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Abstract

In this paper, we prove Spith’s Character Triple Conjecture for p-solvable groups. This is a
conjecture proposed by Spath during the reduction process of Dade’s Projective Conjecture to
quasisimple groups (see [Spai7]). In addition, as suggested by Isaacs and Navarro in [IN02], we
take into account the p-residue of characters.

1 Introduction

Global-local counting conjectures play a major role in modern representation theory of finite
groups. Amongst them are the McKay Conjecture [McK72] and its blockwise version, known as
the Alperin-McKay Conjecture [Alp76]], the Alperin Weight Conjecture [[Alp87] and a series of
conjectures proposed by Dade in [Dad92]), [Dad94] and [Dad97|] that imply all the above mentioned
conjectures. Dade’s aim was to find a version of his conjecture strong enough to hold for every
finite group if proved for all nonabelian simple groups. Unfortunately, such a reduction theorem
has never been published. The first step towards the solution of the global-local conjectures has
been achieved by Isaacs, Malle and Navarro in [IMN07] where the McKay Conjecture was reduced
to a stronger statement for simple groups. Inspired by this result, other reduction theorems have
been proved (see [NT11l], [Spa13a], [Spa13b], [Spal7] and [NSV20]). However, contrary to Dade’s
philosophy, all the reduction theorems appeared so far reduce a certain statement for arbitrary
finite groups to a much stronger statement for quasisimple groups.

Although these stronger statements, known as inductive conditions, have been originally
thought for (quasi)simple groups, they can be stated for arbitrary finite groups. Then, going back to
Dade’s plan, by proving the inductive condition for simple groups it should be possible to obtain,
not only the original conjecture, but even the inductive condition itself for every finite group. This
was done in [NS14] for the Alperin-McKay Conjecture.

In [Spa17]] Spith introduced the Character Triple Conjecture and showed that Dade’s Projective
Conjecture holds for every finite group if her conjecture holds for all quasisimple groups. Therefore
Spéth’s conjecture plays the role of inductive condition for Dade’s Projective Conjecture. Following
[NS14]], we would like to show that the Character Triple Conjecture holds for every finite group if
it holds for all quasisimple groups. To prove such a reduction theorem, it’s necessary to study the
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structure of a minimal counterexample. As for the above mentioned reductions, the first step in this
direction is to show that such a counterexample cannot be p-solvable. This is what we prove in the
present paper.

More precisely, let G be a finite group and fix a prime p. For any d > 0, we denote by Irrd(G’)
the set of irreducible characters x € Irr(G) with p-defect equal to d. Let 91(G) be the set of p-chains
of G starting with O,(G). If D = {Dy < D; < --- < D, } € M(G), we denote by |D| the integer
n, called the length of D. This yields a partition of 91(G) into the set 91(G), of p-chains of even
length and the set 91(G)- of p-chains of odd length. Notice that G acts by conjugation on the set
of p-chains and let Gy be the stabilizer in G of the chain D. For € € {+,-} and B a p-block of G,
define

CYB)e ={(D,V) | DeN(G), ¥ € ir*(Gp),bl(¥)€ = B},
where bl(¥9) is the unique block of Gy containing ¥ and bl(9)¢ is the block of G obtain via
Brauer’s induction (this is defined by [KR89, Lemma 3.2]). We denote by (ID,4) the G-orbit of

(D,¥) € C*(B). and by C%(B)./G the set of G-orbits. Now, our main result can be stated as
follows.

Theorem A. Let G be a finite p-solvable group with O, (G) < Z(G) and consider a p-block B of G
with noncentral defect groups. Suppose that G 4 A and denote by Ap the stabilizer of B in A. Then,
for every d > 0, there exists an Ap-equivariant bijection

Q:Cc%(B)./G > (B)-/G

such that
(A]D),’t97 GD7 19) ~G (A]E,X7 G]E7 X) )

in the sense ofDeﬁnitionfor every (D,9) € C4(B), and (E,x) € Q((D,9)).

Recall that for x € Irr(G), the p-residue of x is the nonnegative integer 7(x) := |Gly /x (1),
Following ideas of Isaacs and Navarro [IN02]], we include the p-residue of characters into the picture.
However, we do not consider more technical refinements involving Galois automorphisms (see
[Nav04]]) or p-local Schur indices (see [Tur08])) as done by Turull in [Turl7] for Dade’s Conjecture.

Theorem B. There exists a bijection ) satisfying the conditions of Theorem[A| and such that
r(0) =#r(x) (mod p),
for every (D, ) € C4(B), and some (E,x) € Q((D,1)).

As a corollary to our results, we show that Dade’s Extended Projective Conjecture [Dad97| 4.10],
with the Isaacs-Navarro refinement, holds for every p-solvable group.

Corollary C. Dade’s Extended Projective Conjecture with the Isaacs-Navarro refinement holds for
every p-solvable group.

Proof. This follows from Theorem[B|and [[Spa17, Proposition 6.4]. O

The paper is structured as follows: in the next section, we establish some notation, we give the
main definitions used in the paper and we prove some preliminary results. In the third section,
we construct an equivariant defect preserving character bijection lying above the Glauberman
correspondence that is well behaved with respect to N-block isomorphic character triples (see
Definition . In the fourth section, we show how to construct N-block isomorphic character
triples by using the Fong correspondence. Finally in the last section, we use the previously obtained
results to prove Theorem [A]and Theorem [B] This is done by inspecting the structure of a minimal
counterexample.



2 Preliminaries and notation

We use standard notation from representation theory of finite groups as in [Isa76]], [NT89] and
[Nav98]]. All groups considered in the sequel are assumed to be finite. For notational convenience,
whenever necessary we denote the normalizer N (H) simply by G, for every H < G.

Let Irr (@) the set of ordinary irreducible characters. If H < G and x € Irr(G), then Irr(x g)
is the set of irreducible characters of H which appear as constituents of the restricted character
X#. Moreover, for ¢ € Irr(H ), we denote by Irr(G | 9) the set of irreducible constituents of the
induced character ¥¢. For N 4 G and ¥ € Irr(IV') we denote by Gy the stabilizer of ¢ in G’ and by
Irr (V) the set of G-invariant irreducible characters of N. Then (G, N, ) is a character triple if
N 4G and 9 € Irrg(N).

Fix a prime p. For x € Irr(G), there exist unique nonnegative integers d() and r(x), called
respectively the p-defect and the p-residue of y, such that 7(x)p®™) = |G|/x(1) with r(x) coprime
to p. For any d > 0, we denote by Irr(G) the set of irreducible characters x € Irr(G) such that
d(x) = d. We denote by BI(G) the set of p-blocks of G and by BI(G | b) the set of all blocks of G
covering b, where N < G and b € BI(IV). Let G}, be the stabilizer of bin G. If H < G and b € BI(H),
then b€ is, when it is defined, the block obtained via Brauer induction. For X € Irr(G), the block
of G that contains x is bl(x). Let 6(B) be the set of defect groups of the block B and d(B) be its
defect. If D is a p-subgroup of G, then BI(G | D) is the set of blocks of G with D € §(B).

