
SCUOLA DI DOTTORATO

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

Dipartimento di / Department of

Informatics, Systems and Communication

Dottorato di Ricerca in / PhD program Computer Science Ciclo / Cycle XXXV

Curriculum in (se presente / if it is)

EVIDENCE BASED SOFTWARE

TESTABILITY MEASUREMENT

Cognome / Surname Guglielmo Nome / Name Luca

Matricola / Registration number 780713

Tutore / Tutor: Prof. Paola Bonizzoni

Cotutore / Co-tutor:
(se presente / if there is one)

Supervisor: Prof. Giovanni Denaro
(se presente / if there is one)

Coordinatore / Coordinator: Prof. Leonardo Mariani

 ANNO ACCADEMICO / ACADEMIC YEAR 2021/2022

iii

Acknowledgments

I would like to extend my thanks to all the people that have helped and supported
me during this long journey.

In particular, I would like to express my deepest appreciation to my super-
visor Prof. Giovanni Denaro for his invaluable supervision, help and support
during the course of my PhD.

Additionally, I would also like to thank my fellow colleagues with which I
shared many joyful moments.

Finally, I would like to express my gratitude to my family, for their presence
and support, without which it would not have been possible to complete this
journey.

v

Abstract

Software testing is a key activity of the software life-cycle that requires time
and resources to be effective. One of the key aspects that influences the cost of
the testing activities and ultimately the effectiveness of those activities for re-
vealing the possible faults is software testability. Software testability expresses
how difficult or easy it is to test a software artifact. The availability of esti-
mates on the testability of the software under test and the components therein
can support test analysts in anticipating the cost of testing, tuning the test
plans, or pinpointing components that should undergo refactoring before test-
ing. Several studies have been performed since the 1990 on the topic; the first
ones focused more on giving an appropriate definition for software testability,
while later ones focused on making software more testable and finding ways to
measure software testability reliably. It is on this last aspect that we focused
for this research work. Research on measuring software testability has the
main objective of evaluating the testability of software components with the
final goal of improving their testability, and better estimate the effort need in
the testing phase. The current approaches proposed for estimating testability
can mostly be categorized in: estimating testability by analyzing the fault-
sensitivity of a software and estimating testability by analyzing the structure
of the code of a software. Analyzing fault-sensitivity was really popular in the
90s, but the research on it has progressively dwindled in favor of the approach
of using static software metrics, as representatives to the design characteristic
of a software, to estimate the testability of the software. These approaches
have some intrinsic limitations, admittedly highlighted in the studies, such as
being costly or focusing on design characteristics that estimate testability only
indirectly. In this research work we introduce a new technique for estimat-
ing software testability in which the novelty is to exploit automated test case
generation to investigate to which extent a program may or may not suffer
of testability issues. In a nutshell, our technique consists in executing (possi-
bly multiple times) a test generator of choice against a program under test,
and then automatically analyzing the outcomes of the test generation activity
to extract evidences that the generated test cases are fostering effective (or
ineffective) testing, due in particular to reasons that can be specifically rec-
onciled with design choices that characterize the current program. We regard

vi

to testability issues as design choices that hamper the easiness of achieving
effective testing. The higher the amount of the evidences our technique can
collect for a given program in favor of the presence or the absence of testabil-
ity issues in the program, the higher or the lower, respectively, the testability
estimate that our technique will be reporting for that program. To validate
our proposal, we developed a tool to concretely obtain the testability values
of software artifacts and we performed many empirical experiments with the
aim of finding if our technique is able to highlight testability issues reliably.
Moreover, we compared our results against some of the most popular metrics
that are currently suggested as potential estimators of testability. The results
show the potential of our technique for measuring software testability even
when compared against other proposed metrics.

vii

Contents

1 Introduction 1

2 State of the art 5
2.1 Freedman and the boom of Testability studies 5
2.2 Introduction to software testability 6
2.3 Measurement of testability . 10

2.3.1 Estimating testability by analyzing the structure of the
code of a software . 10

2.3.2 Estimating testability by analyzing the fault-sensitivity
of a software . 16

2.4 Open problems . 18

3 Evidence-Based Testability Estimation 21
3.1 Foundations for evidence-based testability measurement 22
3.2 Evidence-based testability measurement via automatically gen-

erated test cases and seeded faults 26
3.2.1 Sampling the test space with automated test generation 26
3.2.2 Sampling the fault space with mutation-based fault seed-

ing . 26
3.2.3 Sampling-based testability measurements 28

3.3 Our proposal for evidence-based testability measurement . . . 30
3.3.1 Extrapolating the set of baseline mutants 31
3.3.2 Obtain testability scores (final definitions) 32
3.3.3 Conclusiveness of the testability scores 39

3.4 Prototype . 40
3.4.1 API augmentation and test cases pruning 41
3.4.2 Test Generation . 41

viii Contents

3.4.3 Mutation Analysis . 45

4 Experiments and results 49
4.1 Subjects . 51
4.2 Qualitative study . 52

4.2.1 Experimental Settings 52
4.2.2 Results . 53

4.3 Quantitative study on historical data 59
4.3.1 Experimental setting 59
4.3.2 Ground Truth . 61
4.3.3 Results . 63

4.4 Controlled study with developers 75
4.4.1 Experimental settings 75
4.4.2 Results . 77

4.5 Summary of the findings . 83
4.6 Threats to validity . 84

5 Conclusions 87
5.1 Future works . 88

Bibliography 91

1

Chapter 1

Introduction

Software testing is a key activity of the software life-cycle that requires time
and resources to be effective. One of the key aspects that influences the cost
of the testing activities and ultimately the effectiveness of those activities
for revealing the possible faults is software testability. Software testability
expresses how difficult or easy it is to test a software artifact. The availability
of estimates on the testability of the software under test and the components
therein can support test analysts in anticipating the cost of testing, tuning the
test plans, or pinpointing components that should undergo refactoring before
testing.

The concept of testability is not new to other domains, in fact the first
works on software testability took inspiration from testability applied to hard-
ware [1], dynamical systems and automata [2] and logic circuits [3]. Several
studies have been performed since the 1990 on software testability, in particu-
lar, the first ones focused more on giving an appropriate definition for software
testability, while later ones focused on making software more testable (Design
for testability) and finding ways to measure software testability reliably. This
last aspect is at the core of our research work.

Research on measuring software testability has the main objective of eval-
uating the testability of software components with the final goal of improving
their testability, especially in safety-critical systems, and better estimate the
effort need in the testing phase. The current approaches proposed for estimat-
ing the testability, most of the times, rely on the analysis of the probability
of revealing faults (fault sensitivity analysis) or derive potential testability
issues from the design characteristics of a software (quantified software met-

2 1. Introduction

rics, like lines of code and number of method calls), respectively. Analyzing
fault-sensitivity was really popular in the 90s, but the research on it has pro-
gressively dwindled in favor of the approach of using software metrics, as repre-
sentatives to the design characteristic of a software, to estimate the testability
of the software. Both approaches have some intrinsic limitations, admittedly
highlighted in the studies, such as being costly or focusing on design charac-
teristics that estimate testability only indirectly.

In this research work we introduce a new technique for estimating software
testability in which the novelty is to exploit automated test case generation
to investigate to which extent a program may or may not suffer of testability
issues. In a nutshell, our technique consists in executing a test generator of
choice against a program under test, and then automatically analyzing the
outcomes of the test generation activity to extract evidences that the gener-
ated test cases are fostering effective (or ineffective) testing, due, in particular,
to reasons that can be specifically reconciled with design choices that char-
acterize the current program. The higher the amount of the evidences our
technique can collect for a given program in favor of the presence or the ab-
sence of testability issues in the program, the lower or the higher, respectively,
the testability estimates that our technique will be reporting for that program.
Compared to pursuing testability estimations based on measuring design char-
acteristics that may correlate with testability, our technique differs in that it
aims at measuring testability directly, that is, by experiencing with pursuing
actual test cases and test objectives against the target program. Compared
to estimating fault sensitivity, our technique is natively designed to work with
sampled test suites, whereas fault sensitivity requires test cases designed to
extensively traverse the possible execution flows in the program, which prac-
tical test generators can unlikely provide. In practice, our technique relies on
a search-based test generation tool to automatically generate test cases [4],
and refer to mutation-based fault seeding to sample possible faults [5]. We
then refer to the generated test cases and the seeded faults to extrapolate
the testability evidences. Our testability metric is fully automatic since it
depends only on automatically generated test cases and automatically seeded
faults. Moreover, our testability metric is flexible and can be estimated for
software artifacts at different levels of granularity, e.g., methods, classes or
larger components.

3

To validate our proposal, we performed a set of empirical experiments with
the aim of finding if our technique is able to highlight testability issues reliably.
The goal of the first experiment was to manually validate that, a set of classes
for which our metric show low (resp. high) testability scores, effectively con-
tains elements that lead to higher (resp. lower) difficulties during testing. In
practice, we selected three open source Java projects and computed the class
level testability scores for all their classes with our metric. For each project
we extrapolated two set of classes for which our metric showed the lowest and
highest testability score, respectively. For each one these classes we tried to
identify which were the elements that contributed to the obtained testability
score, if any. Our findings were that the classes that our approach highlights
as having testability issues effectively contain elements that lead to potential
difficulties in the testing phase. In the second experiment, we empirically stud-
ied the effectiveness of our testability estimates with respect to many methods
of three large software projects in Java. In particular, we analyzed to what
extent our estimates correlate with the potential test effort of the methods
that were available in the considered projects, expressed as a set of code level
metrics extracted from the test cases associated to a method. We compared
the correlation yielded by our estimates with the ones yielded by a selection
of popular software metrics for object-oriented programs. Our main findings
were that our testability estimate contribute to explain the variability in the
development effort of the test cases, while capturing a different phenomenon
than the size of the software, whereas the software metrics that correlated
with the test effort were tightly correlated with the size of the software as
well. Furthermore, motivated by such findings, we explored the combination
of our metric with the software metrics, revealing significant synergies to im-
prove the testability estimations. In the third experiment we focused once
again on the correlation with respect to the test effort, measured with a dif-
ferent approach. In this experiment we provided to a third-party developer
a set of methods to test from an open source Java project. The third-party
developer was given a set of instructions that specified how testing should be
conducted and what information they needed to report for each of the testing
activities. The reported information for each tested method needed to in-
clude: a subjective evaluation of the difficulty of testing, the final instruction
and branch coverage scores and finally, the time taken for reaching maximum

4 1. Introduction

statement and branch coverage. The results of the study reaffirm the findings
of the previous experiments, highlighting that our metric is able to capture
elements that lead to having testability issues in a software.

The results of the experiments show the potential of our technique for
measuring software testability even when compared against other proposed
metrics. On the other hand, being a new technique there is still space for
many improvements on it, especially related to automatic test generation,
that could be improved to better fit our needs. We interpret our findings as
supporting the research hypothesis that it is viable and useful to estimate
testability based on empirical observations collected with automatically gen-
erated test cases. We underscore that we do not blame the use of software
metrics for testability predictions, rather we aim at complementing that rele-
vant approach, as the research done so far has ignored the relevant dimension
of the testability problem that we are addressing in this work.

This manuscript is organized as the following:

• Chapter 2 will focus on the state of the art for software testability, giving
an overview of the aspects on which research has focused on, and going
more in details regarding the studies that focus on the measurement of
software testability.

• Chapter 3 will introduce our novel technique for measuring software
testability and provide a concrete way for computing it.

• Chapter 4 contains a set of empirical experiments that we performed
with the aim of validating the effectiveness of our technique, with com-
parisons against some of the metrics that have often been suggested in
the state of the art studies.

5

Chapter 2

State of the art

2.1 Freedman and the boom of Testability
studies

The earlier works on software testability derived their ideas from the work
already done on hardware testability (the testability of electronic circuits).
Freedman [6] defined a testability measurement method called "domain testa-
bility". Programs that are domain testable have no input-output inconsisten-
cies, consequently they are "easily testable". Domain testability is defined in
terms of two properties: controllability and observability. Informally, a soft-
ware component is controllable if, given any desired output value, an input
exists which "forces" the component output to that value, consequently con-
trollability is the ease of producing a specified output from a specified input.
Conversely, a component is observable if distinct outputs are observed for dis-
tinct inputs, consequently observability is the ease of determining if specified
inputs affect the outputs. These two concepts were not new and came from the
fields of dynamical system and automata [2] and hardware testability [1]. In
practice Freedman proposed to measure the number of bits required to imple-
ment observable and controllable extensions to obtain an index of observability
and controllability, and consequently a measure of testability. Extensions are
pieces of code that are used to adapt the specification of a component so that it
becomes observable and controllable. Observable extensions add inputs to ac-
count for previously implicit states in the component. Controllable extensions
modify the output domain such that all specified output values can be gener-

6 2. State of the art

ated. The paper proposed a study on a limited subset of ADA-like expressions
and procedures for which a measure of observability and controllability were
derived, and the results were validated through a survey-like based approach
in which 8 students were asked to test two different specifications of the same
program, one less "domain testable" than the other.

2.2 Introduction to software testability

Following Freedman study, we could say software testability research became a
hot topic and several works followed across the years. Research on testability
can be categorized on three different aspects:

• Definition of software testability and factors affecting it

• Design for testability

• Measurement of testability

Definition of software testability and factors affecting it

Literature gives many definitions for Software Testability [7], but they can be
categorized mainly in two groups: definitions that focus on the facilitation
of testing (test efficiency) and definitions that focus on the facilitation on
revealing the faults (test effectiveness). These definitions come either from
standards or published papers. Some definitions that focus on the facilitation
of testing aspect are:

• IEEE standard 610.12-1990 [8]-Attributes of software that bear on the
effort needed to validate the software product.

• ISO standard 12207:2008 [9]-Extent to which an objective and feasible
test can be designed to determine whether a requirement is met.

• Yeh et al. [10]-A program’s property that is introduced with the intention
of predicting efforts required for testing the program.

Some definitions that focus on the facilitation on revealing the faults are:

• Voas et al. [11]-Software testability is the tendency of code to reveal ex-
isting faults during random testing.

2.2 Introduction to software testability 7

• Bertolino et al. [12]-The testability of a program is the probability that
a test of the program on an input diagram from a specified probability
distribution of the inputs is rejected, given a specified oracle and given
that the program is faulty.

• Yu et al. [13]-Probability that existing faults will be revealed by existing
test cases.

In rare cases, some definitions take into account both aspects such as Le Traon
et al. [14] that defined testability as the following: Testability is a property of
both the software and the process and refers to the easiness for applying all
the [testing]steps and on the inherent of the software to reveal faults during
testing. Some papers give some specialized definitions of testability. For ex-
ample [15, 16] defined testability in terms of controllability and observability.
In particular, Poston et al. [15] wrote the following: Domain testability refers
to the ease of modifying a program so that it is observable and controllable.

As we can see there is not an established universal definition to testa-
bility. Each study typically focuses only on one, or a part, of the potential
characteristics that should represent the concept of testability. This issue
is exacerbated by the fact that the literature mentions several factors that
could affect testability, but the studies focus only on a part of them. In par-
ticular some of the most mentioned factors that could affect testability are:
observability, controllability, complexity, dependency, understandability and
inheritance. While each one of these factors is defined in a slightly different
way in each of the studies, we can give the following general definitions to
each of them:

• Observability - Observability determines how easy it is to observe the
behavior of a program in terms of its outputs, effects on the environment,
and other hardware and software components.

• Controllability - Controllability determines how easy it is to provide a
program with the needed inputs to exercise a certain condition or path,
in terms of values, operations, and behaviors.

• Complexity - Software complexity is a term that encompasses numerous
properties of a piece of software (similar to testability), all of which affect
internal interactions. Simplicity is seen as the opposite of complexity,

8 2. State of the art

which is defined as the degree to which a software artifact has a single,
well-defined responsibility.

• Dependency - It mainly refers to cohesion and coupling. Cohesion refers
to the degree to which the elements inside a module belong together.
Coupling is the degree of interdependence between software modules.

• Understandability - Understandability is the degree to which a software
artifact is documented or self-explaining.

• Inheritance - It measures the depth of a class in the inheritance tree.

Design for testability

Design for testability is the name used to identify the set of techniques pro-
posed for designing software that prevents the insurgence of testability issues.
Design for testability is not a concept new to software design, in fact it an-
tedates it and it is of great importance in the field of logic circuits develop-
ment [17]. The studies on design for testability for logic circuits, such as the
one from Fujiwara [3], established design for testability as an essential phase of
the development process of hardware logic circuits since, if we compare them
with software, it is impossible to fix hardware bugs once found, so it is essential
that logic circuits can be easily tested before entering mass production.

When it comes to software, Binder [18], besides doing a recap of what
was known about software testability at the time, proposed some architecture
schema that could be applied to object-oriented systems with the goal of
improving their testability. His idea was to interpose a driver component
between the class under test and the test cases, this driver would allow for an
easier interfacing with the class under test thereby raising the testability by
making test cases easier to develop.

Across the years other researchers proposed their ideas to make the testing
of software easier [14, 19–21]. The common point in these works is that they
are often solutions specific to some environment and would need adaptations
in other contexts. Some studies focused on the identification of testability
anti-patterns: patterns that should be avoided in testable design. Baudry
et al. [22–25] published a series of studies on the subject of UML testability.
These studies focused on identifying testability anti-patterns by analyzing the

2.2 Introduction to software testability 9

object-to-object dependencies in the class diagram. In particular, two testa-
bility anti-patterns have been identified: class interactions, which are inter-
actions between different classes, and self-usage, that corresponds to a class
that uses itself by transitive usage dependencies. The papers define a model
that is derived from the class diagram and from which it is possible to de-
rive the testability anti-patterns and their complexity. Mouchawrab et al. [26]
proposed a framework to assess testability of designs modeled with the UML.
They also proposed a set of operational hypotheses for each attribute that can
explain its expected relationship with testability; but the hypotheses are not
empirically validated. Gao and Shih [27] said that testability should consider
five dimensions that should be taken into account during component analysis
and design: controllability, observability, understandability, traceability and
test support capability. It is only a preliminary work applied on a small num-
ber of examples and cites the need of a more systematic solution to be used
in practice. In some rare cases, in particular in the field of safety-critical sys-
tems, programming languages have been created taking design for testability
into account. One such example is the SCADE programming language.

Measurement of testability

Research on measuring software testability has the main objective of evalu-
ating the testability of software components with the final goal of improving
their testability, especially in safety-critical systems, and better estimate the
effort need in the testing phase. Several approaches have been proposed across
the years that aim at satisfying both or only one of the two aspects of testabil-
ity (efficiency/effectiveness). The approaches used for estimating testability
can mostly be categorized in: estimating testability by analyzing the fault-
sensitivity of a software and estimating testability by analyzing the structure
of the code of a software. These estimates, most of the times, are concretely
performed by analyzing the probability of revealing faults and using static
software metrics, respectively. Analyzing fault-sensitivity was really popular
in the 90s, but the research on it has progressively dwindled (mainly due to
its drawbacks in terms of performance) in favor of the approach of using static
software metrics to estimate the testability of the software.

Chapter 2.3 will detail the techniques that have been proposed across the
years to measure testability, while chapter 2.4 gives a summary of what are

10 2. State of the art

the current limitations of the proposed techniques.

2.3 Measurement of testability

This section will go in detail about the techniques that have been proposed
for measuring software testability at the state of the art. The first subsection
(2.3.1) will focus on the approaches that propose to estimate testability by
analyzing the structure of the code of a software, while the second subsection
(2.3.2) will discuss the approaches that suggest the estimation of testability
by analyzing the fault-sensitivity of a software.

2.3.1 Estimating testability by analyzing the structure
of the code of a software

Extracting structural information from software static metrics

Most of the studies focusing on the aspect of measuring software testabil-
ity [28–43], especially in the field of object-oriented programming, suggest
that it can be derived from static software metrics that capture the static
structure of software artifacts. The most common static metric is the num-
ber of lines of code, which is referenced in almost all of the studies. The
need of more complex and structured metrics emerged when Object Oriented
languages started becoming popular. Several measures for Object Oriented
languages have been proposed, but the most frequently referenced ones are
from Chidamber and Kemerer [44], that later gave the name to this set of
metrics: the CK metrics. Included in this set of metrics we find: Weighted
Methods per Class (WMC), Response For a Class (RFC), Lack of Cohesion
Methods (LCOM), Coupling Between Objects (CBO), Dept of Inheritance
Tree (DIT) and Number Of Children (NOC). Table 2.1 shows some of the
most widely studied metrics in this research field.

The studies that aim at estimating software testability by extracting struc-
tural information from software static metrics do so by trying to find a cor-
relation between these metrics and the testability of the analyzed software.
The objective is to identify which are the metrics that are best predictors of
testability. For the ground truth, since testability cannot be directly mea-
sured, all the studies make use of information that can be derived from the

2.3 Measurement of testability 11

test cases provided in the analyzed software projects. In particular, typical
proxy measures used as substitutes of testability are the size of the test suite
(number of test cases and number of lines of code) or characteristics of the
test cases such as the number of assertions. Some studies [29] made use of
other test effort approximators such as the time required for testing.

