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ISOPERIMETRIC INEQUALITIES AND REGULARITY OF A-HARMONIC

FUNCTIONS ON SURFACES

TOMASZ ADAMOWICZ1 AND GIONA VERONELLI

Abstract. We investigate the logarithmic and power-type convexity of the length of the level curves
for a-harmonic functions on smooth surfaces and related isoperimetric inequalities. In particular, our
analysis covers the p-harmonic and the minimal surface equations. As an auxiliary result, we obtain
higher Sobolev regularity properties of the solutions, including the W 2,2 regularity.

The results are complemented by a number of estimates for the derivatives L′ and L′′ of the length
of the level curve function L, as well as by examples illustrating the presentation.

Our work generalizes results due to Alessandrini, Longinetti, Talenti and Lewis in the Euclidean
setting, as well as a recent article of ours devoted to the harmonic case on surfaces.
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1. Introduction

The main goal of this work is to continue studies of the geometry of level curves for functions on
smooth surfaces initiated in [1] in the setting of harmonic functions. Namely, we expand the scope
of the studied PDEs to include a-harmonic equations on surfaces under relatively mild assumptions
on the operator a, see the presentation in this section below. Our results apply in particular to the
p-harmonic equation. However, we do not impose the assumption of the homogeneity of degree p of the
operator, i.e. a in (1) is homogeneous, typically required in the p-harmonic setting. This equation is
one of the key nonlinear counterparts of the harmonic one (p = 2), and is sometimes called ”a mascot
of nonlinear analysis” (P. Drabek). The p-harmonic equation appears, for instance, in non-newtonian
fluid dynamics, the description of the Hele–Shaw flow, the image processing and stochastic games,
see [34, Chapter 2] and references therein. The p-harmonic equation plays a key role in potential
analysis [25] and in geometric analysis [26, 40], especially in the two-dimensional setting [8, 7, 35].
Our results extend a work by Alessandrini [5] for the flat case, who investigated the convexity of
the logarithm (or powers) of the length of level sets for a-harmonic type functions on planar annuli
with constant boundary data, see also Laurence [28] and Longinetti [32] for harmonic and p-harmonic
functions in R

2. Furthermore, our a-harmonic variant of the no-critical points lemma presented in
Lemma 3.5 extends Lewis’s result [29] for p-harmonic functions on R

2 to the setting of surfaces.
Another important equation investigated in this note is the minimal surface one. Such equation

is one of the most fundamental geometric PDEs with connections to the Plateau problem, harmonic
mappings theory and the geometry and topology of manifolds, see e.g [18]. Moreover, the minimal
surface equation has also been vividly studied on Riemannian surfaces, including the case of surfaces
of nonpositive curvature we are more interested in. A nonexhaustive list of studied topics in this
direction includes, for instance, the isoperimetric estimates on minimal graphs [11] (in any dimension),
the existence and properties of entire minimal graphs [15, 27, 22] and of special minimal surfaces [38],
as well as the special cases of minimal graphs over the hyperbolic plane, see e.g. [19, 24, 27, 42]. Our
results for minimal graphs extend previous ones by Longinetti [31], also in the Euclidean setting. Let
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us also mention that other well-known equations studied in the literature are covered by our work,
for example the subsonic gas equation and the maximal graph equation in Lorentzian spacetime; see
below.

We will now discuss the setting of a-harmonic equations and present the main results together with
the organization of the paper. Consider a function a ∈ C1(0,∞) with a(s) > 0 for all s > 0 and such
that, for some constants 0 < α ≤ β, it holds that

0 < α ≤ 1 +
a′(s)s
a(s)

≤ β, for all s > 0. (A)

Moreover, additionally we require that

sa(s) → 0 for s→ 0. (A’)

The latter assumption corresponds to the second part of condition (A2) in [41], one of the general
assumptions imposed on the a-harmonic operators there. Observe that its first part, i.e. that function
sa(s) is strictly increasing, follows from (A) by differentiation, as (sa(s))′ ≥ αa(s) > 0 for s > 0. Con-
dition (A’) is used in several results below, for instance in the proof of the key result, Theorem 1.1,
where we appeal to the strong maximum principle for equation (2), see [41, Theorem 8.5.1]. Further-
more, we need (A’) in the higher regularity result stated as Proposition 3.1, which in turn enters in
the study of critical points in Section 3.1.

Let (Mn, g) be a Riemannian manifold and Ω ⊂ Mn be an open set. In this paper, we will focus
mainly (but not only) on surfaces, i.e. n = 2. In what follows we denote the Riemannian norm of the
gradient of a function u by |∇u|g and use also |∇u| if the metric g is fixed or clearly understood from
the context of presentation. We also denote by |∇u|0 the Euclidean norm of the Euclidean gradient
u. Namely, in a given coordinate chart |∇u|2g := gij∂iu∂ju and |∇u|20 := δij∂iu∂ju =

∑

i(∂iu)
2.

Following the approach in [41, Chapter 3.1], we say that a weakly differentiable function u ∈
L1
loc(Ω,R) is a-harmonic in Ω, if a(|∇u(·)|g)∇u(·) ∈ L1

loc(Ω) and if u is a weak solution of the equation

div(a(|∇u|g)∇u) = 0 in Ω, (1)

meaning that
∫

Ω
a(|∇u|g)〈∇u,∇φ〉gdM = 0 (2)

holds for all compactly supported test functions φ ∈ C1
0 (Ω). In what follows, we will call the divergence-

type operator in (1) the a-harmonic operator.
Before stating our main results, let us present some examples of operators a satisfying the assump-

tions (A) and (A’).

