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Abstract 

Background A previous retrospective single-centre study suggested that the percentage of time spent with cerebral 
perfusion pressure (CPP) below the individual lower limit of reactivity (LLR) is associated with mortality in traumatic 
brain injury (TBI) patients. We aim to validate this in a large multicentre cohort.

Methods Recordings from 171 TBI patients from the high-resolution cohort of the CENTER-TBI study were processed 
with ICM+ software. We derived LLR as a time trend of CPP at a level for which the pressure reactivity index (PRx) 
indicates impaired cerebrovascular reactivity with low CPP. The relationship with mortality was assessed with Mann-U 
test (first 7-day period), Kruskal–Wallis (daily analysis for 7 days), univariate and multivariate logistic regression models. 
AUCs (CI 95%) were calculated and compared using DeLong’s test.

Results Average LLR over the first 7 days was above 60 mmHg in 48% of patients. %time with CPP < LLR could pre-
dict mortality (AUC 0.73, p =  < 0.001). This association becomes significant starting from the third day post injury. The 
relationship was maintained when correcting for IMPACT covariates or for high ICP.

Conclusions Using a multicentre cohort, we confirmed that CPP below LLR was associated with mortality during the 
first seven days post injury.
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Introduction
The critical care management of traumatic brain injury 
(TBI) patients aims to reduce the occurrence and the 
burden of secondary insults, such as those caused by 
intracranial hypertension [1, 1]. Ensuring adequate cer-
ebral perfusion pressure (CPP) is pivotal in supplying 
blood flow to the injured brain[3]. How to best individ-
ualise CPP targets in TBI patients admitted in intensive 
care unit (ICU) remains an open question.

Continuous monitoring of cerebral autoregulation 
(CA) could provide a way to tailor CPP targets, as pro-
posed and pioneered by our research group [4–6]. The 
autoregulatory mechanism refers to the response of the 
cerebral circulation to changes in CPP. There is a range 
of CPP values where autoregulation actively mini-
mises fluctuations in cerebral blood flow, when CPP is 
altered. Outside of this range, and on both sides, the 
relationship between pressure and flow becomes more 
passive. This leads to increased risk of both ischaemia 
(when CPP drops below the lower limit of autoregula-
tion) or hyperaemia (when CPP goes beyond the upper 
limit of autoregulation) [3, 7]. A large body of stud-
ies has described the impairment of CA after TBI and 
the association between non-functioning CA and poor 
clinical outcome [8–10].

The pressure reactivity index PRx has been devel-
oped as a proxy for global CA in TBI patients with ICP 
monitoring [8, 11, 12]. PRx can be calculated in a semi-
continuous manner in real time, at the bedside [13]. The 
relationship between PRx and values of CPP over past 
hours additionally provides information on the range of 
CPP over which CA is currently effective and whether the 
current CPP values are within the autoregulatory range 
[4, 14, 15][16]. The most investigated PRx-derived CPP 
target is the optimal CPP, named CPPopt [4, 14, 17]. By 
targeting CPP at the individualised CPPopt, in a dynamic 
manner, CA is best preserved [4] and it is plausible that 
this will offer protection against secondary injuries from 
sudden variations blood flow. This approach is under-
going clinical investigations [18, 19]. The results of the 
phase II trial (COGiTATE, registered as NCT02982122 
in ClinicalTrials.gov) proved safety and feasibility of such 
application [20].

From the bed side point of view, the continuous assess-
ment of the width and stability of the autoregulatory 
range might also be useful in addition to CPPopt [15, 
21]. The range of autoregulation may vary over time due 
to disease progression. It might be very narrow, mak-
ing CPPopt a desired target, or very large, in which case 
keeping CPP above the lower limit of autoregulation 
(LLA) could possibly be sufficient to prevent secondary 
injury. However, LLA is far less studied in the intensive 
care environment.

A statistically significant association with outcome 
of the deviation of CPP below LLA in TBI patients has 
been recently described by Donnelly et al. in a retrospec-
tive single-centre study [16]. The authors showed that 
the percentage of time (%time) spent with cerebral per-
fusion pressure (CPP) below the PRx-derived lower limit 
of autoregulation, named lower limit of reactivity (LLR), 
was independently positively associated with mortality 
in TBI patients. This suggested that targeting CPP above 
LLR, without the necessity of aiming for the optimal 
value (CPPopt), might be an option for the individualised 
clinical care in TBI patients.