The first studies focusing on using static metrics as proxies to testability
used a small subset of static metrics on imperative programming languages;
one of them was the one from Khoshgoftaar et al. [45, 46]. Khoshgoftaar et
al. combined control flow analysis metrics such as number of edges, number
of nodes, etc. with static metrics such as McCabe cyclomatic complexity by
feeding them to a neural network to be able to create a model with the aim
of predicting testability. In this case, the dependent variable (testability) was
measured following the indication given by Voas [47]. The proposed technique
had only been validated on a single software project.

Most of the studies focusing on using static metrics as a proxy of testabil-
ity have been performed more recently in object-oriented languages. Bruntik
and van Deursen [28,30] were the first to properly apply the concept of using
static metrics to estimate testability in the field of object-oriented languages,
following studies improve upon it with proposing additional metrics, evalua-
tion methods and empirical studies. Gupta et al. [29] proposed to integrate
RFC, CBO, DIT and CC in a unique measurement with the help of a fuzzy
model. The idea was that the resulting unified metric should represent testa-
bility better compared to using each metric independently. Singh et al. [31]
created an artificial neural network model to predict testability starting from
several software static metrics. Alshawan et al. [41] proposed a set of static
metrics specific to web applications that should help in identifying testabil-
ity issues. These metrics focused heavily on web forms. For example, in the
case of fields inside of the forms, they took into consideration the number of
unbounded fields (NUF) and the number of possible combination of choices
for enumerable fields (NEC). Moreover, they counted the number of forms
and form fields that invoke JavaScript functions that change the interface
and made a distinction between the ones that modify only test and display
elements, the ones that modify existing fields and the ones that modify the
form structure. Khalid et al. [33] proposed two additional static metrics that
aimed at better estimating the complexity of an object (AHF, Attribute Hid-

12 2. State of the art

ing Factor and MHF, Method Hiding Factor) and evaluated their performance
in the task of testability prediction. AHF is defined as the portion of hidden
attributes in the class, MHF is defined as the portion of hidden methods in
a class. In this case, hidden means that the attributes/methods are encapsu-
lated (e.g. private methods and fields). Badri et al. [32,35] defined a different
way of measuring LCOM with the objective of better representing the lack
of cohesion between methods and measured its correlation and the correla-
tion of other static metric with respect to the size of the test cases. Zhou et
al. [37] made use of a linear regression model to combine several software static
metrics with the aim of better predicting testability. Da Cruz and Medeiros
Eler [38] reasoned that other possible proxies of testability could be the line
and branch coverage and mutation score. In detail, they use the test suite
provided in a set of selected software and performed a correlation study to be
able to identify if some static metrics correlates with code coverage and muta-
tion score. Terragni et al. [40] expanded upon this concept by making use of
coverage data to apply a normalization to the static metrics before performing
a correlation study with respect to the size of the test cases.

What emerged from these studies is that the metrics that seem to be bet-
ter predictors of testability of a class are LOC, WMC, DIT, NOC, FOUT,
CBO, RFC, LCOM. But there are contrasting results between different stud-
ies: i)Bruntink et al. [28, 30] do not identify WMC and LCOM as good pre-
dictors differently to other studies [29, 31, 35, 36, 38] ii)NOC is identified as
a good predictor only by Singh et al. [31], while others have not found such
correlation [28, 30, 36, 40] iii)DIT is identified as a good predictor by Singh
et al. [31] and Gupta et al. [29], but not by other studies [28, 30, 36, 40]. As
several studies highlight [28,30,39,40], a common threat to validity is that the
correlation experiments have been performed on a limited number of projects
which could skew the results.

There exist a set of studies that, while making use of software metrics to
derive testability, focus on specific subjects. Yu et al. [13] proposed a way
of measuring testability for concurrent programs, since they introduce a se-
ries of complications in the testing phase, like non-determinism. To solve this
problem, they defined a series of concurrency-related metrics that are evolu-
tions of existing static metrics, such as Concurrency Cyclomatic Complexity,
or straight up new ones, such as Synchronization Point Count that measure

2.3 Measurement of testability 13

the number of nodes involving synchronization operations in a function. At
the end they performed an empirical study on 8 concurrent programs and
show that their metrics are better predictor of testability when used for con-
current programs. Tahir et al. [48] proposed a new way to estimate coupling
that instead of using static analysis (like the FAN IN and FAN OUT metrics)
made use of dynamic analysis. In particular, they defined a new metric called
Dynamic Coupling which takes into account two elements: i)when a class is
accessed by another class at runtime, ii)when a class accesses other classes
at runtime. They performed a correlation study with respect to the size of
the test cases provided in three analyzed software projects, which shows a
low/medium correlation depending on the project.

Table 2.1. Table containing the most popular static metrics that have been an-
alyzed during the years with the aim of finding if they are good proxies to
testability.

Acronym Name Description
DIT Depth of Inheritance Tree Number of ancestors for a particular class.
CC McCabe Cyclomatic Complexity Number of linearly independent paths for a particular class.
FIN Fan In Number of classes that reference a particular class.

FOUT Fan Out Number of other classes referenced by a particular class.
Number of pairs of methods in a class, having no common

LCOM Lack of Cohesion Of Methods attributes, minus the number of pairs of methods having
at least one common attribute.

LOC Lines Of Code Number of lines of code in a particular class.
NOC Number Of Children Number of successors for a particular class.
NOF Number Of Fields Number of fields for a particular class.
NOM Number Of Methods Number of methods for a particular class.
RFC Response For Class Number of unique method invocations in a class.

WMC Weighted Methods Per Class Number of branch instructions in a class.
CBO Coupling Between Objects Number of other classes to which a class is coupled.

Extracting structural information from data and control flow anal-
ysis

Another way of extracting structural information from the code, in addition
to the counting the static elements, is the analysis of the control and data
flows. Bache and Mullenburg [49] and later Badri and Toure [50, 51] focused
on measuring testability by analyzing the control flow of the software under
evaluation. Bache and Mullenburg relied on flowgraph models to derive their
metric. In this model the statements are the nodes and the edges represents
the flow of control. Testability would express the effort needed for testing
these flowgraph models. In practice, they measured the minimum number

14 2. State of the art

of paths required to have a full coverage of the model. The main drawback
highlighted by the authors is that testability and complexity problems could
be hidden in data, consequently it is necessary to know additional testability
measures for data flow, predicate and computation testing.

Badri and Toure defined a new metric called the Quality Assurance In-
dicator (Qi) metric which is used as an approximator of testability. The Qi
metric is based of control call graphs, which are a reduced form of control flow
graphs in which all instructions not containing methods calls are removed.
The Qi metric estimates the probability that the control flow will go through
a method without any failure. To estimate the probability of a failure in a
method Mi, the Qi uses information such as Cyclomatic Complexity and unit
testing coverage. In case the method Mi invokes another method Mj, the
Qi of method Mj is added to the Qi of method Mi. The main drawbacks of
these studies, as pointed out by the authors, was the lack of extensive studies
and the fact that testability is affected by several factors other than the ones
considered.

Yeh et al. [10] based their metric on the data-flow analysis technique. The
aim of data-flow analysis is to obtain variables’ relationships given a program’s
flow graph. Within a program, data flow is the occurrence of variables that are
classified as definition (def), computation-use (c-use) or predicate-use (p-use).
A life cycle of a variable is between the variable’s definition and redefinition
or between the variable’s definition and destruction along a program’s control
graph. Their technique focused on the variables’ definition use (d-u) pairs
among different blocks, so local variables are excluded. The idea was that the
more the non-local variables exist in blocks the more works to do in testing.
The work showed only some small examples on how testability could be com-
puted in such a way, without providing any theoretical or empirical way of
verifying the obtained results.

Jungmayr [52] proposed to identify the test-critical dependencies between
software components since they should have a large impact on testability. He
defined 4 new metrics that should help in identifying test-critical dependen-
cies: i)average component dependency, which averages the number of com-
ponents that a component depends on directly and transitively, ii)number of
feedback dependencies, which is defined as a set of dependencies which, when
removed, makes the graph representing dependencies between components

2.3 Measurement of testability 15

acyclic, iii)number of stubs needed to break dependencies cycles, iv)number
of components within dependency cycles. At the end he performed a manual
analysis of the test-critical dependencies identified in four software projects,
concluding that most of them are due to poor design decisions.

Le Traon et al. [53–55] focused on the testability of data flow designs.
They defined testability as the ease of testing a piece of software design using
structural testing strategies. This "easiness" is both intrinsic (a characteristic
of the software itself) and dependent on the chosen testing strategy. They
made a distinction of global and local level testability. In particular, at the
global level they affirm that testability is influenced by:

• Global test cost: size of the test set, difficulty of finding the proper test
data and the difficulty on deciding the validity of the run results). This
factor depends on the testing context since the test set is dependent on
the chosen test method.

• Global controllability: the easiness of selecting relevant test data to
exercise internal components of the design.

• Global observability: the easiness of detecting faulty results by observing
the outputs.

On the other hand, at the local level, the overall test cost is not definable since
it is related to the testing process, while controllability and observability can
be defined by focusing on the single components. They are defined as:

• Local controllability: the easiness of carrying a given value from the
design entries to the internal design component.

• Local observability: the easiness of observing the effects of this compo-
nent execution at the design outputs.

In practice, they measured local controllability as the portion of the input
domain of the component which can be covered from the inputs of the de-
sign; or in other words, is the total information quantity the component can
receive compared to the information quantity that can be generated at its in-
puts when isolated. In an isolated component C, the input domain coincides
with the input design, and consequently it will have maximum controllability.
Conversely, when the component C belongs to a flow, the total information

16 2. State of the art

quantity the component can receive is smaller than the information quantity
that can be generated at its inputs when isolated. Similarly, local observ-
ability measures the portion of the specified output domain of the component
which leads to different outputs values of the design; or in other words, is
the maximum information quantity the outputs of the flow may receive from
the component compared to the total information quantity the component
may produce on its outputs. Finally, they computed global measures as spec-
ified in the following. Global test cost is the sum of the components that are
tested in each test flow. The global controllability of a design is the minimum
local controllability of the components in it, similarly global observability is
the minimum local observability of the components existing in the design. Le
Traon et al. used these concepts to concretely perform an empirical case study
on aerospace industrial systems that are developed in a data flow oriented rig-
orous semi-formal design language (SAO).

Nguyen et al. [56] use data flow analysis to analyze the information flow
from the inputs to the outputs. Testability is computed based on the con-
trollability and the observability of a module for each flow of the software.
The controllability measure estimates the information quantity available on
the inputs of a module from the inputs of the software through the considered
flow. Respectively, the observability measure estimates the information quan-
tity available on the outputs of the software from the outputs of a module.
This last step is similar to the proposal of Le Traon et al. [53–55].

2.3.2 Estimating testability by analyzing the fault-sensitivity
of a software

Voas [11,47,57–59] focused on the aspect of testability of being able to easily
detect faults within a software. His technique, called PIE, was the basis of
his studies. PIE stands for propagate, inject and execute; in practice this
means that for a failure to occur and be observed, three things must happen:
the fault must be executed, an incorrect data state must be created (and
the original data state becomes “infected”), and the incorrect state must be
propagated to a discernible output. These three stages are the foundation
upon which he designed a technique called sensitivity analysis, which had the
aim of computing a fault sensitivity measure. Fault sensitivity expresses the

2.3 Measurement of testability 17

probability of failure that would be induced in the program by a single fault.
The higher this probability the higher the software testability and vice-versa.

In practice, sensitivity analysis injects simulated faults into the code and
evaluates what is their effect on the observable outputs. Its efficacy relies
heavily on the tests used to take this measurement, and so it is important
that the test suite covers all possible locations. Sensitivity analysis is broken
into three independent processes, each of which estimates the likelihood of one
of the three events: execution analysis, infection analysis, and propagation
analysis. To estimate the likelihood of an event, each process divides the
number of times the event occurred by the number of attempts to force that
event. For example, if the propagation event occurs 10 out of 100 times, the
propagation probability estimate is 0.1. The result of sensitivity analysis is
the estimated probability of failure that would result if a particular location
had a fault. This estimate is obtained by multiplying the means of the three
estimates from the analysis phases. If you take the minimum over all three
estimates and then obtain a product, you can obtain a bound on the minimum
probability of failure that would result if this location had a fault. The strength
of sensitivity analysis is that the results are based on the observed effects from
actual faults; the weakness is that the faults injected and observed are only a
small set from what might be an infinite class of faults. An indirect downside
is on the performance side; since the number of input data that needs to be
provided to cover all possible events is really high even for a small program
such as the one used in Voas papers (solving of a quadratic equation).

The assumption under which Voas said that fault sensitivity could be a
good proxy of testability is the competent programmer hypothesis, which af-
firms that a competent programmer will write code that is reasonably close to
being correct. In particular, he makes use of a variation of the competent pro-
grammer hypothesis called the simple fault assumption that says that a fault
exists in a single location, not distributed throughout the program, and that
this fault is equally likely to be at any location in the program. Consequently,
since fault sensitivity measures the probability of finding a single fault in a
single location it respects the simple fault assumption.

Bertolino and Strigini [12] performed a study that analyzed the impact of
improving the testability of a software with respect to its reliability. The study
is based on the testability measurement proposed by Voas, and it highlights

18 2. State of the art

that small increases in Voas’ testability metric often can be detrimental to
reliability, on the other hand great increases in testability seemingly goes hand
in hand with improvements to reliability.

Lin et al. [60] proposed to use a modified version of the PIE technique, in
particular in the propagation aspect, which aimed at improving the perfor-
mance in terms of time compared to Voas technique. In their case, instead
of considering all input variables, they only considered variables that are used
in a while or if condition. A used variable means that it is referenced in an
instruction. This altered version was evaluated against a simple program that
solves a quadratic equation. While requiring less resources (input data) to be
executed compared to Voas’ version, it still maintained a steep performance
cost.

Zhao [61] proposed a metric called Fault Detection Probability that ex-
presses the ratio of suites satisfying a specific test criterion that can detect a
particular fault. This was a preliminary work that had the aim of showing
that different faults have different test difficulty. In detail, by focusing on
the ability to predict the failure rate caused by different faults under different
testing criterion, it could be possible to obtain a prior indication of software
testability. This research thought did not have a proper follow-up in the field
of testability studies.

2.4 Open problems

As seen in the previous chapters, the current ways of measuring testability have
some open problems that hinders accurate or/and efficient measurements. In
the case of studies which focuses on analyzing the structure of the code of a
software (Section 2.3.1), we can see that:

• Testability is obtained in an indirect way with respect to software testing.
The metrics that should be good proxies for testability are derived from
the correlation between the static metrics of the source code and the
static metrics of the associated test cases. This is an indirect way of
measuring testability that potentially misses real testability issues and
instead is potentially biased by the size of the source code and associated
test cases. We need to remark that a software module having many
lines of code or many methods does not necessarily entail that it is not

2.4 Open problems 19

testable. Ideally, testability should not be influenced by the size of the
tested module and should instead highlight only the potential difficulties
that can be encountered during testing.

• Correlation with weak ground truth in static metric studies. The so
called "best predictor" metrics in static metric studies are chosen based
on the correlation with the test cases static metrics. A potential threat to
validity that can arise is the fact that there is no information at all about
the development process of the used test cases. So there is basically no
knowledge on the test objectives of the existing tests, if they exist, and
can be biased by the arbitrary decisions of the testers (e.g., decisions
on designing few or many test cases, or aiming to high code coverage
or ignoring code coverage). Moreover, many of the studies that suggest
that static metrics could be good predictors of testability are performed
only on a sample, oftentimes small, of projects and this could lead to
generalization problems. The combination of these two factors may lead
to the false belief that a source metric is a good predictor of testability
in all situations while in reality the correlation that is seen is simply
valid for that specific set of subject projects. These factors may be what
lead to the discrepancies seen in the papers about which are the best
predictor metrics.

• Usage of the test cases without considering their quality aspects. Most of
the studies on static metrics do not consider the coverage of the provided
test cases in their analysis. This may introduce severe biases dictated
by test cases that may cover only a small part of the associated source
code. This aspect has been mitigated in some of the latest works [38,40]

Our research work has in common with studies that estimate testability through
fault-sensitivity estimation (Section 2.3.2) the goal of estimating testability by
observing the execution of the software though actual testing. It aims at over-
coming the main problem of these studies, that is the costly measurements
and difficulties in their applications in complex software. In fact, fault sensi-
tivity is costly and not easily scalable. As we saw in the case of Voas and his
PIE technique and successive evolutions, the cost for generating all possible
inputs for all the analyzed modules, creating appropriate tests and injecting
real faults would be astronomical and not usable in practice.

21

Chapter 3

Evidence-Based Testability
Estimation

This chapter introduces a novel technique for estimating software testability.
The core novelty of our proposal is to exploit automated test case generation
to investigate to which extent a program may or may not suffer of testability
issues. In a nutshell, our technique consists in executing (possibly multiple
times) a test generator of choice against a program under test, and then au-
tomatically analyzing the outcomes of the test generation activity to extract
evidences that the generated test cases are fostering effective (or ineffective)
testing for reasons that can be tracked to the design characteristics of the
current program. In other words, we think of testability issues as design char-
acteristics that hamper the easiness of achieving effective testing (i.e., char-
acteristics that hamper the detection of faults. For an example see Listings
3.1, 3.2, 3.3 and their explanation in Section 3.3.1), and we rely on automatic
test generation to investigate whether that is indeed the case for the given
program under test. The higher the amount of the evidences that our tech-
nique can collect for a given program in favor of the presence or the absence
of testability issues in the program, the lower or the higher, respectively, the
testability estimates that our technique will be reporting for that program.

Compared to pursuing testability estimations based on measuring design
characteristics that may correlate with testability (as in the approaches based
on software metrics, as we surveyed in Section 2.3.1), our technique differs in
that it aims at measuring testability directly, that is, by experiencing with
pursuing actual test cases and test objectives against the target program.

22 3. Evidence-Based Testability Estimation

Compared to estimating fault sensitivity (as in the approaches inspired by the
work of Voas and colleagues, as we surveyed in Section 2.3.2), our technique
is natively designed to work with sampled test suites (as the ones that we can
achieve with an automated test generator), whereas fault sensitivity requires
test cases designed to extensively traverse the possible execution flows in the
program, which practical test generators can unlikely provide.

This chapter presents our technique for testability estimation in three in-
cremental steps. First (Section 3.1), we characterize the type of measurements
that our technique aims to address; we do that by referring to a purely idealis-
tic scenario that assumes: i) the availability of an exhaustive-testing test suite,
full knowledge of all possible test objectives, and a hypothetical tool that can
provide perfect, objective and automatic judgments on which test cases can
be considered hard or easy to be identified by test analysts, respectively. This
idealistic scenario cannot be practically achieved but allows us to define the
foundation of the measurements that we aim to. Next (Section 3.2), we ex-
plain how we can instantiate our measurement technique concretely by relying
on test cases generated automatically, and sample test objectives rendered as
seeded faults. Finally (Section 3.3), we finalize the definition of the technique
by defining a measurement procedure that takes into account and mitigates
the subjectivity of the measurements that may arise from the specific abilities
and limitations of the specific test generator being used.

3.1 Foundations for evidence-based
testability measurement

Our technique leverages automatically generated test cases to discern the pres-
ence (or the absence) of testability issues, that is, evidences that the program
under test, in the current shape of its design, hampers or simplifies the deriva-
tion of effective test cases. For reasoning on the effectiveness of the test cases,
our technique refers to the possible faults of the target program. The under-
lying intuition is that it would be wrong to judge a software module as highly
testable simply because we empirically observe that it facilitates the genera-
tion of arbitrary test suites, which in fact might in some cases include only
test cases that exercise that software just superficially. Rather, we would like
to judge as highly testable a software module that facilitates the generation

3.1 Foundations for evidence-based testability measurement 23

of test suites that work well for proper correctness-checking.
The optimal (though only idealistic) scenario for our technique would be

having in advance full knowledge of:

• all the test cases that are needed to exhaustively test the software mod-
ule,

• which faults may generally exist in the software module under test, and

• some criterion to analyze the test cases and argue whether they are easy
or hard to be identified.

In this idealistic scenario, our technique would quantify the relative testability
of a set of software modules based on the portion of easy-to-test and hard-to-
test faults in each module. Intuitively, the higher the portion of hard-to-test
faults in a software module, the higher the likelihood that the module may
come with testability issues (since apparently it was not designed in a way
that made its own testing simple), and vice-versa.

Drawing on these intuitions, we provide a definition for the testability score
of a software module starting from the following predicates:

• Let M be a software module of a program P

• Let T be the set of possible test cases for P

• Let F be the set of executable1 faults in P

• Let also F (M) ⊆ F denote the faults located in M

• Let Reveal : F × T be the relation between faults and test cases that
reveal them

• Let Exec : F × T be the relation between faults and test cases that
execute them

The we can define testability as the following:

Definition 1. Testability score (in the optimal, idealistic scenario)
The portion of faults for which there exists evidence (i.e., at least a test case)
that those faults can be revealed with easy test cases. Formally:

1Non-executable faults are irrelevant for testing and testability.

