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Abstract 20 

Snow, as a fundamental reservoir of freshwater, is a crucial natural resource. Specifically, 21 

knowledge of snow density spatial and temporal variability could improve modelling of snow 22 

water equivalent, which is relevant for managing freshwater resources in context of ongoing 23 

climate change. The possibility of estimating snow density from remote sensing has great 24 

potential, considering the availability of satellite data and their ability to generate efficient 25 

monitoring systems from space. 26 

In this study, we present an innovative method that combines meteorological parameters, 27 

satellite data and field snow measurements to estimate thermal inertia of snow and snow 28 

density at a catchment scale. Thermal inertia represents the responsiveness of a material to 29 

variations in temperature and depends on the thermal conductivity, density and specific heat 30 

of the medium. By exploiting Landsat 8 data and meteorological modelling, we generated 31 

multitemporal thermal inertia maps in mountainous catchments in the Western European 32 

Alps (Aosta Valley, Italy), from incoming shortwave radiation, surface temperature and snow 33 

albedo. Thermal inertia was then used to develop an empirical regression model to infer snow 34 

density, demonstrating the possibility of mapping snow density from optical and thermal 35 

observations from space. The model allows for estimation of snow density with R2CV and 36 

RMSECV of 0.59 and 82 kg m−3, respectively. Thermal inertia and snow density maps are 37 

presented in terms of the evolution of snow cover throughout the hydrological season and in 38 

terms of their spatial variability in complex topography. This study could be considered a first 39 

attempt at using thermal inertia towards improved monitoring of the cryosphere. Limitations 40 

of and improvements to the proposed methods are also discussed. 41 
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This study may also help in defining the scientific requirements for new satellite missions 42 

targeting the cryosphere. We believe that a new class of Earth Observation missions with the 43 

ability to observe the Earth’s surface at high spatial and temporal resolution, with both day 44 

and night-time overpasses in both optical and thermal domain, is currently missing.  45 
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1. Introduction 46 

Snow density is a key physical property of the snowpack (Bormann et al., 2013) and relevant 47 

to various facets of snow research, encompassing snow load estimation, avalanche prediction, 48 

energy balance, climate models and snow hydrology applications (e.g., Meløysund et al., 2007; 49 

Hirashima et al., 2009; Jonas et al., 2009; Koren et al., 1999; Livneh et al., 2010; Sturm et al., 50 

2010; Bormann et al., 2013). In particular, the detection of snow density and snowmelt phases 51 

is valuable information in the Alpine environment, since it is well known that snow is a 52 

fundamental reservoir of freshwater in downstream valleys, especially in the mid-latitudes 53 

(Immerzeel et al., 2020). Knowing the spatial and temporal variability of snow density in 54 

mountainous regions could allow better modelling of the snow water equivalent, vital for 55 

managing freshwater resources under changing climate (e.g., McCreight and Small, 2014; 56 

Raleigh and Small, 2017). 57 

Snow is a three-phase medium composed of ice, liquid water and air. Conceptually, it is 58 

possible to distinguish two fundamental periods during the snow season: accumulation and 59 

melt. The accumulation period features the interplay of snowfalls, generally characterized by 60 

dry and low-density snow, followed by compaction and metamorphism processes. The 61 

snowmelt period can be defined as the timeframe when warming, ripening and output 62 

processes occur within the snowpack, with rising liquid water content and increased snow 63 

density (Dingman, 2015; Arenson et al., 2015; Oke, 1987). Overall, snow density affects the 64 

thermal and mechanical properties of the snowpack. It is widely recognized that snow density 65 

shows a significant temporal and spatial variability in response to meteorological drivers (e.g., 66 

solar radiation), as well as topographic attributes (e.g., elevation and slope) and to overall  67 
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geographic context (Meløysund et al., 2007; Jonas et al., 2009; Mizukami and Perica, 2008; 68 

Svoma, 2011; Onuchin and Burerina, 1996; Grünewald et al., 2010; Sturm et al., 2010; Lastrada 69 

et al., 2021; Valt et al., 2018). To date, spatial and temporal patterns of snow density are 70 

inferred using various methods, including field measurements, modelling and remotely 71 

sensed data (e.g., Broxton et al., 2019).  72 

Remote sensing provides a unique opportunity to estimate snowpack properties in space and 73 

time by exploiting different spectral domains (König et al., 2001; Dozier and Painter, 2004). 74 

Specifically, extensive efforts for retrieving snow density were performed using both active 75 

(Shi and Dozier, 2000; Snehmani et al., 2010; Thakur et al., 2012) and passive microwave 76 

remote sensing, thanks to the ability of the radiation at longer wavelengths to propagate 77 

through the snowpack (Champollion et al., 2018; Lacroix et al., 2009; Lemmetyinen et al., 78 

2016; Naderpour et al., 2017; Roy et al., 2017; Schwank et al., 2015; Schwank and Naderpour, 79 

2018). However, it is still a great challenge to obtain accurate estimates of snow density from 80 

these remote sensing methods. Instead, optical and thermal data are traditionally used to 81 

estimate near-surface snow characteristics, rather than snow density. Numerous studies have 82 

demonstrated the ability to detect snow cover extent, grain size, surface albedo, liquid water 83 

content, light-absorbing particles, snow surface temperature and spectral emissivity 84 

(Bormann et al., 2018; Dozier and Painter, 2004; Green et al., 2002; Kokhanovsky et al., 2018; 85 

Painter et al., 2013; Skiles et al., 2018; Aubry‐Wake et al., 2015, Hori et al., 2013, Bohn et al., 86 

2022). Recently, Colombo et al., (2019), demonstrated the possibility of using optical and 87 

thermal data to compute thermal inertia and to estimate snowpack density. 88 

Thermal inertia is defined as a measure of the medium admittance to temperature changes. 89 

It depends on density, thermal conductivity and specific heat of the material and it is 90 
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expressed in J m-2 K-1 s-0.5 units. Thermal inertia governs surface temperature variations and 91 

measures the medium thermal response to diurnal (or annual) heat flux variations (e.g., 92 

Carlson et al., 1981). Regarding snow surfaces, light penetration and heat fluxes can vary at 93 

daily and seasonal scales, according to snow conditions. The incident solar radiation that 94 

penetrates the snowpack is absorbed and scattered by snow grains within approximately the 95 

top ten to twenty centimetres, the depth at which the penetrating radiation extinction is 96 

almost 99% (Libois et al, 2013; Fukami et al, 1985; Zhong et al, 2017; Perovich, 2007; Järvinen 97 

et al, 2011; Kokhanovsky, 2022). Daily surface temperature variations propagate heat into the 98 

snowpack to a depth of approximately fifty centimetres (Oldroyd et al, 2013), although during 99 

the melting season, this depth can be even greater. Colombo et al. (2019) introduced a 100 

theoretical model to compute snow thermal inertia (Ps) and demonstrated the potential of 101 

the so-called apparent thermal inertia (APs) to detect snowmelt dynamics and the snow 102 

density of the snowpack. Unlike thermal inertia, APs can be estimated using remote sensing, 103 

typically starting from the knowledge of incoming radiation, shortwave albedo, and surface 104 

temperature difference between day and night (Price, 1980; Xue and Cracknell, 1995; Sobrino 105 

et al., 1998). Apparent thermal inertia has been successfully exploited in various applications, 106 

regarding surface planetary geology, urban heat island and soil moisture detection (e.g., Aït‐107 

