoders (see Fig. 5.7 for an example) or
a classifier/regressor used for supervised tasks121.

5.4 Deploying the CV in PLUMED

Once optimized, the CVs are exportedusing just-in-time compilation to the Torch-
Script language, returning a Python-independent and transferable model. We
wrote an interfacewithin the PLUMED124,125 software that allows these exported
models to be loaded through the LibTorch library (PyTorch C++ APIs). This is im-
plemented in the pytorchmodule of PLUMED as a function that takes as input a
set of descriptors and returns the CVs alongside their derivatives with respect
to the input. An example of a minimal input file is shown in Listing 5.2.
This means that the CVs can be immediately used in combination with all en-
hanced sampling methods implemented in PLUMED (among which we find, for
example, Umbrella Sampling6, Metadynamics7 and its many variants74, Varia-
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1 # 1. Compute input features (e.g. pairwise distances)
2 d1: DISTANCE ATOMS=1,2
3 ...
4 dN: DISTANCE ATOMS =17,19
5 # 2. Load model exported by mlcolvar
6 cv: PYTORCH_MODEL FILE=model.ptc ARG=d1 ,...,dN
7 # 3. Apply bias potential (e.g. with OPES)
8 opes: OPES_METAD ARG=cv.node -0 PACE =500 BARRIER =40
9

Listing 5.2: Example of PLUMED input file in which the calculation of input features is
requested, the CV model exported from mlcolvar is loaded, and an enhanced sampling
calculation is performed on it.

tionally Enhanced Sampling16,126, On-the-fly Probability Enhanced Sampling65,
just to name a few) andwithin the supportedmolecular dynamics codes (includ-
ing but not limited to LAMMPS127, GROMACS128, AMBER45, CP2K129, QUANTUM
ESPRESSO130, and ASE131), which allows simulating awide range of complex pro-
cesses in (Bio)Physics, Chemistry, Materials Science, and more.

Note that the interface is very general and thus can be used not only to com-
pute collective variables but also to test CVs defined through complex functions
by taking advantage of PyTorch’s automatic differentiation capabilities (in the
spirit of the PYCV PLUMED module132 based on Jax). For example, it has been
used to construct CVs from the eigenvalues of the adjacency matrix133.

5.5 Methods for CVs optimization

In this section, we briefly present the methods implemented in the mlcolvar li-
brary for the identification of collective variables. Furthermore, we will men-
tion some related methods and show how they can be constructed based on the
building blocks of the library. In Table 5.1 we summarized them together with
an overview of the common architectures. Note that this does not want to be
an extensive review or comparison of the different methods, but rather a con-
cise reference describing the different approaches that can be employed in a
given scenario. The intention is to trace a path that runs in two directions. The
first is the type of data we have available (unlabeled, labeled or time-informed),
which leads us to configure the learning process in different ways. The second
is the increase in the expressiveness of models, moving from linear methods to
models based on neural networks. Many of the latter methods can be seen as
finding the best feature space that maximizes the efficacy of linear statistical
methods. Learning the CVs, therefore, becomes equal to solving a variational
principle, of which neural networks are excellent candidates as basis functions
due to their properties of representing arbitrary functions. For this reason, in
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Data Objective Method Architecture

Unlabeled
Maximize

structural

information

PCA linear

AutoEncoder (AE) A
Variational AE (VAE) A
EncoderMap A

Labeled
Distinguish
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states

LDA linear

Deep-LDA B
Deep-TDA C

Time-lagged
Slow modes

TICA linear

Deep-TICA/SRV B
Slow modes

+ structural

information

Time-lagged AE (TAE) A
Variational Dynamics

Encoder (VDE)
A

Multi Task

CVCVStats CV

A B C

X CV X X

D

Dataset 1

Dataset N

Loss 1

Loss N

X'

Input features Hidden nodes Collective Variable

Architectures

Model

Table 5.1: (top) List of the methods implemented in mlcolvar for building CVs grouped
accordingly to the data used for their optimization. In italics the method which can be
easily implemented by following the related notes. (bottom) Sketch of the different neu-
ral network CV architectures. a) AutoEncoder, composed by an encoder that maps the
input data to a latent space (the CVs) and a decoder that reconstructs it. b) Feed-forward
NN used to transform the inputs before applying a statistical method (e.g., LDA, TICA).
The CVs are obtained as linear combinations of theNNoutputs (e.g. DeepLDA, SRV/Deep-
TICA). c) Feed-forward NN whose outputs are used directly as collective variables (e.g.
DeepTDA).

each section, we start discussing a linear statistical method and then move to
the neural-network CVs, which are implemented in mlcolvar.
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5.5.1 Unsupervised methods

Principal Component Analysis (PCA)81 is a linear dimensionality reduction
technique that projects the data on the principal components, i.e., the directions
of maximum variance. These directions correspond to the eigenvectors of the
data covariancematrix, while its eigenvalues measure the amount of explained
variance. PCA is typically used to process inputs and provide whitened descrip-
tors for other models or even directly as CVs, in which case only the very first
few components are used.
AutoEncoders (AEs) are a class of NNs consisting of two main components:
an encoder and a decoder (see panel a in Table 5.1 and Sec. 3.3). The encoder
maps the input descriptors into a low-dimensional latent space, while the de-
coder performs the inverse task, i.e., reconstructing the original input from its
low-dimensional representation. AEs are trained byminimizing the reconstruc-
tion loss, which is usually measured as the mean square error (MSE) between
the input and its reconstructed output. The latent space thus learns a minimal
set of features thatmaximally preserves the information on the input structures,
and, in this sense, AEs can be viewed as a non-linear generalization of PCA. Dur-
ing the simulation, the output of the encoder is used as CV, while the decoder is
used only during training105,110.
Variational AutoEncoders (VAEs)134 are a probabilistic variant of AEs, which
mainly differ from standard autoencoders in that the data in the latent space
is pushed to follow a predefined prior distribution, which is normally a Gaus-
sian distribution with zero mean and unit variance, i.e., N (0, 1). This acts as a
regularizer and encourages the network to learn a continuous and smoother
latent space representation. This is accomplished by modifying both the net-
work architecture and the loss function. First, the encoder learns to output the
mean and variance of a Gaussian distribution, and the sample that goes through
the decoder is drawn from this Gaussian. Second, the encoder/decoder parame-
ters are optimized to minimize a linear combination of the reconstruction loss
and the Kullback-Leibler (KL) divergence between the Gaussian learned by the
encoder and the prior distribution N (0, 1). As CV, the implementation in the
mlcolvar library then uses only the output of the encoder corresponding to the
mean (i.e., ignoring the variance output).
Related models Another unsupervised learning algorithm based on NNs is
the EncoderMap97. This method combines an autoencoder with the cost func-
tion of Sketch-map135. Sketch-map is a multidimensional scaling-like algorithm
that aims to preserve the structural similarity, i.e. to reproduce in low-dimensional
space the distances between points in the high-dimensional space. In mlcolvar,
this can be easily implemented by subclassing the AutoEncoder CV and adding
the sketch-map objective to the loss function. In a similar spirit, also the Mul-
tiscale Reweighted Stochastic Embedding136, which combines a NN with the t-
stochastic neighbor embedding (t-SNE) cost function can be implemented.
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5.5.2 Supervised methods

Here, we only provide a short introduction to this class of methods that is func-
tional to the discussion of the mlcolvar library. However, in Chapter 6, we ex-
pand this discussion to present more in detail some of the following methods.
Linear Discriminant Analysis (LDA)92 is a statistical analysis method that
aims to find the best linear combination of input variables that maximally sep-
arates the given classes. This is achieved by maximizing the so-called Fisher’s
ratiowhichmeasures the ratio of between-class variance to thewithin-class one.
Similarly to PCA, the discriminant components are found via the solution of a
(generalized) eigenvalue problem involving the within and between-class co-
variance matrices. If for PCA the eigenvalues represent the variance, here they
measure the amount of separation between states along the relevant eigenvec-
tors. Note that for LDA the number of non-zero eigenvalues (and hence of CVs
that can be used) isC−1withC being the number ofmetastable states. A variant,
called harmonic-LDA (HLDA), has been employed for CVs design89,98.
Neural-network based LDA (Deep-LDA) A non-linear generalization of LDA
can be obtained by transforming the input features via a NN88,137, and then per-
forming LDA on the NN outputs (see Table 5.1, panel b). In this way, we are
transforming the input space in such a way that the discrimination between the
states is maximal. During the training, the parameters are optimized to maxi-
mize the LDA eigenvalues (Fisher’s loss). The CV(s) are then obtained by project-
ing the NN output features along the LDA eigenvectors. This has the advantage
of obtaining orthogonal CVs. In the case of two states, maximizing the Fisher’s
loss is equal to maximizing the single eigenvalue, while in the multiclass sce-
nario, we can either maximize their sum or just the smallest one137. Since the
LDA objective is not bounded, a regularization must be added to avoid the pro-
jected representation from collapsing into delta-like functions, whichwould not
be suitable for enhanced sampling applications88. It is worth noting that, for
a single CV, this result can be obtained equivalently by using the output of a
neural network optimized with Fisher’s criterion, which becomes the ratio of
between-class and within-class variance of the output. This can be easily done
with mlcolvar by combining a NN with a single output with the Fisher’s loss.
Targeted Discriminant Analysis (Deep-TDA) In Deep-TDA18, the discrimi-
nation criterion is achieved with a distribution regression procedure. Here,
the outputs of the NN are directly used as CVs (see Table 5.1, panel c), and
the parameters are optimized to discriminate between the different metastable
states. This is achieved by choosing a target distribution along the CVs equal
to a mixture of Gaussians with diagonal covariances and preassigned positions
and widths, one for each metastable state. This targeted approach performs
particularly well in the multi-state scenario, as it allows to exploit information
about the dynamics of the system (i.e. a precise ordering of the states) to reduce
further the dimensionality of the CVs space with respect to LDA-based methods.
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Thismethod and its variants19 will be explainedmuchmore in detail in the next
chapters, also with the help of examples and showing practical applications to
challenging systems.

5.5.3 Time-informed methods

Time-lagged Independent Component Analysis (TICA) TICA117,118 is a di-
mensionality reduction method that identifies orthogonal linear combinations
of input features that are maximally autocorrelated, and thus represent the di-
rections along which the system relaxes most slowly. For a given lag-time, these
independent components are determined as the eigenfunctions of the autocor-
relation matrix associated with the largest eigenvalues, which are connected to
their relaxation timescales. These have been shown to approximate the eigen-
functions of the transfer operator138, which is responsible for the evolution of
the probability density toward the Boltzmann distribution. TICA has been ap-
plied both to enhanced sampling139 and to extract the CVs from biased simula-
tions140,141.
Neural network basis functions for TICA (Deep-TICA) Similarly to LDA
and Deep-LDA, we can consider a nonlinear generalization of TICA by apply-
ing a NN to the inputs before projecting along the TICA components (see Table
5.1, panel b). This corresponds to using NNs as basis functions for the varia-
tional principle of the transfer operator118,138. Similar architectures have been
proposed, which all aim to maximize the TICA eigenvalues (typically the sum of
the squares is maximized)17,102,142. The implementation in mlcolvar follows the
Deep-TICA17 method. In addition, we implemented different ways of reweight-
ing the data60,106,140 as well as a reduced-rank regression estimator143 to learn
more accurate eigenfunctions.
Time-lagged AutoEncoders Another class of methods that work with pairs
of time-lagged data is based on autoencoding NNs. Time-lagged autoencoders
(TAEs)83 have the same architecture as standard ones, but the encoder/decoder
parameters are optimized to find a compressed representation capable of pre-
dicting the configuration after a given lag-time rather than reconstructing the
inputs. Thus, the decoder takes the CV at time t and uses it to reconstruct the
time-lagged inputs at t + τ. In mlcolvar, this can be simply achieved using an
AutoEncoderCV but with a dataset in which the output targets are time-lagged
configurations.
Similarly, one can also consider a time-lagged variant of the variational autoen-
coder, as done in the Variational Dynamics Encoder (VDE) architecture120. To
build a VDE, one needs to simply optimize a time-lagged VAE with an additional
term in the loss function which maximizes the autocorrelation of the latent
space. It is worth noting that both TAEs and VDEs tend to learn a mixture of
slow and maximum variance modes119, at variance with the non-linear gener-
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alizations of TICA which only learn slowly decorrelating modes.

5.6 Application examples

As discussed, themethods implemented in the library have been extensively ap-
plied to study a wide range of atomistic systems. In this section, we provide a
didactic overview of the library’s capabilities by focusing on a simple toy model.
Specifically, we showcase an example for each of the CV categories presented
above with the intent of highlighting the versatility of the implementation and
how different workflows may be chosen depending on the available data. For
atomistic examples, we refer the reader to the next chapters or to the documen-
tation of the mlcolvar library, which includes notebooks demonstrating the use
of the library with systems taken from the literature on data-driven CVs.
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Figure 5.3: Three-state potential energy landscape for the movement of a particle in
two dimensions, used as a toymodel in sec. 5.6. The analytic expression of the potential
energy, obtained by modifying the Muller-Brown potential to have three states, is avail-
able on the GitHub repository in the Jupyter notebooks implementing the examples.

In the following, we consider a particle moving in two dimensions under the
action of the three-state potential depicted in Fig. 5.3 built out of a sum of Gaus-
sians. The input features of the NNs are taken to be the x and y position of the
particle. The activation function is chosen to be the shifted softplus51, which is
well suited for differentiating the CVs. The parameters are optimized via gradi-
ent descent using the ADAM optimizer with a learning rate of 10−3. The dataset
is split into training and validation, and early stopping is used to avoid over-
fitting. All the simulations are performed using the simple Langevin dynamics
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code144 contained in the ves126 module of PLUMED, and the biased simulations
are performed using the OPES65 method with a pace of 500 steps, the automatic
bandwidth selection, and a barrier parameter equal to 16 kBT .

5.6.1 Unsupervised setting: state discovery

We first start with the least informed scenario in which we only have data lim-
ited to a single metastable state and aim at exploring the potential energy sur-
face. Starting from the first unbiased data in state A, we adopt an iterative pro-
cedure akin to theMESA105 method inwhichwe train an AutoEncoderCV, perform
a short biased run, and add the collected configurations to the training dataset.
This workflow is repeated until necessary, e.g. all the states have been discov-
ered. We performed 16 iterations of 105 steps each and reported the results in
Fig. 5.4. In panel a, we colored the sampled regions according to the iteration in
which they were first visited, while in panel b, we report the time evolution of
the variable y, which is able to distinguish the different states. At first, the AE
drives the sampling along the direction of maximum variance of state A (blue
dots), but after a few iterations, it is able to discover state B as well. Finally, af-
ter 10 iterations, state C is also visited, and from there the system visits all three
states, although only one or two transitions are observed per iteration.
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Figure 5.4: MD simulations of the toy model in Fig. 5.3 biasing the autoencoder CV.
The colored shaded regions in the background indicate the three metastable states. a)
Exploration of the energy landscape. Each region of the space is colored according to
the iteration in which it was visited for the first time, as reported in the colorbar. The
contour lines denote the isolines of the 2D potential energy. b) Time evolution of the
y coordinate along different iterations of the autoencoder CV. The points are colored
according to the iteration number, as reported in the colorbar.
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5.6.2 Supervised setting: CVs as classifiers

Once the three states of the systemhavebeendiscovered, we can stepup tomore
refined CV models based on supervised learning and aim for a comprehensive
sampling of the free energy landscape, e.g. to converge a free energy profile. For
each of the three states, we run short unbiasedMD runs and collect labeled sam-
ples of the three states (see Fig. 5.5c). Then, we train a DeepTDA CV with a single
component and a target distribution of three equidistant Gaussians (ordered as
A, B, C for increasing CV values). This is motivated by the consideration that dur-
ing the exploratory phase described above only transitions of the kind A ↔ B

and B ↔ C are observed. Enhancing the sampling along the DeepTDA CV re-
sults in multiple transitions between the different states as reported in fig. 5.5d.
We observe that the sampling follows approximately the minimum free energy
path connecting the states. Furthermore, the multiple transitions induced by
this trial CV allow converging the free energy profile (reported in the inset of
panel d).
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Figure 5.5: c) Training set of the three-state Deep-TDA CV, each state is depicted in
a different color according to the legend. d) Points sampled with MD simulations of
the toy model in Fig. 5.3 biasing the Deep-TDA CV. The colormap provides the CV value
for the points and the inset reports the free energy surface (FES) computed from the
sampled data projected along the Deep-TDA CV.

