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The gravitational waves emitted during the coalescence of binary black holes are an excellent probe
to test the behaviour of strong gravity. In this paper, we propose a new test called the merger-
ringdown consistency test that focuses on probing the imprints of the dynamics in strong-gravity
around the black-holes during the plunge-merger and ringdown phase. Furthermore, we present a
scheme that allows us to efficiently combine information across multiple ringdown observations to
perform a statistical null test of GR using the detected BH population. We present a proof-of-concept
study for this test using simulated binary black hole ringdowns embedded in the next-generation
ground-based detector noise. We demonstrate the feasibility of our test using a deep learning
framework, setting a precedence for performing precision tests of gravity with neural networks.

I. INTRODUCTION

The detection of gravitational waves (GWs) emitted
during the binary black hole (BH) mergers presents us
with an unparalleled opportunity to test the behaviour
of strong gravity around BHs [1, 2]. GWs are emitted
as the BHs slowly spiral in towards the common center
of mass (a.k.a. the inspiral phase); this is followed by a
rapid plunge and merger (a.k.a. the plunge-merger phase)
where the two BHs coalesce forming a remnant BH which
then rings down and settles to a final state (a.k.a. the
ringdown phase) [3]. While both plunge-merger and ring-
down contain imprints of the dynamics in the strong field
regime at few times the horizon-length scale, the plunge-
merger is dictated by non-linear dynamics and the ring-
down is prescribed by linear perturbation theory [4–6].

Ringdown corresponds to the evolution of linear per-
turbations on the space-time metric of the remnant [7].
Given an underlying theory of gravity, the dynamics in
the strong-field regime that sets up the perturbation con-
ditions for ringdown and the properties of the remnant
BH are not independent. If GR were to be modified in the
strong non-linear regime, one would expect the relative
excitation of modes in ringdown as well as the final BH’s
mass and spin to be altered [8, 9]. We propose a novel
test that checks if the excitation conditions set during
the plunge-merger phase are consistent with the proper-
ties of the remnant BH formed after the ringdown phase.
The proposed test checks for the consistency by simulta-
neously using the frequency content and the amplitudes
and phases of excitation in the ringdown signals. Fur-
thermore, we stack the information from multiple GW
observations efficiently to provide a statistical ‘null’ test
across a population of binary BH ringdowns. Henceforth,
we call it the merger-ringdown consistency test.

We present a complementary test to the already ex-
isting battery of tests of GR. Although we draw our in-
spiration from the IMR test, the two tests address con-
ceptually different questions: while IMR test checks for
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global consistency of the binary BH evolution [1, 10–
12], violation of the merger-ringdown test indicates GR-
modifications that alter the perturbations setup for ring-
down in a way that is inconsistent with the expected
radiated angular momentum and energy in a binary BH
coalescence. However, note that such GR modifications
(depending on the details of how GR is modified) might
also leave imprints on the global evolution of the binary
BH signals, and could be picked up by the IMR test. Fur-
thermore, the merger-ringdown test aims at increasing
the sensitivity to the strong field dynamics by zooming
in solely on the ringdown phase. Comparing the perfor-
mance of the two tests in distinguishing GR from non-GR
signals is non-trivial and depends on the class of modifi-
cations in consideration.

Our test is particularly suited for the third-generation
(3g) detectors such as the Einstein Telescope (ET) [13],
the Cosmic Explorer [14] and LISA [15], where the ring-
downs are expected to be loud and the number of de-
tections can be ∼ 103 − 104/year [16, 17]. Performing
prognostic and realistic benchmarking studies on a large
number of events with full Bayesian parameter estima-
tion demands for a rapid and computationally efficient
inference algorithm. To this aim, we demonstrate the
feasibility of our test entirely using a deep learning frame-
work to speed up the parameter inference by orders of
magnitude [18–20]. We train a neural network architec-
ture called a conditional variational autoencoder (CVAE)
[21–23] to infer posterior distributions of the parameter
set {M,χf , q} from a set of simulated ringdown wave-
forms. Following the deep learning application to GW
science — e.g., detection [24–28] and parameter estima-
tion (PE) [18, 19, 29–32],1 our work also sets a precedence
for precision tests of GR using neural networks. Finally,
we also demonstrate that deep learning techniques can
be efficiently used for population studies for current and
next-generation GW detectors.

