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Autoimmune liver diseases (AiLDs) are rare autoimmune conditions of the liver

and the biliary tree with unknown etiology and limited treatment options. AiLDs

are inherently characterized by a high degree of complexity, which poses great

challenges in understanding their etiopathogenesis, developing novel

biomarkers and risk-stratification tools, and, eventually, generating new

drugs. Artificial intelligence (AI) is considered one of the best candidates to

support researchers and clinicians in making sense of biological complexity. In

this review, we offer a primer on AI and machine learning for clinicians, and

discuss recent available literature on its applications in medicine and more

specifically how it can help to tackle major unmet needs in AiLDs.

KEYWORDS
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1 Introduction

Autoimmune liver diseases (AiLDs) are chronic diseases affecting the liver and the

biliary tract, with a putative autoimmune pathogenesis, and include autoimmune

hepatitis (AIH) (1), primary biliary cholangitis (PBC) (2), and primary sclerosing

cholangitis (PSC) (3). The combination of low prevalence, unknown etiology, and high
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degree of heterogeneity among patients fulfilling the same

diagnostic criteria have hitherto hindered the development of

drugs, especially for PSC and AIH.

Nonetheless, high-throughput DNA and RNA sequencing

technologies, digital pathology, and digital radiology are also

progressively reaching this neglected field. A large amount of

experimental and clinical data are increasingly available in the

field (4), which requires dedicated analytical pipelines that are

able to deal with big data. Artificial intelligence (AI) is a broad

scientific field including many sub-specialties. Figure 1A

summarizes the relationship between AI, machine learning

(ML), and deep learning (DL). AI comprises several sub-fields,

and the most important ones for medical applications are ML

and DL. ML algorithms create models that learn from sample

data (training data) and are then able to make inference/

predictions on new data without being explicitly programmed

for this scope. Among the others, ML is of particular interest for

the biomedical field, since it can recognize patterns within data

and leverage them to generate new biological knowledge. DL is a

sub-field of ML that uses multiple layers of information for

extraction of features from raw inputs. This type of AI is

particularly well-suited for image processing.

This review aims to provide an introduction to AI for

clinicians and to outline the current evidence about AI in

medicine and the foreseeable applications in the field of AiLDs.

2 Artificial intelligence: Working
definitions and its growing role in
the biomedical field

In 1959, Artur L. Samuel, a computer scientist, firstly

introduced the expression “machine learning” in his seminal

paper focusing on how a machine could learn the game of

checkers (5). In line with Samuel’s definition, ML could be

defined as that sub-field of AI in which computers are not
Frontiers in Immunology 02
explicitly programmed by experts but rather learn from

experience (6). For instance, this could be the case of a process

that analyzes historical data concerning the time needed to

recover from a disease, and it is later used to predict the

recovery time for new patients with the same disease. In this

example, a set of labeled data is available, e.g., the number of days

needed to recover; this value is the value of the target

(alternatively referred to as the output) of the problem at

hand, and it is known for a set of the patients tracked in the

historical record. When the value of the output is known and

labeled, the problem falls into the area of supervised learning.

When the output of interest is a quantity (e.g., the number of

days needed to recover), the problem is referred to as a

regression. On the contrary, if the output represents a quality

(a binary one: disease status versus healthy status), the problem

would be defined as a classification.

In other cases, the set of labeled data is not available and the

macro-category is called unsupervised learning. For example,

unsupervised learning may refer to the task of splitting a set of

patients into homogeneous subgroups with respect to a set of features

(clustering) or rather to determine which diagnostic factors are

correlated to each other (association mining). In these cases, there is

no known, pre-defined and pre-labeled target of interest.

All these tasks can potentially be addressed with a statistical

approach. The main difference between statistics and ML is that

ML does not require to make any assumptions concerning the

statistical distribution of the considered features (7). Conversely,

the outcome of a statistical pipeline relies on (and benefits from)

the knowledge about the underlying distribution of the

considered population, as well as the statistical properties of

the chosen estimator. This requirement makes the statistical

approach less affordable in the case of high-dimensional data, as

it further increases complexity.

Conversely, considering that ML approaches cannot be

compared against any reference distribution for evaluation, it

is harder to assess their performance. A common procedure to
A B

FIGURE 1

Artificial intelligence and its sub-fields.
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deal with this issue consists in comparing the model predictions

against the data themselves. More specifically, a subset of data

(for instance, a subset of patients whose data are available in the

historical record) is used to train the model, while another part is

not supplied to the training pipeline. In ML terminology, the

former part is usually referred to as training set, while the latter is

commonly denoted as test set. After having completed the

modeling phase on the training set, the model itself is applied

on the test set; in other words, the model will make predictions

on a new and unknown subset of data, which simulates the

foreseeable new data on which it will be applied in the future.

Coming back to the first example about days to recover from a

disease, the test set will involve patients not considered in the

modeling phase on training. More complex and sophisticated

scenarios also involve the introduction of a third dataset,

referred to as the validation dataset; in this case, there is a

dataset for training, a dataset for hyperparameter tuning (tuning

of model parameters) on top of training, and another one for

performance evaluation.

External validation should be performed for rigorous

evaluation of the algorithm performance. In fact, deficiency

and biases present in the training dataset may appear in

external data that are either closer to the ideal target

population or representative of minority populations. In this

way, the risk of biased performance estimation is reduced and

more consistent and robust conclusions can be drawn (8).

Evaluating, for instance, the root mean squared error (or, in

the case of a classification, other indicators such as empirical

accuracy or area under the curve) allows to understand how

much the extracted model is effective on previously unseen data.

When there is a strikingly good performance in the training set,

but with a poor one in the test set, the model is overfitting data: in

other words, it is too focused on replicating training data and is

not able to generalize its predictive power.

Among the different ML available models, some of the well-

known approaches are artificial neural networks (9) and support

vector machines (10). In the latest couple of decades, neural

networks and especially multi-layered ones became even more

popular, being at the core of DL approaches. DL refers to a

pipeline in which the learning process is modularized: the first

layer of modeling can be considered as in charge of learning

features that will be used by the following layer, enabling the

final one to provide a prediction (11). This has been shown to be

particularly promising in the field of high-dimensional,

unstructured data, such as documents or images (12).

Figure 1B shows the basic architecture of an artificial neural

network. DL algorithms have a more sophisticated and complex

architecture than non-DL ML algorithms, which include many

more free parameters, providing a higher degree of flexibility.

The core of DL algorithms is usually the artificial neural

network, which is constituted of several nodes called artificial
Frontiers in Immunology 03
neurons. The output of a neuron is a non-linear computation of

the sum of its inputs.