For the notion of projective representation, we refer to [NT89]], [Nav18] and [[Spa18]. We denote
by Proj(G | «) the set of projective representations of G with factor set a. Moreover, if N < G,
then we can consider a representation of G/N as a representation of G that is constant on N-cosets
by the usual inflation process. If P is a projective representation associated with a character triple
(G, N,9) (see [Spai8} Definition 1.7] and [Nav18] Definition 5.2]), then P yields a central extension
of G (see [Nav18| Theorem 5.6] and [Spa18, Theorem 1.12]). This is a standard construction and we
will make use of it without further comment.

In [Spa17, Definition 6.3] a new equivalence relation on character triples was introduced. This
will be of fundamental importance in what follows and, for completeness, we include the definition.

Definition 2.1 (N-block isomorphic character triples). Let (Hy, M1,91) and (Ha, Ms,92) be two
character triples and let N be a group. We say that the two character triples are /NV-block isomorphic,
and write

(Hlv Ml; 191) ~N (H27 M2a192) )
if the following conditions are satisfied:

(i) N9 NHy = NHy =1 G, My = Hin N and Ms = Hy n N. We denote the canonical
isomorphisms by I; : H;/M; - G/N and by i := ;' oy : H;/M; - Hy/Mo;

(i) Fori = 1,2, there exists a defect group D; € 6(bl(¥;)) such that Cs(D;) < H;. In particular
Cq(N) <HynHy;

(iii) For i = 1,2, there exists a projective representation P; € Proj(H; | «;) associated with
(H;, M;,9;) such that oy (z,y) = az(i(x),i(y)), for every x,y € Hy/M;, and with the
property that Py ¢, () and Py ¢, () are associated with the same scalar function (see the
comments preceding [[Spa18| Definition 2.7] and [Nav18| Definition 10.14]). In this case, there
exists a strong isomorphism of character triple (i,0) : (Hy1, My,91) — (Ha, M2,92) (see
[Isa76, Problem 11.13]) given by

oy, Ire(Jy | 91) = Tee(Js | 92)
tr(Qy, ® Pr,g,) P tr(Qy, ® Pa ),



for every N < .J < G, where J; := Jn H; and Q € Proj(J/N | a7L ;). Here a is the factor set
of G/N corresponding to «; via the isomorphism [; : H;/M; - G/N (see [Spal7, Theorem
3.3]);

(iv) For N < J < G, we have
bl(w)” = bl(os, (¥))”

for every 9 € Irr(Jq | ¥1). Observe in this situation that block induction is well defined (see
[Spa17, Lemma 3.5]).

In this situation, we say that (P;,P>) is associated with (Hy, My,1%1) ~n (Ha, Ma,¥2), or that
(Hy,My1,91) ~n (Ha,Ms,92) is given by (P1,P2). Whenever we want to specify the pair
(P1,P2) we write U(JZJl’PZ) instead of simply o, .

The above definition gives a relation on character triples that extends the relation >; introduced
in [Spai8] Definition 4.2] (see also [NS14]). In fact, observe that (G, N, x) >, (H, M,?) if and
only if (G, N, x) ~n (H, M,?). On the other hand, the notion of block isomorphism of character
triples given in [NS14] Definition 3.6] is slightly different, and in some sense more restrictive, from
the relation >, (see [Spa18| Remark 4.3 (c)]). For this reason, we will not refer to results of [NS14]
which involve directly block isomorphism of character triples.

Having defined /N-block isomorphic character triples, we can now introduce Spéth’s Character
Triple Conjecture ([Spal7} Conjecture 6.3]). For a central p-subgroup Z of G, we denote by M(G, Z)
the set of normal p-chains of G starting with Z. These are the chainsD = {Z = Dy < Dy <--- < D, }
of p-subgroups of G with the property that each D, is normal in the largest subgroup D,,. We
denote by |D| the integer n, called the length of D. The set M(G, Z) is partitioned into the set
N(G, Z), of p-chains of even length, and the set (G, Z)_ of p-chains of odd length. The group
G acts by conjugation on 91(G, Z) and we denote by Gp = N; N¢(D;) the stabilizer in G of the
chain . Finally, let B be a block of G and, for € € {+,-} and d > 0, define C4(B, Z). to be the set
of pairs (ID,9) with D € N(G, Z). and ¥ € Irr(Gyp) satisfying bl(9)¢ = B. Again, the group G
acts on C%(B, Z).. We denote by (ID, ) the G-orbit of (D,?) € C*(B, Z). and by C*(B, Z)./G
the set of G-orbits.

Conjecture 2.2 (Spith’s Character Triple Conjecture). Let G be a finite group, Z < Z(G) be a
p-subgroup and consider B € BI(G) with defect groups strictly larger than Z. Suppose that G 4 A.
Then, for every d > 0, there exists an N 4 (Z) p-equivariant bijection

0:C4B,2),/G-CYB,Z)_|G

such that
(Ap,9,Gp, V) ~g (A, GE, X)

for every (D,9) e CY(B, Z), and some (E, x) € Q((D,1)).

By [Spal7, Lemma 3.8 (c)], the above statement on character triples does not depend on the
choice of (I, x) € Q((ID,4)) nor on the representative (ID, ) of (ID,4). We will make use of this
fact without further reference.

As shown in the following lemma, it is no loss of generality to assume O,(G) < Z(G) and
consider p-chains with initial term O, (G). This is an adaptation of a well known result (see, for
instance, [Nav18| Theorem 9.16]).

Lemma 2.3. Conjecture[2.4 holds whenever Z < O,(G).



Proof. Consider D € M(G,Z) withD = {Dy < D;--- < D,,}. If O,(G) ¢ D,, then define D* to
be the p-chain obtained by adding O, (G)D,, to D. Assume O,(G) < D,, and let k be the unique
nonnegative integer such that O,(G) < Dy, and O,(G) ¢ Dy_1. If O,(G)Dyg-1 = Dy, then we
define D* by deleting the term Dy, from D. If O,,(G) D1 < Dy, then we define D* by adding the
term O,(G)Dy_1 to D. This defines a self-inverse N 4 (Z)-equivariant bijection * : (G, Z) —
N(G, Z) such that [D| = [D*| £ 1. In particular G = Gp+ and we define Q((ID,9)) := (D*,9), for
every (D,9) € CY(B, Z),. O

2.1 A consequence of the Harris—-Knorr theorem

Next, we collect some consequences of the Harris—Knorr theorem that will be used in the sequel.

Lemma 2.4. Let N < G and P be a p-subgroup of N. Consider a block b € BI(N | P) and its Brauer
first main correspondent b' € BI(N (P) | P). Let B' € BI(N¢(P)) and set B := (B')¢. Then B’
covers b’ if and only if B coversb.

Proof. The result follows from the proof of the Harris—Knorr theorem [HK85]. O

If P is a p-group acting via automorphisms on a p’-group N, we denote by fp : Irrp(N) —
Irr(Cn (P)) the P-Glauberman correspondence (see [[sa76, Chapter 13] and [Navi8| §2.3]).