1 See [33] for a recent review.
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II. MERGER-RINGDOWN CONSISTENCY
TEST

A. Theory

Ringdown is modelled as a linear superposition of
damped sinusoids with characteristic BH frequencies
(flm) and damping times (τlm) known as the quasi-
normal-mode (QNM) spectrum. It is generally de-
composed in spin-2 weighted spheroidal harmonic basis
Y lm(ι), where (ι ∈ [0, π)) is the inclination angle. Ring-
downs take the following analytical form 2

h+(t) =
M

DL

∑
l,m>0

Y lm+ (ι)Alme
−t/τlm cos(2πflmt− φlm),

(1a)

h×(t) =
M

DL

∑
l,m>0

Y lm× (ι)Alme
−t/τlm sin(2πflmt− φlm).

(1b)

Here {+,×} are the GW polarizations and DL is the
luminosity distance of the system. The QNMs are in-
dexed by the angular multipole numbers (l,m) and they
are determined by the final mass and final spin {M,χf},
i.e., flm = flm(M,χf ) and τlm = τlm(M,χf ). Alm and
φlm are the amplitudes and the phases of excitations of
QNMs. For a non-spinning binary, the initial system is
completely characterized by the total-mass Mtot and the
binary mass ratio q. While Mtot sets the overall ampli-
tude scale, q determines the relative excitations of QNMs,
i.e., Alm/A22 = ARlm(q) and φ22 − φlm = δφlm(q). Thus,
the ringdown waveform can be parameterized by a set
of three parameters {M,χf , q} and Eq. (1) can be re-
written as

h+(t) = h+(t;M,χf , q) , h×(t) = h×(t;M,χf , q) . (2)

Using the ringdown phase of the GW event one can infer
{M,χf , q} by treating them as independent quantities in
a Bayesian PE setup.

Next, in GR, a given set of {Mtot, q} can be determin-
istically mapped to {M,χf} for a non-spinning binary
BH system.3 The three ringdown parameters {M,χf , q}
are not truly independent and, in particular, we map χf
to q using the fitting formula presented in [36] (see also
[35, 37, 38])

χf = 2
√

3η − 3.871η2 + 4.028η3 +O(η3) (3)

2 For simplicity, we decompose the ringdown signal on to spin-2
weighted spherical harmonics basis instead of the more natural
spin-2 weighted spheroidal harmonics basis. This assumption
is reasonable as long as the spins are not too high and can be
estimated following [34].

3 The remnant BH can be expressed in terms of the initial binary
BH parameters by fitting the numerical relativity simulations.
The relationship can be expressed explicitly in approximate an-
alytical forms [35–41], or implicitly using machine learning algo-
rithms [42–44].

where η = q/(1 + q)2.

The test checks if the independent measurements of
{M,χf , q} from the ringdowns are consistent with the re-
lation between χf and q as predicted by GR. Specifically,
we check if the χf directly measured from the ringdown
agrees with the χf calculated by plugging the measured
value of q in Eq. (3).

B. Prescription for the merger-ringdown
consistency

Let a population of non-spinning binary BHs ring-
downs be detected by a GW observatory. Note that the
quantities directly measured in PE have a superscript
‘meas’ and those inferred using Eq. (3) have ‘infer’.

1. Parametrize the ringdown as in Eq. (2) and es-
timate {Mmeas, χmeas

f , qmeas} for each event. We
used the median of the marginalized posterior dis-
tribution as the ‘measured’ value.

2. For each event, compute the χinfer
f from the median

value of qmeas in step 1 using the relation in Eq. (3).