Mesbah et al., 2015; Brenning et al., 2012; Putzig and Mellon, 2007; Wang et al., 2010, Short 108 

and Stuart 1982; Minacapilli et al., 2009, Maltese et al., 2013; Van Doninck et al., 2011, Murray 109 

and Verhoef 2007). However, for cryosphere monitoring, it is still in the early stages albeit 110 

with considerable potential. Indeed, as in the case of soil applications where thermal inertia 111 

is used to infer moisture content within the soil profile (e.g., Van Doninck et al., 2011, Nearing 112 

et al., 2012, Paruta et al., 2021), for snow applications, thermal inertia is expected to provide 113 

information on the snow density of the snowpack (Colombo et al., 2019). 114 
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To date, the possibility of mapping snow density at the catchment level in mountainous 115 

terrains using thermal inertia from spaceborne measurements is limited. Satellites providing 116 

optical and thermal data with high revisit time (e.g., MODIS/VIIRS) have low spatial resolution 117 

while those with high spatial resolution (e.g., Landsat) have low temporal resolution and do 118 

not provide regular night-time measurements. New perspectives can be provided by some of 119 

the upcoming satellite missions, such as the Copernicus Land Surface Temperature Monitoring 120 

(LSTM), the Surface Biology and Geology Thermal Infrared (SBG TIR) and the Thermal infraRed 121 

Imaging Satellite for High-resolution Natural resource Assessment (TRISHNA). The possibility 122 

of exploiting snow thermal inertia for snow density monitoring may indeed open new frontiers 123 

in the remote sensing of the cryosphere. To our knowledge, the only qualitative consideration 124 

of the spatial variability of the apparent thermal inertia of snow in hydrological basins has 125 

been deduced by Short and Stuart (1982) in the framework of the NASA Heat Capacity 126 

Mapping Mission.  127 

In this context, we propose a novel approach to obtain thermal inertia and snow density maps 128 

from multitemporal Landsat-8 data, meteorological parameters and snow field 129 

measurements in Alpine catchments sited in the Western Italian Alps. Our rationale is that 130 

since changes in snow density occur continuously in the snowpack, spatial and temporal 131 

patterns of thermal inertia could theoretically reflect snow dynamics. Thermal inertia was 132 

empirically related to in situ manual measurements of snow density to demonstrate the 133 

possibility to monitor snow density at catchment level from optical and thermal observations. 134 

This study may be considered a first attempt at using the remote estimation of thermal inertia 135 

to understand the evolution of the snowpack and the snow density variability in complex 136 

topography, hence supporting improved monitoring of the cryosphere.  137 
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 138 

2. Material and methods 139 

2.1 Study area, dataset and method overview 140 

The study area is sited in the Aosta Valley in the Western Italian Alps (Figure 1). It includes 141 

four catchments, covering a total area of ~140 km2 with a rather significant altitudinal gradient 142 

(1956 to 4119 m, asl), complex morphology and variable meteorological conditions. 143 

 144 

Figure 1: Investigated catchments (Valpelline, P; Gressoney, G; Cervinia, C and Val Tournenche, T) depicted on the 145 

Digital Elevation Model of the Aosta Valley. Red dots indicate the locations of in situ snow density measurements 146 

with dot size proportional to their abundance; green asterisks identify the positions of the Automatic Weather 147 

Stations (AWS) used for comparison purposes (Torgnon, Tor, Cime Bianche, CM and, Valpelline, VP stations).  148 

 149 
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All basins are mainly located above the treeline (approximately 2000 m asl): forest cover is 150 

absent or negligible in all basins. Slopes steeper than 60° occupy on average less than 5% of 151 

the four investigated catchments. Maximum snow depth at the end of the accumulation 152 

season (April-May) can range from 1.5-2.5 m at lower elevations (2000 m asl) to as much as 153 

4-6 m at the highest elevations (4200 m asl, Avanzi et al 2021). Mean winter air and dew point 154 

temperature at 2000 m asl (Tor AWS, see Figure 1) are -2.8 ± 4.6 °C and -10.6 ± 5.27 °C, 155 

respectively (daily mean ± daily std.dev.) and -8.30 ± 4.85 °C and -15.4 ± 5.92 °C, respectively 156 

at 3100 m asl (CM AWS, see Figure 1). 157 

To understand the snowpack evolution from accumulation to melting, we selected different 158 

days representing different snow hydrological conditions for which a simultaneous 159 

combination of snow density in situ measurements and cloud-free satellite images were 160 

available; the investigated period covers six days from the 2014/2015 to 2019/2020 161 

hydrological seasons. 162 

For this study, we exploited six Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal 163 

Infrared Sensor) Collection 2 images acquired between January and May (Table 1) at 11.30 164 

a.m. Satellite data were gathered from the USGS website and used to compute the surface 165 

albedo (α, dimensionless) and to exploit the Collection 2 surface temperature product (Ts, K).  166 

Meteorological data provided by fifteen Automatic Weather Stations (AWS) distributed 167 

outside and within the catchments, were used to obtain incoming shortwave radiation (SWin, 168 

W m-2) and night-time dew point temperature (Td, K) maps. We also used three additional 169 

stations, namely Valpelline (VP, 3100 m), Cime Bianche (CM, 3160 m) and Torgnon (Tor, 2150 170 
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m), equipped with  CNR4 (Kipp and Zonen) net radiometers, for validation purposes (Figure 171 

1).  172 

A total of twenty-six snow density measurements (ρ, kg m-3) were manually collected at 173 

different sites and on different days during snow water equivalent campaigns devoted to 174 

water resource monitoring programs run by regional authorities and hydropower companies. 175 

The location of in situ snow measurements are shown in Figure 1. Data were sampled in snow 176 

pits with horizontal snow samplings at fixed depths. Each snow pit falls within a different 177 

Landsat pixel. In this study, we considered both the snow density of the upper 30 cm and the 178 

bulk density of the whole snowpack. Table 1 reports the main snow characteristics derived 179 

from field surveys sampled in correspondence with the Landsat 8 overpasses.  180 

Table 1 Landsat 8 images used in this study and main information on snow characteristics from field 181 

measurements. 182 

 183 

 184 

 185 

 186 

This combination of input data allowed us to design an innovative approach to compute 187 

thermal inertia at catchment level and to infer snow density by developing an empirical 188 

regression model between apparent thermal inertia and surface/bulk snow density. Figure 2 189 

shows an overview of the approach workflow, which is fully explained in the next sections.  190 

Landsat 
images 

Snow density 
range 30cm  

(kg m-3) 

Snow density 
range snowpack 

(kg m-3) 

Snow 
depth 

range (cm) 

Abundance 
of field 

samples (n°) 
10/05/2015 415-615 415-615 96-320 3 
13/04/2017 300-485 314-505 70-390 10 
29/01/2019 230-270 322-364 130-220 2 
16/01/2020 260-330 297-335 65-180 5 
04/03/2020 173-300 302-390 95-155 3 
05/04/2020 313-455 408-410 53-142 3 
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 191 