Corollary 2.5. Let N be a normal p’-subgroup of G and P be a p-subgroup of G. Consider i €
Irrp(N) and set p' == fp(u) e ir(Cy (P)). If B € B(Ng(P)), then B' covers bl(u') if and only
if (B"YNN&(P) covers bl(j1). Moreover, if ju is G-invariant, then B' coversbl(p') if and only if (B')®
covers bl(p).

Proof. Let b’ be the unique block of Ny p(P) that covers bl(u'), b the unique block of N P that
covers bl(u) (see [Nav98| Corollary 9.6]) and notice that b and b’ are Brauer first main corre-
spondents over P. Now, BI(NN¢(P) | bl(r)) = BI(NNg(P) | b) and BI(Ng(P) | bl(p')) =
BI(N¢(P) | b') and applying Lemma 2.4it follows that B’ covers bl(y) if and only if (B") VN (P)
covers bl(1). Moreover, if 11 is G-invariant, then bl(1) is covered by (B')VN¢(P) if and only if it
is covered by (B)“. O

With the same argument, we obtain a version of the above corollary for normal p-chains.

Corollary 2.6. Let N be a normal p’-subgroup of G and D be a normal p-chain of G with last term
P. Consider € Irrp(N) and set i/ := fp(u) €e Ier(Cn (P)). If B’ € BI(Gp), then B’ covers bl(u)
if and only if (B")NG® covers bl(1). Moreover, if ju is G-invariant, then B’ covers bl(y') if and only
if (B")“ covers bl(j).

Proof. The proof of Corollary [2.5|applies with minor changes. O

2.2 Construction of N-block isomorphic character triples

We prove some useful results that can be used to construct /N-block isomorphic character triples.
First, we give a version of [NS14| Theorem 3.14] for our situation. This proposition allows to obtain
new N-block isomorphic character triples involving irreducibly induced characters. This is the case,
for instance, when we apply the Fong-Reynolds correspondence or the Clifford correspondence.
Before proving this result, we need an easy lemma.

Lemma 2.7. Let N 4 G and 9 € Irr(N). If 9 € Irr(G), then Cq(N) < N.



Proof. Set H := NCg(NN) and observe that ¢ := 9 ¢ Irr(H). Since 1) is H-invariant we have
Py = e with e = |H : N|. However e = [¢)n, 9] = [¢,%] = 1 and therefore Co(N) < N. O

Proposition 2.8. Let N < G and Gy < G. Fori = 1,2, consider H; < G such that G = NH;
and set M; .= N n H;, Hy; := Gon H;, My ; = Gon M; and Ny := Gon N < Gy. Suppose that
G = GoN, that H; = Hy;M; and that ¢; = (@071)M7? e Irr(M;), for some g ; € Irr(My ;). If
(Ho1, Mo, 001) ~n, (Ho2,Mo2,90,2), there exists a defect group D; € §(bl(;)) such that
Cqa(D;) < H;, and induction Indi.i sIre(Jo i | wo,i) = Irr(J; | i) defines a bijection for every
N<J< G, where Jz =Jn Hz and JO,i =Jn HO,i: then (Hl,Ml,gol) ~N (HQ,MQ,QDQ).

Proof. Assume (Ho 1, Mo 1,¢0,1) ~n, (Ho,2, Mo,2,¢0,2) via (Po.1,Po 2) and let o ; be the factor
set of Py ;. Consider the canonical isomorphisms lg ; : Ho ;/Mo; - Go/No and l; : H;/M; - G|/N
and set i = l6,12 olpgandi=I3'oly. If j : G/N - Go/No and j; : H;/M; - Hy /My ; are the

canonical isomorphisms, then we have a commutative diagram

i
/M —2 s GIN «2" m,/0M,

| ! |

Ho1 /Mo, - Go/No S Ho 2/ Mo 2

%0

As in [NS14] Theorem 3.14], we consider the projective representation P; := (P ;)i € Proj(H; | a;)
defined as follows: let {¢;1,...,%;n} be a H;-transversal for Hy ; contained in M;, where n :=
|G : Go| = |H; : Hy,i|. For every z € H;, let

’Po’i(ti_é-xti,k), ift;}xtik € Hy,

Pi () = {

0, otherwise

and define
Pz‘,l,l(l‘) e ,Pi,l,n(x)
,Pi,nyl(l') e ’Pi,nyn(l')

Then, P; is a projective representation of H; associated with ¢; = cpg{; with factor set «; satisfying
Oli(l',y) = aOZ(]Z(x)m]z(y))s for all T,y € HZ/Ml Since

@0,1(j1(2),71(y)) = 20,2(i0 (41 (2)),70(j1(¥))):

we conclude that a1 (z,y) = as(i(x),i(y)), for all x,y € Hy/M;.

We claim that C g, (M;) < Gy. Inthis case, since Co(N) < Cg(D;) < H;, we deduce Co(N) <
Cqg,(No). To prove the claim, fix € Cy, (M;), set J; == (M;,z) and Jy ; := Go n J; and let ¢,
be an extension of ¢, to J;. Since Ind:;gﬂ_ :Irr(Joi | wo,i) = Irr(J; | i) is a bijection, we can find

an irreducible character g ; , € Irr(Jy ; | ©0,;) such that cpgfi » = iz By Lemm we conclude

that x € Cy,(Jo) < Jos < Go. This proves the claim, hence Cg(N) < Cg,(Ng). Now, since
Po.1,Ca, (No) @0d Po 2, cg, (o) are associated with the same scalar function and [ti;;Ca(N)] =1
foreveryi=1,2and j = 1,...,n, then the same is true for P; ¢ () and Po c.(n)-



Next, fix N < J < G, set Jy := Jn Gy, J; = Jn H; and Jy; := J n Hy;, and consider the
bijections given by the character triple isomorphisms induced by (P 1, Po,2) and (P1, P2):
00,501 Irr(Jo,1 | p0,1) = Irr(Jo,2 | 0,2)
t1(Q0,401 ® P0,1,J0,1) = t1(Q0,70., ® P2, )

where Qg € Proj(Jo/Np), and

oy, :Irr(Jy | 1) = Irr(Ja | p2)
tr(Qy, ® P1.g,) = tr(Qy, ® P2 gy)

where @) € Proj(J/N). Observe that o, (w(‘)h) = (0'07J0‘1(1f)0))]2, for all ¥ € Irr(Jo,1 | o,1)-
Let ¢ € Irr(J; | ¢1) and write ¢ = ", for some 1o € Irr(Jo1 | o,1). Since by hypothesis
bl(10)” = bl(c0, 4, (10))”°, we conclude that bl(¢)” = bl(a, (1)) O

Whenever we have a pair of N-isomorphic character triples, there is an induced strong isomor-
phism of character triples with some special properties. In the following lemma we describe some
of these special features.