LLR represents a global ensemble and requires more 
detailed methodological and clinical evaluation. Auto-
mated measurement of LLR (or the full autoregulatory 
range) is not straightforward: it extends but has received 
less attention than CPPopt methodologies. Robust con-
tinuous estimation requires further analytical develop-
ment before clinical validation can be attempted.

Here we validate an automated multiwindow-based 
algorithm for calculating LLR time trend in a multicentre 
cohort. We adapted the algorithm from the methodology 
used for prospective application of the CPPopt concept 
[22]. Our first objective was to assess the feasibility of the 
method. We hypothesised that the availability of the LLR 
time trend would be similar to the availability shown by 
CPPopt evaluated with the same methodology (CPPopt 
yield was estimated at 80.7% in this cohort [23]). Our sec-
ond objective was to confirm in a multicentre cohort the 
positive association between mortality and the deviation 
of CPP below LLR. Finally, we sought to explore the out-
come correlation in the light of the relationship between 
CPP below LLR and high ICP. It was recently suggested 
that the clinical burden of increased ICP is worse when 
PRx indicates an impaired autoregulation [24]. Given 
that LLR is derived from PRx, we expect this relationship 
to be maintained when looking at CPP below LLR.

Material and methods
Material
We considered 277 patients enrolled in the high-resolu-
tion cohort of the Collaborative European Neuro Trauma 
Effectiveness Research in TBI (CENTER-TBI) high-reso-
lution ICU sub-study [25] over 21 recruiting centres from 
2014 to 2017. All patients were admitted to ICU for their 
TBI during the course of the study. High-resolution digi-
tal signals were recorded from their ICU monitors during 
the course of their ICU stay.

The CENTER-TBI study (EC grant 602150) has been 
conducted in accordance with all relevant laws of the 
EU if directly applicable or of direct effect and all rel-
evant laws of the country where the Recruiting sites 
were located, including but not limited to, the relevant 
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privacy and data protection laws and regulations (the 
“Privacy Law”), the relevant laws and regulations on 
the use of human materials, and all relevant guidance 
relating to clinical studies from time to time in force 
including, but not limited to, the ICH Harmonised Tri-
partite Guideline for Good Clinical Practice (CPMP/
ICH/135/95) (“ICH GCP”) and the World Medical 
Association Declaration of Helsinki entitled “Ethical 
Principles for Medical Research Involving Human Sub-
jects”. Informed consent by the patients and/or the legal 
representative/next of kin was obtained, accordingly to 
the local legislations, for all patients recruited in the 
Core Dataset of CENTER-TBI and documented in the 
e-CRF.

Ethical approval was obtained for each recruiting site. 
The list of sites, Ethical Committees, approval numbers 
and approval dates can be found on the website: https:// 
www. center- tbi. eu/ proje ct/ ethic al- appro val

Data for the CENTER-TBI study has been collected 
through the Quesgen e-CRF (Quesgen Systems Inc, 
USA), hosted on the INCF platform and extracted via 
the INCF Neurobot tool (INCF, Sweden). For patient 
monitoring and data collection in the high-resolution 
repository, the ICM+ platform (University of Cam-
bridge, UK) and/or Moberg Neuromonitoring system 
(Moberg Research Inc., USA) were used.

Detailed data collection and pre-processing meth-
ods (artefact cleaning and down-sampling to 10 s aver-
aged time series) applied to high-resolution data of the 
cohort considered for our study have been described in 
preceding works [26, 27]. Arterial blood pressure (ABP) 
and intracranial pressure (ICP) 10-s averaged series 
were retrieved for this analysis.

The following demographic and low-resolution data 
were accessed using Opal software [28] on the 15th 
March 2021 and Neurobot version 3.0: age, sex, Glas-
gow Coma Scale (GCS), Marshall CT score, docu-
mented hypoxia or hypotension, length of ICU stay, 
decompressive craniectomy (DC), and Glasgow Out-
come Scale Extended (GOSE) assessed at 6 months. We 
considered the first 7  days from the day of injury. We 
performed both a daily analysis and for the whole 7-day 
period.

Patients were considered eligible for our study if high-
resolution data were available starting from the first 48 h 
from the day of injury (n = 253). We excluded patients 
with ICP recorded via the External Ventricular Drain 
(EVD, n = 35) and the ones that underwent DC (n = 29), 
as the ICP data quality and the validity of the PRx index 
in those cases is not fully established. Eighteen patients 
did not have GOSE outcome assessment at 6 months and 
their survival status is not known. Hence, the total num-
ber of patients included in the analysis was 171.