Figure 2: Overview of the approach used to generate snow density maps.  192 

 193 

2.3 Retrieval of snow albedo and temperature from Landsat data  194 

Snow surface albedo was computed for all the catchments from the Landsat 8 OLI images. To 195 

retrieve surface reflectance from Top of Atmosphere (TOA) radiance data, we used the 196 

ATCOR4 (Atmospheric and Topographic CORrection) software (Richter and Schläpfer, 2015), 197 

by defining an ad-hoc configuration for Landsat imagery. This code corrects imagery for 198 

atmospheric and adjacency effects and to normalise the impact of topography, which might 199 

be significant in rugged terrain. For this purpose, we incorporated an accurate Digital Elevation 200 

Model (DEM) with 10 m spatial resolution. Shortwave surface albedo was computed without 201 

considering the anisotropy of the snow surface reflectance. The narrow-to-broadband 202 

conversion was conducted starting from reflectance data by using standard formulation 203 
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developed for Landsat 5/7 data (Liang et al, 2001) and previously exploited for snow 204 

applications with OLI images (Naegeli, et al., 2017; Ren et al., 2021):  205 

𝛼𝛼 = 0.356𝑏𝑏2 + 0.130𝑏𝑏4 + 0.373𝑏𝑏5 + 0.085𝑏𝑏6 + 0.072𝑏𝑏7 − 0.0018 [-] (1) 206 

where bn represents the spectral channel number of Landsat 8 reflectance data [i.e., b2 (0.452-207 

0.512 µm), b4 (0.636-0.673 µm); b5 (0.851-0.879 µm), b6 (1.566-1.651 µm), b7 (2.107-2.294 208 

µm)].  209 

Albedo values higher than 1 were filtered out in the following analyses. These pixels accounted 210 

for 1% of the scene in May 2015 and 4% in January 2019 and 2020. 211 

Landsat 8 day-time surface temperatures (Ts) used in this study correspond to the standard 212 

surface temperature product, obtained by the Landsat Single-Channel v1.3.0 algorithm. 213 

Landsat shortwave broadband albedo and daily surface temperature maps were compared 214 

with data recorded by AWS stations and their quality was evaluated in terms of coefficient of 215 

determination (R2) and root-mean-square error (RMSE). 216 

 217 

2.4 Generation of the shortwave incoming radiation and night-time surface 218 

temperature maps  219 

Meteorological input data at a spatial resolution comparable with OLI data, namely air 220 

temperature (Ta), relative humidity (RH) and incoming shortwave radiation (SWin) were 221 

produced with the meteorological pre-processing library MeteoIO (Bavay and Egger, 2014). 222 
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The MeteoIO numerical library retrieves, filters and spatially interpolates meteorological data 223 

coming from nearby AWS stations belonging to the regional weather network. For each 224 

catchment, five to seven stations were used. All the meteorological variables were spatially 225 

interpolated with an inverse distance-weighting algorithm. Regarding Ta and RH, a lapse rate 226 

with elevation was also applied (Bavay and Egger, 2014). All these maps have been computed 227 

at different times of day and night (i.e., at a 1-hour step) in correspondence with the Landsat 228 

acquisition dates. 229 

Daily mean SWin maps in the 305-2800 nm spectral range were obtained by averaging all 230 

hourly radiation values greater than 20 W m-2, as suggested by Wang and Liang (2009).  231 

In the absence of night surface temperatures at the desired spatial scale, we tested the option 232 

of approximating night-time snow surface temperature with dew point temperature (Td), as 233 

proposed by Raleigh et al. (2013). Td is the temperature to which air needs to be cooled to 234 

become saturated with water vapour and it indicates how much moisture is in the air: 235 

𝑇𝑇𝑑𝑑 =
𝑐𝑐�𝑙𝑙𝑙𝑙 (𝑅𝑅𝑅𝑅) + 𝑏𝑏𝑇𝑇𝑎𝑎

𝑐𝑐+𝑇𝑇𝑎𝑎
�

𝑏𝑏−𝑙𝑙𝑙𝑙 (𝑅𝑅𝑅𝑅) − 𝑏𝑏𝑇𝑇𝑎𝑎
𝑐𝑐+𝑇𝑇𝑎𝑎

 [°C]     (2) 236 

where, RH and Ta are the relative humidity and air temperature at different time of the night, 237 

respectively. The empirical coefficients b and c were set as indicated in Raleigh et al. (2013).  238 

Andreas (1986), firstly proposed the use of the dew point temperature for approximating 239 

snow surface temperature. The physical reason for this approximation is that snow cover is a 240 

saturated surface, such that the vapour pressure of air close to the surface equals the 241 

saturation vapour pressure. Air reaches saturation at Td, and the saturation vapour pressure 242 
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is a function of Ts alone; thus, Td close to the snow surface is in equilibrium with Ts. Raleigh 243 

et al. (2013) demonstrated that Td is a reliable approximation of Ts, especially during night-244 

time and at locations and times where turbulent mixing occurs frequently, such as in Alpine 245 

areas. 246 

To understand the time at which Td best approximates surface temperature, we evaluated 247 

the robustness of the relationship between Td and surface temperature at different hours of 248 

the night, by performing a correlation analysis starting from the data recorded at the three 249 

AWS. We considered all the 2017-2020 hydrological seasons and we computed R2, mean bias 250 

and RMSE. Multitemporal maps of night-time Td at the selected time were finally produced 251 

using Eq. 2. 252 

 253 

2.5 𝜟𝜟T computation 254 

The difference in surface temperatures was computed by combining night-time Td, derived 255 

from meteorological modelling, with daily surface temperature derived from Landsat TIRS 256 

data (ΔT = Ts − Td). In some cases, we found negative ΔT values (i.e., day-time temperature 257 

was lower than night-time). In these cases, the pixels corresponding to these specific 258 

conditions were discarded in the rest of the analyses. Overall, these pixels accounted for about 259 

1% of all the images, except for 2019 January 29th, where we found that about 50% of the 260 

pixels had negative ΔT values.  261 

 262 
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2.6 APs and snow density maps  263 

Thermal inertia APs was computed using the solution of the one-dimensional thermal 264 

diffusion equation as suggested by Xue and Cracknell (1995) and used in Colombo et al. (2019) 265 

for snow applications: 266 

   𝐴𝐴𝐴𝐴𝐴𝐴 = (1−𝛼𝛼) 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 𝐴𝐴1[𝑐𝑐𝑐𝑐𝑐𝑐 (𝜔𝜔𝑡𝑡2−𝛿𝛿1)  −𝑐𝑐𝑐𝑐𝑐𝑐 (𝜔𝜔𝑡𝑡1−𝛿𝛿1)]

𝛥𝛥𝑇𝑇(𝑡𝑡2−𝑡𝑡1)√𝜔𝜔�1+
1
𝑏𝑏+

1
2𝑏𝑏2

 [Jm-2K-1s-0.5] (3) 267 

where, 268 

α             =  shortwave albedo [−]; 269 

SWin           =  incoming shortwave radiation [W m−2] averaged in day-time hours;  270 