Lemma 2.9. Let (Hy,M1,91) ~n (Ha2, Ms,95) given by (P1,P2) and, for N < J < G = NH;,
consider the bijection 0&71;1’732) e (Jy | 91) = Tre(Jo | 92), where J; := JnH;. Let )y € Trr(Jy | 94)
and 1y = Ug?l’PQ)(wl). Then:

(i) there exists D¢ Proj(JH;, jy,/N) such that @i,Ji ® P; j, affordsp;, where 0, = QH/L',J,w,-"

(ii) if D; := Q; ® P, then
(Hy s> J1,001) ~0 (Ha, g0y, J2,102)
via (D1, Ds). Moreover

D1, D P.P
oo () = o0 (),

forevery J < K < JH; jy, and x € Irr (K4 | 1) € Irr (K | ¥1), where K; == K n H;;
(iii) d(1) = d(v2) = d(d1) - d(I2).

Proof. First, as JHy,y = G = JHs, j, we may assume J < G. Moreover, since (i,0) is a strong
isomorphism of character triples, we know that

gJy (wl)xz = UJfl ('(/Jfl) =0 (¢T1)7

for every 21 € Hy and x5 € Hy such that i(M,x1) = Maxo. Inparticular i(Hy .y, /[M1) = Ha y, [ Mo
and so JH; y, = JHz y,. Therefore, we may assume H; = H; y,.

By [Spal7, Theorem 3.3], there exists Q € Proj(J/N | aj%;) such that ¢; is afforded by
Qj, ® Pi. ;. By [Nav18| Theorem 5.5], there exists D; € Proj(H;) such that Dy 5, = Qj, ® Py j,.
Arguing as in [NS14| p. 707], relying on the proof of [Nav98, Theorem 8.16] we can find Q; €
Proj(H;) such that _

Di1=Q10P

and 9, 5, = Qy,. Since N < Ker(Q), we deduce that M; < Ker(Q,,) < Ker(Q;). Now Q; €
Proj(H;/My) and, using the isomorphism Hy /My ~ G/N ~ Hy /M, we define 0 € Proj(G/N)
and Qs € Proj(Hy/M>). This proves (i). Set

Dy := @2 ® Ps.



We claim that (Hy, J1,9%1) ~5 (Ha,Jo,12) via (D1, Ds). Clearly the condition on the factor
sets is satisfied. Moreover, since v; lies over 9;, we can find D; € §(bl(1);)) and Q; € 6(bl(¥;))
with @Q; < D; and C5(Q;) < H;. It follows that Cs(D;) < H;. To conclude, we need to check

(D1, (D1,D2)

the condition on block induction for ¢(P1:P2)_It’s enough to show that & o coincides with

agl’%) on Irr(K7 | 91), for every J < K < G, where K; := K n H;. Consider x; € Irr(K7 | 11)
and let R € Proj(K/J) such that x1 = tr(Rg, ® D1k, ). Then
0P (1) = tr(Ric, @ Do c,)
= tl"('RK2 ® @Kz ® P27K2)
= 0’}2177)2)('61”(7?,1(1 ® @Kl ® PLK1))

=07 (tr (Ri, ® D1,x,))

- Ugl’PQ)(Xl)-

and the proof of (ii) is complete. To conclude, since 11 (1)/91 (1) = ¥2(1)/92(1) by [[sa76] Lemma
11.24] and |J : J;| = |N : M), it follows that

pACoD=d(s) |Jilp¥2(D)p  [Malpda(l), d(91)=d(92)

|J2|p¢1(1)p B |M2|p791(1)p

This finishes the proof. ]

Given a defect preserving equivariant bijection respecting N-block isomorphic character triples,
we show how to obtain another bijection over the given one that satisfies similar properties. For

N <G and S c It (N), we denote by Irr (G | S) the set of x € Irr(G) that lies over some 9 € S.

Proposition 2.10. Let K 4 A, Ay < A with A = KAy and, for every subgroup X < A, set
Xo := X n Ag. Consider Ay-stable subsets of characters S € Irr(K') and Sy < Irr(Ky). Assume there
exists an Ag-equivariant bijection

v:S - 80

such that
(A’L9? K7 19) ~K (AO,197 K07 \Ij(ﬂ))

and
Ca(D) < Ao,

for every ¥ € S and some defect group D of bl(V(V)). Then, for every K < J < A, there exists an
Ay, s-equivariant bijection
CI)J : Irr(J | S) - II‘I"(JQ | So)
such that
(AJ,X7 J7 X) ~J (AO,J,Xa J07 (DJ(X))
and

Ca(Q) < Ao,

for every x € Irr(J | S) and some defect group Q of bl(® ;(x)). Moreover U preserves the defect of
characters if and only if so does ® ;.



Proof. Consider an N 4, (J)-transversal S in S and define Sy := {U () | ¥ € S}. Since ¥ is Ag-
equivariant, it follows that Sy is an N 4, (J)-transversal in Sy. For every ¢ € S, with J¢ := U(9) € Sy,
we fix a pair of projective representations (P(?), Pé%)) giving (Ay, K,9) ~k (Ao, Ko, Vo).
Now, let T be an N 4, (J)-transversal in Irr(J | ) such that every character y € T lies above a
character 9 € S (this can be done by the choice of S). Moreover, as A = K Ay, we have J = K.Jy
and therefore every x € T lies over a unique 9 € S by Clifford’s theorem.

For x € T lying over ¥ € S, let ¢ € Irr(Jy | ¢) be the Clifford correspondent of x over ¢J. Set
o := U (V) € Sy and consider the N 4, (J)g-equivariant bijection o s, : Irr(Jy | 9) - Irr(Jo.9 | Yo)
induced by our choice of projective representations (7?(19),735190)). Let g := 05, (p). Since U is
Ap-equivariant, we deduce that Jy g = Jy g, and therefore @ ;(x) := @70 is irreducible by the
Clifford correspondence. Then, we define

Py (x") =200,

for every x € T and @ € N4, (J). This defines an N 4, (J)-equivariant bijection ¥ : Irr(.J | §) —
Irr(Jo | Sp). Furthermore, using Lemmait’s clear that W preserves the defect of characters if
and only if so does @ ;.

Next, using the fact that (Ay, K,9) ~x (Ao,g, Ko, o) together with Lemma|[2.9} we have

(Ao,79.45J9,0) ~ 1y (A09,745 .55 J0,9,%0)

we obtain

(A, 195 J9,0) ~ 54 (Aow,70,Jo,0,%0) - (2.1)

By hypothesis there exists a defect group D of bl(¥g) such that C 4 (D) < Ay. Since bl(xo) covers
bl(¥g) we can find a defect group @ of bl(xo) such that D < Q. It follows that C 4 (Q) < C4(D) <
Ap. Finally, we obtain

and, because Ay ; < Ay, j,,

(AJ,Xv Ja X) ~J (AO,J,Xv JOv (I)J(X))
by applying Proposition [2.8| together with (2.1). O

We end this section with an elementary but useful observation. Suppose to have N-block
isomorphic character triples and that N < N. Under certain assumptions, it’s possible to deduce
that those character triples are in fact N-block isomorphic.