Overall, AI and its sub-fields ML and DL offer a wide range

of tools for data mining and predictions, which represent a great

opportunity to advance the biomedical field. Multiple examples

of AI applications have been produced over the last years in

several fields, such as pathology, radiology, dermatology, and

endoscopy, to name a few (13). Analyses of images derived from

tissue specimens (14), radiological exams (15), and pictures of

skin lesions (16) or captured from videos of endoscopic

procedures (17) are examples of input data that have been

analyzed through different types of neural network algorithms.

In addition, clinical data either extracted from multicenter

collaborative efforts or derived from electronic health records

(EHRs) have also been analyzed with ML software to understand

whether the AI-based models were better than available

diagnostic and/or prognostic scores (18) or to identify

subgroups of individuals at different disease course (19, 20).

Neural networks have also shown promising results in several

fields of genomics (21); particularly interesting are also

approaches that integrate genomic data (most commonly

common variants from genome-wide association studies) with

images, with the aim to match image-derived markers with gene

signatures (15).
3 Applications in autoimmune
liver diseases

3.1 Digital and computational pathology

3.1.1 Aims and applications
Histopathology slides intrinsically hold a large amount of

information and data, which have been largely underutilized in

the past. The transformation of these analogic data in digital file

formats is the core of “digital pathology” (22). The whole slide

imaging (WSI) technique implies the digitalization of the whole

histological section via a digital scanner, and has been

progressively becoming more available and widespread.

The revolution carried forward by ML, particularly in its sub-

domain of DL, is fostering the development of an associated new

field called “computational pathology” (23). This sub-field regards

all the processes involved in extracting and handling data present

in digital slides to generate valuable information for clinical and

research purposes. Overall, computational pathology may be

capable to provide solutions to several issues in modern

medicine. Schematically, we can enucleate several applications:

in the diagnostic area, it favors automation, supports the

pathologist, and enhances telemedicine; in the research area, it

improves the understanding of the pathogenesis at the cellular and

tissue levels, prognostication, and risk stratification.
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In hepatology, and in rare disorders like AiLDs, histological

evaluation of liver tissue may play an important role in the

diagnostic workout. Moreover, it may offer semiquantitative/

quantitative prognostic information and supports choice of

therapies. Therefore, hepatology represents an appropriate

field for WSI and computational pathology (24).

3.1.2 Whole slide imaging technology and
deep learning

The first step in WSI technology is the use of the appropriate

technology for image acquisition, i.e., an image scanner for

digital image acquisition. The second part of the process is

based on the view and analysis of the image through a dedicated

software (25).

The most common method to generate images is tiling, i.e.,

acquiring the original slide as tiles, although a linear scanning

system can also be used. The final image is the result of merging

of each tile or line scan by the software. DL algorithms extract

parameters of interest from the scans by using labels

corresponding to predefined categories. They can obviously be

used also through an unsupervised manner for clustering or

other data grouping strategies.

It is evident that WSI technology coupled with DL could

work in a much more automated and efficient way than current

standards, and can be of help for clinical practice (26).

Arguments in favor of this statement are the improved

reproducibility and speed of the diagnostic process together

with the reduction of workload for clinicians (26). By reducing

the need for repetitive work, pathologists can focus on those

tasks that require specific skills like the integration of the

available information to produce accurate diagnostic

hypotheses and communicate with clinicians. Before

translation into clinical practice, it is essential to validate WSI

performance compared to standard procedures; few studies are

available, but data seem promising (27). Most of the published

studies in the hepatological field include only WSI without

subsequent DL applications, and are mainly focused on

exploring the added value of WSI in terms of better inter-

observer concordance. In fact, the digitalization allows better

sharing and annotation of tissue slides, making easier

collaboration among pathologists (22).

Among the studies that went beyond pure assessment of

reproducibility of the diagnostic process, a recent and elegant

work from Cheng et al. has shown the excellent accuracy of a DL

algorithm applied to images derived from formalin-fixed,

paraffin-embedded surgical resections and biopsy specimens of

nodular lesions of the liver. OnWSI, a pathologist outlined ROIs

generating hundreds of thousands patches for further analysis.

Several testing sets were available for independent external

validation. Three DL models were evaluated, with AUC always >

0.90 in external validation datasets. Of note, to avoid batch effects

and increase generalizability, data for external validation were

collected from three different hospitals. To us, the core elements
Frontiers in Immunology 04
of this work are a solid methodology, the involvement of expert

pathologists, and the use of a large training set together with

heterogeneous validation sets taken from different centers (28).

Another important study from China has shown the

capacity of DL applied to WSI derived from hepatocellular

carcinoma (HCC) to discriminate the type of tissue and to

detect new prognostic biomarkers. In this case, on top of data

coming from a single Chinese cohort, the investigators have also

leveraged the Cancer Genome Atlas (TCGA) to finely map the

identified histological patterns and correlate them with tumor

immune infiltrates and gene mutations. Of note, to take into

account the different staining protocols between the training

cohort and TCGA, they used a specific DL algorithm for

standardization. This work represents a remarkable example of

a pipeline that goes from slice preparation to the development of

a risk score associated to histological patterns identified within

the tumor, showing the ability of this score to stratify patients in

higher- and lower-risk groups and to correlate score values with

histological patterns and tumor-associated immune cells (29).

More relevant to the field of AiLD are applications of WSI

and DL to inflammatory diseases such as ulcerative colitis (UC).

In a recent landmark paper showing data from an international

multicenter consortium, investigators have created a new

histological score for UC, which correlates with endoscopic

findings and holds prognostic value. To generate the score,

colonic biopsies were used and a group of expert pathologists

annotated the slides by using a variety of histological scoring

schemes already available. After a Delphi consensus among

pathologists, the neutrophil infiltrate was deemed as the key

element of disease activity and clinical outcome; importantly, the

new score was created by using standard statistical methods.

Subsequently, the DL algorithm was trained to learn how to

identify neutrophil infiltrates within images and to differentiate

between quiescent and active disease, achieving 86% accuracy. In

our opinion, the interesting aspect of this study is the blended

approach between classical and standardized statistical

approaches (development of scores and survival analysis)

together with DL (17).

WSI offers a more quantitative approach for assessment of

liver fibrosis and steatosis, and novel data are available for HCC

and transplant pathology (22). A dedicated review of the most

recent applications of WSI technology to liver diseases is

reported below (22). No specific data are available for AiLD at

the time of writing.