Measurements
ICM + software [13, 29] was used for data processing. 
Lower limit of reactivity (LLR) minute-by-minute time 
trends were derived from ABP and ICP 10-s averages 
using the multiwindow-based algorithm adapted for pro-
spective use as described in Beqiri et al. [22], where for 
our current research question the output variable was 
CPP at a certain threshold of PRx. PRx ranges from − 1 
to + 1. The higher the PRx, the worse the cerebrovascu-
lar reactivity. Different values of PRx above 0 have been 
suggested as thresholds for identifying the lower break-
point of the autoregulatory curve [30, 31]. In our study, 
when LLR was assessed using the PRx threshold of 0.2 or 
0.4 the statistical results were similar. Therefore, we only 
report results for LLR at PRx = 0.2.

Minute-by-minute time trend values of CPP, LLR and 
ICP were averaged for further analysis. For each of these 
variables, one average value over 7  days was calculated 
for each patient for the whole 7-day period analysis. 
Conversely, one average value for each day and for each 
patient was considered for the daily analysis.

For the feasibility objective, we calculated availabil-
ity (number of patients with LLR available at any point 
within the period considered) and yield (% of CPP 
recorded time with LLR available). The relationship 
between CPP and LLR was assessed using a metric of 
delta (i.e. deviation of ) CPP below LLR (mmHg), dose 
of CPP below LLR (mmHg*h), and the cumulative time 
period with CPP below LLR, relative to the total avail-
able CPP data period (%). The relationship with ICP 
was explored using dose of CPP below LLR when ICP 
was above different thresholds (20–22–25  mmHg), and 
with dose of ICP above different thresholds when CPP 
is below LLR, as explained in Fig. 1. Statistical results for 
the different ICP thresholds were similar; therefore, only 
results for the threshold of 20 mmHg are reported in the 
multivariate analysis.

Statistical analysis
Normality of continuous variables was assessed with 
histograms, quantile–quantile plots and Shapiro-Wilks 
test. Outcome groups were identified using the GOSE 
score [32]. Mortality was defined by GOSE = 1. The rela-
tionship with dichotomised outcome (dead vs alive) was 
assessed with Mann-U test (whole 7-day period, non-
parametric test for independent samples), Kruskal–Wal-
lis (daily analysis, nonparametric test for multiple-group 
comparison), univariate and multivariate logistic regres-
sion models. International Mission for Prognosis and 
Analysis of Clinical Trials (IMPACT) core [33] variables 
were considered for baseline characteristics adjustment 
in multivariate models. Backward stepwise elimination 
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was performed on multivariate models when appropri-
ate. AUC (CI 95%) were calculated and compared with 
the DeLong Test.

For completeness, the relationship with outcome 
dichotomised for distinguishing favourable and unfa-
vourable outcome groups was also explored. Unfavour-
able outcome was defined with GOSE < 4.

Results
Table  1 shows descriptive statistics of demographic, 
injury severity, admission and outcome variables of the 
171 patients included in the analysis.

Feasibility
The lower limit of reactivity (LLR) was available in 169 
patients (98.8%); the two patients with no discernible LLR 
had very high PRx (average values of 0.95 and 0.92) and 
un-survivable ICP (average values of 62 and 105 mmHg) 
from the very beginning of the recording. Median (IQR) 
LLR yield was 79.8% (68.8–87.4). Figure  2 shows the 

population distribution of LLR values over the first 7 days 
from injury. For 87 patients (51.5%), LLR average value 
for the 7-day period was below 60  mmHg. Thirty-one 
patients (18.3%) had average LLR values above 70 mmHg.

Outcome analysis for the whole 7‑day period
Univariate analysis
Median (IQR) LLR was higher (Mann-U test, p = 0.003) 
in patients who died (65  mmHg (58–72)) compared to 
patients who survived (59 mmHg (55–65)). Table 2 shows 
summary values for metrics that describe the relation-
ship between CPP and LLR and metrics that describe 
the relationship between CPP, LLR and ICP. Results 
based on delta CPP below LLR are not reported, as the 
difference between outcome groups was clinically irrel-
evant, although statistically significant. For completeness, 
dose of ICP above different thresholds is also described. 
Mann-U p values and univariate logistic regression p val-
ues and AUC (95% CI) for mortality prediction show that 
all metrics can distinguish mortality groups. DeLong test 