Lemma 2.11. Let (Hy, My,01) ~n (Ha2, Mz, ¥2) with H;N = G. Suppose that G < G and let
N <N 4G withG = GN and N = Gn N. If C5(D;) < G for some D; € 6(bl(¢¥;)), then
(H17M17191) ~N (H2aM27192)'

Proof. This follows directly from Definition[2.1] O

3 N-block isomorphic character triples and Glauberman
correspondence

The aim of this section is to prove Theorem [3.5| which will be one of the main ingredients in
the final proof. To prove this result, we need to extend the bijection given in [NS14, Theorem
5.13] to characters of positive height. This is done in Proposition [3.4]for the case where the D-
correspondence coincides with the Glauberman correspondence. Moreover, we obtain a canonical
bijection.



Let N 9 G and ¢ € Irr (V) such that (o(9)¥(1),|G : N|) = 1. We denote by ¥° the canonical
extension of ¥ to G, i.e. the unique extension of ¢ to G such that (o(9°),|G : N|) = 1 (see [[sa76l
Corollary 8.16]). To prove Proposition [3.4] in addition to the argument developed in [NS14l §5], we
need the following result on the extendibility of the canonical extension.

Lemma 3.1. Let N be a normal p’-subgroup of G and P a p-subgroup of G such that K := NP < G.
Consider ji € Irr(N) and let u° € Irr (K'). Then p extends to G if and only if u° extends to G.

Proof. One implication is trivial. Notice that ;1° is G-invariant since  is G-invariant. Assume that p
has an extension y € Irr(G). We have to show that 1i® extends to H, for every H/K € Syl (G/K)
and every prime q. If ¢ = p, then y has a canonical extension to H, which is also an extension of 1°.

Assume ¢ # p and consider A € Irr(K/N) such that 1° = Ax k. Notice that, as u° and y  are
G-invariant, the character \ is G-invariant. Since K /N is a p-group and H/K is a g-group, we
deduce that A has a canonical extension A\° to H. Then A\°y g is an extension of £°. This concludes

the proof. O

Hypothesis 3.2. Let N be a normal p’-subgroup of A and P be a p-subgroup of A such that
K := NP 9 A. Consider i € Irr 4 (V) and its Glauberman correspondent fp(p) € Irr 4. (Np). Let
pu® €lrrg(K) and fp(p)® € Irr 4, (K p) be the canonical extensions respectively of 1 and fp(p).

Now, proceeding as in [NS14] §5] and using Lemma [3.1] we obtain the following version of
[NS14, Proposition 5.12]. Recall that, if R is the ring of algebraic integers and S is the localization
of R at some maximal ideal containing pR, then * : S — F denotes the canonical epimorphism,
where I is the residue field of characteristic p (see [Nav98| Chapter 2] for details).

Lemma 3.3. Assume Hypothesis[3.4 If 1° extends to [i € Irr(A), then there exists an extension
fp(p) eTrr(Ap) of fp(p)® such that
It (T, (x)) = Irr (fP(,u)CA(K))

and
fi(x)" = efp(p)(x)",
for every p-regular x € A with P € Syl (C (x)), where e = [un,, fp(11)].

The following result extends the bijection given in [NS14, Theorem 5.13] (in the case where K
of [NS14, Theorem 5.13] is a p’-group) to characters of positive height. In this particular situation
we obtain a canonical bijection.

Proposition 3.4. Assume Hypothesis[3.2 Then there exists a canonical Ap-equivariant bijection

Wy p s (K | ) > Te(K | f (1)
;U'OV = fP(M)OVva

foreveryv e Irr(K /N). Moreover ¥,, p preserves the defect of characters and
(Ay,K,0) ~k (Apy, Kp, ¥, p(V))

and
Ca(D) < Ap,

forevery ¥ e Irr (K | ) and some defect group D of bl(¥,, p(9)).
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Proof. Since K = N x P and Kp = Np x P are p-nilpotent groups with Sylow p-subgroup P, 1 is K-
invariant and fp(u) is Kp-invariant, we have Irr (K | p) = Irr(bl(°)) = {u°v | v e Irr(K/N)}
and Irr(Kp | fp(p)) = Ire(bl(fp(1)®)) = {fp(u)°v | v € Irr(Kp/Np)}. Thus, we obtain a

defect preserving A p-quivariant bijection by setting

U, p(pv) = fp(p)vip,

for every v € Irr(K /N). Furthermore, as P is a common defect group of the two blocks bl(#}) and
bl(¥,, p(9)), the condition on defect groups is satisfied.

Consider P € Proj(A | a) a projective representation associated with 1° and observe that P is
also associated with 1. Let A be the central extension of A defined by P and € : A - A be the map
given by €(z, s) := x, for every x € A and s € S, with kernel S := (a(z,y) | z,y € A). For H < A,
set H := ¢ 1 (H). Since « is constant on K-cosets and a(1,1) = 1, the set Hy := {(h,1) | h e H} is
a subgroup of A, whenever H < K. In this case let ¥ € Irr(Hyp) be the character corresponding
to ¥ € Irr(H) via the isomorphism gy, : Hy — H. Moreover H = Hy x S and we define ¥ :=
Yo x1g € Irr(H). Notice that (1°)g € Irr(Kj) is the canonical extension of 1o and that 72° € Irr(K)
is the canonical extension of i. Furthermore fp(u)o = fp, (o) and (fp(u)®)o is its canonical
extension. As no confusion arise, we just write p§ (resp. fp(u)g) instead of (%) = (p0)° (resp.
(fp(1)®)o = fr,(10)°) _ _

Recall that the map defined by P(xz,s) := sP(x), for all (z,s) € A, is an irreducible repre-
sentation of A affording an extension 7 of 5. Set S, = 0,(S), Sy := O, (S), M = Ny x Sy,
Q = Py xSy, and notice that K =MxQ, Mg = (Np)oxSy and I?Q =Kp.Letp:=1y € Irr 5 (M)
and consider its canonical extension ¢° € Irr(I? ). By Lemma | there exists an extension Fp’ of p°
to A. Since @, is an extension of iy with o(Fx, ) dividing o(¢°), we deduce that Fx, = 5. Now,
if R is an irreducible representation of A affording @, then R () := R(x, 1) defines a prO_]eCthC
representation of A associated with 1°. Replacing P with R, we may assume that 7 extends ¢°.