5.6.3 Time-lagged setting: improving CVs

One scenario that often occurs in practice is whenwe have a suboptimal simula-
tion capable of promoting just a few transitions before getting stuck due to some
slow orthogonal mode not being accelerated. In this context, time-informed
methods such as DeepTICA can be used to extract (approximations of) the slowly
decorrelatingmodes that hamper simulations’ convergence and thus design bet-
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ter CVs. As an example, we took a simulation performed using the position y as
the CV, which is the prototype of an order parameter capable of distinguishing
themetastable states but not the transition states between them. As can be seen
from Fig. 5.6e, this results in poor sampling. Following the Deep-TICA scheme,
we optimized a new CV based on this data, which, when biased, leads to a much
more diffusive sampling capable of converging the simulation in a fraction of
the time (Fig. 5.6f).
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Figure 5.6: Time series of MD simulations of the toy model in Fig. 5.3, the colored
shaded regions in the background indicate the three metastable states e) Suboptimal
OPES simulation biasing the y coordinate, used as training set for the Deep-TICA CV. f)
Time series of the simulation biasing the Deep-TICA CV as well as the previous (static)
bias. The colormap reports the Deep-TICA CV value.

5.6.4 Multitask learning: a semi-supervised application

Finally, we show how the library can be used to combine different data in a
multitask framework to improve data-driven CVs. To this end, we take as an
example the two datasets from sec. 5.6.2. The first is the labeled dataset which
has been used to construct the Deep-TDA CV (Fig. 5.5c), while the second is com-
posed by the unlabeled configurations generated by biasing the Deep-TDA CV
(Fig. 5.5d). We define a single MultiTaskCV that, as schematically depicted in
Fig.5.7, is composed of an autoencoder optimized upon two different losses: the
first is the reconstruction loss on the unlabeled dataset (blue path in Fig.5.7), and
the second is the TDA loss acting on the latent space optimized on the labeled
dataset (red path Fig.5.7). In this way, one obtains a semi-supervised approach
in which each component benefits from the other. Indeed, the autoencoder CV
is regularized to distinguish the metastable states, and at the same time, the
classifier CV is informed about regions outside the local minima.
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Figure 5.7: Example of a multitask CV employed for semi-supervised learning. The
model is based on an autoencoder architecture and is optimized on two separate
datasets with different criteria. Data from an unlabeled dataset (blue path) contributes
to an unsupervised loss function (i.e., reconstruction MSE loss), which depends on the
output of the decoder. Data from a labeled dataset (red path) contributes to a super-
vised loss function that depends directly on the CVs space, which is the output of the
encoder (e.g., TDA loss).
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Figure 5.8: g) Training set for the semi-supervised multitask CV (see Fig. 5.7). h) Points
sampled with MD simulations of the toy model in Fig. 5.3 biasing the MultiTask CV. The
colormap provides the CV value for the points and the inset reports the free energy
surface (FES) computed from the sampled data projected along the multitask CV. The
blue dotted path (GEN) is generated by applying the decoder to a collection of evenly
spaced samples in the latent space. In both g and h, the purple path represents the
minimum free energy path (MFEP).

As a result, when this multitask CV is employed to enhance sampling, it fol-
lows theminimum free energy path (purple dotted line in Fig. 5.8h)more closely
than the simulation using only Deep-TDA, which was exploring higher-energy
pathways (Fig. 5.8g). Moreover, the multitask approach allows for inspecting
the CV space by using the model in a generative way. To this end, we examine
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how a path connecting the states in the latent space is mapped by the decoder
into the reconstructed input space. This generates a set of configurations shown
in Fig. 5.8h that traces the free energy path between the three states remarkably
well.
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Chapter 6

Collective variables as classifiers

In the previous chapters, we have seen that one of the possible approaches that
can be followed for the data-driven design of collective variables is the one of
supervised learning. In this chapter, we will present in more detail the class of
classifier-like collective variables, which are optimized based on the classifica-
tion of different sets of labeled data. More in detail, we will discuss the Deep
Targeted Discriminant Analysis (Deep-TDA) method18, and we will introduce its
transition path informed variant19 (TPI-Deep-TDA), providing in both cases ex-
amples on some prototypical systems.

6.1 Learning collective variables from the
metastable states

In Chapter 2, we have seen that most of the interesting processes in nature are
rare events that are characterized by infrequent transitions between some long-
lived metastable states. We have also seen that physical descriptors, such as
distances, angles, and coordination numbers, are used to characterize the dif-
ferent states of the system. In the case of rare events, configurations generated
in unbiased MD runs in the metastable basins are typically well-separated in
the multidimensional space of such descriptors and when such descriptors are
combined into low dimensional CV, a necessary, if not sufficient, condition is
that data belonging to different basins remain separated.
This motivated the use of a classifier-like approach for CV design15,98, consider-
ing that these models are specifically designed to distinguish between classes of
data. Classifiers are indeed trained on datasets in which the data are labeled ac-
cording to some classes, for example, images of different types of fruit, and aim
at predicting the correct class for the given samples. Typically, inmachine learn-
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ing, such methods are used for prediction, whereas, in the case of CV design, we
are more interested in their ability to encode the structure of our dataset into
the latent space of the model output, which is our CV.

With these ideas in mind, it has been suggested that discriminant analysis
could be helpful in the context of CVs design15,88,98 starting from data harvested
in the metastable basins. As we have anticipated in the previous chapter, the
first applications of such an approach relied on a linear method from classi-
cal statistics, which is the time-honored Linear Discriminant Analysis92 (LDA).
Given a set of input features x of dimension d, this aims at finding the best
linear combinationW∗ of them that can maximize the separation between the
given Nc classes, which in our case are the metastable states. The separation is
expressed in terms of the so-called Fisher’s ratio, which depends on the within-
class Sw and between-class Sb scatter matrices of our data. The first depends
on the fluctuations within the single basins and is given by the average of the
classes covariances Si

Sw =
1

Nc

Nc∑
i

Si (6.1)

The second, on the other hand, is the covariance of the class means µi and mea-
sures the fluctuation between classes

Sb =
1

Nc

Nc∑
i

(µi − µ)(µi − µ)T (6.2)

where µ is the average of the Nc class means. The Fisher’s ratio that has to be
maximized to find the best projectionW∗ is then expressed as

argmax
W

WSbWT

WSwWT
→W∗ (6.3)

Even if this approach98, and its harmonic variant89 (HLDA), has been success-
fully applied for the design of CVs for simple systems, it still presents some limi-
tations. Indeed, a linear scheme is often not flexible enough to discriminatewell
between the states when we deal with complex systems and high-dimensional
data. Moreover, in LDA, the discriminant components are found via the solu-
tion of a (generalized) eigenvalue problem involving the covariance matrices,
which somehow limits the number of input features.

To alleviate these limitations, the LDA approach has thus been generalized
with the hybrid Deep-LDA approach88,137, in which a strong nonlinear feature is
added to the standard LDA scheme with the help of NNs. In Deep-LDA, the high-
dimensional input descriptors of the model are indeed preprocessed by a NN
into a low-dimensional latent space where the application of the LDA scheme
is simplified as the NN objective function directly depends on the Fisher’s ra-
tio. This way, one obtains a nonlinear and more powerful generalization of the
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LDA method that allows designing CVs for applications as diverse as chemical
reactions88, crystallization of solids111, and ligand binding113.

This empirical evidence is somehow reassuring for our purposes. Indeed,
even if the idea of building a CV based on a discrimination criterion only may
sound reasonable, there is not any a priori guarantee that it should be effective
because it does not encode any explicit information about the transition state of
our process. Furthermore, the hybrid Deep-LDA approach is rather attractive
because, in theory, there is no limit to the number of descriptors that can be
used.

Nonetheless, this method still presents room for improvement both from the
conceptual and practical point of view. For example, we mentioned that Deep-
LDA still requires the solution of the LDA eigenvalue problem in the latent space
returned by theNN. However, in principle, this step could be skipped by express-
ing the CV as the output layer of the NN and by maximizing a Fisher-like ratio
directly in the CV space, thus simplifying the overall procedure.

Another limitation of LDA and Deep-LDA is related to the case of systems
with multiple metastable states (Nc > 2). In this case, Deep-LDA always forces
us to use a CV that has Nc − 1 components, as it is canonically required to ac-
count for all the possible transitions between those states. However, in many
cases, this is not necessary as the transitions between some of the states are not
physically allowed. This is the case, for example, of a chemical reaction inwhich
the same reactants can evolve into different products that cannot interconvert
or of sequential reactions that present a series of stable intermediates. In such
cases, the dimensionality of the CV space can be reduced beyond the standard
Nc− 1 rule. However, this requires some previous knowledge of the system and
a different and more flexible approach to the discrimination task we have used
so far.
In the next sections, wewill present this approach, also showing how it can help
us in addressing the last limitation of Deep-LDA, which is its lack of (explicit)
information about the transition state region.

6.2 Deep Targeted Discriminant Analysis

If we think about the shape of the CV space that we aim at learning with a dis-
crimination approach, we can soon realize that it is rather simple to imagine, as
it basically needs to guarantee that the metastable states are well-defined when
projected in the CVs space. For example, if we consider the case of a two-state
system A and B, we would like to obtain a CV space in which the projections of
the data from two basins are well distinguished from each other. In other terms,
this means that we want their probability distributions in the CV space not to
overlap with each other. From this perspective, we can reframe the Deep-LDA
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approach in a simpler way. Instead of starting from some data and optimizing a
model over a discrimination criterion to find a proper CV space, we can choose
our target CV space and train a model to map the descriptor space into such
a space, which is the idea behind the Deep Targeted Discriminant Analysis18
method (Deep-TDA).

Figure 6.1: Schematic representation of the construction of the Deep-TDA CV. A set of
physical descriptors d is fed as input of a feed-forward NN whose output layer directly
gives the CVs. A series of nonlinear transformations through the NN hidden layers pro-
gressively compress the dimension using as objective function the distance in the pro-
jected space from a target distribution in which the states are well-discriminated. To
further illustrate the process in the case of two states A and B, we have a sketch of the
intricate data distribution with respect to some of the physical descriptors from the in-
put set d and, below, the well-resolved distributions in the Deep-TDA CV s(d).

6.2.1 Methods

Two-state scenario As for Deep-LDA, given two states A and B, character-
ized by a set of descriptors d, we want to construct a CV s by finding a one-
dimensional projection along which the two states are well-discriminated. If
we skip the linear step of Deep-LDA by directly expressing the CV as the output
of the NN, we can reformulate the optimization criterion of the CV s to make it
more direct and flexible. To do so, we train the NN so that the distribution of the
metastable states along the CV follows a preassigned bimodal distribution (see
Fig. 6.1). The target distribution to be used in this framework can be, in prin-
ciple, of any type as long as it guarantees proper discrimination between the
states. A natural choice is to use as a target two Gaussian distributions of pre-
assigned positions and widths, such that the A configurations are distributed
according to one of the two Gaussians and B configurations according to the
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other. The ability of a target distribution to discriminate between the two states
can be measured with a Fisher-like ratio

F =
(µA − µB)

2

σ2A + σ2B
(6.4)

where µA and µB are the average values for the two states in the CV space and
σ2A and σ2B their variances. However, as F rapidly grows to very large values
when the separation between the states is increased, we prefer to use ∆ =

√
F as

a parameter to characterize our target function. Because, in the end, we want
to use s as a CV and not only as a discriminator, the choice of such a parameter
requires some experimentation. Indeed, to be effective, s needs to assume prop-
erly interpolating values when dealing with transition states. In practice, this
implies that ∆ can be neither too small nor too large. If ∆ is too small, the CV is
not able to discriminate correctly between states. On the other hand, if ∆ is too
large, s cannot describe well the transition state. As a rule of thumb, we found
that values in the range 25 < ∆ < 50 are appropriate choices.

As far as the objective function is concerned, we could have enforced the
target distributions using Kulback-Leibler divergences. However, in the case of
Gaussians, this would have been an overkill and thus, we simply impose that
the two distributions have preassigned positions and widths. Thus, each state
k contributes to the loss function two terms, one that enforces its center Lµk and
the other its width Lσk

L
µ
k = (µk − µ

tg
k )

2 Lσk =
(
σk − σ

tg
k

)2 (6.5)

The whole loss function is then given by the linear combination of all the con-
tributions.

L =
∑
k

[αLµk + βL
σ
k] k = A,B (6.6)

in which the hyperparameters α and β are chosen such that the two terms are
scaled to roughly the same order of magnitude at the earlier stages of the opti-
mization. Conveniently, the loss function in Eq. 6.6 tends to zero aswe approach
the target distribution, thus convergence is simple to monitor.
Multi-state scenario The extension to the multi-state case is straightforward
in the Deep-TDA framework. We recall that in a system with Ns states in the
general case, one needs to define (Ns − 1) CVs. We build the CVs by imposing a
target that is a linear superposition of Ns multivariate Gaussians with diagonal
covariances. Each Gaussian is then defined by Nρ = (Ns − 1) CV positions and
covariances, thus leading to the following loss function

L =

Ns∑
k

Nρ∑
ρ

[
αL

µ
k,ρ + βL

σ
k,ρ

]
(6.7)
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where ρ are the components of the CVs space. The location of the different Gaus-
sians is arbitrary, but as before, attention has to be paid to the relative distances
and widths.

Thanks to the targeted approach, there are circumstances in which, using
Deep-TDA, one can reduce the number of CVs. This reduction is possible if the
reaction involves a series of steps that one can sequentially align, for example,
if it involves a series of stable intermediates or presents different products that
cannot interconvert. In these situations, the topology of the problem is actually
linear and the number of CVs can be reduced to one with clear computational
advantages. Of course, this reduction is only possible because we are using in-
formation on the dynamics of the system.

6.2.2 Examples

For didactical purposes, we report first the application of Deep-TDA to the study
of alanine dipeptide in vacuum. This simple but instructive example will con-
firm that, in the two-state case, Deep-TDA works just as well as Deep-LDA, as to
be expected. After dealing with two-state test cases, we apply Deep-TDA to the
multi-state case of the hydrobromination of propene and of a double intramolec-
ular proton transfer reaction, where the advantage of using Deep-TDA becomes
clearly apparent. In the followingparagraphs, we focus on showcasing theDeep-
TDA application to prototypical systems, thus leavingmore technical details out
of discussion. However, such details are synthetically reported in Sec. 6.2.3.
Alanine Dipeptide As it is well known, the torsional equilibrium of alanine
dipeptide at room temperature is a two-state system. In this small molecule, the
two Ramachandran angles ϕ and ψ are known to be good CVs and we could
have used these angles as descriptors. However, following Ref.88, we tested the
robustness of the method by using as descriptors the 45 distances between the
heavy atoms.