24 3. Evidence-Based Testability Estimation

Let Hard : T → {true, false} be a criterion (a predicate) to decide
whether a test case is or is not hard to be identified. Accordingly, let Fhard(M)
be the set of faults in M that are hard to identify, that is, Fhard(M) ≡ {f ∈
F (M)|∀t : Reveal(f, t) ⇒ Hard(t)}.2

Then the testability of module M is quantified as:

Testability(M) = 1 − |Fhard(M)|
|F (M)| .

We further adapt the above definition to discriminate between controllabil-
ity and observability issues, inspired by the suggestions of the PIE (propagate-
infect-execute) model [47], i.e., that the ability of testing a given fault in a
program depends both on the ability of setting suitable test data (controllabil-
ity), as necessary for executing the faulty locations in the program to determine
infected program states, and on the ability of making those infected program
states propagate up to some observable outputs (observability). Thus, max-
imum controllability corresponds to having sufficient control for setting any
testing-relevant program input, and maximum observability corresponds to
being able to observe any testing-relevant program output.

To measure controllability and observability we consider that each test
case consists of two parts, namely, the test driver and test oracle. The test
driver is the part of a test case that sets proper inputs for the module under
test, aiming to drive its execution in specific way. The test oracle is the part
of a test case that evaluates the outputs against the specification to exclude
or pinpoint malfunctions.

Keeping in mind the predicates that we used to define the testability score,
we define the controllability and observability scores of a software module as
follows:

Definition 2. Controllability score (in the optimal, idealistic sce-
nario) The portion of faults or which there exist evidence (i.e., at least a test
case) that those faults can be executed with test cases comprised of easy test
drivers. Formally:

Let Hard_d : T → {true, false} be a criterion to decide whether or not
2The set Fhard(M) includes also the faults that, although being executable, cannot be

revealed with any test case. Executable, non-revealable faults are arguably symptoms of
testability issues.

3.1 Foundations for evidence-based testability measurement 25

the driver part of a test case is hard to be identified. Correspondingly, let
Fhard_d(M) be the set of faults in M that can be executed only with test
drivers that are hard to identify, that is, Fhard_d(M) ≡ {f ∈ F (M)|∀t :
Exec(f, t) ⇒ Hard_d(t)}.

Then the controllability of module M is quantified as:

Contr(M) = 1 − |Fhard_d(M)|
|F (M)| .

Definition 3. Observability score (in the optimal, idealistic scenario)
The portion of revealable faults for which there exist evidence (i.e., at least a
test case) that those faults can be revealed with test cases comprised of easy
test oracles. Formally:

Let Fr(M) ⊆ F (M) be the set of faults that can be revealed with some
test case, that is, Fr(M) ≡ {f ∈ F (M)|∃t : Reveal(f, t)}. Let Hard_o : T →
{true, false} be a criterion to decide whether or not the oracle part of a test
case is hard to be identified. Correspondingly, let Fhard_o(M) be the set of
faults in M that can be revealed only with oracles that are hard to identify,
that is, Fhard_o(M) ≡ {f ∈ Fr(M)|∀t : Reveal(t, f) ⇒ Hard_o(t)}.

Then the observability of module M is quantified as:

Obs(M) = 1 − |Fhard_o(M)
|Fr(M)| .

As mentioned, these definitions capture an idealistic scenario, in which we
know all the potential faults and all the possible test cases in advance, which
is, of course, unrealistic. In the next subsection, we present a measurement
framework that proxies these idealistic metrics by referring to concrete faults,
concrete test cases and objective decisions on evaluating the hardness of test
cases and faults.

26 3. Evidence-Based Testability Estimation

3.2 Evidence-based testability measurement
via automatically generated test cases
and seeded faults

Our technique to estimate software testability exploits automatically gener-
ated test cases, and faults automatically seeded in the form of synthetic pro-
gram mutations. Thus, whereas the idealistic measurements that we intro-
duced in the previous section (unrealistically) assume the availability of all
possible test cases and all possible faults, the concrete instance of our mea-
surement technique refer to sampled test cases and sampled faults. In fact,
relying on sampling is a common characteristic of most estimation processes in
statistics. In particular, we sample the test space by using automatic test case
generation and, sample the fault space through mutation-based fault seeding.
The following subsections go more in detail about this choice. Finally, the
last subsection will focus on explaining how we use these samples to derive a
testability metric which is more concrete compared to the previously presented
idealistic measurements.

3.2.1 Sampling the test space with automated test gen-
eration

Our intuition is that we can rely on an automatic test generator to estimate
the testability degree of a software by using the generated test cases as samples
that highlight the possible difficulties that a developer can encounter while de-
veloping test cases. Working with automatically generated test cases is indeed
the main distinctive characteristic of our methodology. This radically differs
from evaluating internal characteristics of the target components, in terms
of the static structure of the code, or monitoring their execution spectrum
dynamically, which are the mainstream approaches investigated so far.

3.2.2 Sampling the fault space with mutation-based fault
seeding

Knowing all possible faults and reproducing them is self-evidently impossible.
To solve this problem, we decided to rely on synthetic mutation-based fault

3.2 Evidence-based testability measurement via automatically
generated test cases and seeded faults 27

seeding [62,63]. Mutation-based fault seeding instruments programs with pos-
sible faults by using mutation operators, each describing a class of code-level
modifications that may simulate faults in the program. Through mutation-
based fault seeding we can sample the faults that may be encountered in the
target software module. To give an idea of a possible fault generated in such a
way, replacing numeric literals is a mutation operator that produces a faulty
version of the software module (called mutant) by changing a numeric literal
in the program with a compatible literal.

After generating all possible mutants for a software module, a step called
mutation analysis is run. During this step all provided test cases are run
against the original and mutated version of the software module; if there is
any discrepancy between the two runs, they get reported. In particular, we
say that a test case that execute the portion of code modified by a mutation
operator is said to execute (or cover) the mutant m. Additionally, a test case
that has a different outcome when executed against the original program and
its mutant m is said to kill (or reveal) the mutant m, meaning that it reveals
the sample fault that the mutant represents. Finally, a mutant which is neither
executed nor killed is called a non-covered mutant m.

Our approach grounds on the large body of scientific literature that ar-
gue that mutants are valid representative of real faults [64–67]. Andrews et
al. [64,65] performed a study comparing real faults and mutants. Their anal-
ysis suggests that mutants, when using carefully selected mutation operators
and after removing equivalent mutants, can provide a good indication of the
fault detection ability of a test suite. They also noted that mutants are not
easier or harder to detect compared to real faults. This fact lends support to
the “competent programmer assumption” that underlies the theory of muta-
tion testing; that is, the assumption that faults made by programmers will be
detected by test suites that kill mutants. Just et al. [66] affirms that mutants
are intended to be used as practical replacements for real faults in software
testing research and this is valid only if a test suite’s mutation score is corre-
lated with its real fault detection rate. Their study empirically confirms that
such a correlation generally exists by examining a collection of real faults in
open source programs using developer written and automatically generated
tests. In particular, it highlighted that conditional operator replacement, re-
lational operator replacement, and statement deletion mutants are more often

28 3. Evidence-Based Testability Estimation

Figure 3.1. Workflow to estimate testability evidences using tests and faults
sampling

coupled to real faults than other mutants. All these results support our choice
of relying on mutants as samples of real faults.

3.2.3 Sampling-based testability measurements

Figure 3.1 illustrates the workflow by which we can exploits automated test
generation (left part of the figure) and mutation analysis (middle part of the
figure) in order to judge testability evidences (right part of the figure). The
input is a given program under test, which is indicated at the top-left corner in
the figure, and the results are sets of testability evidences, classified as either
controllability evidences or observability evidences, as indicated at the right-
most side of the figure. The block named TG indicate the automatic test gen-
eration activity. The block named MA indicate the mutation analysis activity,
which consists of mutants’ injection followed by test cases execution, with the
goal of determining which mutants are killed, executed or non-covered. The
circles that contain the − symbol indicate that we remove the executed mu-
tants (resp. revealed mutants) from the set of all mutants obtained during
the mutation analysis to identify the set that highlight controllability issues
(resp. observability issues). The results are yielded as positive or negative
testability evidences (+ and - symbols at the rightmost side, respectively).
The arrows specify the inputs and the outputs of each activity. From the
schema, we can see that the first step consists in automatically generating

3.2 Evidence-based testability measurement via automatically
generated test cases and seeded faults 29

the test cases followed by the mutation analysis step that will provide us with
information about the ability of the test cases to execute and reveal the faults.
Once we know this information for all the generated mutants, we can make
use of them to judge two types of testability evidences, namely, controllability
and observability evidences.

For each mutant in which the sampled test suites can execute (resp. cannot
execute) the seeded fault, we judge a controllability (resp. non-controllability)
evidence. We could define the set of mutants that we cannot cover with the
generated test cases as hard-to-execute (set Fhard_d of Definition 2). For each
mutant in which the sampled test suites can reveal (resp. cannot reveal) the
seeded fault also based on actual outputs of the target program, we judge an
observability (resp. non-observability) evidence. We define the set of mutants
that cannot be revealed through actual outputs of the target program as hard-
to-reveal(set Fhard_o of Definition 3). In summary, let F̂ be the set of mutants
that were generated for the program P, F̂kill be the set of mutants that the
generated test cases kill and F̂executed the set of mutants that the generated
test cases execute; our suggested testability measurement framework makes
the following estimates related to the sets in Definitions 2 and 3:

• T̂ , all automatically generated test cases for the target program P.

• F̂ ≡ F̂r, all the generated mutants for the target program P. F̂r is
equivalent to F̂ since the test generator is able to potentially reveal all
faults.

• F̂hard_d ≡ F̂ − F̂executed, the mutants that were not executed (non-
covered).

• F̂hard_o ≡ F̂ − F̂kill, the mutants that can be executed, but not killed.

We then recast the idealistic controllability and observability scores de-
fined in the previous section to achieve concrete estimations of those scores as
follows:

Definition 4. Sampling-based controllability score The portion of seeded
faults (mutants) that we successfully executed with at least an automatically
generated test case. Formally, for a software module M

Contr′(M) = 1 − |F̂hard_d(M)|
|F̂ (M)|

= |F̂executed(M)|
|F̂ (M)|

.

30 3. Evidence-Based Testability Estimation

Definition 5. Sampling-based observability score The portion of seeded
faults (mutants) that we successfully revealed with at least an automatically
generated test case. Formally, for a software module M

Obs′(M) = 1 − |F̂hard_o(M)|
|F̂r(M)|

= |F̂kill(M)|
|F̂ (M)|

.

Definition 6. Sampling-based testability score The cumulated score
yielded by the combination of the controllability and observability scores
through the application of the geometric mean: For a software module M

Testability′(M) =
√

Contr′(M) × Obs′(M)

Note that in these definitions we are conservatively assuming that all
seeded faults are both executable and revealable. We will deal with mitigating
the impact of this assumption when refining and finalizing the definition of
our measurement technique in the next section.

3.3 Our proposal for evidence-based
testability measurement

The assumption that all mutants necessarily correspond to faults that, at
least in principle, can be executed and revealed with the tests generator of
choice is generally too strong when working with practical test generators and
practical mutation analysis tools. For example, a test generator that is not
able to construct some types of data structures or does not handle test data
from files and network streams, will systematically miss test cases for any
fault that depends on those types of test data, independently from the actual
testability of the software under test. Indeed, although testing those faults
is hard for the test generator at hand, it might be relatively simple for other
test generators or human testers. Similarly, missing test cases for functionally-
equivalent mutants, including the case in which the mutated code is infeasible
in the target program, conveys no useful information on the non-testability of
the software.

Thus, when using automatically generated test suites and mutation-based
fault seeding, we must pay attention that the quality of our estimations could

3.3 Our proposal for evidence-based testability measurement 31

be jeopardized by the intrinsic limitations of the approaches (and the tools)
to which we refer for generating the test cases and computing the mutations,
respectively. In particular, we would like to avoid non-testability judgments
that can derive from either test cases that cannot be generated because of
intrinsic limitations of the considered test generator or infeasible mutants that
the test generator cannot execute. For these reasons, instead of focusing on
any seeded fault provided by the mutation-analysis tool at hand, our approach
constructively discriminates the subset of seeded faults for which we have
sufficient evidence (not necessarily a proof) that (i) they do not correspond
to infeasible mutants, and (ii) are not out of the scope of the considered test
generator either. The resulting subset of mutants provides the baseline for us
to judge the testability evidences.

3.3.1 Extrapolating the set of baseline mutants

We concretely extrapolate the set of baseline mutants as follows. We empower
the test generator with the capability to directly assign any input and state
variable in the program, by augmenting the program under test with custom
setters for all state variables of any component in the program. In our specific
implementation, we focus on custom setters, but this step may be generalized
at different levels. Furthermore, the addition of custom setters may lead to
think that this has an impact only on the class level but, in reality, the scope
is wider. For example, custom setters may potentially be used in classes
that are used as parameters for the method of another class which is the
target of testing. Next, we execute the test generator against the augmented
program, and we track all executed mutations, regardless of whether or not
they propagate to the outputs. We refer to this setting of the testing problem
as testing the program with testability-facilitated APIs, underscoring the ability
of freely assigning the possible inputs and the assumption that any program
state could be somehow inspected during testing. The seeded faults that are
executable with the testability-facilitated APIs convey the information that
the test generator at hand could in principle generate suitable test data. If
it should not, it likely would depend on the constraints built in the original
APIs of the program, not on limitations of the test generator with the required
type of test data. Similarly, if those seeded faults, once executed, should
not propagate to observable outputs, it likely would depend on the internal

32 3. Evidence-Based Testability Estimation

characteristics of target software, rather than on the infeasibility of the seeded
faults.

Let us take the code shown in Listing 3.1 as an example and assume
that we want to test the method at line 14 and that we have generated a
mutated version program that changes the value of the return at line 19 as
shown in Listing 3.2. If we want to detect the mutant in line 19, we would
need to have an appropriate value for field, which is assigned in the private
method someOtherMethod. In particular, to be able to access the else branch
of targetMethod at line 19, we would need to somehow satisfy the true condition
at line 7 of someOtherMethod, a task which is not trivial considering that the
method is private and we have no knowledge on how difficult it would be to
obtain a value of par1 that satisfies the true condition at line 7 and at the
same time have a value equal or less than 100 for par2. With the help of a
facilitated API (in this case the setter) at line 23 of Listings 3.3 executing and
killing the above mentioned mutant would instead become trivial.

The mutants which are identified as executed after this step are our set
of baseline mutants. We are aware that, technically speaking, using the
testability-facilitated APIs may lead us to generate some input states that
are illegal for the original program. Nonetheless, we embrace this approach
heuristically: observing faults that the test generator can execute only with
the testability-facilitated APIs is a sign of restrictive designs, which may pin-
point testability issues.

3.3.2 Obtain testability scores (final definitions)

Once we have identified the baseline mutants, we refer to each of those mutants
to once again judge the two types of testability evidences, namely, controlla-
bility and observability evidences, based on the test suites that we sampled
with the test generator. In particular, the workflow that leads to the extrac-
tion of these evidences is shown in figure 3.2. As we can see from the schema
in the figure, it is a direct evolution of the schema presented in figure 3.1.
Again, we can see that our technique exploits automated test generation (left
part of the figure) and mutation analysis (middle part of the figure) in order
to judge testability evidences (right part of the figure). The input is a given
program under test, which is indicated at the top-left corner in the figure, and
the results are sets of testability evidences, classified as either controllability

3.3 Our proposal for evidence-based testability measurement 33

1 public Class Example {
2 private int field;
3

4 ...
5

6 private someOtherMethod (int
par1 , int par2){

7 if (par1 > 1000000) {
8 field = par2;
9 } else {

10 field = (abs(par2) + 1)
* 100;

11 }
12 }
13

14 public int targetMethod () {
15 int result = field;
16 if (result > 100) {
17 return result ;
18 } else {
19 return -1;
20 }
21 }
22 }

Listing 3.1. Example class with
potential testability issue

1 public Class ExampleMutated {
2 private int field;
3

4 ...
5

6 private someOtherMethod (int
par1 , int par2){

7 if (par1 > 1000000) {
8 field = par2;
9 } else {

10 field = (abs(par2) + 1)
* 100;

11 }
12 }
13

14 public int targetMethod () {
15 int result = field;
16 if (result > 100) {
17 return result ;
18 } else {
19 return -100;
20 }
21 }
22 }

Listing 3.2. Mutated example class at
line 19

1 public Class
ExampleFacilitated {

2 private int field;
3

4 ...
5

6 private someOtherMethod (int
par1 , int par2){

7 if (par1 > 1000000) {
8 field = par2;
9 } else {

10 field = (abs(par2) + 1)
* 100;

11 }
12 }
13

14 public int targetMethod () {
15 int result = field;
16 if (result > 100) {
17 return result ;
18 } else {
19 return -1;
20 }
21 }
22

23 public setField (int par3) {
24 field = par3;
25 }
26 }

Listing 3.3. Example class with
facilitated API

34 3. Evidence-Based Testability Estimation

Figure 3.2. Workflow of our technique to estimate testability evidences

evidences or observability evidences, as indicated at the rightmost side of the
figure. The blocks named TG indicate test generation activities. The block
named MA indicate the mutation analysis activities, which consists of mu-
tants’ injection followed by test cases execution, with the goal of determining
which mutants are killed, executed or non-covered. The blocks named En-
rich APIs in program and Prune APIs from tests indicate the pre-processing
of the program under test and the post-processing of generated test cases,
respectively. Enrich API aims at augmenting the program under test with
the testability-facilitated APIs, as we introduced in the previous subsection.
Prune API aims at removing the calls to those APIs from the generated test
cases, as explained later in this section. The circles that contain the + sym-
bol indicate post-processing for merging the generated test suites into a single
test suite. These steps, which differs greatly from the schema presented in
figure 3.1, are detailed later in this section. The circles that contain the ×
symbol indicate the comparison of the set of executed mutants (resp. revealed
mutants) against the baseline mutants, with the goal of judging the testability
evidences, as described in the Judging testability evidences subsection. The
results are once again yielded as positive or negative testability evidences (+
and - symbols at the rightmost side, respectively). The arrows specify the in-
puts and the outputs of each activity. Now let us go more in detail about the
changes that we actuated to mitigate the potential intrinsic limitations of the
used approaches compared to the workflow previously presented in figure 3.1.

3.3 Our proposal for evidence-based testability measurement 35

Test generation

With reference to the TG blocks in Figure 3.2, our technique runs the auto-
matic test generator against both the program under test and its augmented
version Program’. Our implementation of the block Enrich APIs in program
obtains the augmented program Program’ by enriching the interfaces of all
classes with custom setters for any class variables declared in the code. We
denoted as Tests and Tests’ the test suites generated as result of those au-
tomatic test generators runs, respectively. The test suite Tests’ generated
against Program’ indicates program behaviors that the automatic test gener-
ator could provably exercise, possibly with the help of facilitated APIs. At
the same time, the test suite Tests’ implicitly captures the program behav-
iors that the test generation algorithm of automatic test generator is unlikely
to exercise, since it failed even when facilitated to set the input state inde-
pendently from the constraints encoded in the program APIs. In conclusion,
the comparison between the test suites Tests’ and Tests aims at highlighting
program behaviors that arguably were hard to exercise specifically due to the
constraints encoded in the APIs, that is, behaviors that potentially show real
testability issues (see Listings 3.1, 3.2, 3.3 and their explanation) instead of
limitations of the automatic test generator.

The above presented approach may introduce a confounding effect due
to differences between test suites Tests’ and Tests that results just from the
randomness of the automatic test generator. Basically, it may be possible, that
the automatic test generator may cover additional program behaviors during
the generation of test suite Tests’, compared to test suite Tests, not due to the
additional APIs, but simply because of the random nature of its algorithm,
which even if mitigated is always present. To solve this potential issue, we
specifically focus on the program behaviors that can be exercised only with the
testability-facilitated APIs, but not with the original program APIs, by post-
processing the test suite Tests’. In particular, we create a new test suite called
Tests” that we achieve from Tests’ by pruning all calls to the custom setters
added in Program’ (Figure 3.2, block Prune APIs from tests). The custom
setters pruning can be safely performed without breaking the syntactic validity
of the test cases since they are the only additional element not existing in the
original program. Listing 3.4 shows a sample test case for the API facilitated
class in Listing 3.3 that makes use of the custom setter. Listing 3.5 contains

36 3. Evidence-Based Testability Estimation

the same test case after performing the pruning operation. In detail, all calls to
the custom setters are commented out; while all the following method calls are
extracted from the assertions (if inside any) and enclosed in try-catch blocks
to prevent early test case termination due to exceptions that are raised by
method calls on potentially null objects. We do not care about the semantic
validity of the test case, since for our technique the only thing that matter is
if the test generator is able to cover a certain program state. Consequently,
a pruned test case is none other than a test method that the test generator
could potentially easily cover even without custom setters.