3. Make a scatter plot with {χinfer, χmeas} using all
ringdown observations. In GR, one expects that
all the data should lie along the χinfer = χmeas line
in a 2-D scatter plot, with the noise in the data
leading to a spread around this line. To perform
the merger-ringdown consistency test, we express

χmeas
f = a+ b χinfer

F (4)

and fit for the parameters {a, b}. If the best-fit
parameters for Eq. (4) are compatible with {a =
0, b = 1} the observations are consistent with GR,
providing a statistical null test.

C. Details of Implementation

For simplicity, we restrict our study to non-spinning
quasi-circular binary BHs. We compute the QNM spec-
tra {flm(M,χf ), τlm(M,χf )} using the data in [45]. Fur-
ther, we focus our attention on the dominant mode
(l,m) = (2, 2) and the two most excited subdominant
angular modes for the case of non-spinning systems —
(l,m) = {(2, 1), (3, 3)} [46, 47]. We concentrate solely
on the dominant overtone, i.e., novertone = 0 [48, 49].
We use these simplifying assumptions for this proof-of-
concept study. However, note that including more angu-
lar modes and overtones is a tangible extension to our
work.

Key to our study is the expression of the QNM excita-
tion amplitudes and phases, as functions of q. Following
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the prescription in [47], we express ARlm and δφlm as

ARlm(q) = a0 +
a1
q

+
a2
q2

+
a3
q3
, (5a)

δφ(q) = b0 +
b1

b2 + q2
, (5b)

where we use the convention in which q > 1. An updated
list of coefficients {ai, bi} is provided in the Supplemental
Material. Further, for the dominant mode’s amplitude,
we use A22 = 0.86η [50]. Lastly, we assume a uniform
support in φ22 ∈ [0, 2π] and generate the waveforms ex-
pressed in Eq. (1).

III. DEEP LEARNING FRAMEWORK

We use a deep learning framework to reconstruct the
posteriors for the parameters {M,χf , q} from the wave-
form. We follow [18–20] and train a CVAE, a neural
network architecture well suited to posterior sampling.

A. Details on the CVAE implementation

The CVAE acts as an inverse nonlinear map from
the ringdown strain h = y(x) to the posteriors of x =
{M,χf , q}.

CVAE : y → p(x|y) . (6)

It has the structure of a variational autoencoder [21, 22]:
it is made of two serial neural network units (the ‘en-
coder’ and the ‘decoder’) separated by a stochastic latent
layer. The first neural network (encoder) maps the input
y into the latent layer. The second neural network (de-
coder) maps the latent representation of the input into
the output probability distribution p(x|y).

The CVAE is trained by introducing a third neural
network unit, called the auxiliary encoder or the ‘guide’,
at training time [51]. The training consists in optimising
a loss function. For the CVAE, the loss naturally splits
into [19, 51]:

1. the Kullback-Leibler (KL) divergence LKL, mea-
suring the similarity between the outputs of the
encoder and the guide; it quantifies the ability of
the encoder to produce a meaningful mapping of
the input into the latent space;

2. the reconstruction loss Lrecon, measuring the prob-
ability that the true values xtrue falls within the
decoder distribution.

The total loss to be optimised is

Ltot = Lrecon + βLKL . (7)

When β = 1, Ltot coincides with the standard ELBO loss
[21, 22]. The additional parameter β gives flexibility in
implementing effective training strategies.

Batch size 512
Epochs 500
Optimizer Adam
Initial lr 10−4

lr decay ×0.5 every 80 epochs
β annealing 3× [10−5, 1

3
, 2
3
, 1, 1, 1]

Validation fraction 10%

TABLE I. Hyperparameters used for training the CVAE.

After the training, the guide is dropped out. At pro-
duction time, only the encoder and the decoder are used
to sample the posteriors p(x|y). Fig. 1 contains a flow-
diagram of the training and production steps. More de-
tails on the neural network architecture and our codes
are provided in a dedicated git repository [52].