A1 and b =  coefficients of first-order approximation of the Fourier series, which depends 271 

on latitude and solar declination and azimuth, computed according to Xue and 272 

Cracknell (1995);  273 

ω             =  Earth's rotation angular velocity [7.2921150 𝑥𝑥 10-5  rad s−1];  274 

δ1            =  phase difference between surface temperature and shortwave incoming 275 

radiation, [rad]. 𝛿𝛿1=𝜔𝜔𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚=3.794, with 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚=14:30  276 

ΔT           =  surface temperature difference between the night-time and the day-time 277 

temperatures measured at times t1 (04:00) and t2 (11:30), respectively [K]. 278 

Besides 𝜔𝜔, b and δ1, all the other parameters of Eq. 3 change in space and time. The A1 values 279 

range from 0.15 to 0.48, while the b parameter value is equal to 3.298. APs maps were 280 
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computed for all snow-covered pixels, except for those discarded for anomalous (negative) 281 

ΔT and albedo values higher than 1 (NoData). Maps of snow cover were obtained by applying 282 

a threshold on the Normalised Difference Snow Index (NDSI) (Hall et al., 1995). A NDSI 283 

threshold higher than 0.6 was selected by visual inspection of the histogram distribution and 284 

then applied to each image to define snow-covered and snow-free pixel masks (NoSnow). 285 

Although a threshold of 0.4 is considered standard for generating snow cover maps, its 286 

spatial/temporal representativeness at local scale is debated and different values may be used 287 

(Härer et al., 2018). 288 

The relationship between APs maps and manually measured surface and bulk snow density 289 

was finally derived by a regression analysis. We averaged AP values within 3x3 pixels centred 290 

on corresponding snow density field measurements, to reduce systematic errors due to 291 

geolocation uncertainties. The relationship between thermal inertia and snow density was 292 

established using inverse ordinary least squares (OLS) regression techniques and evaluated in 293 

terms of R2 and RMSE. Using the OLS technique, we calibrated the so-called “inverse form” of 294 

the empirical relationship. In particular, we employed the snow density variable as predictor 295 

X and thermal inertia as the dependent variable Y to estimate the OLS coefficients. The 296 

validation of the OLS model was performed with the K-fold approach splitting the dataset into 297 

8 subsets. Then the model was fit using 7 subsets, as the training set and the validation was 298 

conducted using the omitted subset. The performances of the model were evaluated in terms 299 

of cross-validated coefficient of determination (R2CV) and cross-validated root mean square 300 

error (RMSECV). 301 

The developed empirical regression model was exploited to produce multitemporal maps of 302 

surface snow density in the four catchments. APs and snow density maps were mainly 303 
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interpreted by considering the accumulation (January) and melting periods (May) and 304 

considering their spatial patterns and meteorological conditions. We also discussed the spring 305 

season (i.e., March and April), where both conditions may coexist and snow thermal inertia 306 

and density can exhibit high spatial variability. 307 

 308 

3. Results and discussion 309 

3.1 Shortwave incoming radiation maps  310 

The SWin maps generated with MeteoIO on 16 January 2020 and 10 May 2015 and the 311 

corresponding frequency histograms of the investigated catchments are shown in Figure 3. As 312 

expected, the incoming radiation shows variability over time, with low SWin values during the 313 

winter months in the accumulation period (shorter duration of daily solar illumination) and 314 

maximum values reached in spring during the melting season. Besides the seasonal evolution 315 

of incoming radiation, Figure 3 also shows the effect of aspect: south-exposed slopes receive 316 

a higher amount of solar radiation compared to north-exposed ones. 317 
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 318 

Figure 3: Spatial and temporal variability of solar irradiance during the accumulation period (January) and the 319 

melting phase (May). Black (i.e., NoSnow) represents no snow pixels, while white ones (i.e., NoData) have no 320 

values. The histograms describe the value distribution (the frequency is expressed from 0 to 1) during these two 321 

periods, for all the investigated catchments. 322 

 323 

Each of the selected dates were characterized by clear sky throughout the day, and during 324 

March and April, we found consistent incoming solar radiation values, coherent with AWS 325 

measurements. 326 

 327 

3.2 Spatial and temporal variability of snow albedo 328 

The snow albedo maps and related histograms for the two periods are shown in Figure 4.  329 
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 330 

Figure 4: Spatial variability of snow surface albedo during the accumulation period (January) and the melting 331 

phase (May). Black represents no snow pixels, while white ones have no albedo values. The histograms describe 332 

the values distribution during these two periods for all the investigated catchments (the frequency is expressed 333 

from 0 to 1). 334 

 335 

As expected, we observed that albedo decreases from January to May with histograms 336 

showing a distribution that is the consequence of local snow conditions during accumulation 337 

and melting seasons.  338 

During winter, the highest albedo values are related to fresh snow and continuous snowfalls 339 

that typically occur at higher elevation in the study area. Low albedo values may also occur: 340 

these can be associated with either old snow or dirty snow at the bottom of the valley, where 341 

snow conditions might be also affected by human activity. 342 
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Average albedo values in May are lower compared to the winter season due to snow ageing, 343 

potential light absorbing particles and changes in grain size (Painter et al., 2013; Di Mauro et 344 

al., 2019; Hadley and Kirchstetter, 2012, Libois et al, 2013; Fukami et al, 1985; Kokhanovsky, 345 

et al., 2021). Over the season (i.e., from March to April), we encountered intermediate and 346 

variable albedo values, with high spatial variability within the catchments. The number of 347 

pixels discarded due to anomalous surface albedo values was very small. These pixels 348 

correspond mainly to fresh snow and the anomalous values are probably due to defective 349 

atmospheric/topographic correction and the empirical weighting parameters used in narrow-350 

to broad-band conversion.  351 

Overall, our interpretation of albedo might suffer from having considered snow reflectance as 352 

Lambertian, while the anisotropy of snow reflectance might also be responsible for albedo 353 

variations across the scene (e.g., variable slopes, aspects and snow impurities) (Dumont et al., 354 

2010). The shadowing effect also introduces further uncertainties in snow albedo estimation. 355 

Figure 4 shows a bimodal behaviour, where low albedo values are related to snow surfaces 356 

sited on terrain which was mainly shadowed during the satellite overpass. Although cast 357 

shadows were considered in the atmospheric correction process, the results highlight the 358 

need to improve terrain-based shadow correction for future applications. This applies 359 

particularly to images acquired when solar irradiance is minimal and shadows are maximal, 360 

such as the January data in this study. 361 

We found a coefficient of determination equal to 0.41 when comparing albedo estimates with 362 

albedo measurements in AWSs located at CM, VP and Tor sites (Figure 5). The scattering found 363 

in this comparison could be explained by the heterogeneity of snow surface properties within 364 

the spatial resolution of Landsat-8 data and considering that the snow albedo was computed 365 
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without taking into account the snow anisotropy. The largest errors are identified for fresh 366 

snow conditions (e.g., in January) and they are conceivably related to marked anisotropy 367 

effects for increasing illumination angles (Dumont et al. 2010). 368 

 369 

Figure 5 Comparison between surface albedo derived from Landsat data and albedo recorded at the AWs 370 