Now, Lemmayields an extension fq () of fo(¢)° to Ag = Ap such that

Irr ((ZC;(I?)) =TIrr (%Cg(}?)) (3.1)

and

P(x)" = efo(p)(x)", (3:2)
for every p-regular z € A such that Q € Syl,(Cz(z)), where e = [¢n,, fo(¢)]. Observe that,
by [IN91, Theorem A] and using the fact that S, < Z(A), we have fQ(go)(NP)O = fp,(10) and

fa(@) k), = fro(0)°-

Let P’ be an irreducible representation of Ap affording m and consider the projective
representation P’ of Ap defined by P’(x) := P'(x, 1), for every z € Ap. Notice that P’ is associated
with fp(u)® and that its factor set coincides with x4 ,. Furthermore, as C 7(K) = CA(K)
and by (3.1), we deduce that Pc,, () and PéA( K are associated with the same scalar function

Next, let ¢ = p°v € Irr(K | p), with v € Irr(K/N), and observe that Ay = A,. Let Q be a
projective representation of A, associated with  and notice that Q 4, , is a projective representation
of Ap, associated with v . It follows that S := P4, ® Q is a projective representation of A,
associated with ¥, while S’ := ,P;lp,u ® Q4 , is a projective representation of Ap,, associated with
U, p(V) = fp(1)°vi,. We claim that (Ay, K,9) ~x (Apy, Kp, ¥, p(Y)) via (S,5"). By the
previous paragraph, one can easily check that the group theoretical conditions hold, that the factor
set of S’ coincides with the restriction of the factor set of S and that Sc,, (k) and SéA,, (k) are
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associated with the same scalar function. To conclude, it remains to check the condition on block
induction. By the proof of [NS14] Theorem 4.4] it’s enough to show that

(lKlp'tr(S(x)) ) _ ( |Kplytr(S'(2)) )
phtw)ﬁ(l)p’ pht(ql“'Pw))\I’u,P(ﬁ)(l)p’ ’

for every p-regular z € Ap y such that P € Syl (Cx(x)). Fix a p-regular element x € Apy with
P e Syl,(Ck(x)). Then Q € Syl (Cx(x,1)) and implies

(S())" = B, 1) t1(Q@))" = (efal@) (. 1)) ()" = 't (S'(2))"
Ase=[unp, fp(u)] and by [NS14, Theorem 5.2 (b)], we obtain

|K|p’

DUy = 11) = Dy SN+ Nolfr () (1) = e o

Uy,p(9) (1) (mod p)

and therefore

(le'tr(S(l“)) ) _ (6|K|p'tr(5'(flf)) ) _ ( [Kplytr(S'(2)) )
PP Y(1),y v(1)9(1)y P e Oy, p(9)(1)p )

Now the proof is complete. O

As a consequence, applying Proposition and Proposition[3.4 for N < J < A we obtain a
defect preserving Ap j-equivariant bijection

©:Ire(J | p) = Tre(Jp | fp (1))

such that
(AJ,Xa Jv X) ~J (AJ7P,X7 JPv (I)(X)) )

for every x € Irr(J | u). Finally, we obtain the main result of this section by considering a normal
p-chain D with last term P and J = NGYp.

Theorem 3.5. Let N < G < A, with N 4 A a p’-subgroup, and consider a normal p-chain D of G
with final term P. Let € Irr o(N) and fp(u) € Irr(Np) be its P-Glauberman correspondent. Then
there exists a defect preserving Ap-equivariant bijection

@ It (NG | ) = Irr(Go | fr(1))

such that
(NAD,X7 NGD7 X) ~G (AD,Xa GD7 (I),U.,D(X)) 5

forevery x e Irr(NGp | ).

Proof. Let K := N P and observe that, without loss of generality, we may assume K < A. Now the
result follows from Proposition [2.10] Proposition 3.4 and Lemma [2.11] 0O
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4 N-block isomorphic character triples and Fong
correspondence

In this section, we show that the Fong correspondence [Fon61] can be used to construct N-block
isomorphic character triples. For completeness, we state the Fong correspondence in the form we
need.

Hypothesis 4.1. Let N be a normal p’-subgroup of A and consider p € Irr4(N). Let P €

Proj(A | @) be a projective representation associated with (A, N, i) such that «o(z, y)'M2 =1,
for every x,y € A (see [NT89, Theorem 3.5.7]), and denote by A the p’-central extension of A by

= (a(z,y) | z,y € A) defined by P (see [Navi8| Section 5.3]). Let € : A — A be the epimorphism
glven by €(x,s) = x, for every 2 € A and s € S, and consider Ny := {(n,1) | n € N} 4 A. For
every X < A, set X := € '(X) and X := XNy/Ny. Consider the irreducible representation P
of A defined by P(z, s) := sP(x), for every z € A and s € S, and denote its character by 7. Let
X € Irr(N) be the linear character defined by A(n,s) := s~', for every n ¢ N and s € S, and set
7= pio x 1g € Irr(N), where p correspond to i via the isomorphism N ~ Nj. Notice that 7
extends ’,J’X’l. Finally, denote by [i the character X viewed as a character of N = N /Ny, that is
Ti(No(n,s)) = s, foreveryn e N and s € S.

Theorem 4.2 (Fong). Assume Hypothesis[4.1, If N < H < A, then:
(i) H is a p'-central extension of H|/N by the central p'-subgroup N =~ S;
(ii) There exists a bijection

BI(H | bl(u)) ~ BI(H | bl(f1))
Bw— B

(iii) Let D € §(B) and consider ) € Sylp(ﬁ) sothat D = Q x S. Then QNy/Ny € §(B). In
particular B and B have isomorphic defect groups;

(iv) For every B € BI(H | bl(1)) corresponding to B € BI(H | bl(T)) via the bijection in (ii), there
exists a defect preserving bijection

Irr(B) - Irr(B)
Ve

such that, if ) is the inflation to H of the character of H/S ~ H corresponding to ) and U is
the inflation to H of¢ then 1/1 TrY';

(v) ForT € A set x := €(T) and T := NoT. Then 1)* = (17;)3Z and B* = (E)E for every B ¢
BI(G | bl(i)) and v € Irr(B).

Proof. Consider ¢ ¢ Irr(H | ) afforded by X. We just show how to construct ). By [Navis|
Theorem 10.11], there exists an irreducible projective representation Q € Proj(H/N | aFj ) such
that X = Q ® Py unique up to similarity. Now, Q(z, s) := Q(x)s™, for every x € H and ses,
defines an irreducible linear representation of H with Ny < Ker(Q) and whose character lies over
. If we consider the inflation X to H of the representation of H/S ~ H corresponding to X, that is
X(Z) = X(e(T)), foreveryTe H, then X = O ® Pg. Define X to be the irreducible representation
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of H = H/N, whose inflation is O, and let 1) be the character afforded by X. Then ¢ € Irr(A | 17)
and, if 1) is the inflation to H of the character of H/S ~ H corresponding to 1) and ¢ is the inflation
of ¢ to H, then ) = Tﬁ?}’. The result follows from [Fon61]]. The description of defect groups is a
consequence ofjhe proof o£ [Foné1l 2C~]. To conclude, for T € ;f, set x := €(T) and 7 := NoZ. Then
0® = ()T = (W'rg)* = () 1z = (¥7) 75, where 7 is the inflation to H of the character of
H/S ~ H corresponding to ¢)* and (¢)”)" is the inflation of ¢ to H. Thus (¢))7 coincides with )7
the Fong correspondent of 1)*. In particular, since )% € Irr(B?®) and (¢)” € Irr(B7), we conclude
that B® = B7. O

In the situation of Theorem we refer to B as the Fong correspondent of B and to ¢ as the
Fong correspondent of 1. An important feature of the Fong correspondence is that it is compatible
with block induction.