The isolines of Deep-TDA CV are reported in panel a of Fig. 6.2 and are equiv-
alent to those of Deep-LDA and follow the underlying energetic landscape in
the Ramachandran plot even far from the training basins. Using Deep-TDA CV
and OPES65 (see Sec. 2.3) effectively encourages many transitions between the
two metastable basins. The performances are comparable to the nearly ideal
set of Ramachandran angles as confirmed by the consistency of the estimates of
the FES along the ϕ torsion angle and of the free energy difference between the
basins, as shown in panels b and c of Fig. 6.2.
Hydrobrominationofpropene Having assessed thatDeep-TDA is a good sub-
stitute for Deep-LDA, we now turn to discuss cases in which Deep-TDA can give
a competitive advantage. One of them is the case of the hydrobromination of
propene. Starting from the same reactants (R), this chemical reaction can lead
to two products, identified as Markovnikov (M) and Anti-Markovnikov (A).
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Figure 6.2: Results of OPES enhanced simulations of the folding of alanine dipeptide.
(a) Comparison of the isolines of Deep-LDA (white) and Deep-TDA (black) CVs on top of
the energetic landscape in Ramachandran angles ϕψ plane. Solid lines are for positive
CV values, dashed lines for negative ones. (b-c) Comparison of energy estimates from
OPES simulations using Deep-LDA, Deep-TDA or a reference ϕψ as CVs. The results are
averaged on five independent simulations for each CV to get themean solid line and the
standard deviation error bars. (b) FES profile estimates along the ϕ Ramachandran
angle. (c) ∆F between the metastable basins estimates, obtained as functions of the
simulation time. The dashed lines give the ±0.5KbT range on the reference curve.

This is clearly a multi-state scenario and we can tackle this problem in two
ways. One in which, following the prescription of LDA, we determine two CVs
(i.e., Ns − 1 = 2). The second takes advantage of the fact that products A and M
interconvert with a very low probability. Thus, one is in a scenario where the
problem can be mapped into a linear sequence of reactions A ↔ R ↔ M and
reduce the number of CVs from two to one, as anticipated earlier.

Figure 6.3: Reaction scheme for the hydrobromination of propene. The same reactants
R can lead to two possible products, anti-Markovnikov A and Markovnikov M, depend-
ing on the addition position of the halide.

We compare here the two possibilities, starting from the standard two CVs



6. COLLECTIVE VARIABLES AS CLASSIFIERS 76

approach. In this case, we have chosen a very simple target that is a sum ofmul-
tivariate Gaussian functions with diagonal covariances placed at the vertices of
an equilateral triangle. The positions and widths of the Gaussians were chosen
so as to satisfy the criteria described earlier (see Sec. 6.2.1).

Figure 6.4: Upper panel: FES estimate for the hydrobromination of propene in the
plane of the Deep-TDA CVs s1 and s2. The basins are labeled as anti-Markovnikov A,
reactants R andMarkovnikovM. In the SI, an error analysis can be found. Lower panel:
State occupation during a single 10ns OPES run with the two-dimensional Deep-TDA
CV. As indicator functions, we use, for each metastable state, its descriptors density,
modeled as a Gaussian mixture145. The density was trained on the same unbiased data
and uses the same descriptors employed in the generation of the Deep-TDA CV.

As in Ref.146, we used as descriptors the contact functions

cij(r) =
1−

(
r
σij

)n
1−

(
r
σij

)m (6.8)

where r are the pairwise atomic distances and σij is the typical bond length be-
tween the involved species i and j. In our case, the σij parameters of Eq.6.8
were set as σBrC=1.9Å, σCC=1.7Å, σBrH=1.4Å, σCH=1.2Å, whereas the exponents
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have been set to n=6 and m=8 to have a smooth behavior over a wide range
of distances. The contacts between hydrogen atoms have not been used in the
training. In order to focus the sampling on the relevant reaction, we also break
the permutational symmetry and allow only the H in the initial HBrmolecule to
react89,145 (see Sec. 6.2.3). Even if this implies a limitation of the permutational
entropy of our system, the effects of such an approximation are negligible when
compared to the large free energy barriers associated with the reaction at the
studied temperature.

The two-dimensional free energy surface is shown in the upper panel of
Fig. 6.4 and reflects the expected free energy order of the different states. How-
ever, the non-linearity of the CVs distorts the FES and makes it difficult to iden-
tify the transition paths, eventually requiring further analysis in the fashion
of Ref.147. In fact, an analysis of the OPES trajectories showed that the system
was able to undergo many transitions involving the reactants basin R but never
made a direct transition between A andM, which thus appears extremely un-
likely. Thus, the only relevant transitions were of the type A ↔ R ↔ M (see
the lower panel in Fig. 6.4). This suggested using a one-dimensional CV thus we

Figure 6.5: FES estimate profile for the multi-state hydrobromination of propene reac-
tion projected along the Deep-TDA CV, with the indication of the different metastable
and transition states. The dotted line gives the average FES profile with the related er-
ror. The free energy of each state is expressed in kJ/mol.

designed a one-dimensional target that at the center has the reactants R and at
the sides, the products A and M and used our Deep-TDA method. When used in
OPES, the CV was able to drive transitions from reactants to products without
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attempting any A ↔ M direct transition. The resulting one-dimensional FES
in Fig. 6.5 is more easily readable with respect to the two-dimensional one in
Fig. 6.4, with the different states and transition states clearly marked as done
in the standard representation of chemical processes. This representation also
illuminates the fact that the selectivity towards theMarkovnikov product is due
to the kinetics of the process rather than to its thermodynamics.
Double proton transfer in diamino-benzoquinone The one-dimensional
approach can also be applied to chemical reactions in which a number of reac-
tive steps take place in a well-defined order. One such case is the double proton
transfer of 2,5-diamino-1,4-benzoquinone. For this reaction, a two-step mecha-
nism has been proposed148,149 with a stable intermediate (I) between the reac-
tant (R) and product (P), which are respectively the enol and keto stable forms
of the compound (see Fig. 6.6). To determine the one-dimensional Deep-TDA CV,
we have thus designed a target with the correct ordering of the states so as to
account for transitions of the type R↔ I↔ P. As descriptors, we have used the
heavy atom coordination numbers to preserve all the symmetries of the system.

Figure 6.6: FES for the double intramolecular proton transfer reaction in 2,5-diamino-
1,4-benzoquinone projected along the Deep-TDA CV. The metastable states are, from
left to right: keto form (R), intermediate (I) and enol form (P). The dotted line gives the
average FES profile with the related error. The free energy of each state is expressed in
kJ/mol.

When used in biased OPES simulations, also here the Deep-TDA CV was able
to promote efficiently the different reaction steps. Also in this case the result-
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ing one-dimensional FES (Fig. 6.6) clearly shows the threemetastable states and
gives a neat representation of the reaction profile with free energies compatible
with those obtained from static calculations149. In biased runs, the system was
also able to explore less likely rotational isomers, different from the dominant
ones in the training set, with a slight effect on the shape of the I and P basins.
The possible relative orientations of the heteroatoms hydrogens are sketched in
Fig.6.7. Themost sampled conformers adopt the A-type configuration, as it is the
one that favors the most the exchange of hydrogen between the two functional
groups and is also stabilized by a hydrogen bond.

Figure 6.7: Sketch of the possible relative dispositions of the hydrogens in E and I
metastable states. A-type conformers are the most likely.

6.2.3 Additional computational details

Alanine Dipeptide The alanine dipeptide simulations have been carried out
using the GROMACS-2019.6128 MD engine patched with PLUMED2.7124,125. We
have used the Amber99-SB45 force field with a 2fs timestep. To sample the NVT
ensemble, we have used the velocity rescaling thermostat37 set at 300K. In the
OPES simulations driven by the Deep-TDA CV, we have used SIGMA=0.2 to match
the standarddeviation of the basinswehad set in the target distribution, BARRIER=30
kJ/mol and PACE=500. We used the 45 distances between heavy atoms as input of
a NN with structure {45, 24, 12, 1} nodes/layer. The target function parameters
were µtgA = −7, µtgB = 7 and σtg = 0.2. The resulting ∆ separation was thus ∆ = 50.
The hyperparameters for the loss function (Eq.6.6) were α = 1 and β = 250. We
performed five statistically independent 10ns simulations to compute the aver-
age values reported in Sec. 6.2.2.
Hydrobromination of propene The hydrobromination of propene simula-
tions have been carried out using the CP2K-7.1129 software package patchedwith
PLUMED2.7124,125 at PM6 semi-empirical level. The integration stepwas 0.5fs and
we used the velocity rescaling thermostat37 set at 300K with a time constant of
100fs.

In Fig. 6.8, the reactant molecules with the atomic labels used to identify the
atoms in PLUMED are reported. Following Ref.145, harmonic restraints have
been applied on some of the distances to guarantee that only H11, Br, C1 and
C2 atoms participate in the reaction and prevent undesired reactions to occur:
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• To keep the molecules close to each other and in suitable conditions to re-
act, some restraints have been applied on the distances most affected by
the reaction (d1−10, d1−11, d2−10, d2−11, d10−11) in the form k(dij − d0)

2, with
k = 250KJ/mol and d0=3Å.

• Toprevent the formation of elemental hydrogen, all the hydrogen-hydrogen
distancesdij (i, j in ATOMS=3,4,6,7,8,9,11) havebeen constrained to be greater
than 1.4Å with a restraint in the form k(dij − d0)

2, with k = 250kJ/mol and
d0=1.4Å.

• Non-reactivehydrogens (ATOMS=3,4,6,7,8,9) have been locked to the respec-
tive carbon atoms (ATOMS=1,2,5) with restraints on all the distances dHC in
the form k(dHC − d0 + oi)

2, with k = 450kJ/mol, d0=1.4Å and oi=0.2.

Figure 6.8: Sketch of the molecules involved in the hydrobromination of propene with
the atomic labels.

For the training of the two-dimensional Deep-TDA CV, we have used the 34 con-
tacts described in Sec. 6.2.2 as input of aNNwith structure {34, 24, 12, 2} nodes/layer.
The target function parameters in the {s1, s2} CVs space were µtgA = [−5, 4.3], µtgR =
[0,−4.3], µtgM = [5, 4.3], to have the three states on the vertices of an equilateral
triangle with side 10, and σtg = [0.2, 0.2], giving ∆ = 35 for each pair of states.
The hyperparameters for the loss function (Eq.6.7) were α = 1 and β = 250. In
the OPES simulations, we have biased the 2D Deep-TDA CVs using SIGMA=0.2,0.2
to match the standard deviations along the two CVs of the basins in the target
distribution, BARRIER=240 kJ/mol and PACE=500. The results reported in Sec. 6.2.2
were averaged over four statistically independent 10ns simulations.
For the training of the one-dimensional Deep-TDA CV, we have used the same 34
contacts described above as input of aNNwith structure {34, 24, 12, 1} nodes/layer.
The target function parameters were µtgA = −14, µtgR = 0, µtgM = 14 and σtg = 0.2,
giving∆ = 50 for each of the productswith respect to the reactants basin. The hy-
perparameters for the loss function (Eq.6.6) were α = 1 and β = 250. In the OPES
simulations, we have biased the Deep-TDA CV using SIGMA=0.2 to match the stan-
dard deviation of the basins in the target distribution, BARRIER=240 kJ/mol and
PACE=500. The results reported in Sec. 6.2.2 were averaged over six statistically
independent 10ns simulations.
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Doubleproton transfer indiamino-benzoquinone The intramolecular pro-
ton transfer simulations have been carried out using the CP2K-7.1129 software
package patched with PLUMED2.7124,125 at PM6 semi-empirical level. The inte-
gration stepwas 0.5fs andweused the velocity rescaling thermostat37 set at 300K
with a time constant of 100fs.
The coordinationnumbers used for the traininghavebeen computedwith PLUMED
according to Eq. 6.8. They have been computed on each heavy atom with re-
spect to the element couples: CC, CN, CO, CH, NH, OH. The σij parameters in
Eq. 6.8 were set as σCC=1.7Å, σCN=1.7Å, σCO=1.6Å, σCH=1.2Å, σNH=1.1Å, σOH=1.2Å,
whereas the exponents have been n=6 andm=8 to have a smooth behavior over
a wide range of distances.
For the one-dimensional Deep-TDA CV training, we used these 28 coordination
numbers as input for a NN with structure {28, 24, 12, 1} nodes/layer. The target
function parameters were µtgR = −14, µtgI = 0, µtgP = 14 and σtg = 0.2, giving ∆ = 50
for the R and P states with respect to the intermediate I. The hyperparameters
for the loss function (Eq.6.6) were α = 1 and β = 250.
In the OPES simulations, we have biased the Deep-TDA CV using SIGMA=0.2 to
match the standarddeviation of the basins in the target distribution, BARRIER=120
kJ/mol and PACE=500. The average values in Sec. 6.2.2 are obtained by averaging
over ten statistically independent 10ns simulations.

6.3 Including information about the transition
paths

In previous sections, we have mentioned that one of the main limitations of
discriminant-based CVs is related to their dataset being limited to themetastable
states only. This approach is surely convenient in practice, as the training data
from the metastable basins are easy to collect by means of standard MD sim-
ulations, and we have shown that, nonetheless, it is also effective in driving
transitions across the phase space region related to the transition state that is
not explicitly represented in the dataset.
However, in that region, ourmodel is forced to extrapolate due to the absence of
training data and is thusmuch less accurate. It is indeedwell-known that neural
networks can be universal interpolators but they can eventually performworse
when it comes to extrapolation150–152. In the case of CVs for enhanced sampling,
this can easily lead to sub-optimal CVswith slower convergence and less focused
sampling. For example, a Deep-CV trained only on data from the minima may
drive successful transitions, but they may not follow the true minimum free en-
ergy path, as it does not encode any explicit information about it.

These considerations led us to propose improving the quality of the Deep-
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TDACVby including in the training set information related to the transition state
obtained from reactive trajectories. This led us to the transition path informed
(TPI-Deep-TDA) variant19 of the method, which we will introduce and compare
with the standard Deep-TDA approach in the next sections.

6.3.1 Methods

In Deep-TDA and other discriminant-based CVs, one assumes that a model that
is trained only to discriminate between the metastable states will also provide
a meaningful description of the transition state region. This is, in general, not
a bad assumption since the extrapolation takes into account the fact that the
CV has to smoothly join the metastable state regions. However, sometimes, the
performance of such a CV can be far from optimal. To improve the quality of the
Deep-TDA CV, we propose to incorporate information from the transition path
ensemble (TPE) obtained from reactive trajectories. The CV design protocol is
depicted in Fig. 6.9 and described below for an example two-state system.