3.1.3 Methodological hurdles and limitations
The main limitations to the implementation of AI-based

technologies to digital pathology are the lack of universal

standards for data formatting, as compared to radiology,

where the Digital Imaging and Communications in Medicine

(DICOM) format is already the standard (6). The current trend

in the field is to use AI to digitalize these processes and reduce

arbitrariness and low agreement among pathologists (30).
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In addition, data quality is essential; in fact, histological slides

comprise a highly heterogeneous information. Staining, thickness

of the section, and presence of artifacts are known factors

influencing the model performance in DL-based diagnostic

models (31). The development and optimization of staining

methods to enhance the contrast of biological components has

been a goal for decades. Yet, inconsistencies and artifacts are still

generated despite technical efforts to improve specimen

preparation. This issue represents an obstacle for digital

pathology, since a batch effect can be introduced when

analyzing altogether samples either from different institutions or

from the same institution but retrieved at different time points

(32). Novel strategies have been put in practice to overcome this

hurdle by means of unsupervised methods based on color

normalization and adversarial adaptation (33). Convolutional

neural networks (a class of artificial neural network commonly

applied for image analysis) are used to learn properties present in

the source domain and then apply them on the target domain

without any supervised labeling (33, 34). Several specific strategies

for prevention of the artifact-driven loss of performance are

currently under investigation (31).

Another important limitation of current pipelines that is

particularly relevant for the field of AiLD is their exclusive

reliance on hematoxylin–eosin stainings. Despite the validated

role of CK7 and orcein stainings in the differential diagnosis and

staging of PBC (35) and PSC (36), to our knowledge, there are no

published computational pathology pipelines that have been

trained on this type of images.

Overall, there are still some methodological limitations for

the full implementation of digital pathology as a research tool

and for its incorporation in the current clinical workflow; yet,

there is active research aiming at addressing them.

3.1.4 Potential applications in AiLD
Liver biopsy has a pivotal role in the diagnostic and

prognostic process of AiLDs. It is essential for the diagnosis of

AIH and holds value in atypical cases of PBC and PSC; for all the

three conditions, it provides a rich amount of information that

can assist prognostication and guide treatment. While for PBC

the pediatric onset is exceptional, AIH and PSC can arise at

pediatric age, with features and disease course different to the

adult onset.

Computational pathology has several promising applications

in the field of AiLDs. As the pathogenesis of these diseases is still

obscure, the use of AI-assisted methods may aid in discovering

pathogenetic clues for further investigation. Computational

pathology may also assist in identifying core histological

features of AiLDs that are still missing, and provide a more

standardized approach for differential diagnosis (e.g.,

discriminating between pure PBC or AIH and variant

syndromes). An even more promising application is for

prognosis modeling and risk stratification.
Frontiers in Immunology 05
Nevertheless, there are some disease-specific traits that can

influence AI implementation. In AIH, liver biopsy is the

cornerstone of the diagnosis, and the available scoring systems

unlikely lead to definite AIH diagnosis without histological

evaluation. In addition, histology provides useful information

on disease activity and stage (37). Histological diagnostic criteria

evolve over time, and AIH makes no exception. The

combination of interface hepatitis and a predominantly

periportal lympho-plasmacellular infiltrate is nearly always

present in AIH, but it is not pathognomonic (38). The recent

revision of histological criteria for the diagnosis of AIH has

recognized centrilobular injury, together with central

perivenulitis and necrosis, as being part of the histological

spectrum of acute severe AIH (39). However, qualitative or

semi-quantitative information derived from liver histology of

patients with AIH is currently insufficient to accurately depict its

heterogeneous histological phenotypes and to predict treatment

response and/or relapse. Moreover, the differential diagnosis

with other forms of hepatitis, especially acute hepatitis or drug-

induced liver injury, remains extremely difficult. A foreseeable

goal would be to have quantitative metrics of subtle processes

such as the extension of lympho-plasmacellular infiltrates within

the periportal tract, lobular necrosis, and other pathological

processes that are frequently observed in AIH, to develop a

more reliable diagnostic and prognosis prediction approach. It

appears evident that AIH would hugely benefit from the

application of digital pathology because the digital analysis of

histological slides could offer a standardized approach to its

diagnosis and could help to identify features that are inherently

proper of AIH rather than drug-induced liver injury or other

AIH-mimics (40). ML is required to deal with the large amount

of information that would be obtained after extraction of

quantitative metrics from digital slides (feature selection).

For risk stratification in AIH, unsupervised ML approaches

could be of interest to identify prognostic biomarkers of disease

activity that can predict biochemical remission, when liver

biopsy is performed at diagnosis, or relapse, if the histological

assessment is performed before treatment withdrawal.

Unsupervised learning could shed a light on morphological

features peculiar of sub-phenotypes of AIH that are currently

invisible to the human eye, highlighting populations of cells or

morphological patterns that are not considered part of the

histological spectrum of the disease (41–44). Unsupervised

learning techniques are commonly used to analyze and

interpret single-cell RNA sequencing data; for instance, Liu

et al. have recently shown that single-cell profiling of immune

transcriptomes of skin samples from patients with different

inflammatory skin disorders can differentiate among different

conditions by identifying, in a unbiased manner, gene expression

signatures (41). On a similar note, the analysis of approximately

200 million nuclei from digitized slides of 117 patients affected

by glioblastoma was able to derive three disease clusters with
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different nuclei morphology and specific associations with gene

signatures (44).

Even though only supervised learning approaches were

employed, in another landmark paper from Stanford

University, it was shown that the use of a computational

pathology tool that automatically generates quantitative

features can pinpoint structures that had not been called in

action as prognostic biomarkers. This is a clear example of how

the implementation of quantitative approaches, either

supervised or unsupervised, can represent a way to detect

unseen patterns that hold predictive and prognostic value (43).

Multi-center, collaborative efforts can represent an asset by

helping the collection of a huge amount of clinical and

histological data to be analyzed through ML; large consortia

such as European Reference Network for Rare Liver Diseases

(ERN-RARE LIVER) or the International AIH Group can be

leveraged to this end. Unsupervised techniques can be devised

and validated in order to cluster individuals affected by AIH

according to different prognostic trajectories.

As regards autoimmune cholangiopathies, histological

samples suitable for analyses are limited in number. The

diagnostic accuracy of PBC-specific autoantibodies has

determined a progressive reduction in the number of liver

biopsies performed (45); in PSC, liver biopsy is required only

in atypical cases, since diagnosis and monitoring are performed

by magnetic resonance cholangiopancreatography (MRCP) (46).