Proposition 4.3. Assume Hypothesis[4.]and let N < X <Y < A. Letbe BI(X | bl(p)) with Fong
correspon~dent7;e BI(X | bl(7%)) and suppose that the induced blocks b¥ and (b)Y are defined. Then
b = ().

Proof. This result has been shown in [Rob00]. It can also be deduced from [Dad94, Theorem
14.3]. O

For x € G, we denote by €l (z) the G-conjugacy class of x. Moreover, for any subset K of G,
we denote by K the sum of its elements in the group algebra of G.

Theorem 4.4. Assume Hypgthesis Fori=1,2, consider N < L; 4 H; < A and a H;-invariant
; € Irr(L; | u). Notice that L; 4 H; and that the Fong correspondent i; € Irr(L; | [t) is H;-invariant.
Let L; < G <4 A and assume

(ﬁhzhlzl) ~& (HQ,ZQJZQ)-
Then

(Hy, L1,9¢1) ~ (Ha, La,2) .
Proof. The group theoretical conditions are clearly satisfied and without loss of generality we may
assume A~: GH;, A =GH; and A = GH;. Consider B; := bl(zﬁi)Nand its Fong correspondent
B; = bl(¢;). By hypothesis, there exists a defect group D; € 6(B;) such that C3(D;) < H;.
Furthermore, by Theorem(iii) we can find a defect group P; € §(B;) such that, if Q; € Sylp(ﬁi),
then D; = Q; N/ Np. In particular

Cx(Q:) < H; (4.1)
and, noticing that
e(C2(Qi)) =Ca(P),

we obtain C 4 (P;) < H;. Fix projective representations (’ﬁl , ﬁg) associated with (]'Nfl, L, 1;1) ~a
(FI 2. Lo, 1,52) and let @; be the factor set of R;. Consider a projective representation R; € Proj(H, |
«;) associated with 1); and define the projective representation R; € Proj(H; | @;) given by

Ri(h) = Ri(e(h)),

for every h Eﬁi. Notice that @;(h, k) = a;(e(h), e(k)), forall b, k € H;, and that R, is associated
with ¢;. Let R} € Proj(H; | @,) be the projective representation defined by

R;(h) = Ri(Noh),
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for every h € H;. Clearly &;(h, k) = @;(Noh, Nok), for all h, k € H;, and R/, is associated with 1.
As R; and PA ® R are projective representations of H; associated with L, 1/) 1;, there exists a

map &; : H; /L, — C* such that &R, = ’PAi ® R Let & : H;/L; — C* corresponds to &; via the
isomorphism H;/L; ~ H; / L. Replacing R; with £;R;, we may assume

ﬁi = ﬁg7 ® ﬁ; (4.2)

Now, as the factor sets &; and @s coincide under the isomorphism H 1/ Zl ~ H,% / Zg, we deduce
that o7 and s coincide under the ~isomorphisrzl\m H,/L,~ Hs/ Lg{. By hypothe51s ’R1 and 7?,2 define
the same scalar function on C 3(G). As C 1 (G)NO/NO < C4(G) and C1(G) < H, n H, by @1),

the scalar functions defined by R’ and R2 on Cx (G) coincide. Now Rl Cx() and R2 C () are
associated with the same scalar function and, since ¢(C 7(G)) = Ca(G) (see [NS14, Theorem 4.1
(d)]), the same is true for R| ¢, (@) and Ro, c,(q)-

Next, consider G < J < A and set J; := J n H;. Notice that, if x € Irr(Jq | ¢1), then Theorem
(iv) implies that X € Irr(J | 11). Write x = tr(Qy, ® R1,4, ), for some Q € Proj(J/G). If we
set Q(z) == Q(e(x)) for every z € J, then implies

X1 :tr(le ®R1 j\l)
_tr(QJ ®R ®PJ )

and therefore Y’ = tr(,Q\J1 ® ’R' 7 ) Now, let Q € Proj(.J/G) correspond to Q via the isomorphism

J/G =~ J|G and observe that the Fong correspondent of x can be written as ¥ = tr( QJ ®’R17J1 ). By
definition 7, (X) = tr(QJ ® R2 7,) so that its inflation 77 (X)' = tr(QJ ® R' ) By Theorem

[4.2)(iv) and (4.2) we obtain
sza'jl (X) =tr ('sz ® sz ®R’27j~2)
:’CI'(QL']‘2 ®'R2’j2)
=0 (X)
—_—
=77,0.,(X)

and therefore
an,(x) =57 (X)-

Since by hypothesis bl(o 7, (X))j =Dbl(Y) 7 we conclude from Proposition that bl(o, (x))” =
bl(x)”’. This completes the proof.

From now on we consider N < G 4 A. Since Nis a central p’-subgroup of G, for every
p-subgroup P of G we have a decomposition P = N x O,(P). We write P, := O, (P). Mapping P
to ?p induces a length preserving bijection

NG, 2)[G NG, Z,)|G (4.3)
DD

which commutes with the action of A and A. In particular, observe that NGp = éﬁ. Using Theorem
Theorem [4.2]and Theorem [4.4| we obtain the following corollaries.
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Corollary 4.5. Assume Hypothesis[4.1 and let N < G 4 A. Consider a normal p-chain D of G with
final term P and let fp(u) € Irr(Np) be the P-Glauberman correspondent of . Then there exists a
defect preserving bijection

Tup:Irr (Gp | fr(p)) - Iir (G | 7)
commuting with the action of A and A.
Proof. This follows immediately by Theorem [3.5|and Theorem [4.2] O

The bijections described in the previous corollary are compatible with the relation ~ n from

Definition [2.1]

Corollary 4.6. Assume Hypothesis[4.1 and let N < G 9 A. Consider normal p-chains D and E of G
with final term respectively P and Q) and letI',, p and ', g be the corresponding bijections given by
Corollary Let Y eIrr(Gp | fp(p)) and x € Irr(Gr | fo(1)) and suppose that

(AID) F,‘]D(ﬁ)’G]D)?FM D(ﬁ)) (A]Er E(X)7GE?FM IE(X))

Then
(Ap,9,Gp,Y) ~g (AE, GE, X) -
Proof. This is a consequence of Theorem [3.5] Theorem [4.4]and Corollary [4.5] O

The result that we are actually going to need in the final proof is the following. This is obtained
by putting together all the results obtained so far.

Corollary 4.7. Assume Hypothesis[4.1 and let N < G 4 A. Let Z be a central p-subgroup of G and
consider a block B € BI(G' | bl(u)) whose defect groups are larger than Z. Then the Fong correspondent
B € BI(G) has defect groups larger than Z and there exists a bijection

A:CYB,2)|G - CYB,Z,)|G

that preserves the length of the p-chains, commutes with the ation of A and A and such that, if

(A3 05:7) ~e (A0y %),

then
(A(D,ﬁ)a GD» 19) ~G (A(]E,X)7 GEa X) )

for every (D, 9), (B, x) € CX(B, Z), (ﬁ,g) e A((D,9)) and (E X) € A((E, x)).