• Step 1: We collect data on a set of descriptors by running unbiased simu-

State A
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TS

1. Unbiased MD

Deep-TDA CV

State A State B

State A

State B

TS

2. Train Deep-TDA

3. OPES-Flooding on Deep-TDA CV

4. Train TPI-Deep-TDA

5. OPES on TPI-Deep-TDA CV

TPI-Deep-TDA CV

State A

TPE

State B
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State B

TS

: Biased region : Biased region

Figure 6.9: A schematic representation of the TPI-Deep-TDA CV construction for a two-
state system. 1. A set of physical descriptors d is collected by unbiased MD runs in
the metastable basins of the system 2. A Deep-TDA CV is trained such that the data
from states A and B are distributed according to two Gaussians in the CV space 3. Unbi-
ased reactive trajectories are sampled using a set of OPES-Flooding69 simulations along
the Deep-TDA CV. The bias (green shade) is deposited only in one of the basins and ex-
cluded from the TS region. Only the sections of each reactive path that fall outside the
metastable basins are taken as part of the TS-region dataset (marked in green) 4. A
second TPI-Deep-TDA CV is trained to fit the TPE data distribution to a third wider Gaus-
sian (painted in green) between the metastable states A and B 5. The TPI-Deep-TDA CV
is biased in OPES65 to drive transitions between A and B applying bias (green shade)
along the TS path.
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lations in the metastable basins of the system (panel 1).
• Step 2: The data collected in the metastable states are used to train a stan-
dard Deep-TDA18 CV as discussed in Sec. 6.2 (panel 2).

• Step 3: Using the Deep-TDA CV thus generated, we perform a set of OPES-
Flooding69 (see Sec. 2.3) simulations and harvest several reactive trajecto-
ries. We select from the reactive trajectories only those configurations that
lie outside the metastable basins (panel 3).

• Step 4: The new configurations thus obtained are added to the initial data-
set and we train the new TPI-Deep-TDA CV. To do so, we modify the target
distribution used for the Deep-TDA CV in Step 2 by adding a third wider
Gaussian, placed between the ones related to the metastable states, and
optimizing the NN to fit the TPE data distribution in the CV space to such
Gaussian (panel 4).

• Step 5: The TPI-Deep-TDA CV is finally used to perform OPES simulations
to calculate the free energy landscape (panel 5).

The rationale behind the choice of different target widths for the Gaussian func-
tions is to reflect the structure of the physical data. Let us, for simplicity, con-
sider only a two-state case, A and B. In this case, the data can be divided into
three groups: those that belong to basin A, those that belong to basin B, and
those that belong to the transition paths ensemble (TPE). The data in A and B
are localized at different positions in the high-dimensional descriptors space.
Therefore, a mapping into separately localized Gaussians is a natural one. In
contrast, the TPE data are spread across the region in between the metastable
states. To best mimic this structure while still sticking to a Gaussian representa-
tion, we introduce a third Gaussian centered between the A and the B Gaussians.
The corresponding width σTPE is larger than those of A and B, bridging the inter-
mediate region, and has a negligible overlap with either A and B Gaussians. We
also emphasize that such overlaps, if too large, would reduce the ability of the
CV to distinguish the various states and consequently degrade its performance.

At this stage, we point out that the transition path ensemble used for train-
ing our proposed CV can, in principle, be sampled using various alternative
schemes, including transition path sampling153, aimless shooting154, transition
interface sampling155, metadynamics of paths156, etc. It should also be possible
to collect configurations specific to the TS region by applying the transition-state-
oriented bias we propose in Chapter 8. Nonetheless, here we choose to use the
OPES-Flooding69 algorithm (see Sec. 2.3) as it does not require any pre-existing
knowledge on the location of the TS, a piece of information that is not often read-
ily available. In addition, by proceeding this way, we also get the advantage of
conveniently recovering the kinetics of the process, as we will briefly discuss in
Sec. 6.4.
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6.3.2 Examples

For didactical purposes, we first compare the performances of the standard
Deep-TDA CV with the TPI variant on a simple but instructive toy model system,
namely the Müller-Brown potential. To further prove the potential advantages
of this refined approach, we then apply it to the study of the conformational
equilibrium of chignolin protein in an explicit solvent environment and to a
binding-unbinding process of a small molecule and a calyxarene host.
As done in Sec. 6.2, we first center our discussion on showcasing the important
features of the method and report the most technical details of the following
results in a separate section (see Sec. 6.3.3).
Müller-Brown Potential The two-dimensional Müller-Brown potential is of-
ten used to test the efficiency of enhanced sampling methods. As we shall see
below, it is a system in which a standard Deep-TDA CV performs rather well.
Still, the TPI extension of the Deep-TDA approach to include transition path data
is able to further improve the CV performance and speed up convergence.
In order to understand this different behavior, we can first compare the training
sets used for the two CVs reported in Fig. 6.10, which consists of the x and y
coordinates. In the case of standard Deep-TDA, the data set is indeed limited
to the metastable basins (pink and blue in Fig. 6.10), while in the case of the
TPI variant, it also spans the transition region (green in Fig. 6.10). To obtain

Figure 6.10: Scatter plot of the configurations for the training of deep learning collec-
tive variables for the Müller-Brown potential. The training data for the standard Deep-
TDACV is limited to themetastable states (blue and pink), whereas for the TPI-Deep-TDA
CV, configurations from the transition path ensemble (green) are also included. The iso-
lines of the true free energy surface are depicted in black.

the additional data on the TPE, 30 OPES-Flooding simulations were performed
using the Deep-TDA CV s with a filling factor ∆E = 10 kBT . From the sampled
configurations, only those not belonging to any of the two basins (i.e., whose s
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values were in the interval −3.5 < s < 2.0) were considered to be part of the TPE
(reported in green in Fig. 6.10).

Figure 6.11: Contour plots of (a) standard Deep-TDA and (b) TPI-Deep-TDA CVs for
the Müller-Brown potential. These CVs describe poorly the regions that are far from
the training data. This confirms the inability of NN to extrapolate to data-poor regions.
However, since such regions are not physically interesting, this is of little practical con-
sequence.

This improvement in the training set results in an improvement of the CV
quality as well, as we can appreciate by comparing Deep-TDA and TPI-Deep TDA
CVs isolines (see Fig.6.11). In the case of Deep-TDA, the CV can distinguish well
between the metastable states but it does not follow precisely the gradient of
the underlying energy landscape. (Fig.6.11, panel a). On the other hand, the
TPI-Deep-TDA CV isolines follow the free energy gradient more closely (Fig.6.11,
panel b). As a consequence in the first case, the system is pushed by the bias to
explore a larger than necessary portion of the transition state region and less
relevant regions (Fig.6.12, panel a). In the TPI variant, on the other hand, the
nature of the transition state region is more closely encoded in the CV, thus fa-
cilitating the transitions between the metastable states and the sampling points
closer to theminimum free energy path (Fig.6.12, panel b). This allows reaching
convergence slightly faster using TPI-Deep-TDA (Fig.6.12, panel c). The free en-
ergy difference between the two basins has been computed by integrating the
free energy landscape in both sides of the dividing surface s = 0

∆F = −kBT ln
∫smax

0
exp [−F(s)/kBT ]ds∫0

smin
exp [−F(s)/kBT ]ds

(6.9)

where F(s) is the free energy surface along the CV s and smax and smin are the
minimum and maximum values of the explored CV space. This approach is
used for computing the ∆F for the next systems as well, considering that in both
Deep-TDA CV and TPI-Deep-TDA CV, the twometastable basins are situated sym-
metrically around s = 0 by construction.



6. COLLECTIVE VARIABLES AS CLASSIFIERS 86

Figure 6.12: Scatter plot of the points visited performing OPES simulations using (a)
Deep-TDA and (b) TPI-Deep-TDA CVs on the Müller-Brown potential, whose isolines are
given in black. The colormap indicates the value of the corresponding CV. The density
of the scatter plot near the TS region is lower in the case of TPI-Deep-TDA CV indicating
that the transitions take place through theminimumenergy path.(c)Convergence of the
free energy difference ∆F between the basins with simulation time. The solid line and
the shaded region report respectively the average and standard deviation computed
from three independent trajectories. The reference value of 5.69 kBT was obtained by
numerical integration68 and the dotted linesmark the±0.5kBT range around that value.

Chignolin folding The folding and unfolding of chignolin in an explicit sol-
vent environment is a popular benchmark for testing computational methods
on proteins. Conveniently, this system was also studied by means of long unbi-
ased simulations with dedicated supercomputers115 that provide precious refer-
ence values and unbiased trajectories.

To study this system, we trained two TPI-Deep-TDA CVs using as input de-
scriptors the contacts between the 10 α-carbons (Cα) of the peptidic chain. This
results in a better convergence with a tighter confidence interval if compared
to the standard Deep-TDA (Fig. 6.13). In less than 200 ns, the free energy dif-
ference between the folded and the unfolded state converged within one kBT
of the results obtained from ∼ 100 µs long unbiased simulation115. In contrast,
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Figure 6.13: Comparison of the convergence with simulation time of the free energy of
Chignolin folding as obtained from OPES simulation with Deep-TDA and TPI-Deep-TDA
CVs. The solid line and the shaded region report, respectively, the standard deviation
computed from three independent trajectories. The dashed line reports the reference
value obtainedwith long unbiased simulations115. The±0.5kBT range around this value
is marked by the thin dotted lines.

using standard Deep-TDA CV, it took around 500 ns to reach convergence. More-
over, the uncertainty in the free energy difference between the folded and the
unfolded states was larger than that of TPI-Deep-TDA. One of the reasons for the
increased efficiency is due to the fact that when using TPI-Deep-TDA, the explo-
ration of the FES is limited to the minimum free energy path as observed in the
2D model potential.

It should be noted that in practical systems, it is often difficult to runmultiple
independent simulations to assess the uncertainty of the predicted free energy
landscape. Due to the tighter confidence interval, the use of TPI-Deep-TDA CV
increases the chance of obtaining a free energy surface that closely resembles
the true free energy landscape of the system for the given force field.
Ligand receptor binding Lastly, we tested our TPI-Deep-TDA approach for
the binding of G2 guest to the tetramethylated octa-acid (OAMe) host used in
the Statistical Assessment ofModeling of Proteins and Ligands157 (SAMPL5) chal-
lenge.
To describe the binding transition, we adopted the same 13-dimensional descrip-
tor set proposed in previous work from our Group by Rizzi et al.113,158 in which
more details can be found. To summarize them, this set of descriptors consisted
of the linear distance between the binding pocket of the host and the center
of mass of the guest (z), the water coordination of 8 fixed virtual atoms placed
along the path of ligand (un)binding, and the water coordination of 4 heavy
atoms of the G2 guest molecule.

Unlike the previous two examples, the ligand-receptor distance (z) is used
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as the CV for the OPES-Flooding simulations, instead of the Deep-TDA CV. One
reason for this choice is to showcase the versatility of our approach. Another
reason is that this distance CV is the most obvious and straightforward descrip-
tion of the ligand binding process and is commonly used in the literature.

Following the TPI-Deep-TDA approach, the binding free energy converges
rapidly (i.e., less than 50 ns) to a value of −6.08 ± 0.78 kcal/mol similar to the
result obtained by Rizzi et al.113 of −6.19± 0.08 kcal/mol (Fig. 6.14, panel b) who
studied this system in great detail using identical force field parameters.
The computed binding free energy is not in perfect agreement with the experi-
mental results157 of -5.04 kcal/mol, likely due to the approximate nature of the
empirical force field. However, we could reproduce the result of Rizzi et al.113
with reasonable accuracy, confirming the usefulness of our CV, and we also ob-
served frequent transitions between the bound and the unbound states during
the course of the OPES simulations.

Figure 6.14: (a) 2D free energy surface projected along the TPI-Deep-TDA CV and the
vertical component z of the distance between the ligand and the binding site. Three
metastable states are visible: unbound (U), bound (B), and semi-bound (B’). Represen-
tative structures of the B and B’ states are provided in the inset. (b) Convergence with
time of binding free energy of G2 guest in OAMe octa-acid host using TPI-Deep-TDA
CV. The solid line and the shaded region report, respectively, the standard deviation
computed from three independent trajectories. As a reference, we report in black the
computational value obtained in Ref.113 with a similar setup and in pink the experimen-
tal value from Ref.157. The dashed lines give the ±0.5kBT range on the computational
reference value.

In panel a of Fig. 6.14, we show the average free energy surface from three in-
dependent simulations, projected along the ligand-receptor distance (z) and the
TPI-Deep-TDA CV. As in Ref.113, we found that there is a bound state (B) and an
intermediate semi-bound configuration (B’). This latter state appears as a shal-
lowminimum close to the B state. In the B’ state, the binding pocket is occupied
by one water molecule, which prevents the guest from attaining the minimum
energy bound configuration (Fig. 6.14, inset of panel a). The nature of this
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state is discussed in detail in previous work113 and the free energy difference
between this shallower minimum and the true bound state was reported to be
approximately 2 kcal/mol, which is in agreement with our results.

6.3.3 Additional computational details

Müller-Brown Potential The simulations were for the Müller-Brown poten-
tial performedusingLangevindynamics based on theBussi-Parrinello algorithm144

as implemented in the ves_md_linearexpansion126 module of PLUMED124,125. The
damping constant in the Langevin equation was set to 10/time-unit. The time
unit was defined arbitrarily and corresponds to 200 timesteps and natural units
(kBT = 1) were used in all the calculations.
The initial dataset for the training of a standard Deep-TDA CVwas collectedwith
unbiased simulations in the twometastable states for 106 time steps. From each
trajectory, a total of 10000 points were randomly selected. As descriptors and in-
put of the NN, we used the x and y coordinates. We used a NN with structure {2,
6, 4, 1} nodes/layer. The target mean and width of distributions corresponding
to the two minima (A and B) were {µA = −7.0, µB = 7.0{ and {σA = 0.5, σB = 0.5{.
The hyperparameters α and βwere chosen as 1 and 250. The Adam79 optimizer
was used with a learning rate of 10−3 and a L2 regularization term with a hyper-
parameter of 10−5.
To train the TPI-Deep-TDA CV, we used a total of 1714 configurations distributed
roughly in equal numbers between the metastable states and the TPE configu-
rations obtained from OPES-Flooding trajectories. The target mean and width
of the Gaussians for the training were selected as {µA = −7.0, µTPE = 0.0, µB = 7.0}
and {σA = 0.5, σTPE = 1.0, σB = 0.5}. The NN training procedure was identical to
what was done in the Deep-TDA case.
A set of threeOPES simulations per each Cvwas conductedwith identical param-
eters for comparison, setting ∆E = 20 kJ/mol and running for 2× 107 time steps.
During the simulations, half harmonic walls have been applied at s = ±8.5 for
the Deep-TDA CV, and s = ±8.0 for the TPI-Deep-TDA CV to restrict the explo-
ration of excessively high energy conformations.
Chignolin folding For the study of folding and unfolding of chignolin, we per-
formed our simulations using the CHARMM22∗ force field159, and the solvent
has been modeled by the CHARMM TIP3P160 force field, sharing the same setup
used for long unbiased simulations on this system115 to have a direct compari-
son with those results. For the same reason, we kept the simulation condition
consistent with that work. All simulations were performed in NVT ensemble at
340K with GROMACS v2021.5128 patched with PLUMED v2.9124,125.
To collect the initial dataset for the training of the CVs, we computed the 45 α-
carbons pairwise contacts over 50ns-long unbiased molecular dynamics simu-
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lations in the folded and unfolded states. In the case of the unfolded simulation,
a harmonic wall was applied along the RMSD order parameter at RMSD = 3 Å
to prevent a spontaneous folding of the protein. The initial Deep-TDA CV was
trained on these two states setting the target distribution means and widths as
{µA = −7.0, µB = 7.0} and {σA = 0.2, σB = 0.2}. For each state, 48000 structures
were sampled and used to train a NN with structure {45, 24, 12, 1} nodes/layer.
For the optimization, the Adam79 optimizer was used with a learning rate of
0.001 and L2 regularization of 10−5.
Using the Deep-TDA CV s, OPES-Flooding simulations were performed starting
from the folded state to sample the TPE. The barrier parameter ∆E was set to
15 kJ/mol and the excluded region boundary sexc was -3.0. As shown in Ref.69,
the use of a relatively low barrier parameter ∆E is indeed necessary to avoid bi-
asing the transition state so that we can recover unbiased transition pathways
and kinetics. From these simulations, a total of 20 successful transitions were
observed from which structures corresponding to −5.0 < s < 5.0 were associ-
ated with the TPE and used for training the TPI-Deep-TDA CV.
The TPI-Deep-TDA CV was then trained following an identical protocol as the
standard Deep-TDA CV except for the addition of the TPE-related Gaussian in
between the folded and the unfolded states. A wider distribution (i.e., µTPE = 0.0
and σTPE = 1.5) was used for the TPE Gaussian as these structures do not belong
to a single metastable state but include multiple configurations sampled during
the entire pathway.
We then compared the performance of the Deep-TDA and TPI-Deep-TDA CVs by
performing three independent 1 µs long OPES simulations for each case. Unlike
the OPES-flooding, a barrier parameter (∆E) of 30 kJ/mol was used in these sim-
ulations to ensure adequate exploration of both free energy minima within the
simulation timescale.
Ligand receptor binding For the study of the G2-OAMe ligand binding, we
performed our simulations using the Generalized AMBER Force Field (GAFF)161
used in previous work113 to have a direct comparison with those results. For
the same reason, we kept the simulation condition consistentwith thatwork. All
simulationswere performed inNVTensemble at 300KwithGROMACSv2021.5128
patched with PLUMED v2.9124,125.
For training the Deep-TDA CV, we performed 50 ns of unbiased MD simulations
in both bound and unbound states. To sample the transition path ensemble
OPES-Flooding simulations were conducted starting from the bound configu-
ration using the z distance as CV. A total of 13 successful transitions from the
bound to the unbound state were sampled fromwhich 170,000 data points were
extracted according to the criteria 0.8 nm < z < 1.3 nm. An equal number of
points were sampled from the unbiased simulations in each metastable state
leading to a total of 510000 points as training data. For the TPI-Deep-TDAmodel,
we used the same descriptors based on water coordination proposed by Rizzi et
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al.113 (see Sec. 6.3.2) as input of a NN with structure {12, 8, 6, 4, 1} nodes/layer.
The target mean and width of the distributions were chosen as follows: {µA =
−5.0, µTPE = 0.0, µB = 5.0} and {σA = 0.2, σTPE = 0.5, σB = 0.2}. For the optimization,
the Adam79 optimizer was used with a learning rate of 0.0025 and L2 regulariza-
tion of 10−5.
Subsequently, the two-dimensional CV space consisting of the z and the TPI-
Deep-TDA order parameter was used for enhanced sampling and three inde-
pendent 200 ns long OPES simulations were performed with ∆E = 40 kJ/mol.