Notwithstanding, PBC and PSC could potentially benefit from

WSI together with ML. PBC and PSC are rare diseases with

poorly understood pathogenesis; quantitative analysis of

histological slides compared to healthy controls and/or other

liver diseases such as metabolic liver disease or viral hepatitis

could point toward zonal and cellular differences that are specific

for these conditions. In this way, highlighting histological areas

of potential interest, ML can be a tool to facilitate hypothesis

generation of novel physiopathological models that can be

subsequently dissected in the lab. Furthermore, the

implementation of AI in the histological assessment of

autoimmune cholangiopathies may be of aid in differential

diagnosis with other chronic cholestatic syndromes. Of note,

the definition of small duct PSC is still problematic and its

distinction from intrahepatic genetic cholestasis or

autoantibody-negative PBC is a challenge. Whether

quantitative information included in histological slides of

patients with small duct PSC is useful to predict the evolution

toward a large duct form is still unknown, and it might be worth

exploring in an integrated approach together with AI

applications to radiology.

As regards biomarker discovery and risk stratification, non-

invasive tools are not accurate enough to depict the full

cholestatic picture, and the variety of inflammatory and

fibrotic patterns, together with the cellular milieu of biliary

regeneration, are not captured by transient elastography or

routine liver enzymes (47, 48). This is not trivial; there is
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increasing evidence of the prognostic role of ductular reaction

in these conditions (47). The alterations of the physiological

architecture of the liver and biliary tree architecture pinpointed

by ML could also represent novel biomarkers. Quantitative

biomarkers of inflammation, biliary damage, or fibrosis can be

discovered by means of AI and correlated with non-

invasive biomarkers.

As regards disease classification and definition, unsupervised

learning algorithms can be applied to detect sub-phenotypes that

could prompt disease re-classification. The latter aspect is of

particular interest for variant syndromes and for better

characterization of the ductopenic variant of PBC.

Overall, the introduction of ML in this field of medicine may

at minimum generate new hypotheses and identify novel

biomarkers; yet, robust studies validated in several cohorts will

be required to change also everyday clinical practice.
3.2 Applications in radiology

3.2.1 Aims and applications
In the last decade, the remarkable progress in liver imaging

techniques has helped to characterize several liver diseases from

a qualitative and quantitative point of view. The foreseeable

introduction of AI in medical practice together with the

generation of a large amount of high-quality imaging data

poses radiology as a key player in precision medicine (13, 49).

To this end, two groups of AI-based techniques can be

mentioned: radiomics, which relies on ML, and DL systems

(based on neural networks) (6). Radiomics has emerged as a

high-throughput computing technique that enables extraction of

large amounts of quantitative features from medical imaging,

mainly computed tomography (CT), magnetic resonance

imaging (MRI), and positron emission tomography (PET)

(50). This vast amount of variables can be correlated with

specific clinical outcomes of interest, providing far more

information than those detectable by an experienced physician

(51). The main difference between radiomics and DL (also

known as deep radiomics) is the methodology of feature

extraction. In “standard” radiomics, image analysis experts

derive a list of mathematical equations that are applied to the

image; in DL, convolutional neural networks are used for

automatic extraction of features without the need of pre-

defined programming (30).

We can speculate that the ultimate goal of both techniques is

the combination of radiological data with clinical and laboratory

data and potentially other -omics, to develop more accurate

predictive models that incorporate a wider spectrum of disease-

related features (52, 53).

3.2.2 Methodology
The methodological process has been classically divided in

distinct phases (51). The prerequisite is the collection of high-
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quality images with standardized imaging protocols to allow the

repeatability and reproducibility of the analysis. In case of

multicenter studies, as image resolution and intensity can be

different depending on image acquisition and reconstruction

procedure, preprocessing of the collected images is mandatory.

This step is typically called data acquisition and normalization.

After preprocessing, one should define a region of interest

(segmentation of region of interest or ROI). In most radiomics

studies on liver diseases, the segmentation is performed by a

radiologist as manual segmentation. Alternatively, the

identification of ROI can be done by computer analysis

through specific algorithms (automatic segmentation), with an

optional input provided by the radiologist (semiautomatic

segmentation). From the defined ROI, quantitative data are

subsequently extracted (feature extraction). Informative data

include both manual engineered features, like patterns of

intensity, texture and shape, and abstract DL features. Of all

the quantitative features extracted from the ROI, only the most

informative will be retained, after feature selection through

computational methods. Selected features are then fitted in a

specific model of analysis. While a single modeling technique is

often used, multiple-modeling methodology must be preferred

to limit effects on prediction performance. Internal and possibly

external validation of the model should be performed to avoid

overfitting the model (features selection, modeling, and

validation). The last and most important step of radiomics is

to correlate the selected characteristics with the outcomes of

interest to better characterize the disease (image analysis).

Recently, the radiomics quality score (RQS) has been proposed

to evaluate if a radiomic study matches with defined quality

criteria in all steps (50, 51).

Overall, there are several methodological steps, and each of

them needs high level of control to avoid biases in the prediction.

3.2.3 Limitations
The first obstacle to the widespread application of radiomics

in the study of liver diseases is the use of non-standardized image

acquisition and reconstruction protocols even within the same

institution, together with the need of a large amount of data,

which is challenging and time-consuming. Moving forward

through the radiomics workflow, the segmentation process has

also some limitations. While manual segmentation is time-

consuming, many automated and semi-automated algorithms

are often suboptimal so that physicians are almost always needed

to verify their accuracy. Moreover, in rare diseases such as

AiLDs, automated segmentation algorithms do not exist. One

solution might be the extraction of features through neural

networks (54); the downside of this approach for AiLDs is the

rarity of these conditions, while DL typically requires large

datasets for training.

Another important issue that limits the broader adoption of

AI algorithms is the lack of interpretability, which is the black
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box problem, namely, the difficulty of physicians to understand

the predictions of ML algorithms (55) (see also Section 3.5 for

the debate about black box and explainable AI).

Overall, similarly to digital pathology, radiomics can also

suffer from lack of standardization. It is conceivable that some

strategies to address this issue can be shared between the two

fields but most tasks are field-specific.

3.2.4 Applications in AiLDs
Imaging plays a remarkable role in the diagnosis and

management of PSC. Among medical imaging techniques,

MRCP represents the main non-invasive imaging method for

the diagnosis, risk stratification, and monitoring of patients with

PSC (56). Yet, there is still lack of radiological features specific

for PSC that allow exclusion of other causes of cholangiopathy.

Thus, there is particular interest in the potential of quantitative

imaging in terms of phenotypic characterization and

differential diagnosis.

The highly variable disease course of PSC, likely associated

with a variety of uncharacterized sub-phenotypes, represents a

challenge for risk stratification. Several attempts have been made

to develop reliable predictive tools in order to early discriminate

patients with a more aggressive disease (56). To date, prognostic

scores have been based mostly on laboratory and clinical data;

some of them have been created by the application of ML

algorithms, but without the inclusion of radiomic features (57,

58). Unfortunately, the fluctuating nature of serum markers of

cholestasis during the course of the disease has hampered the

accuracy of models based only on laboratory values so far. Liver

stiffness measurements (LSMs) by either transient elastography

or MRI elastography hold prognostic value (59, 60). Early

arterial peribiliary hyperenhancement at MRI has been

associated with higher Mayo risk scores and poorer prognosis

(61). The ultrasound evaluation of incremented spleen size has

also been correlated with major clinical outcomes in PSC (62).