Proof. Let D € M(G, Z) with last term P and consider D € (G, Z,,). If ¥ € Trr(Gp) and bl(9)€ =
B, then ¥ lies over fp(u) by Corollary. 2.6l Now, there exists a unique ¢ € Irr(NGp | 1) such
that ¥ = @, p(¢)) and ', p(+)) = 1) is the Fong correspondent of . By Theorem . we know that
bl(9)NE® = bl(z)), hence bl(¥)¢ = B if and only if bl(¢))¢ = B. Furthermore, by Proposmon
it follows that bl(1))¢ = B if and only if bl(¢)) = B. This shows that the set of characters of Gy
whose block induces to B is mapped via I, p to the set of characters of éﬁ whose block induces to
B. We define

A((D,9)) = (BT (),

for every (D,9) € C%(B, Z). By (&3), Corollary [4.5|and Corollary We conclude that A is a
bijection with the required properties. O
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5 Structure of a minimal counterexample

In this section, we finally prove Spath’s Character Triple Conjecture for p-solvable groups. Our proof
is inspired by the argument developed in [Rob00]. As in Robinson’s work, what we are actually going
to show is that a minimal counterexample G to Conjecture [2.2]satisfies O,(G)0, (G) < Z(G).
Since the conjecture trivially holds for abelian groups, Theorem [A] will then follow as a corollary
of (the proof of) Theorem 5.2] In this paper we consider subpairs in the sense of [Ols82], i.e. pairs
(P,bp), where P is a p-subgroup of G and bp € BI(PCg(P)).

Proposition 5.1. Assume that G 4 A is a minimal counterexample to Conjecture[2.4 with respect to
|G : Z(G)| first and then to | A| and consider Z < Z(G), B € BI(G) and d > O for which the conjecture
fails to hold. Then every block b € BI(O,(G)) covered by B is A-invariant.

Proof. Set N := O, (G) and fix a block bl(x) € BI(IV) covered by B. For every subgroup H < A,
set HY := H,. Let BY € BI(G" | bl(1)) be the Fong-Reynolds correspondent of B over bl(u)
[Nav98| Theorem 9.14]. Since B and B" have a common defect group D < GV, by [AB79, Theorem
3.10] or [OIs82 Theorem 2.1] we can find a BY-Sylow subpair (D, b},) such that (D,bp) is a
B-Sylow subpair, where bp := (b},)? Ca (D) Notice that, by using Corollarytogether with the
theory of subpairs, the block b}, covers bl(fp(x)). Hence bp covers bl(fp(u)). More generally,
the block bg covers bl( fo (1)), for every B-subpair (Q,bg) < (D,bp). Using this observation,
we can construct an A-transversal T in C¢(B, Z) such that P < GV and ¥ € Irr(Gp | fp(u)), for
every (D, 1) e T with P the last term of D.

Consider (ID,1}) € T and let P be the last term of . Notice that Gy = Gp y,.(,) and let
WY eIrr(GY, | fp (1)) be the Clifford correspondent of ¥ over fp(u). As A= GAY, we obtain an
AY-equivariant bijection

T:CYB,Z%)|G - CYBY,2)|G"

by defining T((D,ﬁ)y) = (D,ﬁv)y, for every (D,9) € T and y € AY. Since |G¥:Z(GY)| <
|G : Z(G)), if 11 is not A-invariant, then there exists an AY-equivariant bijection

Qv:cYBY,2),/G¥ - CYBY,Z)_|G¥
such that
(AE/]D,'&V)’ G]\l/])7 19\/) ~GY (AE/E,XV), Gl\é? Xv) s

for every (D,9V) e C4(BY,Z), and (E, x") € QV((ID,9")). Combining Q¥ with T and applying
Proposition [2.8] we obtain an A-equivariant bijection

Q:C4B,2),/G-CYB,2Z).|G

such that
(A(D,19)7 G]D)7 19) ~G (A(]E7x)a GE7 X) )

for every (D,9)) e C4(B, Z), and (E, x) € Q((ID,?)). This is a contradiction and therefore s must
be A-invariant. O

Theorem 5.2. Assume that G 4 A is a minimal counterexample to Conjecture[2.2 with respect to
|G : Z(G)| first and then to | A| and consider Z < Z(G), B € BI(G) and d > 0 for which the conjecture
fails to hold. Then O, (G)O0, (G) < Z(G).



Proof. Set N := O, (G) and fix a block bl(x) € BI(N) covered by B. Notice that by Lemma
we must have Z = O,(G). Thus it’s enough to show that N is contained in the center. By
Proposition[5.1] we know that y is A-invariant and therefore we can apply the results obtained in
Section Let B € BI(G) be the Fong correspondent of B. Since N < Z(G), if N ¢ Z(G), then

|G :Z(G)| <|G: NZ(G)| = |G : NZ(G)| < |G : Z(G)| and we obtain an A-equivariant bijection
§:C4(B,7,),/G - c'(B, Z,) /G

such that _ L _ _
(A5 G5.79) ~& (A5 G5.X).

for every (D,9) € C4(B, Z,), and (E,Y) € Q((D,7)). Combining  with the bijection A given
by Corollary[4.7} we obtain an A-equivariant bijection
Q:C%B,2)./G » 4B, Z)-|G
such that
(A,0), Gp, ) ~c (AE.x), GE. X) ,

for every (ID,9) e C*(B, Z), and (E, x) € Q((ID,?)). This contradiction shows that N must be
contained in the center of G. O

Next, we consider the residue of characters. We are going to obtain Theorem|B|as a consequence
of an analogous study of a minimal counterexample. We need the following result whose proof can
be deduced by Glesser’s paper [Gle07].

Lemma 5.3. Let T, be the bijection of Corollary[4.5 Then
7 (L (9)) IN] = 20(1)r(9)|N] - (mod p),
forevery 9 e Irr(Gp | fp(u)).

Proof. This follows from similar computations as the ones in the proofs of [[Gle07, Corollary 3.4
and Theorem 3.8]. O

For completeness, we state the Isaacs-Navarro refinement of the Character Triple Conjecture.

Conjecture 5.4 (Isaacs-Navarro refinement of the Character Triple Conjecture). There exists a
bijection 2 as in Conjecture[2.2 such that

r(¥) = +r(x) (modp),
for every (D,9) e CY(B, Z), and (E, x) € Q((D,)).
Finally, using the proof of Theorem[5.2]and Lemma 5.3 we obtain a similar structure theorem
for a minimal counterexample of Conjecture

Theorem 5.5. Assume that G <4 A is a minimal counterexample to Conjecture with respect to
|G : Z(G)| first and then to|A| and consider Z < Z(G), B € BI(G) and d > O for which the conjecture
fails to hold. Then O,(G)0,(G) < Z(G).

Proof. Set N := O/(G) and fix a block bl(1) € BI(N) covered by B. By the proof of Lemma|2.4|
we know that Z = O,(G) and it’s enough to show that N < Z(G). Proceeding as in the proof of
Proposition[5.1land noticing that induction of characters preserves the residue of characters, we
deduce that ;» must be A-invariant. Then, using Lemma [5.3]and adapting the the proof of Theorem
[5.2] we obtain N < Z(G). O
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