Example 1 (The p-harmonic equation). The most important example of an a-harmonic function
is the p-harmonic one for a(s) := sp−2. Condition (A) is satisfied with α = β := p − 1, and since

sa(s) = sp−1, condition (A’) holds as well. For a bounded domain Ω, a function u ∈ W 1,p
loc (Ω,R)

satisfying (2) with this choice of a is called p-harmonic. For this choice of a, it is enough to require (2)
for all compactly supported test functions φ ∈W 1,p(Ω).

Example 2 (The minimal surface equation). By choosing a(s) := 1/
√
1 + s2 we retrieve the

minimal surface equation, see [5, 31]. In this case condition (A’) holds by a direct computation.
Moreover, we have

0 ≤ 1 +
a′(s)s
a(s)

= (1 + s2)−1 ≤ 1 = β, for all s > 0.

If one disposes of an upper bound |∇u| < C on the gradient of a solution, then a satisfies (A) with
α = inf 1

1+C2 . In particular, this is the case if a C1 solution is a priori given, as in the statement of
Theorem 1.2.
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Example 3 (The subsonic gas equation). Basing on the discussion on pg. 262 in [23] we may
point to yet another quasilinear equation covered by our theory, here in R

2. Namely, the potential gas
flow equation div(a(|∇u|)∇u) = 0, where u stands for the velocity potential of the flow and a(|∇u|)
expresses the fluid density-speed relation. Here,

a(s) :=

(

1− γ − 1

2
s2
) 1

γ−1

,

where γ > 1 is constant and the equation is elliptic if the flow is subsonic, which means that |∇u|2 <
2

γ+1 . Indeed, under this assumption a > 2
γ+1 and a ∈ C1(0,∞). Let us verify assumptions (A) and

(A’) on a. By direct computations we check that

1 +
a′(s)s
a(s)

= 1− s2

1− γ−1
2 s2

=
1− γ+1

2 s2

1− γ−1
2 s2

.

The latter expression takes value 1 at s = 0, and value γ2−1
γ2+3

when s→ 2
γ+1 , hence by taking α := γ2−1

γ2+3

and β := 1 we obtain that condition (A) holds for this a-harmonic equation. Moreover, by the direct
argument, sa(s) → 0, as s→ 0+, giving us (A’).

Example 4 (The maximal graph equation in Lorentzian spacetime). The maximal graph

equation corresponds to the choice a(s) := 1/
√
1− s2. Maximal surfaces in a Lorentzian manifold are

spacelike surfaces with zero mean curvature. In the Lorentz-Minkowski space L
3 they arise as local

maxima for the area functional associated to variations of the surface by spacelike surfaces; see e.g.
[33] for the physical motivations, [14, 16] for some celebrated results on maximal graphs, and [3, 4]
for some more recent works on surfaces. Moreover, the maximal graph equation is closely related to
the Born-Infeld equation, see [13]. In the case of strictly spacelike solutions, u ∈ C1 and |∇u| < 1,
see [9]. In particular, given a strictly spacelike solution on a compact set, it holds that |∇u| ≤ C for
some constant C < 1, so that a(s) satisfies condition (A) with α = 1 and β = sup 1

1−C2 . Furthermore,

the direct computations give us (A’).

Let us remark that our definition of a-harmonic equation is a special case of a slightly more general
class of PDEs, the so called A-harmonic PDEs, where A := A(z,∇u)∇u, and

div(A(z,∇u)∇u) = 0,

see the dedicated monograph [25]. In particular, we retrieve (2) in [25] by setting A := a(|∇u|)∇u.
In all the main examples of a-harmonic functions we mentioned above, log a(s) is trivially either

lower or upper bounded in a neighborhood of 0. However, in all generality this property is not trivially
implied by (A) and (A’); see Example 5 in Section 3 below. Therefore, in order to obtain the regularity
estimates in Proposition 3.1 we need to impose an additional technical assumption on operators a,
requiring that

log a(s) is either upper or lower bounded (or both) on (0, 1]. (A”)

The key boundary value problem studied in this work is as follows. Let t1, t2 ∈ R be such that
t1 < t2 and let us consider a continuous up to the boundary solution of the following Dirichlet problem
in an annulus Ω for the a-harmonic operator on a two dimensional Riemannian manifold M2:

{

div(a(|∇u|g)∇u) = 0 in Ω,

u|Γ1 = t1, u|Γ2 = t2.
(DP)

From here on, by (topological) annulus we mean a domain Ω ⋐M2 homeomorphic to the flat concentric
annulus {x ∈ R

2 : 1 < ‖x‖ < R} ⊂ R
2 for some R > 1. Note that, up to possibly modifying the

value of R, a non-denegenerate topological annulus is actually conformal to a flat annulus by a version
of the uniformization theorem, see [1, Lemma 3.6] specialized to smooth surfaces. Then, Γ1 and Γ2

stand for the C1,α connected boundary components of Ω. The main class of examples is obtained for
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Ω := Ω1 \ Ω2 with Ω2 ⋐ Ω1 two domains of M2 homeomorphic to a ball. However, in general the
topology of Ω2, and hence of Ω1, could be nontrivial. Since now on, we will denote by K the Gaussian
curvature of M2. It is worthy recalling that on smooth surfaces Ric(∇u,∇u) ≡ K|∇u|2, where Ric
is the Ricci curvature tensor. Let us also add that the Dirichlet problem analogous to (DP) can be
considered on n-dimensional manifolds. It is our future project to extend results of this work beyond
the setting of surfaces.