6.4 AnoteoncomputingkineticswithDeep-TDAand
OPES-Flooding

Even if kinetics is not the main focus of this Thesis and we will thus not discuss
it in depth, it is still worthmentioning an interesting application of Deep-TDA in
this sense. However, for further information on kinetic calculations frombiased
simulations, we refer the reader to the good and recent review of this topic in
Ref.162.
In Sec. 2.3, we introduced the flooding variant of the enhanced samplingmethod
OPES, which is used to efficiently collect unbiased reactive trajectories. These
can be used for the computation of the kinetics of a given process of interest, or,
as we have seen in the previous section (see Sec 6.3), to enrich our training set
for CV design with configurations from the transition path ensemble.

We have seen that this method is based on the conformational flooding ap-
proach and requires the definition of an excluded region sexc parameter to avoid
the deposition of the bias on the transition region to be effective69,162. The choice
of this parameter may not be particularly important if we are only interested in
sampling reactive paths to collect configurations for a dataset, but it is crucial
for kinetics calculations. It has indeed been shown in Ref.69 that a careful choice
of the sexc value and of themaximum deposited bias is of the utmost importance
for efficient and accurate results in this sense.

However, with most CVs, also the ones obtained with the help of machine
learning, the determination of such a parameter is far from trivial or, at least,
far from optimal. In most cases, it is indeed rather difficult to identify a priori
the position of the transition state region along a CV, and thus one often reverts
to trial and error, a practice that, in the absence of a reference value, could be
quite tedious. In contrast, in Deep-TDA, the shape of the CV space is determined
beforehand with the choice of the target, and it is thus much easier to set a
reasonable value for sexc on the first try. This reasoning is even more true in the
case of the TPI variant, in which the localization of the transition state region in
the CV space is explicitly enforced during the training. However, we have seen
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that this approach needs a dataset that is more laborious to obtain, possibly
making the eventual gains negligible when compared to the additional effort.

To demonstrate the possible gains from the use of OPES-Flooding along Deep-
TDACVs, we can consider the case of the folding of chignolin and the (un)binding
process we presented in Sec. 6.3.2. In that case, we used OPES-Flooding simula-
tions to obtain configurations from the TPE. From the same unbiased reactive
trajectories, we computed the kinetics for the two systems as described in Ref.69
and the results are reported in table 6.1 alongside some reference values.

System
Number

of runs

Mean first

passage time (τ)
p-value

95% Confidence

interval

Acceleration

factor

Reference

value

Chignolin

(unfolding)
20 3.08 µs 0.665 1.94 - 4.70 µs 316 2.2 ± 0.4 µs (Ref.115)

Host-Guest

unbinding

(OAMe-G2)

13 3.78 ms 0.338 1.82 - 5.52 ms 1.5×106 2.02 ms (Ref.158)

Table 6.1: The kinetics obtained using OPES-Flooding during the training of the TPI-
Deep-TDA CV. The p-values are computed from 2 stample Kolmogorov-Smirnov test163.
The 95% confidence intervals were computed as {

2
∑n

i ti

χ2
2n

(0.975)
,
2
∑n

i ti

χ2
2n

(0.025)
} as suggested by

Kaminsky164. The ti refers to the rescaled time for the i-th transition, and χ22n(α) is
critical value of two-tailed chi-squared test with 2n degrees of freedom and p = α.

First of all, in both cases, the results are in agreement with the reference
within the 95% confidence interval with the reference value and the p-values
show a good agreement with the ideal Poisson distribution for the mean first
passage times (MFPT). In the case of Chignolin folding, the reference is obtained
from longunbiased simulations performedondedicated supercomputers115. For
this system, it should also be noted that the computational efficiency, as mea-
sured in terms of the acceleration factor is almost two times that achieved using
Deep-TICA and Deep-LDA CVs in Ref.69, suggesting a superiority of the Deep-TDA
CV for computing rates using OPES-Flooding simulations.
As far as the host-guest system is concerned, the reference value for the binding
time158 comes from the application of the Gaussian Mixture Based Enhanced
Sampling145 (GAMBES)method. In this case, what is impressive is the possibility
of obtainingmillisecond timescale ligand residence time from nanosecond long
simulations, i.e., acceleration factor ≈ 106.

These results, even if somehow preliminary, are promising for future de-
velopments for the application of the Deep-TDA CVs in kinetics computation.
Moreover, as we already anticipated in the previous section, such results con-
veniently come as a side product of the TPI-Deep-TDA workflow we introduced
just above.
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Chapter 7

An application to liquid Sulfur

In the previous chapters, we have discussed different methods for the data-
driven design of collective variables for enhanced sampling. In particular, in
Chapter 6, we have introduced the Deep-TDA18 method. However, the appli-
cations we have presented so far have been more oriented toward didactic pur-
poses and to prove the validity of these approaches rather than tackling relevant
problems.

In the following sections, we will shift our attention to a direct application
of the Deep-TDA method to the study of the challenging mechanisms and struc-
tures involved in the lambda transition of liquid Sulfur.

7.1 Sulfur’s complex phase diagram and the
λ-transition

Elemental sulfur exhibits a very complexphase diagram that has attractedmuch
attention for decades. This richness derives from the sulfur’s propensity to be
twofold coordinated, which results in the possibility of either forming ring-like
structures (Sπ) or polymeric chains (S∞) of competing energy.
Phase diagram overview The ring-like arrangements dominate the stable
solid structures21,22,165 (orthorhombic α-S, monoclinic β-S and γ-S) with poly-
meric arrangements reported only for pressures higher than 2.0 GPa166–168.
Among the cyclic polymorphs, small rings are preferred, and the 8-membered
crown-shaped rings (S8, see Fig. 7.1) are by far the most stable configurations.
However, evidence of a minority fraction of rings with sizes ranging from 6 to
32 atoms (Sπ) has also been reported169,170.
Amixture of these two structural models has also been proposed to describe the
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Figure 7.1: Structure of the eight-membered crown-shaped sulfur rings (S8), the most
stable among the sulfur’s cyclic polymorphs.

liquid phase, and several liquid-liquid phase transitions have been reported in
a wide temperature and pressure range21,22,169,171,172. For instance, a transition
between a low-density liquid, richer in rings, and a high-density liquid, richer in
polymers, has been reportedwith a transition line that terminates into a critical
point at around 1000 K and 2.0 GPa169.
The λ-transition in liquid sulfur, state of the art In the following sections,
we will focus on a small part of the phase diagram, namely in the proximity of
the so-called lambda transition22,171,173. This transition occurs at Tλ = 432 K and
ambient pressure and results in an anomalous behavior of physical properties
like heat capacity22, viscosity173, and density174. The behavior observed around
Tλ has been widely studied and associated with the onset of a living polymer-
ization of the S8 rings175,176. It is believed that before the λ-transition, ring-like
structures dominate, but as one increases the temperature, the polymeric frac-
tion of the liquid slowly grows and suddenly increases around Tλ.

Over the years, extensive experimental studies have been conducted to char-
acterize the species involved in the transition21,177–180. However, they still pro-
vide limited insight into the underlying dynamical process and a detailed pic-
ture of this phenomenon is still missing. Previous ab initio-based theoretical
studies181–185 have partially filled this gap, but the scope of these simulations
has been limited by the computational costs of first principles methods. Indeed,
all these studies have been limited to relatively short timescales (some 100 ps)
and/or simulation cells with only a fewhundred atoms. Clearly, such limitations
are quite severe when studying polymeric systems, which by definition involve
a large number of atoms and often exhibit slow dynamics176,186.

7.2 Methods

In recent years, the combination of machine learning interatomic potentials
(see Sec. 1.5) and enhanced sampling methods (see Sec. 2.2) in an active learn-
ing framework has proven effective in overcoming computational difficulties
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similar to the ones we just mentioned for liquid sulfur in a number of complex
processes. Some examples are the liquid-liquid transition in phosphorus26, the
nucleation and phase diagram of gallium25, the decomposition of urea48 or the
dynamical nature of heterogenous catalytic processes27,28. When applied to the
study of liquid sulfur, such an approach allowed us to overcome the limitation
of standardMD and to simulate systems of thousands of atoms for timescales of
the order of nanoseconds.

Wehave indeedmentioned in Sec. 1.5 thatmachine-learning potentials allow
performing ab-initio-qualitymolecular dynamics (MD) simulations at a fraction
of the cost of first principles methods. However, to be accurate enough for the
study of reactive processes, they need to be optimized on a large set of refer-
ence configurations. It is then of the utmost importance that the training set
is not limited to low-energy configurations from the metastable states but also
includes configurations related to their transition states. Unfortunately, com-
plex systems such as liquid sulfur belong to the category of rare-events (see
Chapter 2), in which reactive events are hindered by the presence of large free
energy barriers, dramatically complicating the collection of training configura-
tions with standard MD simulations.

Fortunately, enhanced sampling methods are aimed at overcoming this lim-
itation so as to improve the sampling of reactive events, as we discussed in
Sec. 2.2. In this way, configurations from reactive trajectories become acces-
sible and it is thus possible to enrich the training set with the necessary config-
urations. As we already mentioned, many enhanced sampling methods rely on
the identification of a small number of collective variables (CVs) (see Ref. 2.4).
In the case of liquid sulfur, the complex structural changes that take place close
to the λ-transition are difficult to express in simple geometrical terms, and we
use instead a more abstract CV that results from a combination of graph theory
and machine learning.
Provided this short overview, in the following sections, we explain in detail the
different elements of our approach.

7.2.1 Machine learningpotential for interatomic interactions

To simulate with molecular dynamics a process as complex as the polymeriza-
tion of liquid sulfur and its inverse, an extremely accurate description of the in-
teratomic interaction is of utmost importance. Typically, this requires the use of
electronic structuremethods such as density functional theory (DFT), which can
faithfully describe the changes in the forming and breaking of chemical bonds.
Unfortunately, such calculations are still computationally too expensive to per-
form extensive sampling even on small systems, especially when rare events
are involved.

To address this issue, many ab-initio-quality force fields based on machine
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learning have been proposed following the strategy pioneered by Behler and
Parrinello13 (see Sec. 1.5). In this approach, the interatomic interactions are
modeled through a feed-forward NN, which is trained to faithfully predict the
energies and forces obtained with DFT calculations on a large set of reference
configurations. For example, in Fig. 7.2, we report the extremely good agree-
ment between the energy and forces predicted by our machine-learning poten-
tial and the ones obtained from DFT calculations on the training and test sets.

Figure 7.2: Comparison of the energies (left panel) and atomic forces (right panel) cal-
culated on the training set (green) and test set (orange) using DFT and the final NN
potential for liquid sulfur. Energies in the left panel are shifted by the mean value of
the DFT atomic energies. Bottom-right insets illustrate the probability distributions of
the absolute difference in energies and forces between the DFT and final NN model.
Top-left insets report the mean absolute errors (MAE).

In our specific case, for the description of the atomic interactions, we employed
the DeepMDmethod24 in the attention-based Deep Potential scheme50, which is
able to give amuchmore accurate reproduction and prediction of DFT energies
and atomic forces in the case of liquid sulfur, as it is shown in Fig. 7.3. Concern-
ing both Fig. 7.2 and Fig. 7.3, it should be noted that the different error distribu-
tions on the test and training sets are due to a different fraction of problematic
configurations on the two datasets. Indeed,most of the out-of-equilibrium config-
urations collected through the active learning cycles (see next paragraph) were
added to the training set to improve the overall quality of the model.
Building a proper dataset with active learning The most challenging task
for a successful application of our workflow is the building of a training set able
to cover the relevant configurational space. For instance, liquid sulfur exhibits
a wide range of ring-like and chain-like metastable structures with different
sizes21, and it is thus necessary to include these configurations in the training
set as well as those related to the transition state of the interconversion process.
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Figure 7.3: Comparison of energies (left panel) and atomic forces (right panel) cal-
culated on the test set using DFT and NN potentials trained with the Attention-based
Deep Potential scheme50 (DPA, blue) and the standard Deep Potential-Smooth Edition
scheme24 (DP, red). Energies in the left panel are shifted by the mean value of the DFT
atomic energies. Insets illustrate the probability distributions of the absolute difference
in energies and forces between the DFT and NN models. For the standard DP potential,
we trained on the same training set as that of our final NN potential (DPA), as well as
the same hyperparameters except for increasing the training steps from 3 × 106 to 5 ×
106. The test is the same as that used to validate our final NN potential.

To improve and simplify this step, active learning strategies boosted by the
use of enhanced sampling methods have been applied to study several complex
systems25–28,48,187. In this approach, we alternate iteratively cycles of refinement
of the potential and cycles of enhanced sampling. The latter allows us to obtain,
at an affordable computational cost, crucially relevant reactive configurations,
which are then labeled with DFT calculations and added to the training set to
train a more accurate potential for the next sampling cycle.