The hyperparameters which determine the CVAE
training are listed in Tab. I. We train the CVAE in
batches of 512 waveforms for 500 epochs, i.e., 500
forward-backward passes of the entire training set. The
loss is minimized using the Adam optimizer with an ini-
tial learning rate set to 10−4. The learning rate is de-
creased by a factor of 2 every 80 epochs. To monitor
the convergence of the loss, we set aside 10% of the
training dataset and we use it for validation. Following
[18], we use β to implement a cyclic annealing sched-
ule. Annealing improves the efficiency of the training
and allows autoencoders to express more meaningful la-
tent variables [53]. We increase β from 0 to 1 in steps of
[10−5, 13 ,

2
3 , 1, 1, 1] and these steps are repeated 3 times.

After this, β is definitively fixed to 1.
Next, the training performances improve when the in-

puts y are standardized to zero mean and unit variance,
and when the outputs x are normalized to have support
in [1, 100]. x is then scaled back to the original normal-
ization at production time.

B. Network training

To train the network, we simulate a dataset of 105 ring-
downs by sampling the waveform parameters uniformly
in the ranges indicated in Tab. II. The ringdown wave-
forms are sampled at 4096 Hz with a total signal dura-
tion of 31.25 ms, thus corresponding to arrays of length
128. Signal-to-noise ratio (SNR) is used to set the wave-
form scale w.r.t. the noise. The SNR is computed as in
[54, 55]. When performing PE, we only estimate poste-
riors for {M,χf , q}. For simplicity, we only consider the
+ polarization and fix the inclination angle to ι = π/3.
The ringdowns are embedded in simulated ET-like noise
segments [56, 57]. At each training iteration, we assign
noise instances randomly to the waveforms to prevent
the CVAE from learning spurious correlations between
the waveforms and the noise realizations.

Our training takes 84 minutes on a single GPU. Fig. 2
shows the evolution of the reconstruction loss Lrecon and
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xtrue y

{~µ0, ~σ0} {~µ1, ~σ1}

z

{~µ2, ~σ2}

Guide Encoder

LKL

Decoder

Lrecon

sampling

y

{~µ1, ~σ1}

z

{~µ2, ~σ2}

Encoder

Decoder

xpred

Repeat

sampling

sampling

Training Production

FIG. 1. A schematic representation of the CVAE architecture. On the left, a single training step is represented. First, the signal
y is mapped by the encoder into a latent stochastic distribution, which is a multivariate diagonal Gaussian with means and
standard deviations {~µ1, ~σ1}; similarly, the couple (y, xtrue) is mapped by the guide into a second Gaussian with parameters
{~µ0, ~σ0}; the two are then combined into the LKL loss. Next, a latent variable z is sampled from the guide distribution and
mapped by the decoder into a third Gaussian with parameters {~µ2, ~σ2}. This final distribution is eventually used to compute
the Lrecon loss. On the right, a single step at production time is shown. Now, the latent representation is sampled from the
encoder and a predicted output xpred is sampled from the decoder; this step is repeated nsamples times to produce an informative
posterior distribution for x; in text, we fix nsamples = 104. Note the final distribution of xpred is not a Gaussian, but is a complex
distribution resulting from the convolution of the two serial sampling steps.

Parameter Symbol Range

Final BH mass M [25, 100] M�
Final BH spin χf [0, 0.9]
Binary mass ratio q [1, 8]
Phase of the (2,2) mode φ22 [0, 2π] rad
Signal-to-noise ratio SNR [40, 80]

TABLE II. Ranges for the waveform parameters. All the pa-
rameters are sampled uniformly. Note we marginalize over
the last two parameters.

the KL divergence LKL separately. Further, we show
the loss evaluated on the 90% training dataset and on
the 10% validation dataset. Notice that the training and
validation losses are consistent, substantiating that the
network is not overfitting.4

To test the network, we generate a new dataset of
103 simulated ringdown waveforms, whose parameters
are sampled again from the ranges indicated in Tab. II.