We are now in a position to present the main results of the paper, proven in Section 2. The following
theorem gives a counterpart of Alessandrini’s result [5, Theorem 1.1] for a-harmonic functions on non-
positively curved Riemannian 2-manifolds and extends our previous work in [1, Theorems 2.7] devoted
to the harmonic case. Recall that we do not assume that the curvature is constant, i.e. we present
the argument for K = K(x) for x ∈ M2. Notice that, following [5, 28, 32], the second part of the
assertion motivates the name isoperimetric inequality.

In what follows by L(t) we denote the length (i.e. the 1-dimensional Hausdorff measure) of the level
set {u = t}, cf. (15) below. Moreover, by L′ and L′′ we denote, respectively, the first and the second
derivative of L with respect to parameter t.

Theorem 1.1 (Isoperimetric inequality for a-harmonic equations). Let Ω be a C1,α-topological annular
domain in a 2-dimensional Riemannian manifold (M2, g) of non-positive curvature K|Ω ≤ 0. Let
t1, t2 ∈ R be such that t1 < t2 and let us consider a continuous up to the boundary a-harmonic solution
u of the Dirichlet problem (DP) in Ω satisfying conditions (A), (A’) and (A”). Then

(lnL(t))′′ ≥ 0 for all t ∈ (t1, t2), if β = 1 (3)
(

1

m
Lm(t)

)′′
≥ 0 for all t ∈ (t1, t2), if β 6= 1 and m = β−1

β , (4)

where β is as in (A). Moreover, the equality in the assertion holds on (t1, t2) if and only if u is
(β + 1)-harmonic and K ≡ 0, in which case Ω is locally isometric to the regular (circular) annulus in
the plane and all the level curves of u are locally concentric circles.

We present now our second main result. As observed above, a special case of the a-harmonic
equation is the minimal surface equation

div

(

1
√

1 + |∇u|2
∇u
)

= 0, (5)

for which a(s) = 1/
√
1 + s2 and α < 1/(1 + supΩ |∇u|2) and β = 1. Theorem 1.1 applied to (5) is not

sharp, since 1 + a′(s)s/a(s) < 1. However, in the setting of convex planar annuli, using the support
functions of a convex set, Longinetti in [31, Theorem 2.2] showed the following sharp isoperimetric
inequality

LL′′ − (L′)2 ≥ 4π2.

It turns out that our approach allows to extend Longinetti’s result to non-necessarily convex annuli
in non-positively curved smooth surfaces, thus weakening the assumptions also in the Euclidean case.

More precisely, let us consider a class of functions a ∈ C1(0,∞) which satisfy the following growth
condition

0 ≤ α ≤ 1 +
a′(s)s
a(s)

≤ 1

1 + s2
. (6)

On one hand this condition restricts assumption (A) by imposing the sharper upper growth, but on
the other hand we allow now α to be zero, as implied by the case of unbounded gradient, i.e. s→ ∞.

Notice that in the case of the minimal surfaces equation the equality holds in the right hand side
of (6).
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Theorem 1.2 (Isoperimetric inequality for minimal surfaces equation). Let Ω = Ω1 \ Ω2 be a C1,α-
topological annular domain in a 2-dimensional Riemannian manifold (M2, g) with Ω1 and Ω2 home-
omorphic to balls, and suppose that K|Ω1 ≤ 0. Let further t1, t2 ∈ R be such that t1 < t2 and let
us consider a continuous up to the boundary a-harmonic C2(Ω) solution u of the following Dirichlet
problem:

{

div (a(|∇u|g)∇u) = 0 in Ω,

u|Γ1 = t1, u|Γ2 = t2,
(7)

with a satisfying assumptions (6), (A’) and (A”).
Then

L(t)L′′(t)− (L′(t))2 ≥ 4π2, for all t ∈ (t1, t2). (8)

Moreover, the equality in the assertion holds on (t1, t2) if and only if K ≡ 0 and u is the solution

to the Dirichlet problem (7) for the minimal surface equation with a(s) = 1/
√
1 + s2. In such a case

Ω is locally isometric to the regular (circular) annulus in the plane and all the level curves of u are
locally concentric circles.

Remark 1.3. Our assumption that in the definition of Ω = Ω2 \Ω1 both components Ω1 and Ω2 are
homeomorphic to balls, is crucial to obtain the constant 4π2 above. Indeed, otherwise this constant
changes according to the topology of component Ω1, as the Gauss-Bonnet theorem is invoked in the
proof. For example, if Ω is the topologically non-trivial annulus [0, 1] × S

1 in R× S
1, then u(t, θ) = t

solves the minimal graph equation, but LL′′ − (L′)2 ≡ 0 in this case.