The ultimate turning point in the evolution of radiological

PSC characterization is the possibility to derive quantitative data

from MRCP scans. There is mounting evidence on the accuracy

of MRCP+, a novel image processing software that is able,

through the creation of a 3D-enhanced model of the biliary

tree, to provide quantitative metrics of the ductal anatomy,

generating data on biliary tree volume, median diameter of the

extrahepatic bile ducts, and number, length, and severity of

strictures and dilatations (63). AI takes part in the segmenting,

enhancing, and pre-processing of images together with the

modeling of the derived information.

There is evidence supporting the reliability of MRCP+

metrics as a non-invasive tool to differentiate pediatric PSC

from pediatric AIH (64, 65). In addition, MRCP+ parameters

hold prognostic value, as proven by their strong correlation with

validated biochemical and semi-quantitative MRCP-based risk

scoring systems (66, 67). The application of AI on large-scale
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MRCP+-derived quantitative data has the potential to

significantly improve the current diagnostic approach and

prediction models of PSC.

As regards AIH, promising data employing Liver MultiScan

technology have been recently presented. Following the evidence

that multiparametric MRI (mpMRI) using iron-corrected T1

(cT1) relaxation maps provides an accurate, non-invasive

quantitative biomarker of liver fibrosis and inflammation,

recent works have shown that mpMRI, when applied to AIH

patients, has a better performance in detecting residual disease

activity than serological biomarkers (68, 69). Moreover, it seems

that higher cT1 value at diagnosis correlates with a higher risk of

loss of biochemical remission, gaining prognostic value (68, 69).

Liver MultiScan technology seems to be a foreseeable accurate

non-invasive biomarker in AIH that can enhance risk

stratification. Multicenter prospective studies are needed to

validate these preliminary findings, together with the

implementation of AI platforms to leverage the large amount

of data generated by these new technologies.

In conclusion, future implementations of radiomics and DL

systems have the potential to improve our comprehension of the

complexity of AiLDs. Looking forward, there are several

potential future developments. Novel biomarkers can be

investigated and validated; they may play a role as diagnostic,

prognostic, and predictive tools to assist current clinical practice

and clinical trials. Correlations of radiomic features with

molecular parameters can enhance their contribution and

potentially shed light on novel disease sub-phenotypes.
3.3 Population genetics

3.3.1 Predicting phenotype based on genotype:
A supervised learning approach

From a genetic perspective, AiLD are complex traits (70); in

other words, their genetic architecture is not monogenic but

dependent on the interplay of several genetic variants. The field

of AiLD is still at the dawn of the big data era. While GWAS have

been performed for each of the three conditions, whole-exome

and whole-genome sequencing data are still missing. For all

three conditions, single-nucleotide polymorphisms (SNPs)

within the human leukocyte antigen region have a significant

role in shaping their genetic risk (71–73); yet, several non-HLA

variants have been described for PBC (74) and PSC (73), and

more recently also for AIH (75). The discussion of the large topic

of missing heritability is out of the scope of this review (76);

however, it is worth mentioning that large portions of the

heritability of AIH, PBC, and PSC are yet to be characterized

(77). Whole-exome and whole-genome sequencing have clearly

revealed that the identification of rare predisposing variants with

large effect size is useful to fill this gap of knowledge (78, 79).

Evidence in AiLD is scanty, mostly available for PSC, where

autosomal-like patterns of inheritance have been identified in
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some families (80, 81), although it is likely that AiLDs derive in

most cases from the interaction of some environmental triggers

on the ground of a predisposing genetic background mostly

composed of common variants. That said, the utility of PRSs,

which are typically based on common variants, in AiLD is still a

matter of debate (77).

In this paragraph, we focus our attention on the possible

applications of ML on GWAS data, since they represent by far

the largest data already available in this field.

ML is considered a complementary tool in population

genetics, where several methodological hurdles need to be

overcome. Research in population genetics has mostly focused

on the formalization and validation of statistical models that

describe patterns of variations and their application to

experimental molecular data (82). While classical population

genetics has been mainly characterized by parameter estimation

in the context of a predetermined probabilistic model (typically

the Wright–Fisher model), the target of ML is optimization of

the accuracy of predictions (82). PRS predictions are based on a

linear parametric regression model, with strict assumptions like

additive effects, independent effects, normal distribution of the

data, and independence of observations (83). These assumptions

are often not valid in complex diseases like AiLDs. For example,

thanks to their non-linearity, ML algorithms allow to account for

complex interactive effects between associated alleles (84).

Another peculiar and powerful feature of ML is its capacity to

handle thousands of dependent variables, each characterized by

a massive amount of information; this ability is of interest in the

genomics world, where increasing dimensionality of data is an

issue (82).

In population genetics, the output could be represented by the

status (case or control) or a continuous phenotype (such as

the value of a blood biomarker of interest), and the features are

the individual sample genotype data (83). Data feature selection

is the key step to obtain an accurate ML model (84). There are a

few methods (embedded methods and wrappers) useful to select

only informative SNPs as potential predictors (83).

The research question should be clear: does one want to

predict outputs or to interpret data? The generative approach

builds a model for two classes in a supervised manner, while the

discriminative approach focuses only on separating them via an

unsupervised approach.

The main application of supervised ML in population

genetics is to build a model to classify cases and controls based

on SNPs. This approach has the research aim to leverage AI to

create a feature ranking of the most significant genetic variants

that are inherently specific for the disease of interest and to

create a polygenic model that can complement PRS. Moreover,

ML can incorporate other relevant information such as sex to

create hybrid models that can risk stratify the genetic liability

already at birth. A caveat that should be carefully considered is

that only “pure” phenotypes should be included as cases, to

avoid confounding.
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Another possible application of supervised ML in AiLDs

could be to identify novel predictive features (SNPs) associated

with phenotype, possibly looking at biologically distinct sub-

phenotypes of the disease (early vs advanced disease, onset at

younger age vs older age, positivity for specific autoantibodies).

In this way, a predictive model is generated, taking advantage of

the different contribution of variables within the training

genotype data (83). After the training phase, the models with

the maximum predictive power are selected for validation. This

stage is essential to avoid overfitting and is usually achieved by

cross-validation (dividing the original dataset into a training set

and a test set). Nonetheless, external replication is still required

for the final validation of the model (83).

