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Abstract

In this paper, we propose a novel approach to compare the

performances of binary classification models with an application on a

real data set on credit risk provided by Unicredit bank. Starting from

the probability of default estimated by each predictive model under

comparison, the idea is to derive an uncertainty interval comparing the

predictions with the observed target variable.

A model is considered to have good performances if the associated

uncertainty interval is small. The shape of the uncertainty interval pro-

vides also some information about the model performances in terms of

classification errors, false positive and false negative. The uncertainty

interval permits to compare different models without selecting a

binarization threshold and it applies both for parametric and non

parametric predictive models.
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1. Introduction

The relevance of model selection in credit risk model choice led to a

prolific literature on the statistical metrics to assess the forecasting accuracy

(see e.g., Abrahams and Zhang [1], Hand [10], Louzada et al. [13]) of a

given model in terms of measures of classification performance.

To evaluate the accuracy of a model in forecasting credit defaults, and

then providing a relative ranking of models performance, a performance

metric should not only coherently capture the aspect of interest, but also be

intuitive enough to become widely used, computationally tractable, and

simple to report.

In the literature, performance metrics (see e.g., Hand [11]) can be

classified into threshold-dependent (sensitivity, specificity, positive

predictive value, negative predictive value, probability of correct

classification, error rate, kappa statistic, Youden index, F-measure);

threshold-independent (Kolmogorov-Smirnov test) and depending on all the

possible thresholds (AUC, Gini index and H measure).

In order to describe the performance of a classification rule for binary

outcome, the most used indicators of model performance are linked to the

Receiver Operating Characteristic (ROC). This curve is generated by

plotting the fraction of true positives out of the positives (true positive rate)

versus the fraction of false positives out of the negatives (false positive rate),

at various threshold settings.

However, comparing curves directly has never been easy, especially

when those curves cross each other. Hence, summaries, such as the whole

and the partial areas under the ROC curve, have been proposed (see, e.g.,

Hand [10]). The Area Under the Curve (AUC) is defined as the integrated

true positive rate over all false positive rate values. In practice, there are

classifiers with distinct ROC curves which perform very differently at all

reasonable thresholds but they may have similar AUC values. AUC has a

well-understood weakness when comparing ROC curves which cross (see
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e.g., Figini et al. [8]). In this paper we propose a new descriptive measure

alternative to the AUC which provides useful information for model

selection and assessment. Starting from the probability estimated by a model,

we derive an uncertainty interval to compare predictive models for binary

outcome. The new measure is threshold independent.

The uncertainty interval can be viewed as a descriptive measure which

can be derived for in sample and out of sample model comparison. Our

measure provides relevant information for model selection without resorting,

at the current stage of research, to hypothesis testing or statistical test of

significance. The uncertainty interval makes comparable a wide range of

predictive models without resorting to specific assumption (see e.g., Hansen

et al. [12]).

The paper is structured as follows: Section 2 describes the

methodological proposal; Section 3 shows the empirical evidence achieved

on a real credit risk data set provided by Unicredit bank; Section 4 reports

the conclusions and further ideas of research.

2. The Proposal: Uncertainty Interval for Model Choice

For each observation YNii ,...,,1,   is a binary target variable with

0iy or Myi ;1  is a classification model which assigns for each

observation Ni ...,,1  a non negative number bounded between 0 and 1

which can be interpreted as a measure of probability,   .ˆ1 ii pyP   We

remark that M could be any kind of predictive model (parametric or non

parametric) appealing to predict a binary outcome.

Suppose that for the same problem we can construct a class M of

classification models and each model MM  can be employed to predict

the binary target variable of interest. The set of models MM  are

comparable in terms of model performances.

With respect to the contribution of Hansen et al. [12], our model set M is

composed by different models, both parametric and non parametric and
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bootstrap implementation and stationarity hypotesis are not required to

derive the uncertainty interval.

Furthermore, our approach provides the selection of the best model

(instead of a set of models).

In order to derive the uncertainty interval, for each model MM we

sort the ip̂  in a non decreasing order and we replace them with the

corresponding observed values for ;iy  as a result we obtain a finite sequence

of 0 and 1 for a given classification model .MM  We remark that to get

this result the binarization of ip̂  using a threshold is not required.