In our specific case, to enhance the sampling of our simulations, we applied
the OPES65,68 method (see Sec. 2.3) combined with a combination of the Deep-
TDA18 CV (see Sec. 6.2) and some elements of graph theory (see Sec. 7.2.2).
The active learning protocol Thewhole procedure of exploring the relevant
atomic configurations to be included in the training set consisted of a few steps.
First, we ran a series of unbiased AIMD simulations in the NPT ensemble on sys-
tems of 128 atoms for times ranging from 2 to 10 ps. These simulationswere per-
formed in the 500 ∼ 1200 K temperature range and 0.2 ∼ 3.0 GPa pressure range
to collect configurations in both the polymeric and ring phases of liquid sulfur.
Indeed, approaching high temperature and pressure, S8 rings are destabilized
in favor of the S∞ polymers, thus inducing a spontaneous and fast transition.
From these simulations, we collected about 7800 atomic configurations to build
the initial training set and start our active learning procedure, which alternate
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cycles of training and sampling according to the following steps:
• Step 1: We train a committee of four NN potentials using different initial
weights and the previous iteration’s updated training set. For the first iter-
ation, we shall use the initial training set of AIMD configurations.

• Step 2: We perform a series of simulations using one of the four NN poten-
tials trained in Step 1 to explore new relevant atomic configurations. Not
limited to AIMD simulations anymore, we expanded our systems from 128
atoms to 512 atoms and ran enhanced sampling simulations using OPES
combined with our topological CVs (see Sec. 7.2.2). These biased simula-
tions are essential for exploring the active atomic configurations along the
polymerization of S8 rings.
During the simulations, we monitor the reliability of the potential on the
sampled configurations based on the committee maximal standard devia-
tion σ188 of the atomic forces predicted by the four NN potentials:

σ = max
i

√√√√1

4

4∑
α=1

∥Fαi − Fi∥2 (7.1)

where Fαi is the atomic force on the atom i predicted by the NN potential α,
and Fi is the average force on the atom i over the NN potentials committee.
Tominimize thenumber of newrelevant atomic configurations to be added
to the training set while ensuring maximum diversity, we follow the same
strategy described in Ref.27, with the low (σl) and up (σu) bound values set
to 0.15 and 0.4, respectively. We refer the readers to Ref.27 for further de-
tails.

• Step 3: We calculate the DFT energies and forces for the configurations
selected in Step 2 and include them in the training set for the next iteration.

Following our previous works25–28,48, this active learning process is repeated un-
til less than 10% of the sampled atomic configurations fall into the candidate list
of Step 2. At the end of the procedure, our dataset included roughly 1.5 × 105
atomic configurations, with almost 90% of them consisting of 512 atoms.

7.2.2 Topological collective variables

In order to successfully drive transitions between the ring and polymer phases
of liquid sulfur with enhanced sampling, the design of a proper collective vari-
able (CV) is crucial, as we have discussed in Chapter 2.
In Chapter 4, we have seen that machine learning (ML) techniques have been
applied in the last decade to the challenge of designing effective CVs, leading to
a number of methods suitable for different scenarios according to the available
data20. We mentioned that such methods generally combine large sets of physi-
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Figure 7.4: a Schematic representation of the construction of the topological collective
variable (CV) for polymerization in liquid sulfur. For each configuration, we build the
corresponding adjacency matrix and compute its eigenvalues distribution with a con-
tinuous histogram. The values of such histograms are fed as inputs of a neural network
(NN) that combines them and returns the CV as output, according to the Deep-TDA CV
scheme18. For the training of the NN, we build a dataset of configurations from pure
rings (blue) and pure polymer (red) phases. The NN is optimized such that the projec-
tion of the training data in the CV-space matches a pre-assigned target distribution in
which the states are well-discriminated.

cal descriptors with the help of NNs, which are then optimized on specific object
functions depending on the circumstances.

Here, we use the Deep-TDA18 method (see Sec. 6.2), in which the CV model is
optimized according to a classification criterion, and we build our descriptors
set from the adjacency matrix of the system. The whole protocol of our CV de-
sign process is schematically depicted in Fig. 7.4 and we shall refer to it as we
discuss its components.

In Deep-TDA, the CV is the output of a feed-forward NN (panel 3 in Fig. 7.4)
whose inputs are a set of physical descriptors collectedwith short unbiased runs
in themetastable basins that are supposed to be visited in the process of interest.
The NN is optimized such that the training data, when projected in the CV space,
are distributed according to a preassigned target distribution (panel 4 in Fig. 7.4).
This target is defined as a series of Gaussians with fixed positions and widths,
one for each state, such that data from different basins are localized in different
regions of the CV space.
Topological descriptors fromgraph theory Even ifwehave seenhowDeep-
CVs greatly simplified the CV design procedure, the effectiveness of these meth-
ods is still affected by the choice of input descriptors as they should be informa-
tive on the slowmodes of the process (see Chapter 4). In this sense, the complex
processes that take place at the λ-transition presented us with the new chal-
lenge of finding proper descriptors that could describe the ring opening and
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formation while retaining permutational invariance. Since the system under-
goes enormous changes in connectivity, it is natural to look for variables that
are able to describe such changes. We thus resort to graph theory23 and, in par-
ticular, to the adjacency matrix (panel 1 in Fig. 7.4) and its eigenvalues (panel
2 in Fig. 7.4). The fact that the eigenvalues reflect the connectivity can be intu-
itively understood if we consider, for instance, that the values±

√
2 and 0 reflect

a S8 ring arrangement, and the multiplicity of such eigenvalues is related to the
number of rings present in the system.

The use of the adjacency matrix eigenvalues to build CVs is not new133,189,
but here, rather than using a selected number of them as CVs, we shall use all
eigenvalues as descriptors. Then, to standardize this information and remove
any dependence on the indexing choice for the single atoms, we computed the
histogram of such eigenvalues and used the value on the underlying bins as
inputs of our Deep-TDA model (panel 2 in Fig. 7.4).
Adjacencymatrix The adjacency matrixA is a concise way adopted in graph
theory23 to represent the connectivity of a system starting from the interatomic
distances between the particles. The Aij element of the matrix is either Aij = 1,
if the scalar distance dij between atom i and j is lower than a dcutoff, or Aij = 0

otherwise. However, in practice, the application of a sharp cutoff is not suitable
in an enhanced sampling context, as it would lead to discontinuous derivatives
of the matrix Awith respect to the atomic coordinates. For this reason, to apply
the cutoff, we used a sharp but continuous switching function S(dij) in the form
of a Fermi-like function

S(dij) =
1

1+ exp
(
dij−dcutoff

q

) (7.2)

where the q value was chosen to obtain the sharpest behavior with numerically
stable derivatives, i.e., q = 0.25, and dcutoff was set to 2.6 based on the typical
sulfur-sulfur bond distances.
Training of Deep-TDAmodel To train our Deep-TDA CV, we used a two-state
model, usingunbiaseddata collected in the pure ring andpure polymeric phases
(see Fig. 7.4 whole). Our choice was motivated by the experimental evidence
that suggests that the relevant properties in the λ-transition region depend on
the relative fraction of these two phases. We also note that even if the pure poly-
meric phase is considered allegedly non-physical, it still can be used to simplify
the training of themodel bymaking the relevant polymer-related featuresmore
evident. Nonetheless, considering that the polymer concentrations reported in
the experiments do not exceed 60/70%, we applied a harmonic restraining po-
tential along the CV in correspondence to polymeric contents above such con-
centrations to avoid the useless exploration of unphysical regions during our
biased simulations.

Even if the histogram of the adjacency matrix eigenvalues is the input of
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Deep-TDA NN, the inputs of the whole CV model, in our case, are the positions
of all the atoms in the system. From there, using the additional preprocessing
tools available in the transform branch1 of the mlcolvar library (see Chapter 5),
we compute within the model:

1. All the interatomic pairwise distances between the atoms
2. The adjacency matrix starting from the distances and applying a smooth

cutoff (see previous paragraph)
3. The full eigenvalues spectrum of the adjacency matrix using PyTorch84

tools
4. The histogram of the eigenvalues with 100 bins in the range (-2.2,2.2) using

a Gaussian expansion to ensure continuous derivatives
5. The Deep-TDA CV as the output of an NN that takes the value of the bins of

the histogram of the adjacency matrix eigenvalues as inputs
For the training of the Deep-TDA model, the targets were chosen to be µA =
−25 and µB = 25 for the centers of the distributions and σA = 0.2 and σB =
0.2. The training set was composed of 18000 configurations for each of the two
states for a total of 36000 configurations. Including input and output layers, the
architecture was {100, 64, 32, 1} nodes/layer, and the activation function was
the rectified linear unit (ReLU). The learning rate for the optimization was set
to 0.001.

7.2.3 Additional computational details

Code and software All ab-initiomolecular dynamics simulations (AIMD) and
single-point energies and forces needed for training neural network (NN) poten-
tial were performed using the CP2K 9.2 code129. We also double-checked that
the forces calculated using CP2K code were consistent with those obtained with
Quantum Espresso code130. The Bader’s charges analysis was obtained by ana-
lyzing the DFT electronic densities with the Bader190 code.
The training of the NN potentials for the interatomic interactions has been done
using the DeepMD-kit package191. The NN potential-based Molecular dynam-
ics (MD) simulations were performed using LAMMPS127 MD engine with the
DeepMD-kit software plugged in to describe the interatomic interactions. For
enhanced sampling simulations, we used the PLUMED124 plugin patched with
LAMMPS.
The training of themachine learning collective variable (Deep-TDACV) has been
done using the mlcolvar20 library based on PyTorch84 (see Chapter 5). In partic-
ular, we used the transform1 branch of the library, which includes the tools for
adjacency-matrix-related calculations. The CVs have been deployed to PLUMED
using the interface provided in the pytorchmodule of PLUMED (see Sec. 5.4).

1https://github.com/luigibonati/mlcolvar/tree/transform
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The atomic displacement analysis was performed using the Python interface of
the visualization and post-processing code Ovito192. The GUI of the same code
has been used for the rendering of the molecular snapshots reported in Sec. 7.3.
AIMD simulations In AIMD simulations, energies and forces were computed
using the Perdew–Burke–Ernzerhof (PBE) exchange-correlation density func-
tional193. The Kohn and Sham orbitals were expanded in a m-DZVP Gaussian
basis and the plane wave expansion of the electronic density was truncated at
an energy cutoff of 300 Ry. The core electrons were treated using the Goedecker-
Teter-Hutter (GTH) pseudopotentials194,195 optimized for PBE. To reduce the com-
putational cost, only the Γ -point was used to sample the supercell Brillouin zone.
All AIMD simulations were performed in the NPT ensemble with a time step
of 2.0 fs. Temperature and pressure were controlled using Nosé-Hoover ther-
mostat196 and a Nosé-Hoover-like barostat197 with coupling constants of 0.05 ps
and 0.5 ps, respectively. To mitigate the computational costs, only a smaller cu-
bic simulation cell consisting of 128 atoms was used. Nonetheless, the results
discussed in the following were calculated on larger cubic simulation cells, i.e.,
512 and 3456 atoms.
Single-point energies and forces calculations The energies and forces used
for NN training were computed using the same exchange-correlation density
functional (PBE) and pseudopotential (GTH) as that of the AIMD simulations. We
used the energy cutoff of 350 Ry and we added the D3 dispersion corrections198.
Single-point calculations have been performed on cells with 128 and 512 atoms.
For atomic configurations of 128 atoms, we used k-points grids of 2×2×2. In
contrast, only the Γ -point was used for atomic configurations composed of 512
atoms. We indeed checked that for such a bigger system, the accuracy on en-
ergies and forces using only the Γ -point and the one obtained using the 2×2×2
k-points grid were almost indistinguishable.
Training of neural network potentials The NN potentials were trained fol-
lowing the DeepMD method24 in the attention-based Deep Potential scheme50.
The cutoff radius was set to smoothly decay from 0.5 Å to 7.5 Å. The maximum
possible number of neighbors in the cutoff radius was set to 90 and the number
of layers in the attention scheme was set to 3. We used three hidden layers with
{30, 60, 120} nodes/layer for the embedding network and four hidden layers with
{240, 240, 240, 240} nodes/layer for the fitting network. The size of the embedding
matrix was set to 16. The learning rate was set to decay from 1.0 × 10−3 to 5.0 ×
10−8 and the batch size was set to 8. The prefactors of the energy and the force
terms in the loss function change from 0.01 to 5 and from 1000 to 1, respectively.
The final NN model was trained for 3.0 × 106 steps.
NN potential-based MD simulations The results reported in the following
have been obtained via NN-potential-based MD simulations. Specifically, we
performed unbiased and biased simulations in the NVT ensemble, using the
global velocity rescaling thermostat37 with a relaxation time of 0.05 ps and pe-
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riodic boundary conditions (PBC) on cubic simulation cells. The timestep of the
simulations was set to 1.0 fs.
The unbiased approach has been used to study the radial distribution function,
the structure factor, and the mobility of the atoms. For this latter analysis, we
simulated a system consisting of 512 atoms (box 24.8Å) starting from configura-
tions generated from biased simulations, whereas, for the others, we simulated
a much larger model made of 3456 atoms (box 46.9Å). In both cases, the box
sizes were chosen to be consistent with the experimental densities.
For the enhanced sampling simulations, we applied theOn-the-flyprobability65,68
(OPES) biasing scheme (see Sec. 2.3) to the machine-learning-based Deep-TDA
CVs (see Sec. 6.2 and Sec. 7.2.2). This more expensive enhanced sampling ap-
proach has been used to simulate the dynamics of a systemof 512 atoms to study
the polymerization mechanisms of sulfur.

7.3 Results

In the first part of the results, we compare the results from unbiased simula-
tions with the available diffraction data and we briefly report on atomic mo-
bility in the different phases, showing in both cases consistent results with the
experiments. In the second part, we study, with the help of enhanced sampling
simulations, the polymerization and depolymerization processes that are sup-
posed to take place close to the λ-transition. Based onnanoseconds-long reactive
simulations and the results of a charge distribution analysis, we also propose re-
actionmechanisms to finally shed light on the puzzling formation and breaking
of the polymers.

7.3.1 Static quantities: radial distribution function and
structure factor

The radial distribution function g(r) and the structure factor S(k) depend on the
structural ordering of the atoms and their features on the relative concentra-
tion of the phases in the sample. For this reason, these quantities have been
experimentally monitored at different temperatures around the λ-transition199.
However, the corresponding characterization of the S8 fraction at such temper-
atures is still affected by significant discrepancies in results obtained with dif-
ferent experimental techniques171,176,200,201.

This is the typical scenario in which theoretical modeling can provide a help-
ful contribution to the experiments. Simulations can indeed access the pure
phases (i.e., only rings S8 and only polymers S∞), which are never found in
the experiments. Despite sounding somehow unphysical, this information can



7. AN APPLICATION TO LIQUID SULFUR 104

provide clear and instructive footprints of the corresponding structures. One
can then obtain the g(r) and S(k) for all the intermediate different composi-
tions through a linear combination of the contribution from the pure S8 and
S∞ phases. For example, the radial distribution function gα(r) at a given concen-
tration of rings α is

gα(r) = αgS8(r) + (1− α)gS∞(r) (7.3)

and similarly the structure factor Sα(k)

Sα(k) = αSS8(k) + (1− α)SS∞(k) (7.4)

To obtain the reference values for this approach, we analyzed 200 configura-
tions collected over one ns of equilibrated dynamics of 3456 atoms (box size
46.9 Å) in the pure S8 and S∞ phases.