Unsupervised approaches may be used to cluster patients

according to genotype data and investigate whether these novel

groups have different clinical presentations, trajectories, and

treatment responses. Based on the availability of other omics,

clustering can be extended to genomics and transcriptomic data

for example. After generating clusters with hypothesis-free

means, it is mandatory to understand if they hold biological

and clinical significance, to create a classification that is really

meaningful for clinicians. Yet, datasets having a different set of

omics for the same group of individuals are seldom available. In

addition, it is worth mentioning that, despite the growing body

of GWAS data available in public repositories, there is still a

large fraction of data that is not publicly shared with the

community of researchers. Privacy issues do exist and the

matter of balancing privacy rights with the need of sharing

knowledge for the sake of the scientific advancement is a hot

topic in genetics (85).

3.4 Studying gene–gene interactions: A task
for unsupervised learning

ML can also be helpful for studying epistasis, a so far

neglected topic that may account for part of the missing

heritability (86). Epistasis is difficult to study in humans

compared to simpler animal models such as Drosophila

melanogaster, and has many computational issues. Statistical

definition of epistasis is that of interaction, the departure from a

linear model describing how a number of predictors (xi) predict

the outcome (the phenotype y). y can be a quantitative measure

(e.g., height) or a binary outcome (case vs. control), so that linear

or logistic models should be used, respectively.

If a locus of interest does have an influence on the phenotype

and this happens via an interaction with another locus, it turns out

that a model that incorporates interaction may increase the power

to detect the effect of the locus of interest to the phenotype. For

example, if the locus of interest is A, it may be more interesting to

compare a model where the effects of locus A and B, and their

interactions are included in a model where all terms (either main or

interaction) involving locus A are removed.

Yet, in GWAS, several loci of interest should be investigated.

The simple way is an exhaustive search of all possible pairs of
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loci studying interactions for each couple (two-locus interaction)

or replicating the three degrees of freedom test iteratively. It is

evident that a multiple testing issue arises and corrections should

be employed, but this leads to the detection of only huge epistatic

effects (87). Computational power (e.g., computer cluster) is

required, but these analyses are still feasible; the real point is the

lack of scalability to higher-order interactions. Pre-filtered loci

that show some degree of significance in terms of correlation

with the phenotype may be reasonable, but it is flawed by the

exclusion from the analysis of those loci that do not show

association with the phenotype (88).

One strategy is to guide the analysis based on biological

plausibility (e.g., based on known interactions at the protein

level, such as interactions among transcription factors and their

targets, or proteins belonging to the same biological pathway).

Another strategy is to use ML, which does not demand a

marginal effect in place. ML can overcome the obstacles

encountered by traditional regression-based methods since it

works without a prespecified model and explores different

models to search for the most computationally efficient one,

avoiding a comprehensive research (89). From a mathematical

point of view, ML does test for associations allowing interactions

rather than testing directly for the interaction per se (see above).

Another advantage is that there is a long line of research in

computer science for problems like feature selection and data

mining. For example, the Random forest method builds a tree-

fashioned model measuring the effect of each SNP both

individually and through interactions, generating a feature

ranking, as compared to the list of p-values provided by

PLINK, i.e., the gold standard software used in GWAS studies

(89, 90). Since ML is not exhaustive and adopts heuristics, cross-

validation and external validation steps are essential to avoid

overfitting of the training set; if the sample size is small,

parametric methods may be better suited for the analyses than

ML techniques (91). An important caveat should be mentioned:

epistasis can also be seen from a functional point of view

(functional epistasis) rather than a statistical one. This means

that epistasis occurs in biology and may be present despite lack

of signals from quantitative studies (87, 88).

Overall, the investigation of gene–gene interactions has

represented a methodological challenge for long. There is high

expectation that AI-based pipelines can solve at least some

issues, even though it is likely that large amounts of data will

be required to fully recapitulate the network of gene–

gene interactions.
3.5 Integrative multi-omics

ML represents a potent tool for analyses of data derived from

high-throughput sequencing. As for other scientific fields, the

possible applications of ML can be (1) generation of models for

classification; (2) clustering of individuals in groups; and (3)
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feature selection. In this section, we provide several examples of

these different applications.

The field of AiLD is still at the dawn of the big data era. Gene

expression, proteomic, and metabolomic data come mainly from

peripheral blood and single cohorts. More specifically, a recent

study has shown that ML can discriminate between AIH and

healthy controls based on gene expression profiles (92). A

similar situation exists for microbiota, despite the growing

interest on this side (93, 94). Single-cell data are becoming

available for healthy liver in mice and human and in fibrotic

livers (95); HCC and cholangiocarcinoma are also under

investigation with these novel techniques.

Despite having a broad range of applications, ML is mostly

useful for large datasets, such as those derived from microarray

and high-throughput sequencing studies. Available data are

genomic (SNP, whole exome, and whole genome), epigenetic

(DNA methylation and histone modifications), transcriptomic

(coding and non-coding RNAs, single-cell or bulk sequencing),

proteomic, and metabolomic, with many others emerging (96).

There is increasing availability of these datasets, which are

frequently independently analyzed from different groups with

different techniques: a brilliant example of such datasets is the

UK Biobank (97). Datasets including the same set of omics for all

individuals included in the cohort are rare. Most of the available

omics data repositories were created without the vision of future

multi-omics integration but rather to host data that were derived

from a specific technology at a specific time. While linking

different datasets is feasible, this is still extremely difficult, if not

impossible, at the individual level. Cloud-based platforms for

hosting several omics data for multi-omics integration have been

developed (e.g., https://opendata.lifebit.ai/) (98). Despite shared

guidelines have been produced (the FAIR Data Principles), the

field is still lagging behind (99).

Integrative multi-omics is a rapidly growing field within

systems biology (96). Multi-omics integration is considered a

cornerstone of precision medicine initiative (100). Putting

together different types of information can be important for

biomarker discovery and risk stratification as well as for

pathogenesis and disease definitions. A promising example of

this approach has been presented by Wainberg et al. (101)

(Figure 2). The cohort under study was taken from the Arivale

Scientific Wellness program, which included thousands of

subjects undergoing several analyses: whole-genome

sequencing or SNP microarray genotyping, and proteomic,

metabolomic, and clinical laboratory measurements from 2015

to 2019. Authors generated polygenic risk scores (PRS) for 54

traits previously investigated through genome-wide association

studies (GWAS) and investigated correlations between genetic

risk scores and analytes, revealing that healthy subjects with high

genetic risk show dysregulations of analytes that are similar to

those found in disease. While some of them were expected

(abnormalities in creatinine in patients with high genetic risk for

chronic kidney disease), some other associations were novel
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(such as abnormalities in the metabolite 4-cholesten-3-one in

patients with high genetic risk for PSC). Correlations were

assessed by Glass’ D (a measure of effect size evaluating the

difference in standard deviations among groups); would ML add

value in a study with this design? Unsupervised learning through

association mining would be probably worth pursuing and may

reveal other interesting findings arising from data.