Unlike Theorem 1.1, in the above result we a priori require solutions to be C2-regular. This is due
to the fact that in Theorem 1.2 the assumption (A) is replaced by (6). In the proof of Theorem 1.1,

condition (A) is used to prove the W 1,2
loc regularity of a1/2(|∇u|g)∇u (see computations in Section 3.1)

and, hence, to prove in Lemma 3.5 that there are no critical points of solutions (see also the discussion
in the beginning of the proof of Theorem 1.2). On the other hand, the C2-regularity assumption is not
much restrictive, as it is satisfied in several cases where the solution exists. Indeed, let us comment
on existence of solutions to the Dirichlet problem (7). The well-known phenomenon, discussed e.g.

in [43, 45], shows that for the minimal surface equation operator a(s) = 1/
√
1 + s2, the C2-solution to

the Dirichlet problem exists under a smallness assumption of the boundary data, see [43, Theorem 2],
which in our case imposes the bound on |t2− t1| < c. Otherwise, the solution may fail to exist, see e.g.
Section IV in [43]. Moreover, examples in [43] and [44], provide us with wide classes of a-harmonic
equations and boundary values t1, t2 with solvable (7), see [43, Theorem 3] and Sections 4 and 5 in [44].

Remark 1.4. An isoperimetric inequality similar to (8) can be obtained as well for maximal surfaces
in Lorentzian spacetime, cf. Example 4. Namely, it holds

(

L′(t) +
∫

{x∈Ω :u(x)=t}
k

)2

≤ L(t)L′′(t), (9)

where k is the curvature of the level curve with respect to the outward normal direction. In particular,
if M2 = R

2 then
∫

{x∈Ω :u(x)=t} k = 2π, so that we have the following relation

(

L′(t) + 2π
)2 ≤ L(t)L′′(t).

See the comment after the proof of Theorem 1.2 for the derivation of (9).

Section 3 contains some key auxiliary results about the regularity of solutions to our Dirichlet
problem (DP) and the no-critical points lemma. Such results, although known in the flat case, are
new in the setting of surfaces. In particular, Proposition 3.1 shows the W 2,2-regularity of a-harmonic
functions on open sets on surfaces (no curvature bounds are assumed here) and the W 1,1-Sobolev
regularity of the differential expression aδ(|∇u|)∇u for δ ∈ (0, 1]. The novelties here are the following.
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First, on the contrary to the difference quotient method used for obtaining such result in the plane
or for p-harmonic functions, see e.g. [8, Section 16] and [46], we use a perturbation method which
does not require the function a to be homogeneous. Furthermore, Proposition 3.1 corresponds to [17,
Theorem 2.1] and our equation (1) is slightly different than [17, (2.1)], while conditions (2.2)-(2.3)
in [17] correspond to our condition (A). Additionally, in order to show Proposition 3.1, we extend
the stream function method to the setting of surfaces. Moreover, in Theorem 3.6 we adapt Talenti’s
general result [47] to the Riemannian setting writing a simple and short proof of the W 2,2-regularity
of a-harmonic functions on surfaces. Such a result is to our best knowledge not stated explicitly in
the literature.

The regularity proven in Proposition 3.1 is employed in Section 3.1, where we discuss a complex
elliptic system of equations satisfied by the complex gradient of the a-harmonic solution on a surface,
see (48) and (49). In that context, such systems have been so far studied only for the p-harmonic
equation. The key consequence is the complex representation formula (52) which allows us to infer
information about the structure of critical points of the a-harmonic solution. As a byproduct we
observe the unique continuation property for a-harmonic functions on smooth surfaces, which was
not stated explicitly in the literature even for the p-harmonic equation, see Proposition 3.4. Both
Proposition 3.1 and the complex representation of solutions on surfaces serve in proving Lemma 3.5.
This latter generalizes the harmonic result in [1, Lemma 2.9] to the a-harmonic setting and, moreover,
Lewis’s p-harmonic result [29] to the setting of surfaces.

Let us emphasize that the presence of the curvature, which may vary from point to point, leads to
the form of equation (1) with conformal factor depending on the point, cf. (32). This in turn causes
additional difficulties and justifies the necessity of computations in Section 3, as we are not allowed to
straightforwardly mimic the existing results and methods.

To conclude this introduction let us comment on the higher dimensional counterparts of our studies.
The strategy we adopt in this work is specific to the case of surfaces, with respect to both the com-
plexification of the gradient used to prove the absence of critical points and the estimates for L′, L′′

computed in Section 2. However, the main problem we consider, that is estimating the measure of level
sets of (a-)harmonic functions, makes sense also on higher dimensional manifolds. In this direction,
some related results with a different approach were obtained in [21], [2], [10].

Acknowledgements. Part of the work was conducted when G.V. visited IMPAN and T.A. visited
University of Milano-Bicocca. Both authors express their gratitude to the hosting institutions for
their support, hospitality and creating the scientific atmosphere. Moreover, the authors would like to
express the gratitude to Daniele Valtorta for suggesting the construction leading to assumption (A”).
The second author is partially supported by Indam - GNAMPA.

2. Isoperimetric inequality

In this section we show counterparts of Alessandrini’s isoperimetric inequality result [5, Theorem 1.1]
for a-harmonic functions, as well as for the minimal surface equation, on two-dimensional Riemannian
manifolds. However, we will formulate the main problem for all dimensions n ≥ 2, as some of our
results below can be applied in the general case of smooth Riemannian n-manifolds.