1 public class TestFacilitated {
2 ...
3 @Test
4 public testTarget {
5 Example obj = new Example

();
6 int result = obj. setField

(55);
7 assertEquals (-1, obj.

targetMethod ());
8 }
9 }

Listing 3.4. Example test case of the
API facilitated class

1 public class TestPruned {
2 ...
3 @Test
4 public testTarget {
5 Example obj = new Example

();
6 // int result = obj.

setField (55);
7 try{
8 obj. targetMethod ();
9 } catch (Exception ex) {}

10 }
11 }

Listing 3.5. Pruned example test case
of the API facilitated class

In Figure 3.2, the top one of the +-circles represents the test suite that we
achieve by merging Tests and Tests” and that our technique thereon considers
as representative of the program behaviors that automatic test generator could
hit without facilitated APIs. For similar reasons, the test cases in Tests and
Tests” must be accounted among the ones that the automatic test generator
could generate also against Program’, and thus, to this purpose, our technique
relies on the test suite that we achieve by merging Tests, Tests’ and Tests”,
as illustrated at the bottom +-circle in figure 3.2.

3.3 Our proposal for evidence-based testability measurement 37

Mutation Analysis

Following the workflow presented in figure 3.1, after the test generation phase
is complete, we move onto the mutation analysis phase. In figure 3.2, the two
blocks MA indicate that our technique executes the mutation analysis tool for
the test suites that we generated for both the program under test Program
and its augmented version Program’. As result we collect:

• the baseline mutants, i.e., the mutants that are revealed or executed
with the test suite generated for Program’. These mutants were provably
executed with the automatic test generator, even if this could have been
achieved with the help of the facilitated APIs available in Program’.

• the executed mutants, i.e., the mutants that are executed with the test
suite generated for the original program. These mutants were provably
executed with automatic test generator with the original program APIs
as well.

• the revealed mutants, i.e., the mutants that are revealed with the test
suite generated for Program’. These mutants were provably revealed
with at least a test case in which they could be successfully executed.
In facts we refer to the test suite generated for Program’ because we
are interested in whether the mutants were ultimately revealed, modulo
having executed them anyhow.

Judging testability evidences

The final step consists in judging the testability evidences. We proceed in
two steps: first, we judge a controllability and an observability evidence for
each baseline mutant (that is, for each baseline mutant, we judge whether it
testifies in favor or against controllability, respectively, and in favor or against
observability, respectively) and then we aggregate the testability evidences
related to the mutants that correspond to faults seeded at the same line of
code. We refer to the testability evidences inferred at a line of code as unitary
testability evidences. Specifically, we proceed as follows.

First, for each baseline mutant in which the sampled test suites can exe-
cute (resp. cannot execute) the seeded fault also against the target program
with its original APIs, we judge a controllability (resp. non-controllability)

38 3. Evidence-Based Testability Estimation

evidence. In similar fashion, for each baseline mutant in which the sampled
test suites can reveal (resp. cannot reveal) the seeded fault also based on
actual outputs of the target program, we judge an observability (resp. non-
observability) evidence. Then, for each line of code associated with at least
a baseline mutant, we infer a unitary controllability (resp. observability) ev-
idence if more than half of the associated baseline mutants vote as controlla-
bility (resp. observability) evidences; or we infer unitary non-controllability
(resp. non-observability) evidence otherwise. Aggregating the testability ev-
idences as unitary testability evidences prevents the unbalanced skewing of
the results towards the instructions that offers more opportunities for apply-
ing mutations than others (e.g., when a high number of mutants is focused
only on a single line of code).

Once we have collected the unitary testability and non-testability evidences
as above, we refer to those unitary evidences to reason on the testability of
given software modules that belong to the program under test. To this end,
we first map each target module (e.g., class, method) to the subset of unitary
evidences that relate with that module, and then aggregate those unitary
evidences into a testability value measured in the interval [0, 1], where 0 and
1 correspond the minimum and the maximum testability values that we can
estimate for a module, respectively.

Let M be a software module that belongs to the program under test, and
let contr+(M), contr−(M), obs+(M) and obs−(M) be the subsets of positive
and negative controllability and observability evidences, respectively, that we
mapped to the module M , out of the collected unitary evidences. Then, by
referring to the size of those sets, we estimate the controllability and the
observability and testability scores of the module M as follows:

Definition 7. Sampling-based controllability score (final definition)
The portion of positive controllability evidences that we obtained from the
software module M

Controllability(M) = |contr+(M)|
|contr+(M)| + |contr−(M)| ,

Definition 8. Sampling-based observability score (final definition)
The portion of positive observability evidences that we obtained from the
software module M

3.3 Our proposal for evidence-based testability measurement 39

Observability(M) = |obs+(M)|
|obs+(M)| + |obs−(M)| .

Definition 9. Sampling-based testability score (final definition) We
estimate the testability of the software module M as the combination of its
controllability and its observability, namely, as the geometric mean of the two:

Testability(M) =
√

Controllability(M) × Observability(M).

3.3.3 Conclusiveness of the testability scores

We acknowledge that the testability evidences collected with our technique
can be sometimes insufficient to calculate reliable estimates for some program
modules. In particular, we reckon this to be the case if our technique was
unable to significantly sample the execution space of the module.

We recall that the unitary testability evidences collected with our technique
refers to the lines of code that we associated with some baseline mutants, i.e.,
to the seeded faults that we were able to exercise with some automatically
generated test cases. As a matter of facts, there can be some lines of code for
which our technique was unable to exercise any mutant, thus ending up with
not collecting any evidence (neither positive nor negative evidences) about
their testability.

When reasoning on the testability of a module of the program under test,
we mark our estimates as inconclusive if the portion of module’s lines of code
for which we successfully computed testability evidences were not a represen-
tative sample out of the module’s lines of code that were associated with some
mutants. We grounded our calculations on the classic theory of small sample
techniques [68].

Definition 10. Determining sample size needed to be representative of a
given population:

s = X2 × N × P × (1 − P)
d2 × (N − 1) + X2 × P × (1 − P)

Where:
s = required sample size.

40 3. Evidence-Based Testability Estimation

X2 = the table value of chi-square for 1 degree of freedom at the desired con-
fidence level.
N = the population size.
P = the population proportion.
d = the accuracy of the sample proportions.

For our study we set P to 0.5 since we do not know the population pro-
portions. The confidence level is set to 95%, this means that X = 1.96 and
X2 = 3.8416. Finally we set the accuracy to 15%.

We acknowledge that the possibility of producing inconclusive results for
some modules is an intrinsic limitation of our technique. Depending on the
actual implementations of the technique, the concrete manifestation of this
limitation boils down to the characteristics of the tools with which we in-
stantiate the test generation tool and mutation analysis phases. Explicitly
pinpointing the conclusiveness of the estimates aims to alleviate the impacts
of such limitation.

3.4 Prototype

We have currently implemented the entire workflow of Figure 3.2 for programs
in Java as a fully automated process scripted in Bash and Java.

Figure 3.3. Component diagram of our prototype

Figure 3.3 shows the component diagram of our prototype. In the fol-
lowing subsections we will provide a brief explanation on how we concretely
performed the API augmentation and test cases pruning (Subsection 3.4.1), we

3.4 Prototype 41

will introduce the automatic test generator (Subsection 3.4.2) and mutation
analysis tool (Subsection 3.4.3) used in our technique.

3.4.1 API augmentation and test cases pruning

As already explained in the previous sections the API augmentation is per-
formed through the automatic injection of custom setters. In practice, we
developed a Java tool that through the help of the JavaParser [69] library.
With the help of JavaParser we traverse the Java code of the analyzed class
and extract all the field that are private or protected. Once this step is com-
pleted, we inject the code of the class with our custom setters for all the private
or protected fields. For non-primitive fields we add a setter with two branches,
one that is entered when the input parameter is set to null, the other one in
all the other cases; this has the aim of steering the test generator tool to try
to generate both null and non-null values for a specific field.

Similarly, for test case pruning, we use JavaParser to traverse the code of
the automatically generated test cases until the first custom setter is invoked
(if at all). The pruning is done by: (i) removing the line of code invoking the
custom setter, (ii) adding a try-catch block which catches a generic exception,
(iii) adding inside of it all the instructions following the custom setter invo-
cation (excluding other possibly encountered custom setters). Since existing
assertions would potentially break the newly created test cases (since we re-
move the custom setters), in step iii) we extract the instructions inside of the
asserts and add them as normal calls. This will ensure that the newly created
pruned test case will invoke exactly the same ordered list of instructions of
the original test case, except for all the custom setters invocations.

3.4.2 Test Generation

Our current implementation generates test cases with the test generator Evo-
Suite that exploits a search-based test generation algorithm to generate test
cases for Java classes [4].

Reference tool

EvoSuite is a tool that automatically generates test cases with assertions for
classes written in Java code.

42 3. Evidence-Based Testability Estimation

The first version of EvoSuite used an evolutionary search approach that
evolved whole test suites with respect to an entire coverage criterion at the
same time [70]. Optimizing with respect to a coverage criterion rather than in-
dividual coverage goals achieves that the result is neither adversely influenced
by the order nor by the difficulty or infeasibility of individual coverage goals.
A common systematic approach to test generation is to select one coverage
goal for a given coverage criterion at a time, and to derive a test case that
exercises this particular goal. A major flaw in this strategy is that it assumes
that all coverage goals are equally important, equally difficult to reach, and
independent of each other. Unfortunately, none of these assumptions holds
since many goals could be infeasible or could be more difficult to satisfy than
others. Therefore, given a limited amount of resources for testing, a lucky
choice of the order of coverage goals can result in a good test suite, whereas
an unlucky choice can result in all the resources being spent on only few test
cases. To overcome these problems, whole test suite generation is an approach
that does not produce individual test cases for individual coverage goals, but
instead focuses on test suites targeting an entire coverage criterion. EvoSuite
implements whole test suite generation as a search-based approach. In evolu-
tionary search, a population of candidate solutions is evolved using operators
imitating natural evolution such as crossover and mutation. Individuals are
selected for reproduction based on their fitness and with each generation the
fitness improves until a solution is found or the allotted resources are used
up. In Evosuite, a candidate solution is a test suite, consisting of a variable
number of individual test cases. Crossover between two test suites exchanges
test cases based on a randomly chosen crossover position, while mutation of
a test suite may add new test cases or mutate individual tests. To help the
generation of appropriate input data, EvoSuite also makes use of focused lo-
cal searches and dynamic symbolic execution after every predefined number of
generations. The fitness of individuals is measured with respect to an entire
coverage criterion, such as branch coverage. As longer method sequences make
it easier to reach coverage goals, EvoSuite allows the search to dive into long
sequences, but applies several bloat control techniques [71] to ensure that in-
dividuals do not become excessively large. At the end of the search, test suites
are minimized such that only statements contributing to coverage remain.

EvoSuite evolved across the years and adapted the most recent state of

3.4 Prototype 43

the art techniques to improve its effectiveness. In the latest version, which
we used for our study, instead of relying on the whole-suite approach, a many
objective optimization algorithm has been introduced, called DynaMOSA. As
already mentioned, the whole suite approach is indeed more effective than tar-
geting one target at a time, but it suffers all the well-known problems of sum
scalarization in many objective optimization, among which the inefficient con-
vergence occurring in the non-convex regions of the search space, hence why
new techniques have been researched with the aim of improving automatic test
generation. DynaMOSA (Many-Objective Sorting Algorithm with Dynamic
target selection) is an evolution of the many-objective many-objective genetic
algorithm called MOSA [72]. Different from the whole suite approach, MOSA
evolves test cases that are evaluated using the branch distance and approach
level for every single branch in the CUT. Consequently, the overall fitness of a
test case is measured based on a vector of n objectives, one for each branch of
the production code. Thus, the goal is finding test cases that separately satisfy
the target branches. To focus the selection towards tests reaching uncovered
branches, MOSA proposes a new way to rank candidate test cases, called pref-
erence criterion. Panichella et al. [73] further improved the MOSA algorithm
by presenting DynaMOSA. Relying on the control dependency graph (CDG),
DynaMOSA narrows the search towards the uncovered targets free of control
dependencies. New targets are then iteratively considered when their dom-
inators are satisfied. In particular, the difference between DynaMOSA and
MOSA is the following: at the beginning of the search, DynaMOSA tries to
hit only the targets free of any control dependencies. Thenceforth, at every
iteration, the current set of targets is updated based on the execution results
of the newly generated offsprings. This approach does not impact the way
MOSA ranks the generated solutions, but rather speeds up the convergence
of the algorithm, while optimizing the size of the current objects. Empiri-
cal results show that DynaMOSA performs better than both the whole suite
approach and MOSA in terms of branch, statement, and strong mutation
coverage.

The test cases found in the generated test suites are in the form of se-
quences of calls to the constructors and the methods of both the class itself
and the classes that define the types of the parameters needed (recursively)
for instantiating those constructors and method calls.

44 3. Evidence-Based Testability Estimation

Furthermore, Evosuite is able to automatically generate the oracles of the
generated test cases. Given an automatically generated unit test, there is only
a finite number of things one can assert, the choice of assertions is defined by
the possible observations one can make on the public API of the UUT and its
dependent classes. Consequently, synthesizing the possible assertions is easily
possible. However, presenting all assertions to the developer is problematic,
as there might be too many of them, and many of them will be irrelevant.
EvoSuite uses mutation testing to produce a reduced set of assertions that
maximizes the number of seeded defects in a class that are revealed by the test
cases. These assertions highlight the relevant aspects of the current behavior
in order to support developers in identifying defects, and the assertions capture
the current behavior to protect against regression faults.

Usage in our implementation

For each of the TG blocks in Figure 3.2, our technique runs EvoSuite for a
maximum time budget that depends on the size of the class, considering a
minimum time budget of 2 minutes for the smallest classes in the considered
project and a maximum time budget of 20 minutes for the largest classes,
while linearly scaling the time budget for the classes of intermediate size.

Furthermore, our technique acknowledges the dependency of the search-
based algorithm of EvoSuite from the different code coverage criteria that the
tool allows as possible fitness functions, and from the intrinsic randomness
that underlies several steps of the algorithm, for instance, when sampling the
initial set of test cases or when evolving the test cases incrementally, which can
naturally make EvoSuite generate different sets of test cases at different runs.
Aiming to exercise as many program behaviors as possible, we set EvoSuite
to address the following fitness functions: line coverage, branch coverage, ex-
ception coverage, weak mutation coverage, method-output coverage, top-level
method coverage, no-exception top-level method coverage and context branch
coverage.

Our technique makes use of the assertion-style oracles that EvoSuite gen-
erated in the test cases, in particular, we instructed EvoSuite to generate
assertions for all program outputs encompassed in the test cases (Evosuite
option assertion_strategy=ALL), instead of selecting only the ones that it
judged as relevant based on its internal mutation testing, since we aim to

3.4 Prototype 45

reveal as many mutants as possible, even if the test cases could become large.

3.4.3 Mutation Analysis

We use the mutation analysis tool PIT [5] to both seed possible faults of the
program under test and characterize the generated test suites according to
their ability to execute and reveal those seeded faults. This information is
used to judge the testability evidences that the generated test suites provided
for the program under test.

Reference tool

Many mutation testing tools for Java code have been developed mainly to
support research. In the past, among the Java tools, the most popular ones
were MuJava [74] and Major [75]. Unfortunately, these tools were built to
support research projects and thus, their practical use is limited. PIT offers
the following three major advantages over the other tools: a) it is open source,
b) it is well integrated with development tools, as it offers a Maven plugin and
c) it is quite robust and actively maintained. PIT also operates on the latest
version of Java while other tools have not been updated.

Since PIT was developed with the aim of being easily usable by everyone
in any given context, it aims at:

• having a good integration with build tools (e.g., Maven, Ant, Gradle),
integrated development environments (IDEs, such as, Eclipse or IntelliJ)
and static code analysis tools (e.g., SonarQube). It is easy to start
working with PIT using build tools.

• being fast. PIT uses three techniques to obtain its quick results: working
on bytecode instead of source code, selecting the tests to run against the
mutants and minimizing the number of mutant executions.

• providing a clear report of the tests’ execution, which makes a navigation
between source code and mutants easy and highlights the mutants that
were not killed (those for which the testers need to investigate).

PIT generates mutants via bytecode manipulation. The approach taken
offers significant performance advantages when compared with compiled mu-
tant files as it practically reduces the mutant generation cost to zero (because

46 3. Evidence-Based Testability Estimation

bytecode manipulation is computationally inexpensive). The bytecode repre-
sentation of the mutants does not require any program to be written on the
disk but, instead to keep it in memory.

Mutant generation is a two stage process. An initial scan is performed
in the main controlling process. During this phase all the possible mutation
points in the provided classes are identified and memorized, these points are
referred to as MutationIdentifiers. A MutationIdentifier consists of the precise
location of the mutation and the name of the mutation operator. In the next
phase, the tool assesses each mutant by running tests against it by creating
child JVM processes. The MutationIdentifier and names of selected tests to
run against the mutant are passed to the child by the controlling process. The
mutant bytecode is then generated within the child process and inserted into
the running JVM using the Java instrumentation API. Since creating a JVM is
a very expensive operation, PIT tries to minimize the number that are created.
This may affect the results of the tests when run against other mutants. A
trade-off is therefore made between performance and isolation. However, PIT
can be configured to give stronger guarantees (including launching a JVM per
mutants) at the expense of performance.

PIT comes with a set of mutation operators that can be applied to the
Java code that can be found in the documentation of the tool.3

Usage in our implementation

We chose PIT as the mutation analysis framework for our tool mainly because
it offers compatibility with the latest versions of Java, it is constantly kept
up-to-date, it is open source and widely used, and most important of all, its
compatibility with EvoSuite is explicitly declared, and they provided a set
of indications on how to configure the two tools to make them compatible.
We instructed PIT to launch a single JVM per mutant with the objective of
obtaining results that are as accurate as possible.

Following the schema in figure 3.2 we execute the mutation analysis with
PIT against the subject software with both of the sets of test cases generated
with the help of EvoSuite (obtained from the original and API facilitated
version of the subject software) in addition to the set obtained with pruning.

In the usage of PIT for our tool, we specifically considered the set of
3https://pitest.org/quickstart/mutators/

https://pitest.org/quickstart/mutators/

3.4 Prototype 47

mutation operators that PIT advises as the DEFAULT group plus the Remove
Conditionals and Experimental Switch mutators, for a total of 13 mutation
operators that address several types of mutations at the level of the arithmetic
operators, the comparison operators, the logic operators, the return values
and the if and switch statements in the programs. We did not consider the
larger set of mutation operators that PIT refers to as the "all" group because
either they are marked as experimental in the documentation, or our initial
experiments showed that they result most often in duplicating mutants that
we already obtain with the mutation operators of our choice. The full list of
used mutators with a description of each of them can be found in table 3.1.

Table 3.1. Table detailing the mutators that we used from the ones available in
PIT.

Conditional Boundary The conditionals boundary mutator replaces the
relational operators <, <=, >, >=

Increments The increments mutator will mutate increments, decrements and
assignment increments and decrements of local variables (stack variables).
It will replace increments with decrements and vice versa.

Invert Negatives The invert negatives mutator inverts negation of integer
and floating point numbers.

Math The math mutator replaces binary arithmetic operations for either integer
or floating-point arithmetic with another operation.

Negate Conditionals The negate conditionals mutator will mutate all conditionals found.
Void Method Calls The void method call mutator removes method calls to void methods.

Empty Returns Replaces return values with an ‘empty’ value.
False Returns Replaces primitive and boxed boolean return values with false.
True returns Replaces primitive and boxed boolean return values with true.
Null Returns Replaces return values with null.

Methods that can be mutated by the Empty Returns mutator or that are
directly annotated with NotNull will not be mutated.

Primitive Returns Replaces int, short, long, char, float and double return values with 0.
Remove Conditionals The remove conditionals mutator will remove all conditionals statements

such that the guarded statements always execute.
Experimental Switch The switch mutator finds the first label within a switch statement that

differs from the default label. It mutates the switch statement by replacing
the default label (wherever it is used) with this label.
All the other labels are replaced by the default one.

PIT monitors the execution of the test suites against the mutants that
it computes according to the selected mutation operators, and classifies the
mutants as either revealed, executed or missed. PIT classifies a mutant as
revealed, if at least a test case produces a different result when executed
against the original program or the mutant program, respectively. That is,
the test case executes with no exception and raises an exception for either
program, or it raises different exceptions for either program, or it passes all

48 3. Evidence-Based Testability Estimation

test oracles and fails for at least a test oracle for either program, or it fails with
respect to different test oracles for either program. PIT classifies a mutant as
executed, if it could not classify the mutant as revealed, but there is at least a
test case that executes the code in which the corresponding fault was injected.
PIT classifies a mutant as missed if it could not classify it neither as revealed
nor as executed.

49

Chapter 4

Experiments and results

We validated our methodology for estimating software testability through a set
of experiments. Our experiments were driven by two main research questions:

• RQ1, Validity: Do our testability estimates effectively pinpoint software
modules that suffer or do not suffer of testability issues?

• RQ2, Conclusiveness: How frequently can we achieve conclusive esti-
mates of testability with our current implementation of the technique?

We studied these questions with three types of experiments:

• EXP1: Qualitatively, by manually inspecting software modules for which
we estimated the highest or lowest testability, respectively, trying to em-
pirically validate the goodness of the indications provided by the testa-
bility estimates.