A much promising multi-omics approach is that described

by the European LifeTime Initiative, which aims to integrate

single-cell sequencing techniques, imaging, and patient-derived

experimental disease models by means of AI (100). Investigators

behind the LifeTime Initiative have introduced the concept of

interceptive medicine, which is the early interception of disease

based on more accurate cellular and molecular diagnostics. In

other words, the idea behind interceptive medicine is to combine

several breakthrough technologies such as single-cell sequencing

and DL to track the process of the disease in an unprecedented

way, highlighting potential druggable pathways that are

significant in the early phase of the disease before the fibrotic

process occurs (for inflammatory disease) or the disease spreads

throughout the body (for cancer). (Figure 3). Chronic

inflammatory diseases (CIDs) like AiLDs are often detected

late when tissues have already undergone extensive and non-

reversible changes, hindering therapeutic options. This can be

due to several reasons. We lack longitudinal tracking of cellular

heterogeneity and molecular cell trajectories from a healthy to a

diseased state, there is often fragmentation of approaches

without systematic profiling of patients, computational

algorithms for integration are still under development, and

drugs are still given to most patients without a clear insight

into the precise molecular abnormalities within the specific

subject. Despite adopting a systematic approach and involving

thousands of subjects that underwent deep phenotyping, the

previously mentioned study from Wainberg and colleagues still

suffers from some of the issues raised by LifeTime investigators.

For example, longitudinal analyte data were collapsed to their

median values, because genetic risk does not change over time;

transcriptomics profiling was not included, and single-cell

technologies were also not employed; finally, no ML or other

AI algorithms were used (101).

The LifeTime initiative aims to develop cutting-edge pipelines

that incorporate different single-cell technologies, to investigate

cellular heterogeneity, and spatial molecular information, to better

define the location of disease cells within the tissue. This

information will be collected longitudinally by small/liquid

biopsies and integrated with EHRs of patients. Organoid models

derived from healthy and diseased individuals will represent the

experimental arm of the pipeline. It is self-evident that the amount

of information generated will need dedicated bioinformatics skills

and infrastructures and, ultimately, ML. One of the envisioned final

goals is the adoption of AI-based systems that will aid clinical

decisions in everyday practice. This project identified five pillars:

cancer, neurological disease, infections, cardiovascular diseases, and
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CIDs. As regards the latter ones, where AiLDs fall within, the urgent

target is the investigation of cellular heterogeneity and how this

influences disease course and differences in treatment response.

A systematic approach devoted to CIDs has been proposed

by the SYSCID (a systems medicine approach to chronic

inflammatory diseases) consortium (102). The consortium

acknowledges that the field of immune-mediated diseases is

lagging behind cancer and cardiovascular areas in its shift

toward precision medicine, due to some hurdles. The first one

relates to the problem of missing heritability, the concept that

the successful GWAS have identified many variants associated

with the risk of developing CIDs but each with little impact per se

(76); many strategies are currently suggested to fill this gap,

including adoption of ML on top of classical statistical genetics

(86). Yet, missing heritability does not affect only CIDs but most

of the complex traits (76). A second issue is related to the

fragmentation of diagnostic and therapeutic pathways for CIDs

despite being characterized by overlap in their molecular risk

map; SYSCID researchers advocate for the development of

dedicated centers for inflammation medicine, where different

specialists take care of these diseases, similarly to what has

already occurred for cancer. The third issue is represented by

the discrepancy between the complexity of omics data and the

need for simple scores in clinical practice; this gap is still large for

CIDs. Longitudinal tracking of what happens in diseased tissues

is probably unfeasible, due to inaccessibility, calling in action

blood biomarkers; to this end, the study of Wainberg et al.

represents a good proxy for future endeavors. The cultural

paradigm shift needed for the birth of System Immunology as

a discipline is to move from a hypothesis-driven approach
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studying single molecules, single-cell types, etc. toward a

hypothesis-free integration of different layers of information:

this is where ML may play a key role thanks to its characteristics.

There is evidence that heterogeneity occurs at the interindividual

level [e.g., the identification of cell-type-specific molecular

quantitative trait loci (QTLs) that are dependent on different

genetic variants] and at the intraindividual level (thanks to the

characterization of different populations of cells within tissues by

employing single-cell sequencing). Like the LifeTime Initiative,

SYSCID also works under the European research scheme of

Horizon2020 and focuses on three paradigmatic autoimmune

diseases: rheumatoid arthritis, systemic lupus erythematosus,

and inflammatory bowel disease. Five layers of data will be

available for approximately 50,000 individuals: SNP variants,

DNAmethylome, transcriptome, immunoglobulin glycome, and

gut microbiome. Canonical statistical modeling and novel ML

techniques will be used to identify biomarkers, subtypes of

disease, predictive models for tailored treatments, and novel

reprogramming strategies.

Supervised learning could be used to separate groups

according to clinical parameters of interests, such as treatment

response; this will be likely a complementary or subsequent

approach, since it requires a certain pre-test hypothesis.

Unsupervised learning will be crucial in aggregating

individuals based on the different layers of information. Kobak

et al. have recently described pitfalls that may possibly occur in

single-cell RNA sequencing data analysis (103); the addition of

multiple layers of information will add even further complexity

to data reduction algorithms. Multi-scale models will potentially

enable to predict disease phenotypes at the cellular level (100).
FIGURE 2

Healthy individuals with high genetic risk scores for a specific trait have already detectable abnormalities in several blood analytes. Genetic risk
scores generated from risk variants for several traits have been associated with levels of plasma analytes (standard blood analytes, and
proteomic and metabolic measurements), revealing that a nonnegligible level of dysregulation of these analytes can already be found in healthy
subjects with high genetic risk. These approaches could be potentially leveraged for early detection of diseases.
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To summarize, making multi-omics integration a process

that generates valuable scientific knowledge to translate in the

clinic requires the collaboration among several scientists from

different fields (4). Yet, the potential output of such an approach

is potentially disruptive for the field of immune-mediated

diseases and AiLDs more specifically.
3.6 Opening the black box: The
importance of explainable AI

One of the fathers of the DL paradigm, Yoshua Bengio, recently

highlighted, in a keynote speech at the IEEE World Congress on

Computational Intelligence, how DL, for the time being, has been

good in dealing with a subset of relevant activities. According to

Bengio, the subset is related to the realm of intuition, rather than

explanation: algorithms may perform well, but still struggle in

explaining why they perform well.