Fig. 1 Min-by-min time trends of metrics used for studying the relationship between CPP < LLR and high ICP. The first top chart shows an example 
of ICP (in white) pressure–time chart. The horizontal red line identifies ICP at 20 mmHg. The second top chart shows LLR (orange) and CPP (yellow) 
time trends. Note that this example captures a highly dynamic time trend of LLR, which can perhaps be viewed as controversial. However, given 
an equally dynamic nature of TBI pathology within its acute stage, and a growing appreciation of fragility of the CA mechanism, plausibility of such 
an event cannot be denied. Unfortunately, owing to the lack of other relevant measurements in this case (eg  CO2), explanation for this pattern 
could not be fully explored. The third chart shows in red the trend for delta CPP below LLR. Delta is calculated as ‘LLR – CPP’ and shown as absolute 
value. The area in yellow represents Dose of CPP below LLR only when ICP is above the threshold of 20 mmHg. The bottom chart shows in red the 
trend for delta ICP above 20 mmHg. Delta is calculated as ‘ICP – 20’ and showed as absolute value. The area in white represents dose of ICP above 
20 mmHg only when CPP is below LLR. ICP: intracranial pressure; LLR: lower limit of reactivity; CPP: cerebral perfusion pressure
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did not suggest a difference between models. Figure  3 
shows cohort distribution values of % of time spent with 
CPP below LLR and the relationship between mortality 
groups. Figure 4 shows receiver operating characteristics 
curves of univariate logistic models for LLR related vari-
ables both for the relationship with CPP (panel A) and 
for the relationship with ICP (panel B). The whole 7-day 
period from the day of injury was considered.

Metrics that describe the relationship between CPP 
and LLR could distinguish outcome groups dichotomised 
for unfavourable vs favourable outcome. This analysis 
was not within the main objectives of this study, hence 
the results are reported in Additional file  1: Table  1S, 
Figs. 1S and 2S.

Multivariate analysis
When dose of ICP above 20  mmHg (p = 0.382) and 
dose of CPP below LLR when ICP is above 20  mmHg 
(p = 0.004) were considered in a multivariate logistic 
regression for mortality prediction (p < 0.001, AUC 0.7 
(0.58–0.81)) without the IMPACT score ‘core’ covari-
ates, only dose of CPP below LLR when ICP is above 
20 mmHg had a significant impact.

AUC (95% CI), Akaike criterion (AIC) and p values 
for the models with IMPACT core variables as covari-
ates considered in the analysis are reported in Table  3. 
Metrics that describe the relationship between CPP 
and LLR were significant when added to models with 
IMPACT core parameters, with and without ICP related 
variables. None of the considered models showed supe-
riority at the DeLong test analysis. However, the model 
“IMPACT core + Dose CPP < LLR if ICP > 20” performed 
with the best combination of model evaluation met-
rics. AUC was 0.88 (0.81–0.94), the same as the model 
“IMPACT core + Dose ICP > 20”. AIC was the lowest 
(123.15) counting for almost 2 points difference form 
the model “IMPACT core + Dose ICP > 20 if CPP < LLR” 
which had an AIC of 125.12. Adjusted R2 was the highest 
(0.57), with 1% of improvement from model “IMPACT 

Table 1 Descriptive statistics of demographic, injury severity, 
admission and outcome variables

Variable N or Median % or IQR

Age

 Age (yrs) 53 (36–65)

Sex

 F 36 21

 M 135 79

GCS

 3–8 108 63

 9–13 34 20

 14–15 21 12

GCS Motor score

 1 52 30

 2 10 6

 3 16 9

 4 22 13

 5 44 26

 6 24 14

Pupils

 Both reactive 118 69

 One reactive 14 8.2

 Both unreactive 30 17.5

Hypoxia

 No 127 74

 Definite 15 9

 Suspect 4 2

 Unknown 25 15

Hypotension

 No 118 69

 Definite 19 11

 Suspect 9 5

 Unknown 25 15

Marshall CT score

 Diffuse injury I 5 2.9

 Diffuse injury II 63 36.8

 Diffuse injury III (swelling) 14 8.2

 Diffuse injury IV (shift) 3 1.8

 Evacuated mass lesion V 2 1.2

 Non-evacuated mass lesion VI 59 34.5

Duration of neuromonitoring

 Duration of the recordings (days) 5 (3.3–5.6)

Length of Stay

 ICU Length of Stay (days) 13 (8–20)