 371 

In summary, the comparisons of AWS data across seasons and sites might be compromised by 372 

changes in snow albedo due to snow properties and sun-target-viewing geometries, the latter 373 

being particularly variable in this complex topography. Similar broadband albedo comparison 374 

conducted in more homogeneous areas (e.g., the Greenland Ice Sheet) resulted in fact in a 375 

greater consistency between satellite retrievals and AWS data (Kokhanovsky et al. 2019). 376 

 377 

 378 
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3.3 Spatial and temporal variability of snow ΔT 379 

Before computing the surface temperature difference maps, we evaluated the quality of the 380 

day-time temperatures provided by Landsat TIR (Figure 6) and the strength of the correlation 381 

between dew point temperature and surface temperature at night (Figure 7).  382 

Despite a slight underestimation, Figure 6 shows a good correspondence between snow 383 

temperature measured with the AWS and satellite temperature (R2 = 0.87; RMSE = 2.71 K), 384 

suggesting the high quality of the Landsat TIR data for snow surfaces. The deviation of a single 385 

measurement (i.e., CM, May 2015) from the 1:1 line is likely associated with snow patches 386 

caused by wind effects, causing a mixture in Landsat pixels. 387 

 388 

Figure 6: Comparison between snow surface temperature and Landsat snow surface temperature at Cime Bianche 389 

(CM), Torgnon (Tor) and Valpelline (VP) AWSs. The closest pixel to the station was taken into account.  390 

 391 
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The Td that best approximates night-time temperature was that measured at 04.00 a.m. We 392 

found a significant linear relationship between surface temperature and Td at 04.00 for all the 393 

AWSs (e.g., R2 = 0.69 and RMSE = 3.4 K at the Torgnon site, data not shown). Figure 7 shows 394 

the agreement between the night-time Td and the corresponding surface temperature 395 

recorded at the three AWS stations for the six selected days.  396 

  397 

Figure 7: Comparison between night-time dew point temperature and surface temperature recorded at the AWs 398 

 399 

Figure 7 shows a large scatter between dew point and snow surface temperature, with results 400 

worse than those obtained with Landsat data. According to Raleigh et al. (2013), Td 401 

approximates Ts best when there is high wind shear (i.e., unstable boundary conditions) and 402 

when there is no vapour pressure gradient between the near-surface atmosphere and the 403 

snow surface (i.e., no sublimation or condensation). Although these conditions frequently 404 

occur in the investigated catchments, the discrepancy in Figure 7 could be due to a local 405 

variability of near-surface atmospheric stability, indicating the weakness in using the dew 406 



24 

 

point temperature instead of the surface temperature. Although the dew point temperature 407 

is not the surface temperature and is not exactly computed at the time when the minimum 408 

surface temperature occurs (i.e., around 06.00 a.m. in these areas), we believe that Td is a 409 

useful approximation and provides an indication of the nigh-time minimum temperature to 410 

be used to generate the ΔT maps. From Figure 7, we can also infer that errors in ΔT may vary 411 

in space, with different impact on the APs maps. For example, in April 2020, we can expect 412 

APs overestimation at the Torgnon site located at a lower elevation and underestimation of 413 

APs at Cime Bianche, sited at a higher elevation. A preliminary Monte Carlo analysis (10000 414 

samples) was performed to propagate day/night temperature uncertainties on ∆T, 415 

considering the range of variability in our data and the RMSE obtained in Figures 6 and 7. 416 

Under this condition, we found a ∆T uncertainty of 51.4 % and a standard deviation of 4.7 K. 417 

However, these errors result from the use of dew point temperature and we are confident 418 

that by using satellite data, performance will improve. 419 

The spatial and temporal patterns of ΔT in the accumulation and melting periods and the 420 

related histograms in the investigated catchments are shown in Figure 8.  421 
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 422 

Figure 8: Spatial and temporal variability of snow surface temperature difference during the accumulation period 423 

(January) and the melting phase (May). Black represents no snow pixels, while white ones have no ΔT values. The 424 

histograms underline the values distribution during these two periods for all the investigated catchments (the 425 

frequency is expressed from 0 to 1). 426 

 427 

As expected, surface temperature differences decrease over time and values are coherent 428 

with those computed using the AWs (data not shown). This result is also consistent with those 429 

achieved in previous investigations (e.g., Oesch et al., 2002).  430 

The observed ΔT spatial patterns are most likely to be the result of the complex interplay 431 

between the variability in small-scale meteorological drivers and topographic factors, such as 432 

slope and aspect. For example, it is possible to find local snow melting in winter or abundant 433 

snowfalls with low temperatures in spring. For this reason, and considering the uncertainty in 434 

the night-time temperature maps, the interpretation of ΔT is not straightforward.  435 
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Overall, ΔT values are higher in January than in May. Snow temperatures are limited by 0 °C 436 

and this explain ΔT decreasing through the season. In January, ΔT shows a higher spatial 437 

variability with values that reach up to 30 K, in some cases. The highest values seem to occur 438 

for fresh snow along the ridges, which are the first to be illuminated in the early morning. A 439 

considerable dependency on altitude and aspects can be also noted. For example, at higher 440 

altitudes, where we encounter fresh snow, the ΔT is generally higher. Spatial variability is also 441 

related to snow exposure and shadowed slopes during the satellite overpasses. These are, in 442 

general, north-facing slopes and they exhibit lower ΔT since they have received less solar 443 

radiation. 444 

Besides morphological effects, the local meteorological conditions during the night-day 445 

transition affect the surface temperature differences. According to the AWS data, most of the 446 

selected dates were characterized by clear sky conditions, both during the night (i.e., negative 447 

radiation balance and strong radiative cooling) and during the day (i.e., positive radiation 448 

balance). These are ideal conditions for thermal inertia estimation. However Pratt and Ellyett 449 

(1979) showed that the reliability of APs estimation as a function of ∆T is of reduced 450 

significance when ∆T tends to 0. In this study, we found negative and small ∆T values, which 451 

may be the result of local night-day dynamics. For example, January 29th, 2019 was the only 452 

night with overcast conditions (high incoming longwave radiation ~ 220 W m-2, and high 453 

relative humidity, ~ 85%, and thus low radiative cooling), cloud cover decrease at sunrise, and 454 

clear sky conditions in the morning (inferred from the daily course of shortwave radiation). 455 

This specific behaviour (i.e., night-day transition from overcast to clear sky) reduced the 456 

surface ΔT to a small and negative values and introduced uncertainty to the estimation of 457 

thermal inertia and snow density. Therefore, we discarded numerous anomalous pixels for 458 



27 

 

January 2019. The APs values obtained at this time were slightly higher than those found in 459 

January 2020. From the perspective of space remote sensing, we highlight here that particular 460 

attention should be paid when night-time satellite acquisitions collected on cloudy nights are 461 

used to compute thermal inertia. For satellite applications this points to the need for a backup 462 

solution, also based on the dew point temperature, when images are affected by clouds. Small 463 