Considering ,10N  Table 1 reports for each i observation

 10...,,1i the corresponding probability estimated ip̂  obtained using

model M and the corresponding observed value of the target binary variable.

Sorting Table 1 with respect to the probabilities estimated ip̂  we obtained

the results depicted in Table 2. In general, the best classification model for

binary outcome is able to separate through ip̂  the values 0 from values 1 to

derive a sorted sequence of iy  such that each value corresponding to 0 is

before the values 1.

Table 1. Example of the outcome of binary classification model M:

predicted probabilities ip̂  and respective observed target iy

i 1 2 3 4 5 6 7 8 9 10

ip̂ 0.4 0.002 0.5 0.7 0.01 0.95 0.97 0.6 0.1 0.27

iy 0 0 0 0 1 1 1 1 0 0

Table 2. Sorted predicted probabilities

i 1 2 3 4 5 6 7 8 9 10

ip̂ 0.002 0.01 0.1 0.27 0.4 0.5 0.6 0.7 0.95 0.97

iy 0 1 0 0 0 0 1 0 1 1

We explain better this definition using an elementary data example. In

Table 3, we show the limit case of one possible model that classify correctly
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in relation to the previous numerical example. Note that, in this case, the

ordered binary sequence is such that each zero in the sequence arrives before

each one and there is a clear separation between 0 and 1. This definition of

goodness of a classification model directly implies an equivalence relation

among all the models which show the same ordered sequences of values 0

and 1, even if the estimated probabilities ip̂  are different.

Table 3. Perfect classification

i 1 2 3 4 5 6 7 8 9 10

ip̂ 0.1 0.15 0.2 0.27 0.4 0.5 0.6 0.7 0.95 0.97

iy 0 0 0 0 0 0 1 1 1 1

Under this idea, a class of models are indifferent in terms of model

choice and, a priori, the best model does not exist but a class of models that

are all able to provide the desired binary sequence.

Using real data, each model M is described by a sequence of observed 0

and 1 which are not clearly separated in the two respective blocks of zeros

and ones. For sake of simplicity, we consider the situation represented in

Table 2. It is possible to discuss about the goodness of the classification

model M through the analysis of the corresponding ordered binary sequence

which characterises the specific model.

Intuitively, if the sequence of 0 and 1 is well separated the

corresponding classification model is perfect.

In the ordered sequence of 0 and 1 for a given model two points are of

particular interest: the first position where a value of 1 appears in the

sequence and last position where a value of 0 is found.

This two points in specific position inside the sequence cut the sequence

in three sub sequences: the first part of the sequence is composed of zeros,

where the model M shows as results low value of ip̂  according to 0 observed

as iy  (in the example in Table 4 this first sequence corresponds to ,)1i

the second part is a disordered mix of zeros and ones (in the example in

Table 4 it corresponds to sub-sequence from 2i  to )8i  and the third
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part is made up of ones (in Table 4 from 9i  to ,)10i  where the model

M shows high value of ip̂  according to 1 observed as .iy

The intuition behind the proposal is to associate to a given model the

uncertainty interval, i.e., the part of the binary sequence composed by zeros

and ones (in Table 4 in bold). When this interval is small, the classifier

shows good performances, while, on the opposite, a large uncertainty

interval is related to a classification model that is not able to efficiently

discriminate between 0 and 1. We point out that, the perfect classifier

associated to the separated binary sequence is associated to an uncertainty

interval that is empty by construction, confirming the intuition.

Table 4. Model results on real data

i 1 2 3 4 5 6 7 8 9 10

ip̂ 0.002 0.01 0.1 0.27 0.4 0.5 0.6 0.7 0.95 0.97

iy 0 1 0 0 0 0 1 0 1 1

Our idea is to associate to each model an interval of uncertainty able to

reflect the performance of the classification model. Considering the example

in Table 4, the uncertainty interval associated to the model is from 2i  to

8i  or, in relative terms  .8.0;2.0

It is interesting to notice that different models potentially lead to the

same uncertainty interval: it is possible to show that the proposed measure is

invariant with respect to all the possible permutations of the elements in the

mixed sub-sequence of zeros and ones (in relation to the example in Table 4,

from 3i  to .)7i

We would like to underline that the interpretation of the proposed

measure when the uncertainty interval coincides for two models is the

following: correct classifications, i.e., the initial sequence of zeros and the

final sequence of ones are equal and, as a consequence, the length of the

uncertainty interval associated to the models is equivalent. The two models

are considered equivalent in term of the proposed measure when they start
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committing classification errors, false positive and false negative, at the

same time.