GOSE 6 months

 1 38 22.2

 3 47 27.5

 4 9 5.3

 5 37 21.6

 6 18 10.5

Table 1 (continued)

GCS Glasgow Coma Scale, CT computerised tomography, ICU intensive care unit, 
GOSE Glasgow Outcome Scale Extended, IQR interquartile range

Note 1: patients with GCS 14–15 (mild TBI) received ICP monitoring after 
deterioration leading to ICU admission for care and monitoring

Note 2: GOSE 2 and 3 were combined in this dataset

Variable N or Median % or IQR

 7 12 7

 8 10 5.8
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core + Dose ICP > 20” and “IMPACT core + Dose ICP > 20 
if CPP < LLR”.

Figure  4 shows receiver operating characteristics 
curves of multivariate logistic models for LLR related 
variables both for the relationship with CPP (panel C) 
and for the relationship with ICP (panel D) when added 

to IMPACT core variables. The whole 7-day period from 
the day of injury was considered.

Outcome analysis stratified by the day post injury
Mortality prediction for multiple days post injury analysis 
showed similar results for all the metrics used to explore 

Fig. 2 Distribution of average LLR for the first 7 days post injury. For each patient, the average value of LLR over the 7-day period from the day of 
injury was calculated. The histogram shows the distribution of the values so obtained. The grey rectangle highlights the fixed range recommended 
for cerebral perfusion pressure management by international guidelines. LLR: Lower limit of reactivity. N: Number of patients

Table 2 Univariate analysis for mortality prediction

The table shows univariate analysis for mortality prediction for variables that describe the relationship between CPP and LLR and between CPP, LLR and ICP. Variables 
are considered for the whole 7-day period from the day of injury. DeLong test did not show superiority of any of the models considered. p values are not corrected for 
multiple comparisons

CPP cerebral perfusion pressure, ICP intracranial pressure, LLR lower limit of reactivity

Variable Median 
(N = 171)

IQR Mann‑U test p 
value

Univariate logistic 
regression
p value

AUC (95% CI)

Relationship between CPP and LLR

 Dose of CPP below LLR (mmHg*h) 52.2 ( 16.4–118.6)  < 0.001 0.002 0.69 (0.58–0.80)

 Time with CPP below LLR (%) 12.8 ( 6.4–25.2)  < 0.001  < 0.001 0.73 (0.63–0.83)

Relationship between CPP below LLR and high ICP

 Dose of CPP below LLR when ICP > 20 mmHg (mmHg*h) 5.0 ( 0.8–18.9)  < 0.001  < 0.001 0.69 (0.58–0.80)

 Dose of CPP below LLR when ICP > 22 mmHg (mmHg*h) 2.6 ( 0.4–11.6)  < 0.001  < 0.001 0.69 (0.58–0.80)

 Dose of CPP below LLR when ICP > 25 mmHg (mmHg*h) 1.1 ( 0.0–8.2) 0.002  < 0.001 0.67 (0.56–0.78)

 Dose of ICP above 20 mmHg (mmHg*h) 15.8 ( 3.0–56.9)  < 0.001 0.003 0.69 (0.57–0.80)

 Dose of ICP above 22 mmHg (mmHg*h) 9.5 ( 1.5–31.9)  < 0.001 0.005 0.68 (0.56–0.79)

 Dose of ICP above 25 mmHg (mmHg*h) 4.6 ( 0.6–16.5) 0.002 0.009 0.67 (0.55–0.78)

 Dose of ICP above 20 mmHg when CPP < LLR (mmHg*h) 3.2 ( 0.3–13.8) 0.001  < 0.001 0.67 (0.56–0.79)

 Dose of ICP above 22 mmHg when CPP < LLR (mmHg*h) 1.6 ( 0.1–9.7) 0.002  < 0.001 0.67 (0.56–0.78)

 Dose of ICP above 25 mmHg when CPP < LLR (mmHg*h) 0.6 ( 0.0–5.4) 0.004 0.002 0.65 (0.54–0.77)
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the relationship between CPP and LLR. Hence here we 
report only results for the relationship between daily % of 
time spent with CPP below LLR (Fig. 5). The relationship 
with dichotomised outcome becomes significant start-
ing from the third day post injury (Kruskal–Wallis test, 
p < 0.05).