ΔT values may also appear in the melting season, related to patchy snow, heterogeneous 464 

pixels, freezing processes, presence of liquid water content and cloudy conditions. Overall, 465 

the snow surface temperature difference depends on the two selected instantaneous 466 

measurement times, meteorological conditions and heat exchanges occurring in the selected 467 

timeframe.  468 

 469 

3.4 Thermal inertia maps and snow density retrieval  470 

The spatial and temporal behaviour of APs with the corresponding histograms is shown in 471 

Figure 9. 472 
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473 

Figure 9: Spatial and temporal variability of snow thermal inertia during the accumulation period (January) and 474 

the melting phase (May). Black represents no snow pixels, while white ones have no APs values. The histograms 475 

underline the values distribution during these two periods for all the investigated catchments (the frequency is 476 

expressed from 0 to 1).  477 

 478 

During January, APs show a low spatial variability, with mean, median and mode values of 220, 479 

170 and 80 J m-2 K-1 s-0.5, respectively. Greater spatial variability and higher APs values were 480 

found in May, where snow metamorphism quickly occurs and the appearance of liquid water 481 

content on the surface of the snow can increase apparent thermal inertia (2970, 2660 and 482 

1840 J m-2 K-1 s-0.5 for mean, median and mode, respectively). We can say, then, that lower APs 483 

values are characteristic of the accumulation period, while the highest values are typical of 484 

the end of the melting period during the output phase. During March and April, intermediate 485 

values of APs ranging from 500 to 1500 J m-2 K-1 s-0.5 can be generally observed, indicating the 486 
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transition between accumulation and snowmelt processes. In the meltwater output phase the 487 

APs values increase. Higher APs values are often associated with uncertain ΔT estimates and, 488 

as a whole, the range between 0 - 4000 J m-2 K-1 s-0.5 represents the most appropriate interval 489 

to exploit for snow density applications.  490 

Figure 10 shows the variability of APs over time, according to altitude, aspect, and slope. In 491 

the accumulation period, APs values remain within a narrow range of variability and they are 492 

not related to the spatial distribution of the topographic parameters. APs values recorded in 493 

January 2019 are higher than in January 2020 due to the particular night-time conditions. With 494 

the beginning of the snowmelt, we can observe that the variability of APs is sometimes related 495 

to the topographic parameters. Higher APs values can be found, for example, at a lower 496 

elevation and on southern and steep slopes, indicating areas where melting may occur or 497 

where snow accumulation does not take place. This is consistent with the pioneering 498 

observations of Short and Stuart (1982) who argued that higher values of apparent thermal 499 

inertia might define the extent of melting snow at the lowest elevations, while medium to low 500 

values are likely to represent drier, colder snow at the highest elevations.  501 

  502 



 503 

 504 

Figure 10. Box plot of the APs as a function of elevation, aspect and slope classes for all the analysed dates. The central mark indicates the median, while the bottom and top edges of the box 505 

indicate the 25th and 75th percentiles, respectively. The whiskers expand to the most extreme data points not considered outliers. Outliers are plotted individually using the '+' symbol.  506 



 507 

To examine the snow APs values in a broader context, we checked the behaviour of other 508 

surfaces in May and we found values around 12400 J m-2K-1s-0.5 for dam lakes and around 1200 509 

and 1600 J m-2K-1s-0.5 for rocks and alpine prairies, respectively. In summary, we showed for 510 

the first time that snow APs spatial and temporal distribution can change during the season 511 

and in different years, covering a wide range of values that can be exploited for snow 512 

monitoring. APs maps resulted consistent with the APs estimated from AWS data (R2 = 0.74, 513 

data not shown). 514 

A significant nonlinear relationship between APs and manually measured snow density was 515 

found, considering both the upper layer of 30 cm (R2 = 0.65, Figure 11a) and bulk values of 516 

the whole snowpack (R2  = 0.64, Figure 11b). Despite the uncertainty of the model, we can 517 

reasonably state that APs increases with snow density, as Colombo et al (2019) found using 518 

modelled data.  519 

 520 

a) b)
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Figure 11: Relationship between APs and surface snow density (upper 30cm, a) and with bulk snow density, b). 521 

Colours indicate the different dates. Dotted lines indicate the confidence interval of the model. The error bars 522 

represent the standard deviation obtained averaging APs values in the neighbourhood of the density 523 

measurements.  524 

 525 

Figure 12a shows the agreement between modelled snow density (Eq. 4) and measured snow 526 

density using the K-fold cross-validation. The model allows the estimation of snow density 527 

with R2CV and RMSECV of 0.59 and 82 kg m−3, respectively.  528 

529 

Figure 12 Comparison of the predicted and measured surface snow density (a) and bulk snow density (b) 530 

 531 

The same analysis, considering the bulk snow density of the snowpack, provided a R2CV = 0.60 532 

and a RMSECV = 73 kg m−3, indicating the robustness of the approach (Figure 12b). Overall, 533 

surface snow density and bulk snow density were highly linearly correlated (R2 = 0.75, data 534 

not shown). 535 

a) b)
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Surface snow density maps were therefore computed by inverting the regression model 536 

shown in Figure 11a, according to the following equation:  537 

ρ = � 𝐴𝐴𝐴𝐴𝐴𝐴
0.0003044

�
1

2.527        �𝑘𝑘𝑘𝑘
𝑚𝑚3�  (4) 538 

Figure 13 shows the snow density maps obtained for January and May and the corresponding 539 

histograms. Basically, the regression coefficients we found should be understood as valid only 540 

within the snow density range measured in the present study, so that for Figure 13 we mapped 541 

snow density only in the 0 - 650 kg m−3 range.  542 

543 

Figure 13: variability of surface snow density during the accumulation (16/01/2020) and melting (10/05/2015) 544 

seasons. Black represents no snow pixels, while NoData also includes surface snow density higher than 650 kg m-3. 545 

The histograms underline the values distribution during these two periods for all the investigated catchments (the 546 

frequency is expressed from 0 to 1).  547 

 548 
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Although spatial variations in snow density occur within the catchments in these two periods, 549 

the seasonal variability is more pronounced. In January, in the accumulation period, the mean, 550 

median and mode values are equal to 200, 190 and 130 kg m−3, respectively. During melting, 551 

in May, snow density increases up to mean, median and mode values of 570, 560 and 552 

480 kg m−3, respectively. For large APs values, the model produces erroneous estimates of 553 

snow density and all pixels with snow density greater than 650 kg m−3 should be taken with 554 

caution or discarded.  555 

Besides these two periods, where most areas are in accumulation or melting, in the spring 556 

both processes may coexist and higher spatial variations in snow density can be observed. 557 

Figure 14a and b shows, for instance, the magnitude of spatial and interannual variability in 558 

snow density for the A-B transect in the Valpelline basin for all dates. For example, snow 559 

density exhibits different values in April 2020, encompassing a range of snow conditions, 560 

indicating areas where densification occurs differently. If we consider in the APs maps a 561 

threshold of 500 J m-2 K-1 s-0.5, as a rough approach for distinguishing no melting snow and 562 

melting snow, we can observe that in April 2020 both conditions exist and the areas of melting 563 

represent 51% of the whole basin (Figure 14c). This simple threshold approach on APs may 564 

therefore help to separate cold dry snow or no melting snow with density values lower than 565 