• EXP2: Quantitatively on historical data, by estimating the testability
of many software modules, and then measuring the extent of correlation
with the cost of testing those modules (extrapolating the testing costs by
analyzing the test cases that were available in the project repositories).

• EXP3: Quantitatively in controlled experiments with developers, by es-
timating the testability of sample software modules, and then comparing
our estimates with the testing cost evaluated by running testing sessions
focused on those modules.

In all experiments we considered software modules out of open-source Java
projects as benchmarks. In fact, our current prototype addresses Java pro-
grams. We addressed the research question RQ1 in all experiments, while we

50 4. Experiments and results

addressed the research question RQ2 only in experiments EXP1 and EXP2.
Furthermore, in the experiments EXP1 we considered the Java classes as uni-
tary software modules, while in the experiments EXP2 and EXP3 we focused
on the methods of the Java classes. We explain these choices in more detail
below.

The qualitative study (EXP1) addressed the research question RQ1 by
manually analyzing the subset of classes for which our metric showed the
lowest (resp. highest) testability scores with the aim of confirming if our
metric highlights actual testability issues. The selected classes came from a
previously determined subset containing only the classes for which we were
able to obtain conclusive testability estimates (thus answering RQ2). This
study considered Java classes as module units, since it was more reliable for us
to manually characterize the possible testability issues with respect to design
decisions made at class level, rather than reasoning on smaller units (i.e., the
class methods) separately.

The quantitative studies (both EXP2 and EXP3) addressed RQ1 by fo-
cusing on the relation between the testability estimates and the actual testing
costs. In these studies, RQ2 is addressed only in EXP2. In EXP3, due to its
cost in terms of time and human resources, we decided to ask the third-party
tester to run the test sessions on a set of methods for which we knew that
our metric could provide conclusive results. We remark that the third-party
tester could freely choose any method to test from the ones for which we could
obtain conclusive estimates, so the only limitation is related to the conclusive-
ness. We feel like this is not a limiting factor since RQ2 was already studied in
EXP1 and EXP2. The quantitative studies considered Java methods as mod-
ule units, since it was more reliable to associate the available test cases with
class methods or simulate the testing session for class methods, rather than
entire Java classes. For the study EXP2, we processed the available test cases
to derive a ground truth that reflects the test effort spent by the developers
to test the considered Java methods, and we crosschecked the correlation be-
tween the test effort and our (conclusive) testability estimates, also comparing
our results with the ones that could be obtained by using static software met-
rics as estimators of testability. Furthermore, we analyzed if combining our
testability estimates and static software metrics improved over using those es-
timators separately. For EXP3, we involved a third-party developer to devise

4.1 Subjects 51

the test cases for a set of Java methods.
The following section will introduce the subjects considered in the experi-

ments, while the further ones will go in detail over each of the above mentioned
experiments.

4.1 Subjects

For the first two experiments (EXP1 and EXP2), we selected from GitHub
three open-source Java projects that:

• use Maven as build tool, as this is a requirement of our current imple-
mentation of the technique,

• are representative of large projects comprised of at least 500 classes,

• are representative of different types of software developments, namely, a
programming library, a software engineering tool and a business oriented
application,

• include at least 250 methods that can be associated with test cases
available in the projects (the motivations of this choice and how this is
done are detailed in Section 4.3).

The three selected projects are:

• JFreeChart, a programming library that supports the display of charts,

• Closure Compiler, a software engineering tool that parses and optimizes
programs in Javascript, and

• OpenMRS-Core, a business-oriented application for the healthcare do-
main.

Instead, for the third experiment (EXP3), that requires developers to simu-
late testing sessions, we selected the jsoup project, an open-source Java HTML
Parser. We choose this project mainly due to its moderate size (it has "only"
64 classes) and well-documented code.

52 4. Experiments and results

4.2 Qualitative study

We conducted a qualitative study on the classes of the three above presented
projects, selecting the classes with the lowest and highest Controllability and
Observability scores, to try to confirm our hypothesis that low and high scores
according to our metric can be reconciled to actual testability issues and boost-
ers, which can be revealed with manual inspection of the classes.

4.2.1 Experimental Settings

We instantiated our technique with EvoSuite, version 1.2.0, and PIT, version
1.8.1. In Section 3.4 we have already described the configuration of EvoSuite
with respect to the fitness functions, the time budget and the generation of
assertions, and the mutation operators used with PIT.

Table 4.1 shows how many classes belong to each project. The columns
All refer to all the classes in the projects, while the columns Considered and
Subjects refer, respectively, to the subset of classes for which we have at least a
mutant, and to the further subset that we selected as actual potential subjects
for our qualitative study.

Table 4.1. Number of classes in the three considered Java projects

Number of classes
Project All Considered Subjects

JFreeChart 632 471 321
Closure Compiler 839 606 455

OpenMRS 735 542 267

The number of classes for which we have at least a mutant, is lower than
the total number of classes due to the existence of interfaces and simple classes
without mutants; such classes can be said to be testable by definition (testa-
bility score of 100%) since they include only basic instructions.

We further refined the set of subject classes for the qualitative study by
excluding the classes for which PIT computed mutants for at most 9 lines of
code. This has been done with the aim of excluding from the qualitative study
the classes which have only a little amount of code with potential testability
issues.

We discriminated inconclusive testability estimates by determining, for
each subject class, the threshold for the minimal number of lines of code that

4.2 Qualitative study 53

we must sample with testability evidences out of the lines for which PIT
identified at least a mutant. We computed the thresholds by referring to
the classic approximation to the hypergeometric distribution [68], setting the
confidence level to 95%, the population portions to 0.5 and the corresponding
accuracy to 15%.

We performed the study on a total of 20 classes per each project, choosing
them as in the following: (i) 5 classes with the lowest controllability, (ii) 5
classes with the highest controllability, (iii) 5 classes with the lowest observ-
ability, (iv) 5 classes with the highest observability.

For each one of the selected classes we report our findings on the control-
lability (resp. observability) issues or boosters that we identified manually.

4.2.2 Results

The subsections in this chapter will answer the two research questions pre-
sented at the start of this chapter 4. Since knowing for which classes we have
obtained a conclusive testability estimation is a prerequisite to be able to an-
swer RQ1, we will first present the results related to RQ2 in the following
subsection.

Conclusiveness (RQ2)

Table 4.2 reports, for each of the three Java projects (column Project) and
set of subject classes (column Subjects), the number of classes for which we
achieved conclusive estimations (column Conclusive) and the corresponding
portion (column Portion).

Table 4.2. Conclusive testability estimations

Project Subjects Conclusive Portion
JFreeChart 321 269 84%

Closure Compiler 455 238 52%
OpenMRS 267 152 57%

The portion of inconclusive estimations is evidently not negligible, rang-
ing between 16% and 48% across the three Java projects. The inspection
of the classes with inconclusive estimations revealed that, as we expected,
many parts of code of the subject classes were not hit with any test case from
EvoSuite since they depended on inputs that EvoSuite cannot generate due

54 4. Experiments and results

to limitations of its current implementation. For example, we identified sev-
eral methods that take files and streams as inputs (e.g., parameters of type
ObjectInputStream) that EvoSuite does not currently handle.

We remark that EvoSuite is a research prototype, though very popular in
the community of researchers that work on test generation, and we did not
expect it to be perfect. Tuning our technique with further test generators or
even ensembles of test generator (as well as experiencing with further mutation
analysis tools other than PIT) is an important milestone for our technique to
make its way to practice, and definitely the most relevant next goal in our
research agenda. But we also underline the importance of studying the merit
of our novel proposal for the cases in which we could indeed achieve conclusive
results with the current implementation.

Does our metric highlight actual testability issues (RQ1)

To answer RQ1, we performed a manual analysis of a subset of the classes that
have shown the highest and lowest Controllability and Observability scores
across the three considered projects. Tables 4.3 to 4.5 contain the results of our
qualitative analysis on controllability and observability for each project. The
first two columns of Tables 4.3 to 4.5 indicate the class name (column Class)
and the corresponding Contr (resp. Obs) score. The last column reports our
findings on the controllability (resp. observability) issues or boosters that we
identified manually in the classes. In case no issues or booster is identified we
report it with the (n.a.) wording.
In the following we provide an explanation of each kind of issue (resp. boost-
ers) for Controllability and Observability that we found in the analyzed
classes.

Controllability Issues:

• (ci1) Multi-step protocol: The class interface induces an interaction
protocol that requires test cases to call multiple methods in specific
sequences to set the relevant input states, thus hardening the task of
identifying tests.

• (ci2) Complex structured inputs: The class takes several inputs
defined as complex data structures, and thus requires long test cases

4.2 Qualitative study 55

Table 4.3. JFREECHART - Qualitative study of classes with lowest and highest
Controllability and Observability

Controllability
Class Contr Issue/Boost
org.jfree.data.time.TimeSeriesCollection 91.80% (ci3)
org.jfree.chart.editor.DefaultPolarPlotEditor 92.59% (ci2)
org.jfree.data.jdbc.JDBCPieDataset 93.75% (ci1)
org.jfree.chart.editor.DefaultLogAxisEditor 95.45% (ci1)
org.jfree.chart.editor.DefaultNumberAxisEditor 96.15% (ci1)
org.jfree.chart.date.SerialDate 100% (cb1)
org.jfree.data.xy.XYDataItem 100% (cb1) (cb2)
org.jfree.chart.renderer.Outlier 100% (cb1)
org.jfree.data.gantt.Task 100% (cb1) (cb2)
org.jfree.data.xy.OHLCDataItem 100% (cb1) (cb2)

Observability
Class Obs Issue/Boost
org.jfree.chart.renderer.category.StandardBarPainter 0% (oi1) (oi2)
org.jfree.chart.renderer.xy.StandardXYBarPainter 0% (oi1) (oi2)
org.jfree.chart.renderer.category.GradientBarPainter 2.86% (oi1) (oi2)
org.jfree.chart.renderer.xy.GradientXYBarPainter 6.06% (oi1) (oi2)
org.jfree.chart.needle.MiddlePinNeedle 6.25% (oi2)
org.jfree.data.time.Day 100% (ob2)
org.jfree.data.time.SimpleTimePeriod 100% (ob1) (ob2)
org.jfree.data.xy.XYDataItem 100% (ob1) (ob2)
org.jfree.data.xy.XYCoordinate 100% (ob1) (ob2)
org.jfree.chart.urls.CustomPieURLGenerator 100% (ob1)

56 4. Experiments and results

Table 4.4. CLOSURE COMPILER - Qualitative study of classes with lowest and
highest Controllability and Observability

Controllability
Class Contr Issue/Boost
com.google.javascript.jscomp.CheckUnreachableCode 58.33% (ci1)
com.google.javascript.jscomp.PeepholeFoldConstants 67.39% (ci1)
PeepholeSubstituteAlternateSyntaxi 68.67% (ci1)
com.google.javascript.jscomp.lint.CheckConstantCaseNames 76.92% (ci1) (ci2)
com.google.javascript.jscomp.FindModuleDependencies 77.78% (ci1) (ci2)
com.google.javascript.jscomp.regex.RegExpTree 100% (cb1)
com.google.javascript.jscomp.GoogleJsMessageIdGenerator 100% (cb1) (cb2)
com.google.javascript.jscomp.JsMessage 100% (cb1) (cb2)
com.google.javascript.jscomp.regex.CharRanges 100% (cb1) (cb2)
com.google.javascript.jscomp.ModuleIdentifier 100% (cb1)

Observability
Class Obs Issue/Boost
com.google.javascript.jscomp.JsonErrorReportGenerator 0% (oi2)
com.google.javascript.jscomp.WarningLevel 5.41% (oi1)
com.google.javascript.refactoring.FixingErrorManager 5.88% (oi1)
com.google.javascript.jscomp.FindModuleDependencies 7.41% (oi1)
SemanticReverseAbstractInterpreterii 7.89% (oi1)
com.google.javascript.jscomp.ModuleIdentifier 100% (ob1)
com.google.javascript.jscomp.AccessorSummary 100% (ob1)
com.google.javascript.jscomp.transpile.TranspileResult 100% (ob1) (ob2)
com.google.javascript.jscomp.NodeNameExtractor 100% (ob1)
com.google.debugging.sourcemap.SourceMapObject 100% (ob1) (ob2)

i com.google.javascript.jscomp.PeepholeSubstituteAlternateSyntax
ii com.google.javascript.jscomp.type.SemanticReverseAbstractInterpreter

4.2 Qualitative study 57

Table 4.5. OPENMRS - Qualitative study of classes with lowest and highest
Controllability and Observability

Controllability
Class Contr Issue/Boost
org.openmrs.api.impl.DatatypeServiceImpl 57.89% (ci1)
org.openmrs.module.ModuleClassLoader 82.35% (ci1)
org.openmrs.util.DoubleRange 88.00% (n.a)
org.openmrs.validator.PersonValidator 92.11% (ci3)
org.openmrs.logging.MemoryAppender 94.12% (n.a)
org.openmrs.logic.result.Result 100% (cb2)
org.openmrs.ConceptStopWord 100% (cb1) (cb2)
org.openmrs.BaseFormRecordableOpenmrsData 100% (cb1)
org.openmrs.patient.impl.LuhnIdentifierValidator 100% (cb1)
org.openmrs.Program 100% (cb2)

Observability
Class Obs Issue/Boost
org.openmrs.api.handler.ConceptSaveHandler 0% (oi1)
org.openmrs.validator.BaseAttributeTypeValidator 5.88% (oi1)
org.openmrs.module.ModuleFactory 13.43% (oi1)
org.openmrs.validator.DrugOrderValidator 16.67% (oi1)
org.openmrs.validator.PersonValidator 16.97% (oi1)
org.openmrs.person.PersonMergeLogData 100% (ob2)
org.openmrs.logic.Duration 100% (ob1) (ob2)
org.openmrs.DrugReferenceMap 100% (ob2)
org.openmrs.logic.LogicTransform 100% (ob2)
org.openmrs.scheduler.TaskDefinition 100% (ob1) (ob2)

58 4. Experiments and results

that go through sophisticated initialization sequences to set the relevant
inputs.

• (ci3) Preconditioned updates: The interface methods for updating
the class state are guarded with many preconditions, and thus the class
challenges the testers to comply with the preconditions when specifying
the test inputs.

Controllability Boosters:

• (cb1) Simply-typed control inputs: The class methods are fully
controllable with inputs of primitive type, string type or types defined
as flat data structures with only primitive fields and setters for all fields.

• (cb2) Complete field-input mapping in constructors or setters:
The test cases can rely on class constructors and setters to assign all
fields based on simply-typed inputs of the constructors or setters, one
input for each field.

Observability Issues:

• (oi1) Complex observer methods: The observer methods depend
on many parameters, or take complex data structures as input, thus
hardening the task of specifying the test oracles.

• (oi2) Output on system streams: The class produces most output
on system streams, e.g., it writes results to the console or in the GUI,
hardening the task of specifying automatic test oracles on those results.

Observability Boosters:

• (ob1) Output as simply-typed return values: The class produces
all relevant outputs as return values of simple types, which can be easily
checked with test oracles.

• (ob2) Full getter access to modified fields: The class stores its
outputs in fields that the test cases can easily access with provided getter
methods.

4.3 Quantitative study on historical data 59

By analyzing the tables, we can see that our metrics scored maximum
values for classes that allow for controlling the execution with simple inputs
of interface methods and constructors, and observing the results in return
values or with getter methods. Conversely, controllability and observability
issues depend on interfaces that hamper test cases from setting relevant input
values and inspecting relevant outputs.

For the OpenMRS projects two classes that have been highlighted as hav-
ing controllability issues are marked as false positive. The first point that
should be noted is the fact that we can see that the two classes have relatively
high controllability scores, and so should not be considered has having serious
controllability issues. Having said this, let us focus on these two false positive
to understand their causes. The false positives are highlighted as such since
the potential faults that could be difficult to reach during testing are from
part of the code that should not be reachable (dead code), as specified in the
comments found in the code of the class. Basically, since our technique enrich
the API of the software to be able to set any field in a class with the end
goal of measuring testability, as specified in section 3.3.1, we are identifying
a controllability issue that should be non-existent. Having said this, we may
argue that leaving dead code in a software is a known code smell that should
in any case be fixed.

In conclusion, from this preliminary qualitative study, we can affirm that
our technique is seemingly able to highlight potential testability issues in a
software.

4.3 Quantitative study on historical data

We investigated to which extent our estimates of software testability can cap-
ture the testing cost by analyzing the complexity of the test cases associated
to the methods of a Java program, in a set of experiments with many methods
and test cases out of the three Java projects described in section 4.1.

4.3.1 Experimental setting

We instantiated our technique with EvoSuite, version 1.2.0, and PIT, version
1.8.1. In In Section 3.4 we have already described the configuration of EvoSuite

60 4. Experiments and results

with respect to the fitness functions, the time budget and the generation of
assertions, and the mutation operators used with PIT.

Table 4.6. Descriptive statistics of the subject methods in the three considered
Java projects

JFreeChart Closure Compiler OpenMRS
All Tested Subjects All Tested Subjects All Tested Subjects

Number of methods 8552 615 248 14723 301 112 9166 493 241
Total lines of code (LOC) 71703 6788 5199 110553 3203 2274 51412 6527 5402
Average LOC per method 8.38 11.03 20.96 7.51 10.64 20.30 5.61 13.21 22.41

Mininum LOC per method 1 3 5 1 1 1 1 3 6
Maximum LOC per method 288 188 188 433 246 246 221 121 121

Average mutants per method 2.45 3.70 7.42 2.85 3.64 7.56 1.33 4.70 8.28
Mininum mutants per method 0 1 3 0 1 3 0 1 3

Maximum mutants per method 104 74 74 617 66 66 74 46 46

Table 4.6 summarizes descriptive statistics about the Java methods that
belong to each project, namely, the number of the methods (first row), their
total and individual size (from the second to the fifth row), and the number
of mutants in the methods (from the sixth to the eighth row). The columns
All refer to all methods in the projects, while the columns Tested and Subjects
refer, respectively, to the subset of methods that we were able to successfully
associate with some test cases, and to the further subset that we selected
as actual subjects for our study. We describe the procedure by which we
selected these two latter subsets in the next section. The table shows that
we selected methods with increasing size and increasing number of mutants
at each selection step.

We discriminated inconclusive testability estimates by determining, for
each subject method, the threshold for the minimal number of lines of code
that we must sample with testability evidences out of the lines for which PIT
identified at least a mutant. We computed the thresholds by referring to
the classic approximation to the hypergeometric distribution [68], setting the
confidence level to 95%, the population portions to 0.5 and the corresponding
accuracy to 15%.

To compare the performance of our testability estimates with the perfor-
mance of the estimates that can be done with traditional software metrics we
used the tool CK1 [76] to collect the 7 metrics Loc, Rfc, Cbo, Fan-out, Fan-in,
Cbo-modified and Wmc, for each subject method. Loc is the number of lines
of code in the method. Rfc is the number of unique method invocations done
within the method. Cbo is the number of non-primitive data types used in

1the tool CK is available at https://github.com/mauricioaniche/ck

https://github.com/mauricioaniche/ck

4.3 Quantitative study on historical data 61

the method. Fan-out is the number of unique classes on which the method
depends via method calls. Fan-in is the number of other methods that call
the method within the same class. Cbo-modified is the sum of Fan-out and
Fan-in. Wmc is the sum of complexities of methods defined in a class. It
therefore represents the complexity of a class as a whole and this measure
can be used to indicate the development and maintenance effort for the class.
In this implementation, the measure of complexity of methods is McCabe’s
Cyclomatic Complexity. A method with no branches has a Cyclomatic Com-
plexity of 1 since there is 1 arc. This number is incremented whenever a
branch is encountered.

We evaluated the test complexity of the test cases associated with each
subject method using 5 static metrics extracted from the test cases Rfc, Loc,
AvgLoc, NMC, NA. We extracted them for the ensemble of the test cases
associated to each subject method. The Rfc counts the number of unique
method invocations across all the test cases associated to a method. This
metric is the one that should best express the development complexity of the
test cases since it allowed us to avoid complexity measures that depended
directly on the amount of associated test cases, as multiple test cases may not
necessarily indicate high testing complexity if they are all built with the same
or similar sets of methods invocations. The Loc and AvgLoc metrics measure
the sum of the lines of code of all the test cases associated to a method and
the average number of lines of code of the associated test cases, respectively.
The NMC metric counts the number of method invocations across all the
associated test cases of each method, finally the NA metric counts the number
of assertions across all the associated test cases of each method.

4.3.2 Ground Truth

Out of the Java methods in the considered projects (Table 4.6, columns All),
we excluded all methods hashCode and equals that are usually generated au-
tomatically, and further selected only the methods that we could associate
with a reference ground-truth, that is, available test cases that the program-
mers developed for those methods. This because we aimed at investigating
the correlation between our testability estimates for the methods and the de-
velopment complexity of the corresponding test cases, for methods and test
cases designed by human programmers. We built on the methods2test tool [77]

62 4. Experiments and results

to associate the methods with the test cases available in the projects and se-
lected only the methods for which we identified at least an associated test case
(Table 4.6, columns Tested).