Following Daniel Kahneman’s classification of human

intelligence (104), Bengio asserts that ML already achieved

good results in emulating the behavior of what Kahneman

refers to as System 1 (which leads to intuitive unconscious

decisions for human beings), while its path towards the

emulation of System 2 (that leads humans to deliberate and

make conscious decisions) is still ongoing.

This is why many researchers focus on the development and

on the extension of rule-based modeling techniques, so that each

prediction is motivated by the rule(s) determining it. This is the

case, for instance, of decision trees (105) and the logic learning

machine (106). Considering the importance of keeping clinical

experts at the core of the decision process in medicine, this kind
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of approach, focused on interpretability, may be of particular

interest in the field.

DL has outstanding potential, but it is challenging to

interpret DL systems and translate them in clinical practice.

The lack of explainability makes it difficult to identify and tackle

biases present in training sets. Most importantly, the research

aim should be clear. If the goal is automation and technological

aid to humans, lack of interpretability is probably much less

important. Yet, when models are devised to make predictions

that can change medical decisions, it is ethically difficult to

accept a model that cannot be tracked in its work (107, 108).

Furthermore, trustability is likely to be proportional to

interpretability: it is less likely that a clinician would trust a

model if he/she is not able to understand even a tiny part of it.

The encounter between ML and the biomedical field forces

both specialists to learn something that is not typical of their

domain (109). If clinicians will progressively be surrounded by

concepts related to ML and its applications, ML scientists should

work to fill some gaps that are still present in the ML literature

(4). Many core statistical concepts, like calibration of estimates,

confidence of estimates, or power calculation, have not been

incorporated in ML models.

Overall, we acknowledge that these statements could be

outpaced by changes in the field, which is moving rapidly and

may pose new challenges, making these ones rapidly outdated.
4 Hurdles, limitations, and pitfalls

High expectations behind AI do exist (13); yet, we are

progressively learning that several issues have to be tackled
FIGURE 3

Interceptive medicine. The paradigm shift to study complex chronic immune-mediated traits proposed by the LifeTime Initiative and the
SYSCID Consortium.
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before full clinical implementation is possible (109). We can

divide these issues into those concerning model development

and those regarding model deployment (6, 110). It is also

important to mention the difficulties related with the de-

identification process required by data protection laws,

especially relevant for the genetic field (85).

We mentioned the need for data standardization and

explainability of models. It is also worth mentioning the issue

of having a diverse dataset to have more generalized models;

similarly to what is known in population genetics, where most of

GWAS have been performed in populations of European origin,

under-representing most of the other ancestries (111), there is a

risk for training models in homogeneous populations where

demographic factors are specific and, importantly, the etiology

of the liver disease is different. To make an example, a model for

non-invasive prediction of liver fibrosis trained in a US-derived

cohort, where non-alcoholic fatty liver disease is the most

prevalent cause, would probably fall short when applied in a

Taiwanese cohort where chronic hepatitis B is leading. The need

for diversity poses even a greater challenge for rare diseases like

AiLDs, stressing the importance of creating big multicenter

consortia and collaborative efforts to collect large-scale data.

Reproducibility of ML studies is a hot topic. There is

evidence that the majority of studies do not follow a rigorous

and consistent methodology (112, 113). Researchers in the field

of computer science applied to medicine have been developing

guidelines and standard methods that should be followed (114).

Yet, the field should also start focusing more on clinical

deployment rather than doing only retrospective analysis for

validation purposes (110). Digital transition will require building

new infrastructures, training healthcare workforce, and

involving patients in this process. Wherever possible, AI-based

models should aim toward liberating the healthcare personnel
Frontiers in Immunology 13
from repetitive tasks to have more time to spend with their

patients (13). Novel data sharing technologies are also required,

to balance the need for data protection and to offer at the same

time a large amount of data to train the algorithms. Blockchain-

based swarm learning seems to offer a quite promising approach

to this end (115, 116).

While AiLDs will share general hurdles for the

implementation of AI in medicine, there are also disease-

specific obstacles. We believe that AiLDs share with other rare

conditions the difficulty in having sufficient sample sizes for

these data-hungry new methodologies; despite the birth of

worldwide consortia, the field will never reach the numbers of

cardiovascular or cancer specialties. The wide heterogeneity of

phenotypes seen in the clinic represent another peculiar obstacle

for supervised approaches, which require clear-cut phenotypes

as outputs. On the other hand, unsupervised learning

techniques, although much awaited in AiLD for their capacity

to detect patterns within data and pinpoint sub-phenotypes that

are only intuitively noticed by clinicians, need bigger samples

than supervised ones.

Overall, we are at a unique juncture in the history of

medicine, with new technological avenues bringing together

new challenges.
5 Conclusions

The application of ML to big data in medicine, and more

specifically in AiLDs, is challenging. Figure 4 recapitulates the

future applications of AI in the field of AILD. Major scientific,

infrastructural, and cultural changes are needed (102).

International endeavors should be implemented, to cut costs

and address many, if not all, immune-mediated diseases
FIGURE 4

Future applications of artificial intelligence in the field of autoimmune liver disease.
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altogether, breaking cultural barriers between clinicians and

computational scientists, and educating the public about the

benefit of the access to big personal health datasets rather than

focusing on the privacy issues. It is essential to cut down the

barriers to accessing genomic data derived from direct-to-

consumer testing, such as 23andMe and other initiatives, which

have been largely underutilized so far (117). If it is true that rare

diseases suffer from minor availability of large amount of data, it

would be of great value to take advantage of data generated by

wearable devices and mobile phones, or from genetic analyses that

individuals perform without clinical indication (e.g., 23andMe

and others). Moreover, many data regarding rare conditions are

already present in public repositories but may be scattered among

different platforms and datasets.

Explainability of AI will be probably required by regulatory

agencies to support systemic approaches and to accept their

future translation into clinical protocols and pathways (118).

Another caveat is that ML mostly finds correlation and is a

hypothesis-generating tool; this means that it can open new

doors, but all new ideas should still be tested experimentally,

either in the laboratory or in clinical trials.

Nevertheless, despite all these potential obstacles to the

application of AI in biomedicine, we should realize that this

process could revolutionize the way we diagnose and treat our

patients, which is the ultimate goal of translational research.

Successful implementation will require investment in healthcare

workforce education and technological infrastructures, together

with involvement of patients and the creation of a culture of

innovation and learning. To do so, we advocate that health

services together with regulatory bodies should create a robust

framework able to leverage the opportunities and address all the

challenges that AI provides.
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