300 kg m−3 and to identify areas with higher snow density where snow is in melting (Figure 566 

14d). This approach would allow a direct comparison with dry/wet snow maps derived from 567 

Synthetic Aperture Radar, such as Sentinel 1 (Marin et al. 2019) and Cosmo Skymed (Pettinato 568 

et al. 2013). 569 

 570 
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 571 

Figure 14 a) Altitudinal and aspect variability in a spatial transect in the Valpelline catchment; b) seasonal 572 

variability of snow density across the different dates; c) map of no melting and melting pixels overlapped on DEM 573 

and derived by applying a threshold (500 Jm-2K-1s-0.5) to the APs map of April 2020; d) boxplot of snow density for 574 

all basins in April 2020.  575 

 576 

Overall, we found significant temporal and spatial variability of snow density in the 577 

investigated catchments. Snow density evolution follows a seasonal pattern involving a 578 

gradual increase in snowpack density from winter to spring, when the maximum density is 579 

reached as a result of the multiple processes driving snow densification (compaction, 580 

0 1200 2500 m

a)

c) d)

b)

No melting Melting
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metamorphism, melt and refreeze cycles). This is consistent with the findings reported in 581 

previous studies (Lopez-Moreno et al 2013; Jonas et al. 2009; Mizukami and Perica 2008; 582 

Pistocchi, 2016; Pomeroy and Gray 1995), which showed the spatial and temporal variability 583 

of snow density in response to different climatic regions and environmental factors. Although 584 

previous studies have argued that the density spatial variability is relatively small in 585 

comparison to snow depth (e.g., Mizukami and Perica, 2008), other studies have shown that 586 

snow density varies at the meter scale (Fassnacht et al., 2010; Grünewald et al., 2010) and 587 

caution should be taken when using density–time curves in mountainous regions (Bormann 588 

et al., 2013). Therefore, the perspective to map snow density from space could allow 589 

quantification of the spatial and temporal variability of snow in Alpine terrains in an 590 

unprecedented manner and could help to drive snow water equivalent models. 591 

 592 

4. Limitations and improvements 593 

This study has great potential to be improved and we are still far from proposing this method 594 

as an operational tool for estimating snow density using thermal inertia from space 595 

measurements. Although there are various sources of uncertainty, for which further research 596 

efforts are needed, the present approach represents a promising opportunity to map snow 597 

density variability in space and time. Here, we are more interested in presenting the general 598 

proof of concept and in demonstrating its potential, rather than developing or optimizing 599 

retrieval methods for deriving the input parameters for computing thermal inertia or 600 

suggesting new formulations of thermal inertia for snow purposes. All the input parameters 601 
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and APs formulation are subject to uncertainties that affect the snow density estimates and 602 

further studies are needed to consolidate this approach. 603 

A source of uncertainty of Td and SWin maps comes from the use of an interpolation model 604 

from AWSs data. In our case, both interpolated dew point temperature and SWin radiation 605 

values were generally underestimated by the MeteoIO model (data not shown) and this 606 

resulted in erroneous APs values. Global reanalysis data (e.g., ERA5 from the European Centre 607 

for Medium-Range Weather Forecasts, ECMWF) were discarded because of the coarse 608 

resolution (~30 km), which is unsuitable for tracking fine-scale snow dynamics in Alpine 609 

environments. Having frequent and high spatial resolution maps of meteorological 610 

parameters in rugged terrain still represents an important challenge for the future. Current 611 

downscaled reanalysis data (Di Mauro and Fugazza 2022) or spatially distributed snowpack 612 

simulations of mass and energy exchange (e.g., Revuelto et al., 2018) could help in bridging 613 

this gap. Accurate maps of incoming shortwave radiation are needed. Generally, when SWin 614 

tends to very small values, ∆T tends to small values as a consequence, although with some 615 

temporal inertia. Furthermore, the geometric resampling introduced here may also be a 616 

source of error due to the complex topography of the study area. We also point out here that 617 

geolocation errors, due to the non-perfect spatial co-registration between the different 618 

sources of input data, can affect the pixel per pixel estimation of thermal inertia.  619 

Spectral reflectance maps were obtained from ATCOR4 code, which considers atmosphere, 620 

sensor viewing geometry, terrain slope, shadowing and adjacency effects, which strongly 621 

influence radiometry data in rugged terrain. Despite adopting a physical-based approach, the 622 

estimation of ATCOR4-derived reflectance might benefit from a comparison with in situ 623 

reference measurements to assess the uncertainties related to atmospheric and topographic 624 
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correction. Surface albedo estimates were only partially in agreement with those recorded on 625 

the ground from AWS. The assumptions underlying the narrow to broadband conversion, 626 

neglecting anisotropy and not properly accounting for cast shadows within the topographic 627 

correction process may explain the errors and uncertainties in the retrieved albedo. Different 628 

methods have recently been proposed to correct the effect of complex topography on snow 629 

spectral albedo (Picard et al. 2020). There is clearly a need to take into account the anisotropy 630 

of snow reflectance for mapping spatial albedo over time due to the dependence of snow 631 

reflectance on illumination-target-sensor geometry and snow properties (e.g., snow ages and 632 

grain coarsens). Overall, a generalisation of the estimation of bidirectional reflectance and 633 

snow albedo at high spatial resolution in complex terrain is still an open issue (Shuay et al., 634 

2020) and this represents a key point in thermal inertia computation.  635 

Regarding the 𝛥𝛥T maps, some elements can introduce errors and the estimates could be 636 

improved. Here, we are approximating the night-time surface temperature by the dew point 637 

temperature and this introduces some uncertainty. Landsat data provide good estimation of 638 

snow surface temperature during the day. Some inaccuracy may arise due to variable 639 

emissivity, which is expected to change with snow metamorphism, although snow emissivity 640 

is close to 1 (Hori et al 2006). The impact of topography on surface temperature can be more 641 

relevant since, in rugged terrain, surface temperature changes according to the variability of 642 

the atmospheric downwelling radiation (related to the local sky view factor) and from the 643 

different contributions of the surrounding terrain radiation. Different studies have simulated 644 

surface temperature over mountainous areas (Hais and Kucera, 2009; Dozier and Outcalt 645 