Let (Mn, g) be an n-dimensional Riemannian manifold with Ricci curvature bounded from below:
Ric ≥ c for some fixed c ∈ R.

The following auxiliary result is a counterpart of the well-known subharmonicity property for har-
monic functions in the Euclidean setting. Furthermore, this observation is an important tool in the
proof of Lemma 2.3.
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Lemma 2.1. Let Ω be a domain in a 2-dimensional Riemannian manifold with Gaussian curvature
K = K(x) and u be a C3-function in Ω. Then,

∆(log |∇u|) = div

(

∆u

|∇u|2 ∇u
)

+K. (10)

at points, where |∇u| 6= 0.

In particular, if u is harmonic, then we retrieve [1, Lemma 2.1].
Similar to the case of harmonic functions on surfaces, Lemma 2.1 follows from two well-known

tools in geometric analysis. The first one is the Bochner formula for C2 functions on n-dimensional
Riemannian manifolds:

∆
|∇u|2
2

= 〈∇∆u,∇u〉+ |∇2u|2 +Ric(∇u,∇u). (11)

Secondly, we use the technique similar to the one in the proof of the refined Kato (in)equality, a
standard formula in geometric analysis (see for instance [30, p. 520] or [39, Proposition 1.3] and
references therein). In dimension 2, the refined Kato’s inequality turns out to be an equality; see (13)
and also [1, Lemma 2.2] for a complete proof.

Lemma 2.2. Let Ω be a domain in an n-dimensional Riemannian manifold and u be harmonic in Ω.
Then, at points where |∇u| 6= 0, it holds that

|∇2u|2 ≥ n

n− 1
|∇|∇u||2 , n ≥ 2. (12)

Moreover, if n = 2 then one has indeed

|∇2u|2 = 2 |∇|∇u||2 . (13)

Proof of Lemma 2.1. We generalize the proof of [1, Lemma 2.2] and use the same notation as therein.
First, we directly compute that

div

(

∆u

|∇u|2∇u
)

=
〈∇∆u,∇u〉

|∇u|2 +
(∆u)2

|∇u|2 − 2
Hess(∇u,∇u)∆u

|∇u|4 .

On the other hand, from the Bochner formula (11) we obtain

∆(log(|∇u|)) = div

(∇|∇u|
|∇u|

)

=
∆|∇u|
|∇u| − |∇|∇u||2

|∇u|2

=
|∇2u|2 − 2 |∇|∇u||2

|∇u|2 +K +
〈∇∆u,∇u〉

|∇u|2 .

Therefore,

div

(

∆u

|∇u|2∇u
)

−∆(log(|∇u|)) = (∆u)2

|∇u|2 − 2
Hess(∇u,∇u)∆u

|∇u|4 − |∇2u|2 − 2 |∇|∇u||2
|∇u|2 −K. (14)

In the case of harmonic functions, i.e. ∆u = 0, on the 2-dimensional manifold, an application of the
Kato equality (13) implies that all terms above containing ∆u vanish one by one, and so we retrieve
the assertion of [1, Lemma 2.2]. In general this is not the case, except for dimension 2, where the
appropriate terms vanish when coupled together. Indeed, choose an orthonormal system diagonalizing
the Hessian of u at a fixed point, so that Hess u = diag(λ1, λ2)Id2. Then we have

|∇u|2(∆u)2 − 2Hess(u)(∇u,∇u)∆u = (u21 + u22)(λ1 + λ2)
2 − 2(λ1u

2
1 + λ2u

2
2)(λ1 + λ2)

= (u21 + u22)(λ
2
1 + λ22)− 2(λ21u

2
1 + λ22u

2
2).
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Furthermore, since ∇|∇u|2 = 2∇∇u∇u, it holds that
(

|∇2u|2 − 2 |∇|∇u||2
)

|∇u|2 = |∇u|2|∇2u|2 − 1

2
|∇|∇u|2|2

= |∇u|2|∇2u|2 − 2|∇∇u∇u|2

= (u21 + u22)(λ
2
1 + λ22)− 2(λ21u

2
1 + λ22u

2
2).

In a consequence, only the term −K remains on the right hand side of (14), and the assertion of the
lemma follows. �

Suppose now that Ω ⋐Mn is a topological annulus, i.e. a relatively compact domain homeomorphic
to the Euclidean annulus {x ∈ R

n : 1 < ‖x‖ < 2} ⊂ R
n, also called in the literature a ring domain, or

a 2-connected domain when n = 2. In what follows, we will assume that the two connected boundary
components Γ1 and Γ2 are C1,α, see the discussion before the proof of Theorem 1.1. Recall that the
measure of a level set of a function v : Ω → R is given by

L(t) =

∫

{x∈Ω : v(x)=t}
1 dHn−1, (15)

where dHn−1 stands for the (n − 1)-Hausdorff measure.
In the next lemma we recall formulas allowing us to compute the first and the second derivatives

of L with respect to the height of the level curve of C3-functions in a topological annulus Ω ⊂ Mn.
The lemma generalizes Lemma 2.1 in [5] for the planar A-harmonic case and Lemma 2.6 in [1] for the
harmonic functions on smooth surfaces.