4 The initial oscillations which are visible in LKL are due to the
cyclic annealing.

0 100 200 300 400 500
epochs

10 1

100

101

102

103
recon (training)
recon (validation)
KL (training)
KL (validation)

FIG. 2. Evolution of the reconstruction and KL losses across
the training epochs.

For each input waveform, the CVAE samples 104 distinct
points to build the posterior. The total time to analyze
all the samples is approximately 40 s on a single GPU,
corresponding to 40 ms per waveform. For illustration,
Fig. 3 shows the contour plot obtained from the PE of
one signal from the test dataset. For a quantitative diag-
nostic of the network performances, we present the P-P
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q = 1.56+0.17
0.16

0.0 0.0078125 0.015625 0.0234375 0.03125
t (s)

2

0

2

4

st
ra
in

1e 22

SNR=60
noiseless

FIG. 3. Contour plot for the PE of the ringdown signal
shown in the lower panel, with (M,χf , q) = (65, 0.8, 1.5) and
SNR= 60. Blue lines indicate the true values. Dashed lines
mark the 95% confidence interval. The plot titles indicate 1σ
uncertainties.

plot in Fig. 4: the plot shows marginalized cumulative
distribution CDF of the true values xtrue as a function
of p% confidence interval. A diagonal P-P plot means
that xtrue is contained p% of the times within p% con-
fidence interval of the marginalized posteriors for xpred.
Note that all the CDFs are consistent with the diago-
nal, demonstrating that our CVAE recovers the posterior
samples for {M,χf , q} from the ringdowns reliably.

IV. RESULTS

We present our proof-of-concept study in two parts.
In section IV A we demonstrate that when our test is
applied to a set of ringdowns consistent with GR, these
signals satisfy the null test. Next, in section IV B we use
4 sets of non-GR ringdowns and show that with ∼ 20−50
events the non-GR signals violate our null test - allowing
us to distinguish GR from non-GR ringdown.

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(p
)

final mass M
final spin f

mass ratio q

FIG. 4. P-P plot of test dataset. For each observable, the
plot shows the cumulative distribution CDF of the true values
as a function of the p% confidence interval of the posterior
distribution.

A. Proof-of-concept Merger-Ringdown test: GR
signals

We simulate a dataset consisting of 103 ringdowns with
parameter ranges as presented in Tab. II except for χf .
Here, χf is inferred from q by imposing the relation (3).

First, the posteriors produced by our CVAE for a single
event can be used to check if the event validates the spin
relation (3). In Fig. 5, we show the posterior samples for
χmeas
f and χinfer

f — where χinfer
f is determined by qmeas

as per Eq. (3), for a randomly chosen event from our
dataset. For this event, we see that χmeas

f = χinfer
f (blue

dashed line) lies within the 68% credible interval of the
posteriors, asserting that this event is consistent with GR
evolution.

Further, we use the scheme outlined in Sec. II B to
combine the information across multiple ringdown ob-
servations for a more stringent test of GR, as illus-
trated in Fig 6. For a noiseless GR ringdown, we expect
χmeas
f = χinfer

f . However, our inferences are probabilistic
and contain noise. This leads to measurement uncertain-
ties that translate as a scatter around the diagonal line.

In Fig. 6, we confirm that our dataset lies around
χmeas
f = χinfer

f . Also, as expected, lower values of q give

higher values of χf . A weighted least squared (WLS) fit
for Eq. (4) gives a ∈ [−0.014, 0.014] and b ∈ [0.963, 1.013]
at 95% confidence level, showing an agreement with
the χmeas

f = χinfer
f line. We weighed each event by

(σχmeas
f

σχinfer
f

)−1/2 to emphasize the more confident re-
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meas
f  = 0.67+0.04

0.04

0.5
6

0.6
4

0.7
2

0.8
0

0.5
2

0.5
6

0.6
0

0.6
4

0.6
8

0.5
2

0.5
6

0.6
0

0.6
4

0.6
8

infer
f  = 0.63+0.02

0.03

FIG. 5. Contour plot for the posteriors of χmeas
f and χinfer

f

for a signal with (M,χf , q) = (52.6, 0.66, 1.53) and SNR= 60.
The signal is extracted from the second test dataset, where
the relation (3) is enforced. The blue dashed line represents
χmeas
f = χinfer

f line.