1979; Malbéteau et al. 2017, Lipton 1997, Robledano et al. 2022, Firozjaei et al. 2020, Zhu et 646 

al., 2020) and an accurate and operational method to retrieve surface temperature in 647 
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mountainous areas, which takes topography into account, is necessary for improving snow 648 

density estimates. It should also be noted that the measurements of surface temperature are 649 

instantaneous and hence subject to local changes of meteorological conditions, especially in 650 

mountainous terrain. Therefore, the interpretation of the surface temperature differences is 651 

not always straightforward in case of snow applications. Snow temperature is limited by 0 °C 652 

and, for example, a night-time dew point temperature close to freezing, could limit the 653 

applicability of our method. Overall, when ΔT is small, APs is difficult to interpret in terms of 654 

snow processes. Another point is the daily surface temperature mapping offered by Landsat, 655 

whose observations at 11.30 a.m. do not allow the detection of the maximum peak of 656 

temperature, which in this environment generally occurs in the early afternoon. It is likely, 657 

therefore, that ΔT differences are underestimated and the overall result could be more 658 

accurate if afternoon and minimum night-time measurements are considered. A simple 659 

approach using a cosine correction method (Scheidt, et al., 2010) applied to soils to shift 660 

surface temperature from 11.30 to 14.30 was also tested, but the difference in terms of APs 661 

was very small. However, additional studies in this direction should be pursued for remote 662 

sensing perspectives. 663 

APs maps were obtained by using the first-order approximation Fourier series solution of the 664 

heat transfer equation, under the hypothesis that surface temperature has a sinusoidal 665 

behaviour. We previously tested this assumption at the point scale and sometimes, in the 666 

output phase, it is not always satisfied. In addition, snow temperatures might rise to freezing 667 

during warmer days later in the season, but be unable to get warmer because it is frozen, so 668 

that in this case the use of APs loses significance. Corrective factors could be included in new 669 

formulations of thermal inertia for snow applications, or the phase differences could be 670 
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computed in different ways. We also tested other published formulations, including the 671 

second-order approximations, without finding better results (data not shown). Overall, 672 

several uncertain factors influence the accuracy of APs, and clear sky only at the time of the 673 

data acquisition, is not sufficient for accurate estimates of APs. We should also consider that 674 

thermal inertia describes the radiative regime in the upper snow layers only, so we expect a 675 

diurnal oscillation within the first 50 cm. This may limit the characterization of the snow 676 

density of the entire snowpack when using this approach. Moreover, the APs computed here 677 

does not perfectly match the true inertia Ps, and although in the accumulation and warming 678 

phases these quantities correspond, in the ripening and output phases they may differ when 679 

rapid melting and refreeze processes occur (Colombo et al., 2019). The theoretical model of 680 

Ps presented in Colombo et al. (2019) indeed predicts values from 100 J m-2K-1s-0.5 for fresh 681 

fallen snow up to 1000 J m-2K-1s-0.5 for wet snow and it shows that the influence of liquid water 682 

content has a weak effect on Ps. This range is consistent with the snow thermal inertia values 683 

defined by Cheruy et al. (2017) and with those found in this study, although a large 684 

overestimation may occur for water‐saturated snow in the output phase. Overall, we found 685 

that APs clearly evolved during the hydrological season, with a certain spatial variability 686 

according to primary topographic parameters and driven by snow conditions. Particularly, APs 687 

is mainly a function of snow density. Higher values of apparent thermal inertia (e.g., > 500 J 688 

m-2K-1s-0.5) may help in defining the extent of melting snow, while medium and low APs values 689 

are likely to represent drier snow. In general, the high APs range found in this study originally 690 

indicates that snow is a highly time-varying system, covering a wide range of inertia and 691 

encompassing typical values of dust, soils with different textures to higher values typical of 692 

pebbles, crust and rocks (e.g., Cheruy et al., 2017; Putzig and Mellon, 2007; Minacapilli et al., 693 

2009; Sobrino and El Kharraz, 1999).   694 
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Overall, the derived snow density maps exhibit coherent seasonal patterns, with high 695 

variability during the spring and a certain variability according to the topography in the melting 696 

period. Spatial and temporal snow density patterns are consistent with the findings of other 697 

studies in similar contexts (e.g., Valt et al., 2018). However, the relationship between APs and 698 

snow density depends on a series of factors, such as snow conditions, time and site 699 

characteristics and needs to be locally calibrated. A better formulation of APs, which provide 700 

the same values of Ps throughout the season, could exploit a physical model, rather than 701 

empirical approaches, with the expectation of more satisfactory results in estimating snow 702 

density. Moreover, we underline that the generated snow density maps are not fully validated 703 

and further efforts should be made to evaluate the robustness of this approach and of the 704 

final estimates in different geographic contexts. Furthermore, it should be also considered 705 

that manual density measurements might also have uncertainties (Proksch et al., 2016) and 706 

therefore, more samples and replicates would be needed. Nevertheless, while the 707 

relationship we found could be improved, we believe that it can be considered significant (R2CV 708 

= 0.59 and RMSECV = 82 kg m−3).  709 

The remote estimation of thermal inertia may be a promising approach for estimating surface 710 

snow density and we are not aware of previous studies which combine optical and thermal 711 

data for the estimation of snow density. Further research could also concentrate on detecting 712 

snow density in mixed pixels and under vegetation canopies, which are not considered in this 713 

study. Patchy snow and heterogeneous pixels can produce erroneous APs values and hence 714 

inaccurate snow density results. Synergies with microwave systems should be pursued in 715 

these contexts, also to overcome issues related to cloud persistence and possibly to have 716 

information about the density within the overall snowpack. 717 
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Specific requirements for future satellite constellations focusing on cryosphere monitoring 718 

might include overpasses in the early afternoon, along with night-time acquisitions and daily 719 

revisit time at high spatial resolution. Overall, a revisit time of 1 day, with at least two nadir 720 

acquisitions at two different specific local times, and a multispectral payload in both visible 721 

and thermal channels (with a spatial resolution of 20-40 m and 40-60, in VNIR and TIR 722 

respectively), could constitute the main observational requirements for exploiting thermal 723 

inertia for snow density applications. 724 

 725 

5. Conclusions 726 

The estimation of snow density from thermal inertia could be a new frontier in remote 727 

sensing. We show preliminary evidence that snow density can be successfully estimated from 728 

APs observations. This may have an important impact on snow hydrology studies, mainly for 729 

determining the snow water equivalent at catchment scale in complex terrain. The possibility 730 

of mapping snow density through APs might represent a novel application for improved 731 

monitoring of the cryosphere and could potentially be used for freshwater resource 732 

management in the Alpine environment.  733 

We used a hybrid approach to generate APs maps, starting from satellite images, 734 

meteorological modelling and field measurements and we developed an empirical regression 735 

model to estimate snow density in space and time. The goodness of the model seems to 736 

support the reliability and replicability of the proposed approach. We have, however, 737 

discussed elements of uncertainty and have proposed improvements to refine the 738 
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methodology. To better assess the applicability of the method, it needs to be tested in a 739 

variety of study areas. Overall, we are confident that the maps of thermal inertia could help 740 

in detecting the onset of snowmelt and the snow density derived in different periods of the 741 

year, revealing consistent seasonal and spatial variability. 742 

While this study may be the first step toward mapping and monitoring snow density from 743 

space, it may also help in defining the scientific requirements for new spaceborne missions 744 

targeting the cryosphere. We believe there is a need for a new class of satellites, with the 745 

ability to observe the Earth’s surface at high spatial and temporal resolution, with both day 746 

and night-time overpasses in both optical and thermal domain. Such a mission, targeting snow 747 

dynamics at catchment scale, would be extremely relevant for continuously monitoring these 748 

ecosystems and for inferring quantitative information about hydrological resources and 749 

climate variability. 750 

  751 
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