Lemma 2.3. Suppose that u : Ω → R is a C3- function satisfying |∇u| > 0 in a topological annulus
Ω ⊂Mn and that u attains constant boundary values, respectively, u|Γ1 = t1 and u|Γ2 = t2. Then, the
following holds for all t1 < t < t2:

L′(t) =
∫

{x∈Ω : u(x)=t}
div

( ∇u
|∇u|

)

dHn−1

|∇u| =

∫

{x∈Ω : u(x)=t}

∆u

|∇u|2 − 〈∇u,∇|∇u|〉
|∇u|3 dHn−1. (16)

Moreover, if Ω is an annulus in a 2-dimensional manifold with Gauss curvature K = K(x), then it
holds that

L′′(t) =
∫

{x∈Ω :u(x)=t}

1

|∇u|

〈

∇
(

1

|∇u|

)

,
∆u

|∇u|2∇u− ∇|∇u|
|∇u|

〉

− K

|∇u|2dH
1. (17)

Remark 2.4. Notice that C3-regularity assumption is not too much restrictive, since the a-harmonic
functions (in particular p-harmonic ones) are smooth outside the set of critical points {|∇u| = 0};
see e.g. the discussion on pg. 208 in [29] for the p-harmonic equation in R

n, which in view of
Proposition 3.1 below, can be extended to the setting of a-harmonic equations on surfaces.

Proof. We follow the lines of the proof of [1, Lemma 2.6], but for the readers convenience we recall its
key steps, referring to [1] for further details.

Since |∇u| > 0 by assumption, then ν = ∇u
|∇u| is a unit vector normal to the level sets of u. Therefore,

by the definition of the function L in (15), the Stokes theorem and the coarea formula, we have that

L′(t) = lim
ǫ→0

1

ǫ

(

∫

{u=t+ǫ}

〈

ν,
∇u
|∇u|

〉

−
∫

{u=t}

〈

ν,
∇u
|∇u|

〉

)

= lim
ǫ→0

1

ǫ

∫

{t<u<t+ǫ}
div

( ∇u
|∇u|

)

=

∫

{u=t}

1

|∇u|div
( ∇u
|∇u|

)

=

∫

{u=t}

1

|∇u|3 (∆u|∇u| − 〈∇u,∇|∇u|〉),
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where the latter equality is obtained by direct computations, thus giving assertion (16).
In order to show assertion (17) we first notice that

∆u

|∇u|2 =

〈

∆u∇u
|∇u|3 ,

∇u
|∇u|

〉

.

This observation together with computations involving (16), the Stokes theorem and the coarea formula
imply that:

L′′(t) = lim
ǫ→0

L′(t+ ǫ)− L′(t)
ǫ

= lim
ǫ→0

1

ǫ

∫

{t<u<t+ǫ}
−div

(∇|∇u|
|∇u|2 − ∆u∇u

|∇u|3
)

= lim
ǫ→0

1

ǫ

∫

{t<u<t+ǫ}
div

(

∇
(

1

|∇u|

)

+
∆u∇u
|∇u|3

)

= lim
ǫ→0

1

ǫ

∫

{t<u<t+ǫ}
∆

(

1

|∇u|

)

+ div

(

∆u∇u
|∇u|3

)

=

∫

{u=t}

(

∆

(

1

|∇u|

)

+ div

(

∆u∇u
|∇u|3

))

dHn−1

|∇u| . (18)

In order to handle the last integral, we employ Lemma 2.1 and compute

div

(

∆u

|∇u|3∇u
)

=
1

|∇u|div
(

∆u

|∇u|2∇u
)

+

〈

∇
(

1

|∇u|

)

,∇u
〉

∆u

|∇u|2

=
1

|∇u|∆ log |∇u| − K

|∇u| +
〈

∇
(

1

|∇u|

)

,∇u
〉

∆u

|∇u|2

=
1

|∇u|

(

∆|∇u|
|∇u| − |∇|∇u||2

|∇u|2
)

− K

|∇u| +
〈

∇
(

1

|∇u|

)

,∇u
〉

∆u

|∇u|2 . (19)

Since

∆

(

1

|∇u|

)

= div

(

−∇|∇u|
|∇u|2

)

= −∆|∇u|
|∇u|2 + 2

|∇|∇u||2
|∇u|3 , (20)

then upon combining (19) and (20) we obtain the following identity

div

(

∆u

|∇u|3∇u
)

+∆

(

1

|∇u|

)

=
|∇|∇u||2
|∇u|3 − K

|∇u| +
〈

∇
(

1

|∇u|

)

,∇u
〉

∆u

|∇u|2

= −
〈

∇
(

1

|∇u|

)

,
∇|∇u|
|∇u|

〉

− K

|∇u| +
〈

∇
(

1

|∇u|

)

,
∆u

|∇u|2∇u
〉

=

〈

∇
(

1

|∇u|

)

,
∆u

|∇u|2∇u− ∇|∇u|
|∇u|

〉

− K

|∇u| . (21)

We substitute (21) into (18) to obtain assertion (17). �

We are now in a position to present the proofs of Theorems 1.1 and 1.2, the main results of this
section and of the whole paper.