Figure 7.5: Radial distribution functions g(r) for liquid sulfur at temperatures around
the Tλ. Simulated results at different ring concentrations (solid blue lines) are compared
with experimental data199 at different temperatures (red void dots). Each experimental
temperature and thematching percentage of rings are reported close to the correspond-
ing curve. The±5% interval on the ring concentration for each simulated curve is given
as a shaded blue area. The black arrowmarks the third peak signal associated with the
S8 species. The black dotted lines mark the g(r) = 1 value for each couple of curves as
they are offset by four units in the vertical direction for visualization purposes.

Radial distribution function The radial distribution function g(r) provides
the probability of finding two atoms at a given interatomic distance r and can
be readily computed from simulated trajectories1. In Fig. 7.5, we compare the
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experimental data199 from X-Ray diffraction (XRD) at ambient pressure and dif-
ferent temperatures with our estimates for different S8 concentrations (95% to
40% S8 rings). The considered concentrations are chosen from the range pro-
vided by experimental results171,202 and then refined to improve the matching
with the experimental data. For a meaningful and direct comparison with the
experimental data, we also applied a Gaussian convolution to the simulated re-
sults.
Our results remarkably reproduce the evolution with the temperature of the
third peak around 4.5Å (see the arrow in Fig. 7.5). This elusive signal is associ-
ated with third neighboring distances in the S8, thus tends to disappear as the
temperature and the polymer fraction increase. Moreover, the first and second
coordination shells (2.05Å and 3.3Å) peaks, which come from both S8 and S∞
phases and remain almost constantwith temperature, are also accurately repro-
duced, with our results being almost indistinguishable from the experimental
ones.
Structure factor Even if the radial distribution function is readily available
from simulations, the actual quantity that can be measured experimentally is
the structure factor S(k). This is the counterpart in the reciprocal space of the
g(r), and the two quantities can be expressed as the Fourier transform of each
other. Accordingly, we compute S(k) from our estimate of the g(r) as

S(k) = 1+ ρ0

L/2∑
0

4πr2[g(r) − 1]
sin(kr)

kr
δr (7.5)

where k is the wavevector, L the box size and ρ0 the average system’s atomic
density199.
The comparison of the resulting S(k)with the experimental data199 is reported in
Fig. 7.6. Our results show excellent agreement with the experiment also in this
case, especially for the second and third peaks. Moreover, our approach allows
us to reproduce remarkably well the first peak in the region at small k values,
despite some (small) differences between our results and the experimental data,
which could be caused by the cutoff applied in our deep-potential and, to a lesser
extent, by the aforementioned scale issues. We remark on this result as previous
theoretical studies, based on first-principles approaches, could not reproduce
this signal, most likely due to their limited time and size scales. This region
indeed corresponds to large distances in the real space. Therefore, it can be
heavily affected by a small simulation box or limited statistics.

7.3.2 Atomic mobility: displacement analysis

One of the main features of the λ-transition is its sudden increase in viscosity
above Tλ. At the atomic level, this should correspond to a decreased mobility of
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Figure 7.6: Structure factor S(k) for liquid sulfur at temperatures around the Tλ. Sim-
ulated results at different ring concentrations (solid blue lines) are compared with ex-
perimental data199 at different temperatures (red void dots). Each experimental tem-
perature and the matching percentage of rings are reported close to the corresponding
curve. The ±5% interval on the ring concentration for each simulated curve is given as
a shaded blue area. The black dotted lines mark the S(k) = 1 value for each couple of
curves as they are offset by one unit in the vertical direction for visualization purposes.

the atoms.
Especially in the polymeric phase, the atomic motions become sluggish and

a direct calculation of the viscosity is impossible. However, in order to have an
insight into the dynamics, we compute and compare the atomic displacements
after 10, 25, 50, and 100 ps for ring concentrations that resemble conditions
below Tλ (100% rings concentration), slightly above (75%) and well above (55%).

The results from this analysis are reported in Fig. 7.7 and clearly show that,
on average, atoms in the molecular S8 phase have the highest mobility. On the
other hand, as the polymeric content increases, a peak in the distribution starts
to appear below the 2Å threshold of the first coordination shell. This comes
from the polymer atoms, which mostly oscillate around their positions rather
than showing any net drift, thus inducing the rise in the viscosity.

7.3.3 Reaction mechanisms and charge analysis

Having assessed the reliability of our potential prediction when compared to
the experiments, we move to the study of the chemical mechanisms involved
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Figure 7.7: Histogram of the atomic displacements in liquid sulfur at different ring
concentrations, given in the legend, and different lag times, indicated by white labels.

in the λ-transition in liquid sulfur with the crucial help of enhanced sampling
simulations and our topological CV.
In the following, we propose mechanisms for the polymerization process and
the opposite reaction for forming the rings. We note that we report only those
mechanisms that we found to be dominant in our simulations, i.e., theywere ob-
served in the majority of several independent simulations, and for all of them,
wedouble-checked the agreement of our potentialwithDFT calculations to avoid
artifacts.
For each mechanism, we provide a prototypical example and an analysis of
the instantaneous charges involved in the process. For each configuration, this
latter analysis stands on the analysis of the Bader charge distribution190 as ob-
tained from the DFT charge density.
Polymerization mechanism The polymerization of liquid sulfur, which we
schematically depict in Fig. 7.8, resembles many elements of the standard ring-
opening polymerization186. The first step requires the formation of an active
center from which the polymerization can propagate, and this forms when one
of the crown-shaped S8 monomeric units undergoes sufficiently large thermal
fluctuations to open. The ring deformation indeed induces a polarization of the
local charges, which is shown by the colormap in Fig. 7.8. Negative charges con-
centrate on the under-coordinated terminal atoms, thusmaking them active. At
this point, they can either react together to close the ring again, or they can look
for new neighbors on a different ring nearby. As the active terminal interacts
with the guest ring, its charges are forced to reorganize. This induces a defor-
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Figure 7.8: Polymerizationmechanism in liquid sulfur starting from four S8 rings. The
atoms are colored according to the instantaneous charge obtained by computing the
Bader’s charge from the DFT electronic density. For visualization purposes, only the
relevant atoms are represented from the 512 in the simulation cell.

mation in the guest ring that may eventually open it, leading to the formation of
the first oligomer. Right after the opening of the second ring, the charges along
the new short chain quickly reorganize, and negative charges concentrate in
the chain tails. This makes the terminals active again and ready to further prop-
agate the polymerization to other rings as described above.
Even if the ideal crown-shaped S8 rings dominate the liquid phase, our calcu-
lations confirmed the experimental evidence21 that other cyclic monomers (Sn,
n ̸= 8) and sub-stable isomers of S8 rings, which report in part in Fig. 7.9, also
contribute to this polymerization process.

Overall, from our results, it appears clear that the under-coordinated nature
of the chain tails mainly drives the polymerization. This makes the terminal
atoms highly reactive, as indicated by the negative charge localization, and ea-
ger to find new partners.
A second key factor lies in the possibility of stabilizing the charge unbalance (on
average) over the whole polymer. In agreement with previous theoretical stud-
ies182, we also found shorter chains to be rather unstable and to often revert to
rings if left relaxing with short unbiased dynamics, at variance with the longer
chains, which remained stable. We suppose this is due to the different capabil-
ities of delocalizing, on average, the unbalanced charges over the chain, which
thus plays a key role in the overall polymerization process.
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Figure 7.9: Snapshots of typical cyclic configurations (6< n< 15 ) observed in our simu-
lations. Such configurations were already reported in the literature and validated with
DFT calculations. See Ref.21 and the references hereby.

Ring formation mechanisms The formation of the rings starting from the
polymer can occur either at the end of the chain (see Fig. 7.10 a), as onewould in-
tuitively suppose, but somehow surprisingly, also in the middle, as we schemat-
ically depict in Fig. 7.10 b.

In the first case (see Fig. 7.10a), the tail of the chain is characterized by a
charge unbalance and higher mobility with respect to the rest of the chain. The
first element, as mentioned in the previous paragraph, is specifically due to the
under-coordinated nature of the sulfur terminal atoms, which leads to their neg-
ative polarization. This is the chemical driving force for the reaction, as it makes
such atoms eager for new partners and ready to react. On the other hand, the
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Figure 7.10: Mechanisms for the formation of rings in liquid sulfur starting from S∞
polymers. a Formation of a ring from the tail of the polymeric chain. b Formation of a
ring in the middle of the chain. The atoms are colored according to the instantaneous
charge obtained by computing the Bader’s charge from the DFT electronic density. For
visualization purposes, only the relevant atoms are represented from the 512 in the
simulation cell.

highermobility reflects the general behavior of polymeric chain ends and poses
the right conformational conditions. Indeed, to react, the tail has to fold onto the
chain to form the loop that will eventually lead to the ring. Of course, this loop is
most stable if the terminal atom folds such that it interacts with its 7th neighbor,
thus ensuring the S8 arrangement, but this same mechanism can also lead with
less probability to some of the different-sized rings we reported in Fig. 7.9.

In the secondmechanism, the scenario is significantly different as the atoms
involved in the formations of the loop belong to the bulk of the polymeric chain
(see Fig. 7.10 b). Such atoms are indeed fully coordinated, meaning that they are
much less reactive than in the first case and that any polarization they could
show is strictly instantaneous. We found that to compensate for this weaker
reactivity, it is crucial that the arrangement of the atoms resembles as much as
possible that of one of the stable Sπ rings. Of course, the choice shall preferably
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be for the ideal crown-shaped S8. Thus, we report this case in Fig. 7.10 b.
In the first frame, the eight-membered loop that starts to appear in the mid-
dle of the chain still has a wrong combination of angles and distances. On the
other hand, in the configuration reported in the second frame, the sequence
of angles becomes favorable, and the distance between the 1st and 8th S atoms
reduces enough they can interact. As a consequence of this interaction, the adja-
cent atoms show aweak negative polarization (see third frame), which becomes
stronger when the ring finally separates from the original chain.
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Chapter 8

Transition-state-oriented
bias potential from classifiers

In the previous chapters, our focus was oriented toward developing and apply-
ing machine-learning collective variables in the context of enhanced sampling
to favor the transition between metastable states in a rare-event scenario. In
particular, we have largely discussedmethods and applications of classifier-like
collective variables.

In the following, we will still follow this thread but from a much different
perspective. Indeed, we will introduce a method for constructing a bias poten-
tial for the sampling of transition state regions and show how to build such a
bias starting from the idea of classifier CVs.

8.1 A new approach to enhanced sampling

In previous chapters, we have largely discussed the sampling problems related
to rare events inMolecular Dynamics (see Chapter 2) andwe have presented en-
hanced sampling methods for alleviating these limitations (see Chapter 2). As
we discussed, most of the methods in this category, such as metadynamics7,66,74
or OPES65,68, are meant to accelerate the dynamics of a process by filling the
metastable basins in the energy landscape to reduce the energy barrier associ-
ated with the transitions between them. In this manner, the increased number
of state-to-state transitions allows computing a converged estimation of the free
energy of the process5,74, thus allowing a proper characterization of the process
itself.

However, when it comes to studying a natural process, free energy is not
the only important information one may want to obtain from simulations. One
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problem of great interest is the identification of the transition state (TS) through
which the system has to pass to translocate from one basin to the other. For
example, identifying the TS is considered the holy grail when it comes to chemi-
cal reactions203, as it provides precious information about reactionmechanisms
and rates204, or when dealing with proteins, it can provide information on their
dynamics205–207. Moreover, we have seen how configurations around the TS
are crucial in training machine learning reactive interatomic potentials208 (see
Sec. 1.5) and can be used to improve the performances of data-driven collective
variables19 (see Sec. 6.3).

Unfortunately, sampling of the higher-energy regions associated with the
transition state (TS) often remains difficult, even if enhanced sampling meth-
ods are applied. This comes as no surprise, considering that transition states
are found at saddle points204 (or local maxima) even in the biased energy land-
scape and are still less likely to be visited.

In the following, we propose a method for extensive sampling of the transi-
tion state region by changing the paradigm of the way the bias potential is con-
structed. Instead of filling the basins, we propose to dig a hole in the transition
state to lower its energy to the point that, in the biased landscape, it becomes a
minimum that can be thus thoroughly sampled.
A committor-inspired way out of a chicken and egg problem The key el-
ement to achieve our goal of stabilizing the TS region is the design of a bias
potential that is localized on the TS region itself. At first sight, this appears to be
a chicken and egg problem since to localize the bias on the TS region, we need a
good sampling of that region, and in turn, to get a good sampling, we need such
a localized bias. However, a way out of this dilemma can be found by taking in-
spiration fromKolmogorov studies of stochastic processes209, in particular from
the fascinating concept of committor function in such processes.

For a given configuration, the committor function q(x) gives the probabil-
ity that starting from a given configuration x, the system relaxes to a certain
metastable state29. Thus, in a rare event scenario where the points in A have
a very small probability of moving to B q(x) ≈ 0 for x ∈ A, similarly q(x) ≈ 1

when x ∈ B.
At this point, if we consider the derivatives of such a function with respect to
its inputs x, we can easily find that their square modulus |∇q(x)|2 will be dif-
ferent from zero only in the transition region where it will be peaked. This, in
principle, supplies us with a tool for automatically localizing the TS region, pro-
vided that we can estimate q(x). Moved from these considerations, we propose
to build our transtion-state-oriented bias as a function of the derivatives of (an
approximation of) the committor function q(x) for our system.
Even if the determination of the real committor function is still an open chal-
lenge, we argue that it can be approximated, at least coarsely, with a classifier-
like collective variable that mimics the committor boundary conditions that the
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value of q(x) should be constant within a metastable state.

Figure 8.1: Schematic representation of the rationale behind our bias potential in a one-
dimensional double-well model potential U(x) (black line). The gradient ∇q(x) (panel
a, green line) of the analytic committor function q(x) (panel a, purple line) is used to
build a bias potential V(x) (panel b, purple line) centered on the transition state (TS) of
the system. This is applied to the natural potential U(x) − V(x) (panel b, green line) to
lower the TS region energy to a minimum.

8.2 Methods

8.2.1 Building a bias potential from the committor function

Here, for brevity, we only discuss the feature of the committor function relevant
to our purposes. We thus refer the interested reader to the specific literature
from transition path theory (TPT) for more details29,210.

Given a system characterized by two states A and B (U(x) in Fig.8.1), in the
framework of TPT, the committor function q(x) is the probability that a trajec-
tory starting at x reaches first B rather than A, or, in the TPT jargon, it is commit-
ted to B. Points on the isocommittor surface q(x) = 0.5 are of particular interest
as they have an equal probability of committing to A or B. For this reason, such
points are usually associated with the transition state of the process.
The determination of the committor function is, however, far from trivial. From
the definition, it follows that q(x) = 0 when x ∈ A and q(x) = 1 when x ∈ B. In
between, when x /∈ (A ∪ B), q(x) is continuous and monotonous (see panel a).
Even if in that region the committor function obeys the backward Kolmogorov
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differential equations
∇U · ∇q− β−1∆q = 0 x ∈ Ω \ (A ∪ B)
q(x) = 0 x ∈ A
q(x) = 1 x ∈ B

(8.1)

an analytic solution can be obtained only in simple 1Dmodels as the double-well
potential reported in Fig.8.1.
Nonetheless, the differential problem of Eq. 8.1 has an equivalent variational
formulation in which q(x) is found by minimizing the functional K

min
q
K : K =

1

Z

∫
Ω\(A∪B)

|∇q(x)|2e−βU(x)dx (8.2)

Interestingly, this formulation depends on the gradient∇q, which by definition
is peaked in correspondence with the transition state and goes to zero towards
the metastable states (see panel a).