Methods2test heuristically infers the associations between the available
test cases and the methods that are their main testing target. It originally re-
lies on two heuristics, name matching and unique method call, but we extended
it with three additional heuristics, stemming-based name matching, contains-
based name matching and non-helper unique method call, which generalize the
two original ones with the aim to increase the set of identified associations.

For each test case, which in the considered projects is a test method within
a test class, name matching searches for a target method that both exactly
matches with the name of the test case and belongs to a class that exactly
matches with the name as the test class. Stemming-based name matching
and contains-based name matching address the name matching with respect
to either the stemmed names of methods and test cases, or whether the test
name contains the method name, respectively. For example, testCloning and
testCloneSecondCase will match with method clone after name stemming or
by name containment, respectively. Unique method call further exploits the
name-based association between a test class and a target class, by searching
for test cases that call a single method of the target class. Non-helper unique
method call re-evaluates the unique method check after excluding the calls
to possible helper methods, such as setter methods, getter methods and the
method equals.

After the association with the test cases, we further refined the set of
subject methods by excluding the methods for which PIT computed mutants
for at most two lines of code. For these methods our technique could distil the
unitary testability evidences out of a too squeezed population of seeded faults,
which results in yielding unbalanced estimates in most cases. We see this as a
drawback of the fault models that we are currently able to consider by relying
on PIT, rather than as a limitation of our idea of estimating testability based
on automatically generated test cases, and we thus dismissed these methods
from the current experiments on this basis. We ended with selecting the set
of subject methods summarized in the columns Subjects of Table 4.6.

4.3 Quantitative study on historical data 63

4.3.3 Results

The subsections in this chapter will answer the two research questions pre-
sented at the start of this chapter 4. Since knowing for which methods we
have computed a conclusive testability estimation is a prerequisite to be able
to answer RQ1, we will first present the results related to RQ2 in the first
subsection.

Conclusiveness (RQ2)

Table 4.7 reports, for each of the three Java projects (column Project) and set
of subject methods (column Subjects), the number of methods for which we
achieved conclusive estimations (column Conclusive) and the corresponding
portion (column Portion).

Table 4.7. Conclusive testability estimations

Project Subjects Conclusive Portion
JFreeChart 248 208 86%

Closure Compiler 112 69 62%
OpenMRS 241 141 59%

Like in the previous experiment (EXP1), the portion of inconclusive es-
timations is evidently not negligible, ranging between 14% and 41% across
the three Java projects. The inspection of the methods with inconclusive es-
timations revealed that, as we expected, many subject methods were not hit
with any test case from EvoSuite since they depended on inputs that Evo-
Suite cannot generate due to limitations of its current implementation. For
example, we identified several methods that take files and streams as inputs
(e.g., parameters of type ObjectInputStream) that EvoSuite does not currently
handle.

We remark that EvoSuite is a research prototype, though very popular in
the community of researchers that work on test generation, and we did not
expect it to be perfect. Tuning our technique with further test generators or
even ensembles of test generator (as well as experiencing with further mutation
analysis tools other than PIT) is an important milestone for our technique
to make its way to practice, and definitely the most relevant next goal in
our research agenda. But we also underline the importance of studying the
merit of our novel proposal for the cases in which we could indeed achieve

64 4. Experiments and results

Table 4.8. JFREECHART - Correlations between testability estimates, static
metrics and test case complexity.

Legend: T=Our metric, L=Loc, R=Rfc, C=Cbo, CM=CboModified, FI=FanIn,
FO=FanOut, W=Wmc.

JFreeChart
T L R C CM FI FO W

Loc -0.16
Rfc -0.45 0.64

Cbo -0.50 0.41 0.66
CboModified -0.40 0.52 0.71 0.66

FanIn - - -0.20 -0.28 0.15
FanOut -0.44 0.50 0.77 0.77 0.93 -0.16

Wmc -0.18 0.85 0.51 0.34 0.48 - 0.46
RfcTest -0.51 0.23 0.51 0.46 0.45 - 0.50 0.18
LocTest -0.22 0.23 0.34 0.22 0.30 - 0.32 0.18

AvgLocTest -0.29 0.17 0.28 0.15 0.27 - 0.26 0.15
NmcTest -0.20 0.27 0.34 0.16 0.26 - 0.27 0.22

NaTest - 0.14 - - - - - -

conclusive results with the current implementation, which admittedly is our
main objective in this paper.

Correlation with cost of testing (RQ1)

To answer RQ1 we analyzed if our metric correlates with the cost of testing
each method, expressed with 5 software metrics. Furthermore, we compare the
performance obtained with our metric against 7 static software metrics that
have been proposed in the state of the art. For this part of the experiment,
we focused on the subject methods for which our technique yielded conclusive
results.

Tables 4.8, 4.9 and 4.10 report the correlation (as the Spearman rank cor-
relation coefficient2) between our testability estimations, the 7 static software
metrics that we measured with the tool CK, and 5 software metrics expressing
the testing cost (in the form of test case complexity) that have been proposed
across different studies, for the subjects methods (for which we were able
to reach a conclusive testability estimation) in each considered Java project.

2The Spearman rank correlation coefficient indicates the extent to which the ranking of
the subjects with respect to an indicator produces a good approximation of the ranking with
respect to the other indicator. The correlation value ranges between -1 and 1, being 1 an
indication of perfect correlation (same ranking), -1 and indication of perfect anti-correlation
(same inverse ranking) and 0 an indication of no correlation (completely different ranking).

4.3 Quantitative study on historical data 65

Table 4.9. CLOSURE COMPILER - Correlations between testability estimates,
static metrics and test case complexity.

Legend: T=Our metric, L=Loc, R=Rfc, C=Cbo, CM=CboModified, FI=FanIn,
FO=FanOut, W=Wmc.

Closure Compiler
T L R C CM FI FO W

Loc -0.27
Rfc - 0.58

Cbo - 0.35 0.70
CboModified -0.33 0.26 0.45 0.39

FanIn - - - - 0.56
FanOut -0.32 0.40 0.86 0.73 0.57 -

Wmc - 0.81 0.45 - - - 0.27
RfcTest -0.41 - - - 0.24 - 0.29 -
LocTest -0.30 - 0.24 - - - 0.24 -

AvgLocTest - - - - - - - -
NmcTest - 0.32 0.26 - - - - 0.33

NaTest - 0.37 - - - - - 0.29

Table 4.10. OPENMRS - Correlations between testability estimates, static metrics
and test case complexity.

Legend: T=Our metric, L=Loc, R=Rfc, C=Cbo, CM=CboModified, FI=FanIn,
FO=FanOut, W=Wmc.

OpenMRS
T L R C CM FI FO W

Loc -0.28
Rfc -0.42 0.72

Cbo -0.33 0.40 0.49
CboModified -0.27 0.43 0.60 0.28

FanIn 0.20 - - -0.30 0.38
FanOut -0.44 0.51 0.78 0.57 0.74 -0.19

Wmc - 0.77 0.51 0.32 0.36 - 0.43
RfcTest -0.45 0.33 0.47 0.48 0.33 -0.17 0.53 -
LocTest -0.44 0.32 0.39 0.50 0.19 -0.27 0.44 0.30

AvgLocTest -0.22 - 0.23 0.35 0.17 - 0.31 -
NmcTest -0.46 0.32 0.43 0.47 0.22 -0.21 0.46 0.27

NaTest -0.42 0.24 0.26 0.28 - -0.18 0.27 0.22

66 4. Experiments and results

Each cell in the table represents the correlation between the metrics indicated
in the titles of the corresponding column and row, respectively. For example,
the column T represents the correlations between our testability estimates and
all other metrics, and the row RfcTest represents the correlation of all possible
metrics (including our testability estimates) with the Rfc metric computed at
the test cases level.

All reported correlation values were computed with R. The missing corre-
lation values (indicated as dash symbols in the table) refer to cases for which
we did not find support for statistical significance (p-values greater than 0.05).

We observe that:

• RfcTest is the test complexity metric that generally express the highest
correlation with all the considered metrics.

• Our testability estimations have a moderate negative correlation with
RfcTest for the sets of subject methods of all three projects (-0.51, -0.41
and -0.45, respectively).

• Our testability estimates yielded the best correlation with RfcTest for
the methods of JFreeChart and Closure Compiler, and the fourth best
correlation for the methods of OpenMRS.

• Our metric has a moderate negative correlation with LocTest, NmcTest
and NaTest for the sets of subject methods of the OpenMRS project and
is consistently the best or second best at correlating with these metrics
in this specific project.

• In most cases, AvgLocTest and NaTest are the test complexity metric
which correlates less with the considered metrics. Notable exceptions
are for JFreeChart the AvgLocTest that is arguably on par with LocTest
and NmcTest and for OpenMRS the NaTest that is just a bit worse to
LocTest and NmcTest.

• Our testability estimates have weak correlation with the size of the meth-
ods measured as the lines of code (top-left correlation value, row Loc, in
the three value sets in the table).

• The static software metrics resulted in significantly higher correlations
with Loc (columns L in the table) than Testability, with the only excep-

4.3 Quantitative study on historical data 67

tions of FanIn which has basically no correlation with the test complexity
metrics, and Cbo and CboModified in project Closure Compiler where
however Cbo does not correlate at all with the test complexity metrics,
while CboModified has a weak correlation only with RfcTest.

• The correlations between the testability estimator metrics and the test
complexity for the Closure Compiler projects are overall comparatively
weaker (sometimes not even significant) than the ones of the other two
projects. This may be due to how the test cases for this project have
been constructed. In particular, in this project, we find an extensive use
of helper classes for testing that act as scaffolding for creating test cases.
Since these helper classes (and their methods) are defined outside the
test cases associated to a method, we potentially lose part of the test
complexity expressed with the help of the considered test metrics.

In summary the findings confirm that our testability estimates may con-
tribute to explain the variability in the complexity of the test cases, while
capturing a different phenomenon than the size of the software. The other soft-
ware metrics also correlate with the test complexity metrics, in particular with
RfcTest, sometimes with comparable strength as our testability estimates, but
their independence from Loc is questionable. Overall, these findings motivate
us to explore the possible synergies between our testability estimates and the
static metrics.

Synergy with Static Software Metrics (RQ1)

With the end goal of evaluating if our metric has a potential synergistic behav-
ior with the static software metrics we conducted two types of experiments:

• Performing a study using logistic regression by combining our metric
with static software metrics with the goal of predicting the test effort.

• Creating 7 new metrics derived from the combination of our testability
metric with static software metrics and evaluating their performance
against all testability estimation metrics.

In the following, we will describe each of these experiments and provide their
results.

68 4. Experiments and results

Logistic Regression
We used logistic regression to perform an empirical study with the aim of

verifying the relationship between the testability estimator metrics (our metric
and the classic static metrics) (independent variables) and the required test ef-
fort (dependent variable) in the three considered software project. We trained
the model specifying as optimality criterion the ROC curve and we used cross-
validation (10-fold cross validation) with the aim of avoiding over-fitting. To
determine the testability, we used the RfcTest metric which, as shown in the
correlation study, is the metric that has the strongest overall correlation with
all testability estimator metrics across the three selected projects. In order to
adapt the RfcTest metric to the logistic regression study, we transformed it
into a categorical variable. We defined two categories: high required testing
effort and low required testing effort. We categorized the tests associated to
a method as requiring high testing effort if:

RfcTest > TrimmedMean(RfcTest)

We associated a low required testing effort otherwise. (NB: we use a 7%
trimmed mean to reduce the impact of the outliers).

In our regression study we considered the following metrics: regression
coefficient of the involved dependent variables, significance (p-value) of the
coefficient, pseudo-R2 metric (McFadden) of the model, Area Under the Curve
measure. We’ll provide a brief explanation of the considered metrics in the
following:

• Regression Coefficient (b). The larger the absolute value of a coefficient,
the stronger the impact of the independent variable on the probability
of detecting a high testing effort.

• Significance of the coefficient (p-value). The p-value (related to the
statistical hypothesis) is the probability of the coefficient being different
from zero by chance and is also an indicator of the accuracy of the coeffi-
cient estimate. In this study, to decide whether a metric is a statistically
significant predictor of testing effort, we use the α= 0.05 significance level
to assess the p-value.

• Pseudo R2 (R2). Pseudo R2 (McFadden) is defined as the proportion

4.3 Quantitative study on historical data 69

of the total variance in the dependent variable that is explained by the
model. The higher the R2 is, the higher the effect of the independent
variables, and the more accurate the model.

• Area Under the Curve (AUC). The larger the AUC measure, the better
the model is at classifying classes. A perfect model that correctly clas-
sifies all classes has an AUC measure of 1. An AUC value close to 0.5
corresponds to a poor model (the model equates to a random choice).
An AUC value greater than 0.7 corresponds to a good model.

Tables 4.11, 4.12, 4.13 contain the results of the logistic regression study
for each of the considered projects. The rows called Combined refers to the
results obtained from combining our metric with the specified object-oriented
metric through a multivariate regression, while the row called Original reports
the results of the univariate regression to allow for easier comparison of the
data.

Focusing on the Original rows (univariate regression), the results largely
confirm what already emerged from the correlation study, with some slight
differences probably induced by the fact that instead of considering the ranks
like we did for correlation, in this case the test effort is approximated to a
categorical variable. In particular, we can see that:

• The FanIn metric is not significant in any of the considered projects.

• In the Closure compiler project, no metric shows significant values. The
transformation of RfcTest to a categorical variable has probably had a
negative impact on this project.

Focusing on the Combined rows (multivariate regression), the results con-
firm our hypothesis that our metric captures a complementary dimension of
testability compared to traditional static metrics and can be synergistically
combined with them for the purpose of predicting software testability. In
particular, we can see that:

• As expected, after seeing the univariate study we cannot say anything
about the Closure Compiler project, since the results for the base metrics
were not significative enough.

70 4. Experiments and results

Table 4.11. Results of the logistic regression study - JFreeChart

JFreeChart
p b R2 AUC

Combined Loc 0.01 -0.04 0.18 0.76OurMetric 0.00 3.79
Original Loc 0.00 -0.05 0.07 0.65

Combined Rfc 0.00 -0.21 0.22 0.79OurMetric 0.00 2.93
Original Rfc 0.00 -0.24 0.16 0.74

Combined Cbo 0.00 -0.27 0.18 0.76OurMetric 0.00 2.96
Original Cbo 0.00 -0.40 0.12 0.70

Combined CboMod 0.00 -0.30 0.25 0.82OurMetric 0.00 3.04
Original CboMod 0.00 -0.36 0.19 0.77

Combined FanIn 0.26 -0.14 0.15 0.71OurMetric 0.00 4.24
Original FanIn 0.42 -0.08 0.00 0.47

Combined FanOut 0.00 -0.32 0.25 0.81OurMetric 0.00 2.86
Original FanOut 0.00 -0.37 0.19 0.77

Combined Wmc 0.13 -0.06 0.15 0.74OurMetric 0.00 3.91
Original Wmc 0.02 -0.10 0.03 0.61

4.3 Quantitative study on historical data 71

Table 4.12. Results of the logistic regression study - Closure Compiler

Closure Compiler
p b R2 AUC

Combined Loc 0.42 -0.01 0.02 0.49OurMetric 0.27 1.12
Original Loc 0.37 -0.02 0.01 0.47

Combined Rfc 0.90 0.00 0.01 0.51OurMetric 0.24 1.18
Original Rfc 0.95 0.00 0.00 0.34

Combined Cbo 0.79 0.02 0.02 0.52OurMetric 0.24 1.21
Original Cbo 0.91 0.01 0.00 0.35

Combined CboMod 0.94 0.00 0.01 0.51OurMetric 0.26 1.20
Original CboMod 0.75 0.00 0.00 0.48

Combined FanIn 0.98 0.00 0.01 0.51OurMetric 0.26 1.18
Original FanIn 0.76 0.00 0.00 0.48

Combined FanOut 0.88 0.01 0.02 0.50OurMetric 0.24 1.20
Original FanOut 0.98 0.00 0.00 0.48

Combined Wmc 0.66 -0.02 0.02 0.50OurMetric 0.24 1.20
Original Wmc 0.70 -0.02 0.00 0.43

72 4. Experiments and results

Table 4.13. Results of the logistic regression study - OpenMRS

OpenMRS
p b R2 AUC

Combined Loc 0.01 -0.05 0.13 0.69OurMetric 0.00 2.41
Original Loc 0.00 -0.05 0.06 0.66

Combined Rfc 0.00 -0.17 0.18 0.75OurMetric 0.03 1.72
Original Rfc 0.00 -0.19 0.15 0.73

Combined Cbo 0.03 -0.19 0.10 0.68OurMetric 0.00 2.23
Original Cbo 0.00 -0.25 0.05 0.67

Combined CboMod 0.01 -0.11 0.12 0.69OurMetric 0.01 2.16
Original CboMod 0.00 -0.13 0.08 0.66

Combined FanIn 0.28 0.08 0.08 0.63OurMetric 0.00 2.54
Original FanIn 0.10 0.13 0.02 0.23

Combined FanOut 0.00 -0.17 0.15 0.73OurMetric 0.03 1.72
Original FanOut 0.00 -0.20 0.13 0.71

Combined Wmc 0.05 -0.09 0.10 0.67OurMetric 0.00 2.55
Original Wmc 0.03 -0.09 0.03 0.58

4.3 Quantitative study on historical data 73

• The best results for the JFreeChart project are obtained by combining
our metric with the CboModified and FanOut Metrics, followed by the
Rfc metric.

• For the OpenMRS project the best results are obtained with the Rfc
metric followed by the FanOut metric.

• Combining traditional static metrics with our metric shows an improve-
ment in all the cases in which we have significant coefficients.

Combination metrics
We evaluated the performance of the 7 testability indicators obtained by

combining each static software metrics with our testability estimates. For each
static metric, we derived a new combined indicator assigned to each subject
method. This new indicator is computed as the average of the rankings yielded
by the static metric and by our testability estimate. For the static metrics
that are anti-correlated with our testability estimate (all but FanIn, see Tables
4.8, 4.9 and 4.10) we reversed the testability rankings before computing the
combined indicators. Table 4.14 contains an example that shows how the
new metric is derived. Columns OurMetric and Rfc contain our testability
estimation metric and the Rfc static metric. Columns RankT and RankR
contain the compute rank for the two metrics. We can see that the rank for
the Rfc metric is reversed. Column NewIndicator contains the new metric
derived as the mean of the rankings of OurMetric and Rfc.

Table 4.14. Example showing the combination of the ranks

OurMetric RankT Rfc RankR NewIndicator
0,10 6 30 6 6
1,00 1 3 1 1
0,50 3 10 2 2,5
0,70 2 23 4 3
0,30 4 20 3 3,5
0,20 5 25 5 5

In this study we considered also the methods for which our technique re-
sulted in inconclusive estimates. Since the static metrics are generally available
for all methods, and we aim to evaluate if we can benefit from the static met-
rics in combination with the testability estimates, it makes sense to include

74 4. Experiments and results

those methods as well. For the methods with inconclusive testability esti-
mates, the combined indicator takes into account only the rank derived from
the static metric (that is, without any additional benefit from our testability
estimate).

Table 4.15. Correlation with the combined testability indicators

JFreechart
RfcTest LocTest AvgLocTest NMCTest NATest

base comb base comb base comb base comb base comb
Loc 0.18 0.35 0.24 0.29 0.19 0.30 0.27 0.30 0.15 0.16
Rfc 0.47 0.53 0.30 0.29 0.24 0.27 0.28 0.26 - -

Cbo 0.45 0.53 0.21 0.24 0.13 0.21 0.14 0.17 - -
CboMod 0.46 0.54 0.22 0.22 0.20 0.20 0.18 0.16 - -

FanIn - -0.37 - -0.26 - -0.31 - -0.22 - 0.13
FanOut 0.51 0.58 0.25 0.24 0.19 0.23 0.20 0.20 - -

Wmc 0.15 0.33 0.21 0.29 0.18 0.30 0.23 0.39 0.14 0.17
Closure Compiler

RfcTest LocTest AvgLocTest NMCTest NATest
base comb base comb base comb base comb base comb

Loc - - 0.27 0.32 - - 0.30 0.31 0.34 0.29
Rfc 0.22 0.32 0.33 0.38 - - 0.28 0.28 - -

Cbo 0.26 0.33 0.21 0.29 - - - - - -
CboMod - 0.34 - 0.29 - - - - - -

FanIn - -0.32 - -0.23 - - - - - -
FanOut 0.23 0.30 0.29 0.34 - - - - - -

Wmc - - 0.24 0.32 - - 0.35 0.35 0.33 0.28
OpenMRS

RfcTest LocTest AvgLocTest NMCTest NATest
base comb base comb base comb base comb base comb

Loc 0.38 0.46 0.31 0.37 0.13 0.18 0.33 0.39 0.19 0.25
Rfc 0.52 0.55 0.42 0.46 0.26 0.28 0.45 0.49 0.27 0.33

Cbo 0.46 0.51 0.48 0.50 0.29 0.29 0.47 0.51 0.33 0.38
CboMod 0.39 0.52 0.30 0.52 0.22 0.31 0.31 0.51 0.23 0.41

FanIn -0.19 -0.32 -0.23 -0.24 -0.14 -0.18 -0.21 -0.29 -0.18 -0.27
FanOut 0.51 0.53 0.45 0.48 0.31 0.31 0.46 0.49 0.33 0.39

Wmc 0.28 0.43 0.34 0.45 - - 0.33 0.45 0.21 0.31

Table 4.15 reports the correlation between the 5 test complexity metrics
and the 7 combined testability indicators (columns combined) in comparison
with the correlation obtained with respect to the base static metrics alone
(columns base) for the subject’s methods in each considered Java project.
We report only the correlation values supported with statistical significance
(p-value less than 0.05). The data in the table show that the correlation

4.4 Controlled study with developers 75

yielded with the combined indicators consistently outperformed the correla-
tion yielded with the corresponding static metrics alone for most of the test
complexity metrics considered, in most cases with relevant deltas. The only
cases in which the combined score is worse is in Closure Compiler for the Loc
and Wmc metrics only when correlated with the number of assertions. In the
JFreechart project we see slightly worse results for the Rfc and FanIn met-
rics when correlated with LocTest and for Rfc when correlated with Number-
MethodCallsTest, but we can see that the delta is clearly negligible (difference
of 0.01). This confirms our main research hypothesis that our testability es-
timates capture a complementary dimension of testability with respect to the
traditional software metrics and can be synergistically combined with those
metrics for the purpose of predicting software testability.