Some comments about the statement of Theorem 1.1 are in order. Recall that the rigidity obtained
in case of equality in (3) or (4) holds only locally. We remark that the same understanding applies to
the harmonic case, cf. [1, Theorem 2.7]. Namely, in the flat case K ≡ 0, the level curves and Ω have
the geometry of planar circles and circular annulus, respectively, only in the local sense. The locality
in the assertion can not be avoided. Indeed, examples of topological annuli which verify the equality
in (3) and (4) but are not proper global subsets of R2 can be obtained for instance as finite coverings
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of a regular circular annulus in the plane (where the solution of the Dirichlet problem is obtained by
lifting the solution on the regular circular annulus).

In [1, Theorem 2.10], we showed that the nonpositivity of the curvature is also a necessary condition
for the log-convexity of the length of the level curves of harmonic solutions. In the more general case
of a-harmonic functions, this opposite direction has not been investigated yet. Namely, we conjecture
that if the curvature is strictly positive at some point (hence, in some open set) of M , then one
can find an annular domain for which the solution to (DP) does not satisfy (4). In the attempt of
mimicking the harmonic proof, the main additional difficulties is that a-harmonic functions are not
conformally invariant, so that one would need very precise asymptotic estimates for the Green kernel
of the operator. Even for the p-harmonic operator, the sharper estimates in the literature we are aware
of (see e.g. [37, 2.4]) are not precise enough to our purpose.

The C1,α-regularity assumption on the boundaries of topological annuli in subject is a consequence
of the interior ball condition assumed in the no-critical points lemma and, hence, required in the
proof of Theorem 1.1, cf. the discussion in [23, Chapter 3.2]. It is known that the C1,α-regularity
characterizes domains with both interior- and exterior- ball conditions. Notice further that [5] assumes
the C2,α-regularity.

Proof of Theorem 1.1. Let us notice that by the maximum and minimum principles for the a-harmonic
function u, see [41, Theorem 8.5.1], we have that maxΩ u = t2 and minΩ u = t1. Since ∇u 6= 0 due to
Lemma 3.5, the function u is C∞ smooth and (2) reads:

∆u = −〈∇u,∇(a(|∇u|g)
a(|∇u|g)

= −a
′(|∇u|g)
a(|∇u|g)

〈∇u,∇|∇u|g〉. (22)

Next, we observe that the Hopf lemma holds for solution of (22) in Ω. Indeed, it follows from
Theorem 2.8.3 in [41] which requires the coefficient matrix of the operator in (22) to be uniformly
positive definite. This leads to analogous estimate for the ratio of eigenvalues Λ2/Λ1 as for aǫ in the
proof of Lemma 3.2 with the same lower and upper bounds as in (35). Thus, the Hopf lemma holds
in our setting and we get that |∇u| ≥ const > 0 on ∂Ω. Since ∇u 6= 0 in Ω as noted above, by the
smoothness of u (in fact the C1-regularity is enough), we have that there exists a positive constant c
such that minΩ |∇u| ≥ c > 0.

By applying (22) in formulas (16)-(17) for L′ and L′′, we find the following equation and estimate,
respectively:

L′(t) =
∫

{x∈Ω :u(x)=t}

∆u

|∇u|2 − 〈∇u,∇|∇u|〉
|∇u|3 = −

∫

{x∈Ω :u(x)=t}

〈∇u,∇|∇u|〉
|∇u|3

(

1 +
a′(|∇u|)
a(|∇u|) |∇u|

)

.

(23)

L′′(t) =
∫

{x∈Ω :u(x)=t}

1

|∇u|

〈

−∇|∇u|
|∇u|2 ,−

a′(|∇u|)|
a(|∇u|)

〈

∇|∇u|, ∇u
|∇u|

〉 ∇u
|∇u| −

∇|∇u|
|∇u|

〉

− K

|∇u|2

=

∫

{x∈Ω :u(x)=t}

1

|∇u|4

{

|∇|∇u||2 + a′(|∇u|)|
a(|∇u|)

〈

∇|∇u|, ∇u
|∇u|

〉2

|∇u|
}

− K

|∇u|2

≥
∫

{x∈Ω :u(x)=t}

1

|∇u|4
〈

∇|∇u|, ∇u
|∇u|

〉2{

1 +
a′(|∇u|)|
a(|∇u|) |∇u|

}

(K ≤ 0 and |∇|∇u||2 ≥ 〈∇|∇u|, ∇u
|∇u| 〉

2)

≥ 1

β

∫

{x∈Ω :u(x)=t}

1

|∇u|4
〈

∇|∇u|, ∇u
|∇u|

〉2{

1 +
a′(|∇u|)|
a(|∇u|) |∇u|

}2

. (24)
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Therefore, by the above estimates and the Cauchy–Schwarz inequality we have that

(L′(t))2 =

(

∫

{x∈Ω : u(x)=t}

〈∇u,∇|∇u|〉
|∇u|3

(

1 +
a′(|∇u|)
a(|∇u|) |∇u|

)

)2

≤ L(t)

∫

{x∈Ω :u(x)=t}

〈∇u,∇|∇u|〉2
|∇u|6

(

1 +
a′(|∇u|)
a(|∇u|) |∇u|

)2

≤ βL(t)L′′(t).