Discussion
This is the first exploratory study that evaluates in details 
the lower limit of reactivity (LLR) in a multicentre 
cohort of traumatic brain injury (TBI) patients. LLR was 
assessed with an automated algorithm adapted for pro-
spective use. We demonstrated that it is feasible to assess 
the lower limit of reactivity continuously in the majority 
of our cohort. We confirmed an earlier result [16] that 
the deviation of cerebral perfusion pressure (CPP) below 
LLR is associated with excess mortality.

The main finding is the validation of outcome pre-
dictive power of LLR in a multicentre cohort of TBI 
patients. Deviation of CPP below LLR was studied over 
the first days post injury, when the clinical management 
is time-critical. Dose of the amount of deviation of CPP 
below LLR and percentage of time with CPP below LLR 
were examined. Both metrics were significantly differ-
ent between mortality groups as defined by GOSE at 

6  months, also after adjusting for IMPACT covariates 
(Table  2, Fig.  4). This finding validates the results pub-
lished by Donnelly et al. [16] who showed that in a single-
centre cohort of TBI patients, the more time the patients 
spent with CPP below LLR, the higher the mortality. 
The next step in this direction will be to investigate the 
relationship between LLR time trend and admission and 
day-to-day ICU treatments and pathology progression. 
However, this type of analysis was beyond the scope of 
our work. Yet, our results highlight the importance of the 
relationship between LLR and outcome in TBI patients.

We observed that the relationship with survival 
becomes significant starting from the third day post 
injury (Fig. 5). This might be related to lower number of 
recordings available for day 1 (24 recordings). However, 
there was a similar number of recordings available on day 
2 (142 recordings) and day 3 (172 recordings) suggesting 
that this effect is not likely to result purely from the sta-
tistical uncertainties. On the other hand, inflammation 
and vasogenic oedema are likely to become important 
mechanistic factors contributing a reduction in intrac-
ranial compliance and perhaps influencing CA over this 
timescale [34]. It is therefore plausible to assume that 
these mechanisms might be involved in the detrimental 
effect that ischaemic episodes of CPP lower than LLR 

Fig. 3 Percentage of time spent with CPP below LLR. Panel A shows the distribution of average values of percentage of time spent with CPP 
below LLR for the 7 days from the day of injury. Panel B shows difference in the metric when comparing mortality groups. The % of time spent 
with CPP < LLR is higher in patients who died (Mann-U test, p < 0.001) CPP: cerebral perfusion pressure; LLR: lower limit of reactivity; N: number of 
patients
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have on the injured brain. Further research is needed for 
understanding the relationship between LLR and patho-
physiological aspects of TBI, with a particular focus on 
the dynamic aspects of cerebral autoregulation and its 
determinants.

It is well acknowledged that intracranial hyperten-
sion is related to poor outcome in TBI patients [35]. The 
injured brain appears more vulnerable to ICP insults 
when autoregulation is impaired [24]. Moreover, cerebro-
vascular reactivity (as estimated by PRx) is independently 

associated with outcome over and above the IMPACT 
prognostic model covariates [26]. However, those stud-
ies looked at the impairment of vascular reactivity with-
out distinguishing whether this happened below the 
lower limit or above the upper limit of reactivity. We also 
explored the relationship between CPP below LLR and 
high ICP and compared their ability in predicting out-
come for mortality groups (Fig. 1, Table 2 and Fig. 4). The 
dose of ICP above different thresholds did not perform 
any better than the dose of CPP below LLR or the dose 

Fig. 4 Univariate and multivariate logistic regression ROC curves for mortality prediction. A selection of Metrics that describe the relationship 
between LLR and CPP are considered in Panel A (univariate analysis) and C (multivariate analysis considering IMPACT core variables). Comparison 
with ICP is considered in Panel B (univariate analysis) and D (multivariate analysis considering IMPACT core variables). Models AUC 95% CI values are 
described in Tables 2 and 3. LLR: lower limit of reactivity; CPP: cerebral perfusion pressure; ICP: intracranial pressure; IMPACT: International Mission for 
Prognosis and Analysis of Clinical Trials. AUC: area under the curve
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of CPP below LLR when ICP was above the threshold. Of 
note, the dose of ICP above threshold lost significance 
when considered together with the dose of CPP below 
LLR when ICP was above the threshold in a multivariate 
model (Results, Multivariate analysis section). This find-
ing is in line with the current literature [24] and supports 
the concept that ICP insults are more detrimental when 
they cause cerebral ‘hypoperfusion’, as defined by epi-
sodes of CPP below LLR.