Inspired by this framework, we propose to build a transition-state-focused
static bias potential V(x) as a function of ∇q (see panel b) or at least some ap-
proximation of that, as we shall see later

V(x) = λ log
(
|∇q(x)|2 + 1

)
(8.3)

Here, we use the logarithm to have a smoother function and ensure that its
argument is greater than one, such that V(x) ≥ 0 ∀ x. The parameter λ is meant
to scale the intensity of the bias potential.

In contrast with other biasing schemes, such as metadynamics7, the purpose
of this bias is not to enhance the sampling by filling the energy landscape in
the metastable basins but rather by lowering the energy of the transition state
region. Upon an appropriate choice of λ, this bias potential allows transforming
the TS state region, which is a hard-to-sample saddle point of the natural U(x),
into a fictitious local minimum (see panel b) that can be sampled effortlessly.
In practice, λ should be neither too small nor too large. In the first case, the
bias would be too weak to be effective, whereas in the second, it could lead to
unstable dynamics. From our experience, given an expected barrier height ẼTS,
we found that values in the range of 0.25 ẼTS < λ < 2 ẼTS are appropriate choices.

We note here that, as V(x) is sharply localized at the TS, it may be that the bi-
ased energy landscape still presents some residual barriers. For example, in the
toy model in Fig. 8.1, one still has to overcome a smaller barrier when starting
from the originalmetastable basins. However, inmost cases, we found such bar-
riers to be small enough not to hinder the evolution toward the TS, but in case,
our approach could also be applied alongside other static or dynamic biasing
schemes.
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8.2.2 Approximating the committor functionwith classifier-
like collective variables

As discussed above, our bias potential conceptually depends on the committor
function q(x), whose determination is far from trivial. The analytic solution
of the Kolmogorov equations (Eq. 8.1) is indeed inaccessible for any real sys-
tem, and even numerical approximated approaches are severely limited by the
curse of dimensionality. Similar limitations also arise for the multidimensional
integrals in the variational formulation in Eq.8.2. For these reasons, we do not
aim at finding the true committor function, but we satisfy ourselves with an ap-
proximation based on classifier-like collective variables, which we can design
with the help of machine learning techniques, as we have seen in the previous
chapters.

To motivate our choice, we recall that in machine learning, classifier func-
tions are trained to discriminate among different classes by returning as output
different values for each class9. It is clear that, in our case, this criterion is some-
howequivalent to the boundary conditions that apply to the committor function,
i.e., being either 0 or 1 in the metastable states.
In this sense, adapting the Deep-TDA18 method (see Sec. 6.2) to our purposes
comes naturally. In Deep-TDA, the CV is built as the output of a NN, which takes
as input a large set of descriptors collected in unbiased runs in the metastable
basins. The NN is optimized to return a CV space inwhich the distribution of the
training data matches a preassigned target distribution in which the different
states are well distinguished. In the original method, this target distribution is
defined as a series of Gaussians, one for each state, of preassigned positions and
widths. Here, to better approximate the classifier-like behavior of the committor
function, we choose as target distribution the sum of two delta functions, one
associated with one state, located at minus one, and the other associated with
the other state, located at one.

We note that even if the training is focused on the metastable regions only,
the CV function is still continuous between them, and its derivatives are ac-
cessible using the automatic differentiation engines of ML libraries such as Py-
Torch84.

8.3 Results

In the following, we test our biasing scheme in three prototypical examples,
showing how it can lead to an extensive sampling of regions related to the tran-
sition states in these systems. For didactical purposes, we start by discussing the
general workflow in the case of the diffusion of a particle in the Muller-Brown
potential surface toy model we have already met in the previous chapters. We
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thenmove to the study of the proton transfer reaction in the tropolonemolecule.
Finally, we tackle the folding of the chignolin protein.

8.3.1 Müller-Brown potential

The two-dimensional Muller–Brown potential, whose isolines are depicted in
Fig. 8.2, as we have already mentioned earlier in this Thesis, is often used to
test the efficiency of enhanced sampling methods in a controlled manner. Per-
forming unbiased simulations of the diffusion of a particle over this potential,
one can only sample the bottom of the two metastable states (purple points in
Fig. 8.2) due to the barrier that separates them.

Figure 8.2: Sampling of the transition state (TS) region in the Muller-Brown two-
dimensional potential (green points). The bias potential is trained using configurations
limited to the two metastable basins (purple points). The reference TS position (black
cross) is identified as the point with the highest energy along the minimum free energy
path. The top-right inset shows the distribution of the displacements from the TS refer-
ence.

Starting from such data, we can train our classifier CV using the x and y coor-
dinates of the particle as descriptors and build the bias potential to direct the
sampling toward the TS region. The results of short biased simulations starting
from the two basins are reported in Fig. 8.2, clearly showing the extensive sam-
pling of the TS region (green points). Moreover, as shown in the inset, most of
the sampled points are concentrated very close to the TS reference, located at
the maximum energy point along the minimum free energy path. We want to
remark on this point, considering that the only information given to the model
was limited to the metastable states.
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8.3.2 Proton transfer in Tropolone

Tropolone is a simple cyclic molecule, depicted in the inset of Fig. 8.3, which
undergoes an intramolecular proton transfer (PT) reaction. Apart from the hy-
drogen atom involved in the PT, the molecule is symmetric. The two oxygen
atoms, depicted in red, can indeed alternatively be found in the keto (=O) or
enol (-OH) form, depending on the position of the exchanged proton. This also
determines the arrangements of the conjugated double bonds over the seven-
membered carbon ring.

Figure 8.3: Sampling of the transition state (TS) region in the proton transfer in
tropolone molecule (green points) projected in the space defined by the distances of
the hydrogen atom from each of the two oxygen. The superimposition of 30 random
configurations is shown in the central inset. The bias potential is trained using con-
figurations (purple points) from two metastable states of the molecule. Each of them
presents two rotational isomers, depending on the orientation of the OH bond, which
can easily interconvert at 300K. Only the most stable form is reported in the smaller in-
sets. A qualitative reference for the TS position is located along the d1OH = d2OH diagonal
(black dotted line). The top-right inset shows the distribution of the displacements from
the TS reference.

In Fig. 8.3, we report the points collected in two unbiased runs in themetastable
states used to train the classifier CV (purple points). In this case, as input descrip-
tors for our model, we used the interatomic distances between heavy atoms in
the system and the hydrogen-oxygen distances related to the hydrogen involved
in the PT. The training set points are scattered in the space defined by the dis-
tances of the hydrogen atom from each of the two oxygens (d1OH and d2OH), in
which the chemical and rotational isomers are clearly distinguishable. In this
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space, the TS can be intuitively localized in the region where such distances are
almost equivalent and the hydrogen is bridging between the two oxygen atoms,
which is marked in Fig. 8.3 by the thin dotted diagonal line.

The points sampled using our novel biasing scheme (depicted in green) are
remarkably distributed in this region. Moreover, they are mostly concentrated
in the region d1OH - d2OH = 0 (see top-right inset) and the sampled configurations
clearly resemble the expected TS. In the central inset, we show a superimpo-
sition of randomly selected samples from our biased trajectory which clearly
shows the PT hydrogen midway between the oxygens and the fluctuations of
the ring hydrogens due to the induced resonance of the ring double bonds.

8.3.3 Folding of Chignolin

In Sec. 6.3.2, we have already introduced chignolin as a small protein often used
to benchmark enhanced sampling methods on biological systems. In an aque-
ous solution, it can be found in two stable conformations, folded and unfolded,
which are schematically depicted as cartoons in the left side of Fig. 8.4.

Figure 8.4: Cartoon of the sampling of the transition state region (TS) of the chignolin
folding process starting from the a folded and b unfolded states. The left-hand cartoons
show the two metastable configurations. The right-hand ones show a superimposition
of 30 random configurations obtained with our biased sampling approach. The color
shows the index reference of the atoms in the main chain.

To test our method on this more complex system, we used all the contacts be-
tween the α-carbons of the main chain as descriptors for our model, as already
done in Refs.17,19,69 (see also Sec. 6.3.2). Applying the bias thus obtained and
starting independent runs in the folded and unfolded state, we could sample,
in less than one hour using a standard workstation, folding TS configurations
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that are remarkably comparable with the TS configurations reported by D.E.
Shaw group115, which were obtained from milliseconds-long unbiased dynam-
ics on dedicated hardware. Indeed, our results from biased dynamics, which
are sketched on the right of Fig. 8.4, also show the formation of the hairpin bend
in the protein chain, even when starting from the unfolded state. Besides this

Figure 8.5: Committor analysis on sets of 1000 random configurations sampled with
our transition-state-oriented bias starting from the folded state (left) and unfolded state
(right). The vertical dotted lines mark the 0.4-0.6 interval associated with the transition
state.

qualitative comparison, and in lack of clear TS-defining descriptors, to check if
the sampled configurations were actually close to the TS we performed a stan-
dard committor analysis. We extract 1000 random configurations from each tra-
jectory and let them relax unbiased in 50 independent replicas to estimate the
corresponding committor value. The results of this analysis, which is reported
in Fig. 8.5, show that the committor was in the 0.4 − 0.6 range, thus close to the
ideal value, for ∼ 10/15% of the tested configurations. In this regard, we remind
that our goal here is not the sampling of the TS itself but rather of the region
in its surroundings. For example, if one wanted to optimize a NN force field
to study this folding process, the configurations close to the TS would be simi-
larly useful. Moreover, once such a set of configurations is available, it could
be used to further improve the quality of our bias potential or as the object of
more detailed analysis focused on the TS identification only.

8.4 Additional computational details

General computational details For all ourmodels, weused the DeepTDAmodel
implemented in the mlcvolar library (see Chapter 5) to train a classifier-like CV
from which we could obtain our TS-oriented bias. The tanh function has been
used as activation function for all the NN in our models to guarantee smoother
derivatives.
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To deploy the bias to PLUMED, we slightly modified the interface available in
the pytorchmodule of the code (see Sec. 5.4) to directly compute the bias within
the PLUMED C++ code from the classifier-like CV value using the tools from the
LibTorch library84. The interface was then modified to return this bias as a
PLUMEDvariablewhichwas thenused to bias the simulationusing the BIASVALUE
command.
In all the systems, the biased simulations were performed starting from both
metastable basins.
Müller-Brownpotential The simulations for theMüller-Brownpotentialwere
performedusingLangevin dynamics144 as implemented in the ves_md_linearexpansion126
module of PLUMED124,125. The damping constant in the Langevin equation was
set to 10/time-unit and natural units (kBT = 1) were used in all the calculations.
The dataset for the training of the classifier-based bias consisted of 2000 config-
urations for each metastable state. As descriptors and input of the NN, we used
the x and y coordinates. We used a NN with structure {2, 32, 16, 1} nodes/layer.
The number of training epochs was set to 2000.
We ran the biased simulations starting from both metastable states for 5 × 105
steps and the α factor in Eq. 8.3 was set to 12.
Proton transfer in Tropolone The simulation of the intramolecular proton
transfer in tropolone have been carried out using the CP2K-8.1129 software pack-
age patched with PLUMED124,125 at PM6 semi-empirical level. The integration
step was 0.5fs and we used the velocity rescaling thermostat37 set at 300K with
a time constant of 100fs. The superimposition of snapshots reported in Fig. 8.3
was realized using the VMD211 visualization software.
The dataset for the training of the classifier-based bias consisted of 20000 con-
figurations for each metastable state obtained from unbiased MD trajectories.
For our model, we used the DeepTDAmodel implemented in the mlcolvar library.
As input descriptors for our model, we used the interatomic distances between
heavy atoms in the system and the hydrogen-oxygen distances related to the hy-
drogen involved in the PT.Weused aNNwith structure {38, 24, 12, 1} nodes/layer.
The number of training epochs was set to 2000.
We ran the biased simulations starting from both metastable states for 106 steps
and the α factor in Eq. 8.3 was set to 45.
Chignolin folding The computational setup and the training set for the study
of chignolin were the same as presented in Sec. 6.3.3, we thus refer the Reader
to that section for all the necessary details.
For the training, in this case, we used 24000 structures for each state and NN
with structure {45, 24, 12, 1} nodes/layer, and the number of training epochs
was set to 2000.
We ran the biased simulations starting from both metastable states for 5 × 106
steps and the α factor in Eq. 8.3 was set to 12.
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Conclusions and perspectives

The field of atomistic simulations, as many sides of our everyday lives, has been
greatly impacted by the rapid development of machine learning techniques in
the last few years. As an example, it suffices to mention the development of ab
initio-quality machine learning interatomic potentials that allow for accurate
simulations of complex systems at a fraction of the cost of first principlemethods,
as we have seen in the case of liquid sulfur. This beneficial cross-contamination
opens up new paths for future research and makes accessible the study of phe-
nomena that, even just a few years ago, would have been completely unreach-
able for computational approaches.

In this Thesis, we showed that the impact of such methodologies has also
boosted the field of ES simulations in its goal of extending the scope of standard
MD simulations. A striking example in this sense can be the transition-state-
oriented biasing scheme we proposed, which allows for effortless sampling of
this delicate region of the phase space that we typically struggle to access. In-
deed, such a result would not have been feasible without the ML tools.

We have also discussed how much effort has been devoted to incorporat-
ing ML techniques into determining CVs in a data-driven and semi-automatic
way. In this regard, we reported our contribution to this collective effort, also
showing an example of the practical impact of such new methods on real-life
systems. However, in this direction, there will still be room for improvement in
the future. For example, themethods we developed and presented are based on
standard feed-forward NNs, which are fed with sets of physical descriptors as
inputs. However, the use of descriptors and their choice can still be problematic.
For this reason, an interesting outlook for future research in this field could be
using graph NNs to describe molecular systems.

Another perspective for the near future, which comes naturally as this The-
sis is mostly oriented toward method development, is related to extending the
applications of such methods to new complex systems. In this regard, we do
believe that the mlcolvar library and its much-simplified interface will boost
progress in this direction, possibly with the development of simple graphical
user interfaces (GUIs) to open its use to a broader audience of users that may
not be comfortable with coding.
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Despite the aforementioned flourishing of ML-aided methods in atomistic
simulations, so far, we have most likely only been scratching the surface of the
endless possibilities and outcomes of the synergy between these twoworlds. For
example, besides developing new methods, an open and relevant topic in this
sense is related to the interpretability of our simulations and models. Indeed,
MLmethods bring outstanding contributions in terms of the expressivity of the
models, but this often comes at the cost of their easy interpretability. For in-
stance, this is the case of data-driven CVs obtained by combining many physical
descriptors, which allow us to perform effectively enhanced sampling simula-
tions but often make it difficult to obtain direct physical insights from such cal-
culations. Possible solutions in this direction could be found by performing rele-
vance analysis, inwhichwe look for those variables that aremost relevant in our
mathematical model, or by improving the sparsity of our models with a proper
pruning of the inputs aimed at removing the less relevant ones or applying sym-
bolic regression techniques to identify functional forms of easier interpretation
for our models.

To conclude, another interesting perspective that arises from what we have
presented in this Thesis is related to the possibility of developing new enhanced
samplingmethods by exploiting biasing schemes inspiredby the transition-state-
oriented we proposed. Hopefully, such new approaches will provide new tools
in the enhanced sampling toolbox that can also help to promote transitions be-
tween the metastable states in the spirit of other time-honored methods like
Metadynamics and Umbrella Sampling.
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