4.4 Controlled study with developers

We performed an experiment with the aim of measuring the performance of
our metric against other software static metrics by making use of additional
testing effort information (information that expresses the cost of testing) com-
pared to the one used in the correlation study in the previous section (Section
4.3). These additional data regarding the cost of testing are derived from a
testing activity performed on the jsoup project (Section 4.1) by a third-party
developer that had to follow a set of given rules specified by us. During this
activity the third-party developer had to report a set of information that are
used as the testing effort estimators for this experiment.

4.4.1 Experimental settings

As with the two previous experiments, we instantiated our technique with
EvoSuite, version 1.2.0, and PIT, version 1.8.1. In In Section 3.4 we have
already described the configuration of EvoSuite with respect to the fitness
functions, the time budget and the generation of assertions, and the mutation
operators used with PIT.

Once again, we discriminated inconclusive testability estimates by deter-
mining, for each subject method, the threshold for the minimal number of
lines of code that we must sample with testability evidences out of the lines

76 4. Experiments and results

for which PIT identified at least a mutant. We computed the thresholds by
referring to the classic approximation to the hypergeometric distribution [68],
setting the confidence level to 95%, the population portions to 0.5 and the
corresponding accuracy to 15%.

Table 4.16. Number of all, considered, conclusive and subjects methods for the
jsoup project

All Considered Conclusive Subjects
Number of methods 1643 803 640 51

Table 4.16 provides information about the overall number of methods in the
jsoup project and the ones that we effectively used in our project. The column
All refers to all methods in the project, the column Considered indicates the
number of methods that have at least one applicable mutant in them, the
column Conclusive refer to the number of methods for which we can compute
our metric with a conclusive estimate and finally the column Subjects contains
the number of methods from which we picked the methods for the controlled
study. The Subjects method set has been extracted by selecting all methods
from the jsoup project that have at least 5 lines of code containing a mutant.
This choice has been done with the aim of focusing on non-trivial methods
that are potentially more interesting for the study.

We provided to a third-party developer the list of Subjects methods from
which they should pick from to develop the appropriate test cases. For each
one of the selected methods the third-party developer followed the instructions
listed below for developing the test cases:

• Devise and implement a test case for the method under test, stopping if
time exceed 60 minutes.

• Aiming the testing at (i) statement coverage3 as first objective and then
(ii) to branch coverage, if the maximum time has not elapsed yet.

• Annotate the time needed for each activity.

• Report:

– A subjective evaluation, expressing if the method was easy or hard
to test.

3We measure statement coverage through the number of covered instructions

4.4 Controlled study with developers 77

– The statement coverage and branch coverage scores obtained.

– The time elapsed while working to reach statement coverage, in
minutes.

– The time elapsed while working to reach branch coverage, in min-
utes.

4.4.2 Results

In this experiment we analyzed the correlation of our proposed testability
metric with the five test effort information that we asked the third-party
developer to report. Additionally, we compared the results obtained with our
metric against 7 static software metrics that have been proposed in the state
of the art.

Table 4.17 contains the list of methods for which the third-party tester
effectively developed a test (26 in total), table 4.18 contains, for each method,
the following information: our testability score, the subjective evaluation of
the tester expressing if he found difficulties in the development of the tests
for the method, the final instruction and branch coverage scores reached, the
time that was needed to reach statement coverage, the time that was needed
to reach statement and branch coverage, the values of the 7 static software
metrics used as competitors to our metric.

For some methods (1, 2, 21) we can see that both the instruction and
branch coverage does not reach the maximum value, but the assigned time for
testing (60 min) still has not elapsed. This is due to methods that contain
statements that are unreachable.

From a first analysis of the reported test effort information, we can see
that there is a relation between the subjective difficulty expressed by the
tester and the time took for testing. As expected, the tests classified as hard
to test are usually the ones that took more time to be completed. There are
some exceptions, for example method 21 has been classified as easy to test
by the third-party tester even if it took him 33 minutes to reach statement
coverage and 45 minutes to reach branch coverage. From a brief interview
with the third-party tester, we learned that this was due to lacking knowledge
on his part about complex regular expressions; after studying them, he was
able to quickly create the appropriate tests and consequently he judged the

78 4. Experiments and results

Table 4.17. Methods considered in the study

ID Class Method
1 org.jsoup.select.QueryParser byAttribute/0
2 org.jsoup.select.QueryParser combinator/1[char]
3 org.jsoup.safety.Cleaner createSafeElement/1[Element]
4 org.jsoup.parser.CharacterReader matchesIgnoreCase/1[String]
5 org.jsoup.parser.CharacterReader nextIndexOf/1[char]
6 org.jsoup.parser.TokenQueue matchesAny/1[char[]]
7 org.jsoup.parser.Token$Tag newAttribute/0
8 org.jsoup.safety.Safelist removeProtocols/3[String,String,String[]]
9 org.jsoup.parser.CharacterReader consumeTo/1[String]
10 org.jsoup.parser.CharacterReader matches/1[String]
11 org.jsoup.parser.CharacterReader scanBufferForNewlines/0
12 org.jsoup.select.NodeTraversor filter/2[NodeFilter,Node]
13 org.jsoup.internal.StringUtil isAscii/1[String]
14 org.jsoup.internal.StringUtil isBlank/1[String]
15 org.jsoup.internal.StringUtil isNumeric/1[String]
16 org.jsoup.helper.HttpConnection data/1[String[]]
17 org.jsoup.safety.Safelist addProtocols/3[String,String,String[]]
18 org.jsoup.safety.Safelist addAttributes/2[String,String[]]
19 org.jsoup.select.QueryParser consumeSubQuery/0
20 org.jsoup.select.NodeTraversor traverse/2[NodeVisitor,Node]
21 org.jsoup.nodes.Attribute getValidKey/2[String,Syntax]
22 org.jsoup.nodes.Attributes indexOfKey/1[String]
23 org.jsoup.parser.CharacterReader consumeDigitSequence/0
24 org.jsoup.parser.CharacterReader consumeHexSequence/0
25 org.jsoup.safety.Safelist addEnforcedAttribute/3[String,String,String]
26 org.jsoup.safety.Safelist removeEnforcedAttribute/2[String,String]

4.4 Controlled study with developers 79

Table 4.18. Methods testability estimation, test effort metrics and static metrics.

Legend: T=Our metric, D=Subjectively hard to test, CI=Instruction coverage,
CB=Branch coverage, TS=Time for statement coverage, TB=Time for branch

coverage, CboM=CboModified, FI=FanIn, FO=FanOut
ID T D CI CB TS TB Cbo CboM FI FO Wmc Rfc Loc

1 0.00 T 89.00 93.80 52 52 11 18 1 17 9 11 19
2 0.33 T 86.40 83.30 19 19 11 15 1 14 11 10 1
3 0.41 T 0.00 0.00 60 60 7 16 1 15 5 12 16
4 1.00 F 100.00 100.00 17 17 1 2 1 1 4 4 11
5 1.00 F 100.00 100.00 4 4 1 2 1 1 3 1 7
6 0.91 F 100.00 100.00 9 9 2 2 1 1 4 2 7
7 0.47 T 100.00 100.00 30 51 2 6 2 4 9 7 21
8 0.58 T 100.00 100.00 40 60 5 6 0 6 4 15 20
9 0.94 F 100.00 100.00 17 17 1 6 3 3 2 3 11

10 1.00 F 100.00 100.00 17 17 1 2 1 1 4 3 7
11 0.49 T 52.20 70.00 60 60 1 4 2 2 6 6 14
12 0.56 T 53.30 40.60 60 60 3 10 3 7 17 7 35
13 1.00 F 100.00 100.00 11 11 1 2 1 1 3 3 10
14 1.00 F 100.00 100.00 6 7 1 7 6 1 5 3 8
15 1.00 F 100.00 100.00 3 4 0 1 1 0 5 3 8
16 0.85 F 100.00 100.00 6 10 5 6 0 6 3 6 12
17 0.53 T 100.00 100.00 40 60 5 8 3 5 4 12 29
18 0.71 F 100.00 100.00 3 5 4 8 3 5 4 11 20
19 0.82 T 100.00 100.00 24 24 2 8 1 7 6 10 11
20 0.68 T 72.30 50.00 60 60 3 20 11 9 12 9 41
21 1.00 F 97.90 91.70 33 45 2 3 3 0 7 3 11
22 1.00 F 100.00 100.00 13 13 1 10 9 1 3 2 7
23 0.89 F 100.00 100.00 12 13 1 3 1 2 4 2 10
24 1.00 F 100.00 100.00 12 13 1 3 1 2 8 2 10
25 0.77 F 100.00 100.00 6 6 5 5 1 4 2 9 18
26 0.63 F 100.00 100.00 4 14 5 3 0 3 4 9 12

80 4. Experiments and results

method as easy to test. Furthermore, analyzing the subjective difficulty and
coverage columns, we can see that almost all methods for which a maximum
coverage was not reached have been classified as hard to test.

A problem that may impact the study is the fact that the two features
related to the time spent testing may saturate when the target coverage (100%)
is not reached, leading to the fact that two methods that are potentially hard-
to-test with different levels (different coverage reached) are indistinguishable
from one another. With the goal of mitigating this problem in our experiments,
we introduced two features derived as the combination of the time required for
reaching the specific coverage and the coverage value, called UTS (Time per
unit of statement coverage) and UTB (Time per unit of branch coverage). In
particular, these new metrics will express how much time the tester required
to cover 1% of the target objective (statement or branch).

Table 4.19 presents the correlation study in which we analyzed the rela-
tionship between the considered test effort metrics and a set of testability
estimators, including our proposed metric. The columns represent the test ef-
fort metrics, as for the rows, the ones in the top part of the table represent the
test effort metrics, while the ones in the bottom part represent the considered
testability estimators.

The correlations between the collected test effort metrics confirm our first
analysis of the data. In particular we can see that:

• All test effort metrics have at least a moderate correlation between them.

• The two coverage metrics and the two original time metrics have a very
strong correlation between themselves.

• The combined metrics UTS and UTB have a very strong correlation
with the original two time metrics.

• The subjective evaluation shows a higher correlation with the time met-
rics (both original and combined) compared to the coverage metrics.

Let us now analyze the correlation between the testability estimation met-
rics and the test effort metrics. We can see that our metric has a moderate to
strong correlation with all the considered test effort metrics, showing particu-
larly good results especially with the subjective difficulty of the tests and the

4.4 Controlled study with developers 81

Table 4.19. Correlation between testability estimation metrics and test effort
metrics.

Legend: D=Subjectively hard to test, CI=Instruction coverage, CB=Branch
coverage, TS=Time for statement coverage, TB=Time for branch coverage,
UTS=Time per unit of statement coverage, UTB=Time per unit of branch

coverage
D CI CB TS TB UTS UTB

CI -0.62
CB -0.61 1.00
TS 0.81 -0.72 -0.71
TB 0.83 -0.64 -0.64 0.96
UTS 0.81 -0.72 -0.72 1.00 0.96
UTB 0.82 -0.69 -0.69 0.96 0.99 0.96
Our metric -0.82 0.56 0.53 -0.56 -0.63 -0.56 -0.63
Loc 0.56 - - 0.49 0.58 0.48 0.57
Rfc 0.70 - - 0.44 0.56 0.45 0.55
Cbo 0.53 - -0.39 - 0.41 - 0.41
CboModified 0.66 -0.53 -0.53 0.54 0.53 0.54 0.55
Fan In - - - - - - -
Fan Out 0.74 -0.47 -0.46 0.50 0.55 0.50 0.57
Wmc 0.63 -0.65 -0.66 0.57 0.55 0.56 0.57

time metrics related to branch coverage. By analyzing the correlation between
all considered testability estimators and test effort metrics we can see that:

• Our metric shows the best results when correlated with the subjective
difficulty (D), other metrics that show particularly good but inferior
results are Fan Out and Rfc.

• The metrics that show the best correlation with instruction coverage is
Wmc followed by our metric and CboModified. All three of the men-
tioned metrics show moderate to strong correlation values.

• Wmc is the metric which shows the best correlation with the reached
branch coverage score, followed by CboModified and our metric.

• The metric that offers the best correlation with the time taken for reach-
ing maximum statement coverage is Wmc closely followed by our metric
and CboModified which offer similar correlation values.

• Our metric has the best correlation with the time taken for reaching
maximum branch coverage, all other metrics, except for Cbo and Fan
In, show moderate correlation values.

82 4. Experiments and results

• The results related to the combined time metrics (UTS and UTB) are
really similar to the ones obtained with the original corresponding time
metrics. In particular, we can see that there is almost no variation
between the time taken for reaching statement coverage and time per
unit of statement coverage. On the other hand, we can see that there is
a general small improvement in the correlation values when considering
the time per unit of branch coverage over the time for branch coverage
alone.

• As already seen in experiment 4.3 the Fan In metric is the one that
shows the lowest correlation values with respect to the test effort.

We performed a deeper analysis on the methods for which our technique
showed the most discrepancies compared to the test effort metrics. In partic-
ular, method 26, and to a lesser degree methods 18 and 25, appears to not be
the easiest to test based on our testability estimation, however test effort met-
rics show the opposite. By analyzing the test cases generated by EvoSuite in
conjunction with the mutants created by Pit, we found out that this happens
due to a particular characteristic of these considered methods. These methods
accept as inputs some String parameters that, before being used to perform
some calculation, are individually checked with a method from another class
to make sure that the contained strings are not empty; in case a parameter
contains an empty string, an exception is raised. In the worst cases, EvoSuite
instead of creating a set of test cases in which each one of the parameters is
the only empty one, created a single test case in which all or a part of them
are empty. Using the set of generated test cases when performing mutation
analysis with Pit lead to some of the generated mutants to be executed but
not killed; in particular, Pit creates a mutant for each of the statements check-
ing the non-emptiness of the string wherein the statement is removed. This
leads to some of these mutants to not being killed because the test cases do
not cover those situations. This can be seen as a limitation by EvoSuite that
focused only on creating a test case that led to an exception, without consid-
ering that the same type of exception can be raised by different statements in
the method.

From these initial results we can answer RQ1 and conclude that our testa-
bility estimation metric is potentially a very good predictor of testability is-

4.5 Summary of the findings 83

sues, surpassing traditionally used test effort metrics.

4.5 Summary of the findings

The main goal behind the performed experiments was to answer the two re-
search questions (RQ1 and RQ2) posed at the start of this chapter. We an-
swered RQ1 (Do our testability estimates effectively pinpoint software modules
that suffer or do not suffer of testability issues?) with all three performed ex-
periments. In the qualitative study (EXP1) we were able to confirm that for
the analyzed sample of classes, our technique was able to identify the elements
that lead to have (resp. not have) potential difficulties in the testing phase. In
the quantitative study on historical data (EXP2) we studied the performance
of our technique both as the extent of correlation of our conclusive estimates
with the development complexity of the test cases, expressed with 5 static
metrics extracted from the test cases, and by looking into how well our esti-
mates can combine with traditional software metrics. Thanks to this study we
collected empirical evidence that (i) our metric is more than competitive with
these other metrics, (ii) it captures a different testability dimension than the
size of the software, and (iii) it can complement traditional software metrics
to reason on software testability in synergistic fashion. Finally, the controlled
study with developers (EXP3), complements the second experiment (EXP2)
by making use of a smaller, but more reliable ground truth, built by observing
the performance of a third-party developer while they test the target software.
In this last experiment we focused on other test effort metrics that were not
considered in the second experiment due to a lack of information, such as
the time taken for developing the test cases. The collected empirical evidence
highlight that our technique is able to identify real testability issues, as can be
seen by the correlation with the subjective evaluation of difficulty expressed by
the third-party tester and by the time needed to reach the maximum possible
branch coverage.

Based on the results of these experiments, we can affirm that our approach
is generally able to capture which software modules contains actual testability
issues, even if the conclusiveness of the estimates (RQ2) needs to be taken into
consideration. RQ2 (How frequently can we achieve conclusive estimates of
testability with our current implementation of the technique?) was answered

84 4. Experiments and results

in EXP1 and EXP2. As we saw in the experiments, the amount of non con-
clusive estimates is often non negligible and the inspection of the software
modules with inconclusive estimations revealed that, as we expected, many
parts of code of the subject modules were not hit with any test case from
EvoSuite due to its limitations. We remark once again that EvoSuite is a
research prototype, though very popular in the community of researchers that
work on test generation, and we did not expect it to be perfect. Further work
should be done on this aspect (such as using further test generators or even
ensembles of test generator), but we also underline the importance of studying
the merit of our novel proposal for the cases in which we could indeed achieve
conclusive results with the current implementation.

4.6 Threats to validity

The main threats to the internal validity for all of our experiments depend
on our current choices about the test generation and mutation analysis tools
(EvoSuite and PIT) embraced in our current prototype implementation of the
technique. On one hand, our results directly depend on the effectiveness of
those tools in sampling the execution space and the fault space of the pro-
grams under test, respectively, and thus we might have observed different
results if we experienced with different tools. On the other hand, our exper-
iments suffered of several subject methods for which PIT failed to identify
sufficient sets of mutants (in EXP2, the methods that belonged to the subsets
Tests in Table 4.6, but that we excluded from the considered subsets Subjects)
and EvoSuite failed to provide sufficient test cases (the subject methods that
resulted in inconclusive estimates, see Table 4.2 for EXP1, see Table 4.7 for
EXP2 and see Table 4.16 for EXP3). We mitigated the possible threats by
focusing our analysis only on the methods that could be reasonably handled
with PIT, and by explicitly pinpointing the methods for which EvoSuite allows
us to compute conclusive results.

As for external validity, for the qualitative study (EXP1) the main con-
cerns are (i) the the potential bias due to the fact that we performed the
qualitative study and (ii) the limited number of projects and classes analyzed.
The limitations come from the fact that this type of study is time consuming
and labor intensive. For the quantitative study on historical data (EXP2) our

4.6 Threats to validity 85

findings may not generalize to other software projects other than the ones that
we considered or to programming languages other than Java. In the future, we
aim to replicate our experiments on further projects and implement our tech-
nique for additional programming languages. Finally, for the controlled study
with developers (EXP3), we admit that the number of considered methods
is limited and from one single software project and consequently our findings
may not generalize to other software projects. This limitation came from the
fact that we wanted the testing to be performed by a third-party developer
to exclude any potential bias coming from our side; on the other hand, this
meant that we had to outsource the testing job, that, as already mentioned, is
costly in terms of time and human resources. In the future, we aim to replicate
this experiment on further projects and with more people.

A final threat to validity is related to what our metric is able to capture.
In particular, our testability estimation method does not cover all possible
testability issues affecting the code and focuses in particular on the difficulty
of executing and exposing faults aspect. There are other issues that may affect
testability such as the lack of documentation and the skills of the tester.

87

Chapter 5

Conclusions

Software testing is a key activity of the software life-cycle that requires time
and resources to be effective, and that is why being able to estimate the
testability of a software is essential to control the cost and effectiveness of the
test activities. So far researchers focused on estimating testability either by
analyzing the fault-sensitivity of a software or by extrapolating information
related to the structure of the code of a software. As we discussed in the state
of the art chapter, the former approaches were lately abandoned because their
high cost makes them impractical, while the latter approaches are intrinsically
limited in that they estimate testability just indirectly, without doing any
actual attempt or experiment with concretely testing the target software.

In this research work we introduce a new technique for estimating software
testability in which the novelty is to exploit automated test case generation
to investigate to which extent a program may or may not suffer of testability
issues. In a nutshell, our technique consists in executing a test generator
of choice against a program under test, and then automatically analyzing the
outcomes of the test generation activity to extract evidences that the generated
test cases are fostering effective (or ineffective) testing, due in particular to
reasons that can be specifically reconciled with design choices that characterize
the current program. We regard to testability issues as design choices that
hamper the easiness of achieving effective testing. The higher the amount
of the evidences our technique can collect for a given program in favor of
the presence or the absence of testability issues in the program, the lower or
the higher, respectively, the testability estimate that our technique will be
reporting for that program.