LLR could be calculated in 98% of patients of the 
CENTER-TBI cohort considered for this study. The yield 
of LLR was around 80% of CPP recorded time, similar to 

the yield performance of CPPopt in this cohort [23]. Both 
these findings are relevant for putative clinical applica-
tion. They translate in possible availability of LLR auto-
mated assessment for majority of patients and for most 
of the time. The fact that these results were obtained 
with an automated algorithm that was adapted for bed-
side prospective use in TBI patients, strengthens the 
clinical relevance of our findings. A few considerations 
are worth mentioning for patients where LLR could not 
be calculated. These patients had very high values of 
ICP and completely lost cerebrovascular reactivity since 
the beginning of their recording (that is close to the 

Table 3 Multivariate logistic regression analysis for mortality

The table presents the multivariate logistic regression analysis for mortality prediction for variables that describe the relationship between CPP and LLR and between 
CPP, LLR and ICP, with IMPACT core covariates. The table shows only models where the tested variable added significant contribution in predicting mortality, when 
considered together with the IMPACT core variables. IMPACT: International Mission for Prognosis and Analysis of Clinical Trials

ICP intracranial pressure, CPP cerebral perfusion pressure, LLR lower limit of reactivity. AIC  Akaike Information Criterion, AUC   Area Under the Curve

Model AUC (95% CI) AIC p value AdjustedR2

IMPACT core 0.84 (0.78–0.91) 135.06  < 0.001 0.49

IMPACT core + Dose ICP > 20 0.88 (0.82–0.94) 125.12  < 0.001 0.56

IMPACT core + Dose CPP < LLR 0.86 (0.79–0.93) 128.69  < 0.001 0.54

IMPACT core + %Time CPP < LLR 0.85 (0.78–0.92) 130.46  < 0.001 0.53

IMPACT core + Dose CPP < LLR if ICP > 20 0.88 (0.81–0.94) 123.15  < 0.001 0.57

IMPACT core + Dose ICP > 20 if CPP < LLR 0.87 (0.81–0.94) 125.42  < 0.001 0.56

Fig. 5 Relationship between daily percentage of time with CPP below LLR and outcome. Panel A shows boxplots of percentage of time with CPP 
below LLR for each day post injury. Numbers in brackets represent number of recordings available at each day. Panel B shows the relationship of the 
metric with mortality groups for each day. Black asterisks indicate statistically significant difference between mortality groups (Kruskal–Wallis test, 
p < 0.05). Numbers in brackets show the absolute number of patients that died at each day. A total number of 13 patients died within the first 7 days 
from the day of injury. CPP: cerebral perfusion pressure; LLR: lower limit of reactivity
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beginning of their ICU admission) and had clearly un-
survivable injuries. If autoregulation is completely lost, 
that is PRx is always at very high values, the relationship 
between PRx and CPP used for assessment of LLR should 
not be able to identify any levels of CPP corresponding 
to LLR. Even if from the mathematical point of view this 
could be feasible in certain cases, the physiological inter-
pretation would be meaningless. Simply, at any value of 
CPP, autoregulation would be impaired[36]. The abil-
ity of disregarding possible mathematical outputs that 
would not have any physiological meaning, highlights 
the improvement in terms of reliability of this automated 
algorithm [22].

The range of LLR values over the first 7  days post 
injury covers a large span, as shown in Fig.  2. Current 
international guidelines[37] recommend a standard 
management of CPP between 60 and 70  mmHg (range 
highlighted in grey in Fig. 2). Hence, 60 mmHg could be 
considered a safe lower CPP limit, according to guideline 
recommendations. On the other hand, the distribution 
of the pressure reactivity based CPP lower limit shows 
that for only half of these patients LLR is lower than 
60 mmHg. For the remaining half, average LLR is higher 
than 60, and even higher than 70 mmHg in 18% of cases. 
Keeping CPP within 60–70  mmHg might represent a 
risk for hypoperfusion episodes for those patients whose 
LLR is above this range. It is worth noting that average 
LLR values were higher in patients that died (likely from 
uncontrollable ICP). Even if this observation is based on 
a population level analysis and on a whole monitoring 
period, it supports the idea of a right-shift of the autoreg-
ulatory range or, possibly, a narrower autoregulatory 
range in this group of patients [21]. An individualised 
LLR-based CPP lower safety limit, continuously assessed 
at the bedside, and able to capture the dynamic aspect of 
autoregulation, could help in preventing brain hypoper-
fusion and possible ischaemic insults in TBI patients.