Formally, a model M estimates a probability Nipi ...,,1,ˆ   for a given

statistical unit and iy  is the observed target binary variable.

In order to define the uncertainty interval for model M, we order the

estimated probabilities ip̂  such that 1ˆˆ  ii pp  for ....,,1 Ni   Then we

substitute the ordered estimated probabilities ip̂  with the corresponding

observed target values iy  and call Y the obtained binary sequence.

We define the uncertainty interval associated to model M as an interval

    ,, YbYa   where  is a given level of sensitivity (for example

)05.0 and can be interpreted as a measure of the tolerated error.

Definition 1. For a given confidence level  1,0  and for the ordered

binary sequence Y, the uncertainty interval for model M is     ,, YbYa 

where

     
,

1#
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
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
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The number  Ya  represents the smallest relative position
N
i

 of the

vector Y for which the relative frequency of ones, namely
   
N

Yi 1#
is at

least not smaller than  Yb;  represents the biggest relative position
N
i

of the vector Y for which the relative frequency of zeros, namely
   
N

Yi 0#

is at least not greater than .1   The example represented in Table 4 was

built setting the level of sensitivity .0
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Considering the definition, the uncertainty interval is a subset of the

 1,0  interval; for this reason no normalization is required and it permits to

directly compare classification models. The comparison among models is

performed under the following definition, which provides an intuitive

approach to select the best classification model.

Definition 2 (Strong preference). For a given confidence level , model

1M  is strongly preferred to model 2M  if    ,,, 21   MM II  where

 ,1MI  and  ,2MI  represent respectively the uncertainty intervals for

1M  and .2M

Note that, on the basis of the uncertainty interval it is not always

possible to define the preferred model for each couple of models. For

example, when the uncertainty intervals are disjoint, we are not able to

conclude anything about the preferred model under the proposed criteria.

Despite this shortcoming, the uncertainty interval provides useful

information about the classification model. Small values of  Ya  are

associated to models with an high probability of false positive outcomes. On

the other hand, values of  Yb  close to 1 are associated to models with an

high probability of false negative outcomes1. On the basis of the

consideration above, we can define a preference criterion for model selection

when one of the uncertainty interval is not included in the other one.

Definition 3 (Weak preference). For a given confidence level , model

1M is weakly preferred to model 2M  if the cost associated to false

negatives (false positives) is greater than the cost associated to false

positives (false negatives) and    21 MaMa       .21 MbMb  

Such a criterion is of central importance when evaluating the

performance of a binary classifier: typically false positive and false negative

have different severity. One type of error is always preferred to the other in

1We talk about the probability of a classification error because in order to have a classification
error we would need to set a threshold.
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the sense that is less dangerous and the cost associated is lower. In this

framework, it is of great importance to discuss separately about the goodness

of the model in relation to the two types of errors. For example, if we refer to

an application on credit risk, banks prefer a false positive compared to a

false negative considering the costs associated to an unpredicted default.

3. Application on Credit Risk Data

In this section we show how our idea work on a real data set provided by

UniCredit bank (see e.g., Figini et al. [9]), concerning credit risk of Italian

SMEs.

The data at hand includes generic data (such as dimension, legal form,

default status), financial ratios derived from the balance sheet, tendency and

central credit register variables observed monthly.

The target is a binary variable which represents the default status and a

priori probability equal to 0.05.

The independent variables at hand are related to leverage liquidity,

profitability, financial ratios, operations with bank, coverage, activity, size,

including information about the number of employees, number of directors

and number of subsidiaries.

After outlier detection, the final data set is composed of 38036 rows and

43 variables.