88 5. Conclusions

We developed a prototype that realizes our technique to estimate the testa-
bility of software modules in Java. To automatically generate the test cases
needed for our technique we rely on EvoSuite, while mutation-based fault
seeding is performed thanks to PIT.

With the goal of validating our technique, we performed three empirical
experiments based on the developed prototype. The research questions that
the experiments aimed to answer where if our metric highlight actual testa-
bility issues and how large is the portion of inconclusive estimates with our
current implementation of the technique.

Based on the results of the experiments, we can say that our approach is
generally able to capture which software modules contains actual testability
issues. In particular, the first experiment showed that the modules that our
approach highlights as having testability issues effectively contain elements
that lead to potential difficulties in the testing phase. The second experiment
compared our testability metric with static software metrics in the task of pre-
dicting the testing effort, by referring to a ground truth derived by measuring
the complexity the existing test cases associated to the software modules; the
results show that our metric is more than competitive with these other met-
rics and captures a complementary testability dimension with respect to the
static metrics. The third experiment complemented the second experiment
by making use of a smaller but more reliable ground truth, built by observing
the performance of a third party developer while they test the target software.
In this last experiment we focused on other test effort metrics that were not
considered in the second experiment due to a lack of information, such as the
time taken for developing the test cases. The results show the effectiveness of
our technique.

5.1 Future works

Our technique, while effective and promising, still has some open problems.
From the experiments reported in Section 4.2 and in Section 4.3 we saw that
our technique was not able to provide conclusive testability estimates for a
non-negligible part of the considered software modules (respectively classes
and methods). As already mentioned in the discussion of the experiments,
this is mainly due to the intrinsic limitations of our chosen automatic test

5.1 Future works 89

generator, EvoSuite. An aspect upon which further research is needed is the
possible integration of our technique with other test generators or a specifically
improved version of EvoSuite itself. Another approach that can be attempted
for increasing the conclusiveness of the results is to find other ways to enrich
the API of the analyzed software. This will allow the automatic test generator
to have an easier access to additional parts of the software that will lead to
an increase to the number of baseline mutants and will consequently increase
the number of conclusive estimates.

As for the mutation analysis part of the technique, currently all the mu-
tants for which we have evidence that are executed at least one time are consid-
ered as potential faults. We could obtain a more resilient baseline by making
use of weak mutation testing. Weak mutation testing analyses the differences
of the states between the original and the mutant software module. Instead,
strong mutation testing focuses only on the differences on the outputs of the
program. Currently available mutation testing tools, like PIT, perform only
strong mutation testing, mainly due to the fact that weak mutation testing
is costly (since instead of focusing only on the outputs of a software module,
all intermediate states should be checked) and the benefit of weak mutation
testing are potentially limited. Nevertheless, we think we could obtain more
accurate testability estimates if we consider all the mutants that propagate
their changes to a state which is distinguishable from the original program to
create the baseline of our technique, instead of all the mutants that have been
executed at least one time.

Regarding the judging of the testability evidences, in the future we want to
explore the possibility of including additional information to corroborate them.
In particular, we are currently evaluating the possibility of determining the
effort spent by the automatic test generator in reaching a particular mutant.
With this knowledge we could add a new variable that could improve the
testability estimation abilities of our technique.

On the topic of experiments, we plan on extending them to further open-
source projects, possibly written in languages other than Java (by matching
suitable automatic test generators and mutation analysis tools) and execute
other controlled experiments by involving further developers.

91

Bibliography

[1] E. J. McCluskey, Logic design principles with emphasis on testable semi-
custom circuits. Prentice-Hall, Inc., 1986.

[2] R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in mathematical
system theory, vol. 33. McGraw-Hill New York, 1969.

[3] H. Fujiwara, Logic testing and design for testability. MIT press Cam-
bridge, MA, 1985.

[4] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software
engineering, pp. 416–419, 2011.

[5] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “Pit:
a practical mutation testing tool for java,” in Proceedings of the 25th
international symposium on software testing and analysis, pp. 449–452,
2016.

[6] R. S. Freedman, “Testability of software components,” IEEE transactions
on Software Engineering, vol. 17, no. 6, pp. 553–564, 1991.

[7] V. Garousi, M. Felderer, and F. N. Kılıçaslan, “A survey on software
testability,” Information and Software Technology, vol. 108, pp. 35–64,
Apr. 2019.

[8] “IEEE Standard Glossary of Software Engineering Terminology,” tech.
rep., IEEE, 1990. ISBN: 9780738103914.

[9] ISO, “IEC 12207 Systems and software engineering-software life cycle pro-
cesses,” International Organization for Standardization: Geneva, 2008.

92 Bibliography

[10] Pu-Lin Yeh and Jin-Cherng Lin, “Software testability measurements de-
rived from data flow analysis,” in Proceedings of the Second Euromi-
cro Conference on Software Maintenance and Reengineering, (Florence,
Italy), pp. 96–102, IEEE Comput. Soc, 1998.

[11] J. M. Voas and K. W. Miller, “Improving the software development pro-
cess using testability research,” 1991.

[12] A. Bertolino and L. Strigini, “On the use of testability measures for de-
pendability assessment,” IEEE Transactions on Software Engineering,
vol. 22, pp. 97–108, Feb. 1996.

[13] T. Yu, W. Wen, X. Han, and J. H. Hayes, “Predicting testability of con-
current programs,” in 2016 IEEE International Conference on Software
Testing, Verification and Validation (ICST), pp. 168–179, IEEE, 2016.

[14] Y. Le Treon, D. Deveaux, and J.-M. Jézéquel, “Self-testable components:
From pragmatic tests to design-for-testability methodology,” in Proceed-
ings Technology of Object-Oriented Languages and Systems. TOOLS 29
(Cat. No. PR00275), pp. 96–107, IEEE, 1999.

[15] R. Poston, J. Patel, and J. Dhaliwal, “A software testing assessment to
manage project testability,” 2012.

[16] K. Karoui and R. Dssouli, “Testability analysis of the communication
protocols modeled by relations,” Technical Report No. 1050, vol. 1050,
1996.

[17] T. W. Williams and K. P. Parker, “Design for testability—A survey,”
Proceedings of the IEEE, vol. 71, no. 1, pp. 98–112, 1983. ISBN: 0018-
9219 Publisher: IEEE.

[18] R. V. Binder, “Design for testability in object-oriented systems,” Commu-
nications of the ACM, vol. 37, no. 9, pp. 87–101, 1994. ISBN: 0001-0782
Publisher: ACM New York, NY, USA.

[19] S. Jungmayr, “Design for testability,” in Proceedings of CONQUEST,
vol. 2002, pp. 57–64, 2002.

Bibliography 93

[20] B. Pettichord, “Design for testability,” in Pacific Northwest Software
Quality Conference, pp. 1–28, 2002.

[21] T. Kanstren, “A study on design for testability in component-based em-
bedded software,” in 2008 Sixth International Conference on Software
Engineering Research, Management and Applications, pp. 31–38, IEEE,
2008.

[22] B. Baudry, Y. Le Traon, and G. Sunye, “Testability analysis of a UML
class diagram,” in Proceedings Eighth IEEE Symposium on Software Met-
rics, (Ottawa, Ont., Canada), pp. 54–63, IEEE Comput. Soc, 2002.

[23] B. Baudry, Y. Traon, G. Sunye, and J.-M. Jezequel, “Measuring and
improving design patterns testability,” in Proceedings. 5th International
Workshop on Enterprise Networking and Computing in Healthcare In-
dustry (IEEE Cat. No.03EX717), (Sydney, NSW, Australia), pp. 50–59,
IEEE Comput. Soc, 2003.

[24] B. Baudry, Y. Le Traon, and G. Sunye, “Improving the testability of
UML class diagrams,” in First International Workshop onTestability As-
sessment, 2004. IWoTA 2004. Proceedings., (Rennes, France), pp. 70–80,
IEEE, 2004.

[25] B. Baudry and Y. Le Traon, “Measuring design testability of a UML class
diagram,” Information and software technology, vol. 47, no. 13, pp. 859–
879, 2005. Publisher: Elsevier.

[26] S. Mouchawrab, L. C. Briand, and Y. Labiche, “A measurement frame-
work for object-oriented software testability,” Information and Software
Technology, vol. 47, pp. 979–997, Dec. 2005.

[27] J. Gao and Ming-Chih Shih, “A Component Testability Model for Verifi-
cation and Measurement,” in 29th Annual International Computer Soft-
ware and Applications Conference (COMPSAC’05), vol. 2, (Edinburgh,
Scotland), pp. 211–218, IEEE, 2005.

[28] M. Bruntink and A. van Deursen, “Predicting class testability using
object-oriented metrics,” in Source Code Analysis and Manipulation,

94 Bibliography

Fourth IEEE International Workshop on, (Chicago, IL, USA), pp. 136–
145, IEEE Comput. Soc, 2004.

[29] V. Gupta, K. Aggarwal, and Y. Singh, “A fuzzy approach for integrated
measure of object-oriented software testability,” Journal of Computer Sci-
ence, vol. 1, no. 2, pp. 276–282, 2005.

[30] M. Bruntink and A. van Deursen, “An empirical study into class testa-
bility,” Journal of Systems and Software, vol. 79, pp. 1219–1232, Sept.
2006.

[31] Y. Singh, A. Kaur, and R. Malhotra, “Predicting testing effort using
artificial neural network,” in Proceedings of the World Congress on En-
gineering and Computer Science (WCECS 2008) San Francisco, USA.
Newswood Limited, pp. 1012–1017, 2008.

[32] L. Badri, M. Badri, and F. Toure, “Exploring empirically the relation-
ship between lack of cohesion and testability in object-oriented systems,”
in Advances in Software Engineering: International Conference, ASEA
2010, Held as Part of the Future Generation Information Technology Con-
ference, FGIT 2010, Jeju Island, Korea, December 13-15, 2010. Proceed-
ings, pp. 78–92, Springer, 2010.

[33] S. Khalid, S. Zehra, and F. Arif, “Analysis of object oriented complexity
and testability using object oriented design metrics,” in Proceedings of
the 2010 National Software Engineering Conference, pp. 1–8, 2010.

[34] Y. Singh and A. Saha, “Predicting testability of eclipse: a case study,”
Journal of Software Engineering, vol. 4, no. 2, pp. 122–136, 2010.

[35] L. Badri, M. Badri, and F. Toure, “An empirical analysis of lack of cohe-
sion metrics for predicting testability of classes,” International Journal of
Software Engineering and Its Applications, vol. 5, no. 2, pp. 69–85, 2011.
Publisher: Citeseer.

[36] M. Badri and F. Toure, “Empirical Analysis of Object-Oriented Design
Metrics for Predicting Unit Testing Effort of Classes,” Journal of Software
Engineering and Applications, vol. 05, no. 07, pp. 513–526, 2012.

Bibliography 95

[37] Y. Zhou, H. Leung, Q. Song, J. Zhao, H. Lu, L. Chen, and B. Xu, “An in-
depth investigation into the relationships between structural metrics and
unit testability in object-oriented systems,” Science china information
sciences, vol. 55, no. 12, pp. 2800–2815, 2012. Publisher: Springer.

[38] R. C. da Cruz and M. Medeiros Eler, “An Empirical Analysis of the
Correlation between CK Metrics, Test Coverage and Mutation Score,”
in Proceedings of the 19th International Conference on Enterprise Infor-
mation Systems, (Porto, Portugal), pp. 341–350, SCITEPRESS - Science
and Technology Publications, 2017.

[39] F. Toure, M. Badri, and L. Lamontagne, “Predicting different levels of the
unit testing effort of classes using source code metrics: a multiple case
study on open-source software,” Innovations in Systems and Software
Engineering, vol. 14, pp. 15–46, Mar. 2018.

[40] V. Terragni, P. Salza, and M. Pezzè, “Measuring Software Testability
Modulo Test Quality,” in Proceedings of the 28th International Confer-
ence on Program Comprehension, (Seoul Republic of Korea), pp. 241–251,
ACM, July 2020.

[41] N. Alshahwan, M. Harman, A. Marchetto, and P. Tonella, “Improving
web application testing using testability measures,” in 2009 11th IEEE
International Symposium on Web Systems Evolution, pp. 49–58, IEEE,
2009.

[42] R. A. Khan and K. Mustafa, “Metric based testability model for ob-
ject oriented design (MTMOOD),” ACM SIGSOFT Software Engineering
Notes, vol. 34, pp. 1–6, Feb. 2009.

[43] A. Kout, F. Toure, and M. Badri, “An empirical analysis of a testability
model for object-oriented programs,” ACM SIGSOFT Software Engineer-
ing Notes, vol. 36, pp. 1–5, Aug. 2011.

[44] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object ori-
ented design,” IEEE Transactions on software engineering, vol. 20, no. 6,
pp. 476–493, 1994. ISBN: 0098-5589 Publisher: IEEE.

96 Bibliography

[45] T. Khoshgoftaar, R. Szabo, and J. Voas, “Detecting program modules
with low testability,” in Proceedings of International Conference on Soft-
ware Maintenance, (Opio, France), pp. 242–250, IEEE Comput. Soc.
Press, 1995.

[46] T. Khoshgoftaar, E. Allen, and Z. Xu, “Predicting testability of program
modules using a neural network,” in Proceedings 3rd IEEE Symposium
on Application-Specific Systems and Software Engineering Technology,
(Richardson, TX, USA), pp. 57–62, IEEE Comput. Soc, 2000.

[47] J. M. Voas, “PIE: A dynamic failure-based technique,” IEEE Transac-
tions on software Engineering, vol. 18, no. 8, p. 717, 1992. Publisher:
IEEE Computer Society.

[48] A. Tahir, S. G. MacDonell, and J. Buchan, “Understanding class-level
testability through dynamic analysis,” in 2014 9th International Con-
ference on Evaluation of Novel Approaches to Software Engineering
(ENASE), pp. 1–10, IEEE, 2014.

[49] R. Bache and M. Müllerburg, “Measures of testability as a basis for qual-
ity assurance,” Software Engineering Journal, vol. 5, no. 2, p. 86, 1990.

[50] M. Badri and F. Toure, “Empirical Analysis for Investigating the Effect of
Control Flow Dependencies on Testability of Classes.,” in SEKE, pp. 475–
480, Citeseer, 2011.

[51] M. Badri and F. Toure, “Evaluating the Effect of Control Flow on the Unit
Testing Effort of Classes: An Empirical Analysis,” Advances in Software
Engineering, vol. 2012, pp. 1–13, June 2012.

[52] S. Jungmayr, “Identifying test-critical dependencies,” in International
Conference on Software Maintenance, 2002. Proceedings., (Montreal,
Que., Canada), pp. 404–413, IEEE Comput. Soc, 2002.

[53] Y. Le Traon and C. Robach, “Testability analysis of co-designed systems,”
in Proceedings of the Fourth Asian Test Symposium, (Bangalore, India),
pp. 206–212, IEEE Comput. Soc. Press, 1995.

Bibliography 97

[54] Y. Le Traon and C. Robach, “Testability measurements for data flow de-
signs,” in Proceedings Fourth International Software Metrics Symposium,
(Albuquerque, NM, USA), pp. 91–98, IEEE Comput. Soc, 1997.

[55] Y. Le Traon, F. Ouabdesselam, and C. Robach, “Analyzing testability on
data flow designs,” in Proceedings 11th International Symposium on Soft-
ware Reliability Engineering. ISSRE 2000, (San Jose, CA, USA), pp. 162–
173, IEEE Comput. Soc, 2000.

[56] Thanh Binh Nguyen, M. Delaunay, and C. Robach, “Testability anal-
ysis applied to embedded data-flow software,” in Third International
Conference on Quality Software, 2003. Proceedings., (Dallas, TX, USA),
pp. 351–358, IEEE, 2003.

[57] J. Voas, L. Morell, and K. Miller, “Predicting where faults can hide from
testing,” IEEE Software, vol. 8, no. 2, pp. 41–48, 1991. Publisher: IEEE.

[58] J. Voas and K. Miller, “Software testability: the new verification,” IEEE
Software, vol. 12, pp. 17–28, May 1995.

[59] J. M. Voas, “Object-Oriented Software Testability,” in Achieving Quality
in Software (S. Bologna and G. Bucci, eds.), pp. 279–290, Boston, MA:
Springer US, 1996.

[60] J.-C. Lin and S.-W. Lin, “An estimated method for software testability
measurement,” in Proceedings Eighth IEEE International Workshop on
Software Technology and Engineering Practice incorporating Computer
Aided Software Engineering, pp. 116–123, IEEE, 1997.

[61] L. Zhao, “A new approach for software testability analysis,” in Proceed-
ings of the 28th international conference on Software engineering, (Shang-
hai China), pp. 985–988, ACM, May 2006.

[62] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34–41, 1978. ISBN: 0018-9162 Publisher: IEEE.

[63] M. Pezzè and M. Young, Software testing and analysis: process, princi-
ples, and techniques. John Wiley & Sons, 2008.

98 Bibliography

[64] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?,” in Proceedings of the 27th international
conference on Software engineering, pp. 402–411, 2005.

[65] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using muta-
tion analysis for assessing and comparing testing coverage criteria,” IEEE
Transactions on Software Engineering, vol. 32, no. 8, pp. 608–624, 2006.
ISBN: 0098-5589 Publisher: IEEE.

[66] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 654–665, 2014.

[67] M. Papadakis, D. Shin, S. Yoo, and D.-H. Bae, “Are mutation scores
correlated with real fault detection? a large scale empirical study on the
relationship between mutants and real faults,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pp. 537–548,
IEEE, 2018.

[68] R. V. Krejcie and D. W. Morgan, “Determining sample size for research
activities,” Educational and psychological measurement, vol. 30, no. 3,
pp. 607–610, 1970. ISBN: 0013-1644 Publisher: Sage publications Sage
CA: Los Angeles, CA.

[69] D. v. Bruggen, F. Tomassetti, R. Howell, M. Langkabel, N. Smith,
A. Bosch, M. Skoruppa, C. Maximilien, ThLeu, Panayiotis,
S. Kirsch (@skirsch79), Simon, J. Beleites, W. Tibackx, j. p. L, A. Rouél,
edefazio, D. Schipper, Mathiponds, W. y. w. t. know, R. Beckett, ptitjes,
kotari4u, M. Wyrich, R. Morais, M. Coene, bresai, Implex1v, and B. Hau-
macher, “javaparser/javaparser: Release javaparser-parent-3.16.1,” May
2020.

[70] G. Fraser and A. Arcuri, “Evolutionary generation of whole test suites,”
in 2011 11th International Conference on Quality Software, pp. 31–40,
IEEE, 2011.

Bibliography 99

[71] G. Fraser and A. Arcuri, “It is not the length that matters, it is how you
control it,” in 2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation, pp. 150–159, IEEE, 2011.

[72] A. Panichella, F. M. Kifetew, and P. Tonella, “Reformulating branch
coverage as a many-objective optimization problem,” in 2015 IEEE 8th
international conference on software testing, verification and validation
(ICST), pp. 1–10, IEEE, 2015.

[73] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case gener-
ation as a many-objective optimisation problem with dynamic selection of
the targets,” IEEE Transactions on Software Engineering, vol. 44, no. 2,
pp. 122–158, 2017. ISBN: 0098-5589 Publisher: IEEE.

[74] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “MuJava: a mutation system for
Java,” in Proceedings of the 28th international conference on Software
engineering, pp. 827–830, 2006.

[75] R. Just, “The Major mutation framework: Efficient and scalable mutation
analysis for Java,” in Proceedings of the 2014 international symposium on
software testing and analysis, pp. 433–436, 2014.

[76] M. Aniche, Java code metrics calculator (CK), 2015. Available in
https://github.com/mauricioaniche/ck/.

[77] M. Tufano, S. K. Deng, N. Sundaresan, and A. Svyatkovskiy, “Meth-
ods2Test: A dataset of focal methods mapped to test cases,” arXiv
preprint arXiv:2203.12776, 2022.

	Introduction
	State of the art
	Freedman and the boom of Testability studies
	Introduction to software testability
	Measurement of testability
	Estimating testability by analyzing the structure of the code of a software
	Estimating testability by analyzing the fault-sensitivity of a software

	Open problems

	Evidence-Based Testability Estimation
	Foundations for evidence-based testability measurement
	Evidence-based testability measurement via automatically generated test cases and seeded faults
	Sampling the test space with automated test generation
	Sampling the fault space with mutation-based fault seeding
	Sampling-based testability measurements

	Our proposal for evidence-based testability measurement
	Extrapolating the set of baseline mutants
	Obtain testability scores (final definitions)
	Conclusiveness of the testability scores

	Prototype
	API augmentation and test cases pruning
	Test Generation
	Mutation Analysis

	Experiments and results
	Subjects
	Qualitative study
	Experimental Settings
	Results

	Quantitative study on historical data
	Experimental setting
	Ground Truth
	Results

	Controlled study with developers
	Experimental settings
	Results

	Summary of the findings
	Threats to validity

	Conclusions
	Future works

	Bibliography