The role of LLR as a dynamic individualised CPP tar-
get in TBI patients remains uncertain. As opposed to 
the optimal cerebral perfusion pressure (CPPopt, the 
pressure in the middle of the autoregulatory plateau), 
the lower limit of autoregulation, or reactivity, is less 
investigated. From a practical point of view, targeting 
CPP at LLR as such might cause erroneous therapeutic 
management in TBI patients. Indeed, LLR represents 
an autoregulation based lower safety threshold for CPP, 
that means that CPP should be kept above at least LLR at 
all times. Instead, the advantage of having a continuous 
assessment of LLR at the bedside lies on the fact that the 
clinical team would be aware of the CPP range available 
for action. If both CPPopt and LLR were continuously 
available, and the range between CPPopt and LLR was 
wide, then aiming for CPP just above LLR (instead of the 

much higher CPPopt) could represent a safe and effec-
tive CPP management. This would spare vasopressors, 
fluid therapy, or sedation required to push arterial blood 
pressure higher or to decrease ICP. If, on the other hand, 
the autoregulatory range happened to be narrow, then 
aiming for the middle of the plateau, the CPPopt value, 
would be warranted. An additional (and most important) 
consideration is the uncertainty associated with LLR 
estimation and the fact that this quantity results from a 
superposition of vascular responses over a wider brain 
region, parts of which may well be under-perfused even 
when CPP is above LLR [41, 42]. Therefore CPP > LLR 
does not exclude the possibility of focal ischaemia. 
Hence, targeting CPPopt might still, for the moment, 
represent a safer option. However, LLR may represent an 
absolute region of danger. Further cautious investigation 
is required to highlight possible applications of LLR in 
TBI management.

Limitations
We should admit that our analysis has some limitations. 
First, this study is a retrospective analysis. The cohort is 
limited compared to other TBI cohorts where autoregu-
lation has been studied. EVD and DC patients were 
excluded, as special considerations are needed for the 
pressure reactivity index (PRx) calculations.

Our model assumes that threshold of PRx set for iden-
tifying loss of autoregulation, is the same for all patients. 
This might seem to breach the initial postulate to avoid 
‘one size fit all’ policy and is an important methodologi-
cal drawback of the LLR methodology, when compared 
to the CPPopt methodology. CPPopt does not depend on 
any subjective value or threshold, as it is identified by the 
optimum of the U-shape curve, which can correspond to 
any PRx value. The literature available does not provide 
with an ultimate gold standard threshold for defining 
LLR based on PRx in TBI patients [16, 38–41], and our 
goal was to validate our approach, rather than to suggest 
any new thresholds. Even though the threshold for PRx is 
fixed, it leads to different LLR values in different individ-
uals. However, we advocate that methodological research 
is required to identify the LLR without the necessity of a 
fixed threshold.

In our current study we did not assess the physiological 
time variability of LLR and the patients’ LLR trajectories, 
along with the determinants involved in the changes of 
the time trends. Nor we included confounders like car-
bon dioxide and vasopressors in our multivariable analy-
sis. These limitations warrant to be investigated in future 
studies.

Whether drops of cerebral perfusion pressure (CPP) 
below the continuously assessed PRx-based lower limit 
of autoregulation (LLR) truly translate into ischaemic 
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insults in the human injured brain, remains to be estab-
lished. Autoregulation is only one of the mechanisms 
involved in cerebral blood flow regulation. In fact, 
autoregulation works together with chemo-regulation, 
neuronal regulation and endothelium-dependent regu-
lation. In this work, we focused on the association of 
autoregulation based CPP lower limit with outcome 
assessed at 6  months with the GOSE score. This infor-
mation is certainly relevant in suggesting the possible 
impact of LLR in management of TBI patients. How-
ever, associations with cerebral ischaemic related vari-
ables that are close in time to the hypotensive episode, 
would provide proof of concept knowledge. Multimodal-
ity monitoring data derived from brain tissue oxygen and 
lactate/pyruvate ratio as well as brain damage biomark-
ers and imaging studies, might improve our understand-
ing of the effect that episodes with CPP below LLR have. 
We did not perform such investigation. Future studies are 
required for addressing this issue.

Conclusions
Using a multicentre prospective cohort, we confirmed 
that CPP below LLR during the first seven days post 
injury positively correlates with six-months mortality. 
This supports future investigations into personalised and 
dynamic CPP targets in TBI care.
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