FIG. 6. Scatter plot of χmeas
f vs χinfer

f . The color bar indicates
the value qmeas for each observation. The black dotted line
marks the χmeas

f = χinfer
f .

coveries.5 Fig. 6 thus observationally validates Eq. (4).
Next, to assess the efficiency of this test with the num-

ber of observations, we study the convergence of a and b.
In Fig. 7, we present the (weighted) best-fit values for a
and b with their 2σ confidence levels as a function of the
number of observations.

In Fig. 7, we find that the mean value for a and b are ∼
0 and 1, respectively, even for a small number of observa-
tions. We see that the uncertainties in the measurements

5 We verified that the results of an ordinary (unweighted) least
squared fit do not significantly change.

FIG. 7. Evolution of the best-fit values (continuous lines) and
2σ contours (shaded regions) for b and a in Eq. (4), versus the
number of observations. The mean values and the confidence
intervals are averaged over 10 random realisations. In GR,
the noiseless best-fit corresponds to b = 1 and a = 0.

of a and b, i.e., {σb, σa} decrease with increasing num-
ber of observations as a power-law. For instance, with
20 observations we can constrain {σb(n = 20), σa(n =
20)} = {0.0832, 0.00465} and with 100 observations we
have {σb(n = 100), σa(n = 100)} = {0.0398, 0.0219}.
Concretely, σa and σb scale with the number of observa-
tions as

σa(n) =
0.21√
n
, σb(n) =

0.41√
n
, (8)

which is consistent with our expectations given our noise
model.

Thus, while the merger-ringdown consistency test is
powerful when combining a large number of ringdowns,
it is also feasible to perform it with just a few observations
(∼ 20).

B. Proof-of-concept Merger-Ringdown test:
non-GR signals

In this section, we present the performance of the
test on a set of non-GR ringdown signals. We consider
phenomenological deviations from GR without assuming
physical mechanisms responsible for the GR modifica-
tions. Specifically, we generate 4 sets of non-GR ring-
downs by heuristically modifying amplitudes and phases
of mode excitations

ARlm → (1 + ∆A)ARlm,GR (9a)

δφlm → (1 + ∆δφ)δφlm,GR (9b)

with the 4 distinct cases enlisted as

Case 1: ∆A = 0 ∆δφ = 0.1 (10a)

Case 2: ∆A = 0 ∆δφ = −0.1 (10b)

Case 3: ∆A = 0.1 ∆δφ = 0.1 (10c)

Case 4: ∆A = 0.1 ∆δφ = −0.1 (10d)
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This class of GR-modifications implies an altered rela-
tion between the ringdown perturbation conditions and
the final properties of the remnant; therefore, we expect
our test to be naturally sensitive to these modifications.
Furthermore, note that other than the amplitude ratios
and phase differences between the modes, the details of
the non-GR signal are identical to the GR ones — i.e.,
the QNM spectrum is unaltered.

The best-fit values of a and b in Eq. 4 for each of the
non-GR signal-set are presented in Fig. 8. We remind
that any departure from a = 0 and b = 1 indicates that
the dataset contains ringdown that do not satisfy the
GR null test. We note that the merger-ringdown test
successfully excludes the a = 0 and b = 1 for a relatively
small number of observations. Specifically, GR values are
excluded at a 2σ level with O(20) observations for Case
1-3 and with O(50) observations for Case 4.

V. CONCLUSION AND OUTLOOK

We demonstrated a proof-of-concept study for a
novel test of GR called the merger-ringdown consistency
test that checks for statistical consistency between the
plunge-merger-ringdown phase across a set of ringdown
detections using a deep learning framework. The test
aims at increasing the sensitivity to the merger-ringdown
by simultaneously incorporating information on both
the amplitude-phase excitations and the QNM frequency
spectra in the ringdown. It uses the fact that the QNM
complex excitation amplitudes and the spectrum in the
ringdown are not independent quantities in GR. The test
provides an efficient way of stacking ringdowns. Further-
more, for possible future detections of heavy mass binary
systems (that is set precedence by the discovery of [58]),
our test can be used to check the consistency of initial
BH parameters with the ringdown alone if the inspiral is
not well measured.