To predict default in this data we compare different models (see e.g.,

Chen et al. [4], Crook et al. [5], Crook and Belotti [6], Lin et al. [15]) inside

a cross-validation framework by randomly partitioning the data sets into a

training and validation set. The two disjoint sets include the 70% and 30% of

the data, respectively, reflecting a priori probability of default rate of the

entire data set. Further validation approaches have been tested on the data (k-

fold, )5k  and the out of sample results are very similar. In this section the

performance indexes shown are computed on the validation set (30% of the

data). On this data set we compare the following models: Classification Tree
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(CT), Logistic Regression (GLM), KNN (K Nearest Neighbor), Generalized

Extreme Value Models (BGEV, see e.g., Calabrese et al. [3]), Generalized

Boosting Models (GBM) and Random Forest (RF).

The models are compared using classical measures of model

performance based on the Area Under the ROC Curve, the H index (see

Hand [10]) and our proposed measure. Table 5 shows the results.

The first interesting result is that our proposed measure identifies RF

and GBM as strongly preferred to the other models as per other measures

reported in the table. This evidence support the intuition that uncertainty

interval can be considered a measure of performance.

The second interesting result shown in Table 5 is that the BGEV and the

GBM models have the same AUC and H-index, i.e., the two models are

equivalent for the two measures. On the other hand, the uncertainty interval

associated to the GBM is included in the one associated to the BGEV; in this

case the GBM model is strongly preferred to the BGEV model on the base of

the uncertainty interval. Thus the proposed measure is not equivalent in

terms of model choice to the extant ones.

In relation to the example in Table 5, the data refer to credit risk and the

cost associated to false negatives is more severe compared to the one

associated to false positives. In this framework, the GBM and the RF models

are also weakly preferred to the other models.

Table 5. Model selection

Model AUC H Interval  05.0

CT 0.77 0.23 [0.52; 0.95]

K-NN 0.82 0.24 [0.38; 0.94]

GLM 0.87 0.34 [0.50; 0.93]

BGEV 0.89 0.41 [0.54; 0.93]

GBM 0.89 0.41 [0.57; 0.93]

RF 0.90 0.44 [0.57; 0.93]
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Furthermore, to compare the models we have also derived for each

model the uncertainty interval using different values for , the level of

tolerated classification errors. The results are summarized in Table 6. The

models under comparison are derived on the same sample size and using the

future set available. The intervals marked with the star represent the best

model for the given .

Table 6. Uncertainty intervals for different classification models and for

different levels of 

GLM RF GBM BGEV KNN CT

01.0 [0.25; 0.98] [0.38; 0.98]* [0.23; 0.98] [0.36; 0.98] [0.15; 0.99] [0.07; 0.99]

05.0 [0.50; 0.93] [0.57; 0.93]* [0.57; 0.93]* [0.54; 0.93] [0.38; 0.94] [0.52; 0.95]

1.0 [0.61; 0.88] [0.68; 0.87]* [0.69; 0.88] [0.68; 0.88] [0.50; 0.88] [0.58; 0.89]

Note that, in this application it is always possible to find a model

associated with an uncertainty interval that is a subset of all the other

intervals; equivalently, we can observe that one model (two in the case of

)05.0  is preferred to the other models.

Independently from the level of , the RF model results as the best

model in this application. Considering the proposed criteria, for example,

there is no strong preference relation between KNN and CT for ;05.0

despite of this, if we consider the cost of a false negative in the framework of

credit scoring the KNN model shows better results .95.094.0 

4. Conclusions

This paper shows a novel approach for model selection for binary

classification models introducing the definition of uncertainty interval. The

idea is to derive an interval from the probability estimated under a specific

model, comparing the predictions with the observed target variable for the

sequence of observations. A model is considered to have good performances

if the associated uncertainty interval is small. Empirical evidence obtained

on the real credit risk data provided by Unicredit underlines that uncertainty
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interval can present to practitioners an intuitive approach to select the best

model without resorting to specific assumptions as the selection of a cut off

to discriminate between bad and good customers. Further idea of research

will consider the extension to the inferential paradigm of our proposal, the

use of loss function for model selection (i.e., Patton and Timmermann [16])

and the study of the optimal choice of the cut off threshold in relation to the

uncertainty interval.
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