This work illustrates that Bayesian deep learning
methods can be applied to infer the posteriors of ring-
down parameters to conduct precision tests of GR. Un-
like the traditional Monte-Carlo sampling, neural net-
works perform the PE in fractions of a second, providing
a crucial edge when dealing with the large number of ob-
servations that are expected with future GW detectors.

We also highlight that, in its most generic construct,
the TIGER infrastructure allows to identify paramet-
ric deviations from GR in the waveform by applying a
Bayesian hypothesis testing [59, 60]. In testing GR with
ringdown signals, the most popular strategy has been to
parametrize the deviations in the QNM frequencies and
damping times, followed by evaluating the Bayes factor
for GR versus non-GR hypothesis [50, 61, 62]. Our test
is conceptually different, because we are not explicitly
checking whether the QNM spectrum of the remnant is
consistent with that of a general relativistic BH. Rather,
we focus on the consistency between the relative ampli-
tudes and phases of the ringdown modes with the spin

of the remnant BH. The modifications to which the two
tests are sensitive do not necessarily overlap; we expect
our test to be efficient in scenarios where the departure
from GR influences the relative amplitudes and phase,
but the final remnant is similar to a general relativistic
BH. Comparing the efficiency of our test to the TIGER
implementation is not straightforward and needs further
exploration.

Here we have used non-spinning progenitor BHs where
the QNM excitation amplitudes and phases are fully
parametrizable by its mass ratio q and the χf − q re-
lation is approximated by the simple analytical expres-
sion in Eq. (3). However, our method can be extended
to encompass spinning progenitor BHs where the QNM
excitations depend on both q and χ1,2. The dependence
of the remnant spin χf on the binary BH parameters
should then be replaced by implicit non-analytical rela-
tions such as those in [42, 43]. Our WLS fit strategy does
not rely on analytical relations and new parameters can
be estimated by increasing the output dimensions of the
CVAE.

This study used stellar-mass BH ringdowns targeting
the ET-like data. Similar results can be expected to hold
for CE. However, LISA will detect ringdowns from super-
massive BHs [16, 55], with loud SNRs. We plan to extend
our analysis to include LISA-like data in the future. Fi-
nally, in this work, we demonstrate the feasibility of a null
test of GR, by implementing our test on GR as well on
a class of phenomenologically constructed non-GR ring-
downs. An interesting extension to our work would be
an extensive study on non-GR signals in a parameterized
framework such as that in ParSpec [63].
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FIG. 8. Similar to Fig. 7 but applied on the set of non-GR test signals described through Case 1-4 in Eq. 10 (depicted as
panels, clockwise from the top-left). Each set contains 103 signals. The mean values and the confidence intervals are averaged
over 10 random realisations. Note that for all of the cases we get best fit a 6= 0 and b 6= 1 with 95% credible intervals with less
than 50 observations.

Code availability. The code used for this paper is
made available in a dedicated git repository [52].

Appendix: Excitation amplitudes and phases

We update the fits presented in [47] by additionally
requiring Alm/A22 → 0 for q → 1 [48] and present the
coefficients for Eq. (5) in Tab. III. The start of ringdown
is chosen at tpeak + 12M . Note that the goodness of the
fits do not change significantly between the version here

and in [47].

(3, 3) (2, 1)

a0 0.433253 0.472881
a1 -0.555401 -1.1035
a2 0.0845934 1.03775
a3 0.0375546 -0.407131

b0 2.63521 1.80298
b1 8.09316 -9.70704
b2 8.32479 9.77376

TABLE III. Values of the fit coefficients in Eq. (5) for (l,m) =
(3, 3) and (2, 1).
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