From this, assertions (3) and (4) of the theorem follow immediately.
In order to show the second part of the assertion, suppose that (Lm(t))′′ = 0. This is equivalent to

βLL′′ = (L′)2 which then by (24) (with the K-term remaining), implies

(L′(t))2 ≤ L(t)

∫

{x∈Ω :u(x)=t}

〈∇u,∇|∇u|〉2
|∇u|6

(

1 +
a′(|∇u|)
a(|∇u|) |∇u|

)2

≤ βL(t)

∫

{x∈Ω : u(x)=t}

(

1

|∇u|4

{

|∇|∇u||2 + a′(|∇u|)|
a(|∇u|)

〈

∇|∇u|, ∇u
|∇u|

〉2

|∇u|
}

− K

|∇u|2

)

= (L′(t))2.

Since K ≤ 0, this chain of inequalities may hold only when K ≡ 0 in which case we reduce the
discussion to the planar case and so Theorem 3.1 in [32] gives the second assertion of the theorem (see
also [5, Theorem 1.1] and [1, Theorems 2.7]). �

It turns out that, at least in the p-harmonic case, the inequality in Theorem 1.1 can be quantified
in the setting of surfaces with pinched curvature, provided that the solution defined on the annular
domain can be extended to a positive p-harmonic function on a large enough ball containing the given
annulus.

Proposition 2.5. Let (M2, g) be a complete surface and suppose that its Gauss curvature satisfies

− κ1 ≤ K ≤ −κ2 ≤ 0 in B2R (25)

for some κ1 ≥ κ2 ≥ 0 and some ball B2R ⊂ M2 or radius 2R > 0. Let 1 < p < ∞ and let u > 0 be
p-harmonic on B2R. Suppose that u takes constant values 0 < t1 < t2 on the boundary components of
a topological annulus with C1,α-boundary Ω ⊂ BR ⊂ B2R ⊂M2. Then it holds that

(lnL(t))′′ ≥ κ2
κ1

1

t2
, for t ∈ (t1, t2), if p = 2, (26)

(

p− 1

p− 2
L

p−2
p−1 (t)

)′′
≥ R2

1 +R

κ2
1 +Rκ1

1

t2
L
− 1

p−1 (t) for t ∈ (t1, t2), if p 6= 2. (27)

Proof. Let u > 0 be p-harmonic in Ω satisfying (25) and Ω ⊂ BR ⋐ M2 be an annulus such that u
takes constant values, respectively t1 and t2, on the boundary components of Ω. By the formula (24)
and the inequality following it in the proof of Theorem 1.1, we have that

(L′(t))2 ≤ (p− 1)L(t)

(

L′′(t) +
∫

u=t

K

|∇u|2 dH
1

)

.

Hence, we obtain that if p 6= 2, then

− L
p

p−1

(

p− 1

p− 2
L

p−2
p−1 (t)

)′′
≤
∫

u=t

K

|∇u|2 dH
1. (28)



12

Then, Theorem 1.1 in [48] applied on ball B2R ⊂M2 and κ := κ1 asserts that |∇u| ≤ C(p)
1+

√
κ1R

R |u|
for all points in BR. Therefore,

−κ2
∫

u=t

1

|∇u|2 dH
1 ≤ − 1

C(p)

R2κ2
(1 +R

√
κ1)2

∫

u=t

1

|u|2 dH
1 ≤ − R2κ2

(1 +R)(1 +Rκ1)

1

t2
L(t).

In the latter inequality we use an elementary estimate:

(1 +R
√
κ1)

2 ≤ R2κ1 + 1 +R+Rκ1 = (R+ 1)(1 +Rκ1).

These combined with inequality (28) give the assertion in the case p 6= 2. The harmonic case follows
from Proposition 2.13 in [1] �

We conclude this section with the proof of Theorem 1.2, which improves Theorem 1.1 in the special
case of minimal surface type equations, i.e., with the assumption (6) replacing (A).

Proof of Theorem 1.2. First, let us observe that ∇u 6= 0 as Lemma 3.5 applies even if the assumption
(A) is replaced by (6), so that in particular α may vanish. Indeed, Proposition 3.1 is trivially verified
in this setting, as u is assumed to be C2, while the discussion in Section 3.1 holds also if α = 0.

Recall the formula for the curvature of the level curve k := −div
(

∇u
|∇u|

)

with respect to the outward

normal vector (the sign depends on the assumption t1 < t2). Moreover, observe that as in (22) we
may compute the laplacian of u. In a consequence we get
∫

{x∈Ω :u(x)=t}
k =

∫

{x∈Ω : u(x)=t}
−div

( ∇u
|∇u|

)

=

∫

{x∈Ω :u(x)=t}

〈∇u,∇|∇u|〉
|∇u|3

(

1 +
a′(|∇u|)
a(|∇u|) |∇u|

)

|∇u|.

Then, by (23) and by the Cauchy–Schwarz inequality we obtain that

(L′(t))2+

(

∫

{x∈Ω : u(x)=t}
k

)2

≤ L(t)

(

∫

{x∈Ω :u(x)=t}

〈∇u,∇|∇u|〉2
|∇u|6

(

1 +
a′(|∇u|)
a(|∇u|) |∇u|

)2

(1 + |∇u|2)
)

.

(29)
Hence, by the growth assumption (6) and estimates (29) and (24) we arrive at the following inequality

(L′(t))2 +

(

∫

{x∈Ω : u(x)=t}
k

)2

≤ L(t)

(

∫

{x∈Ω :u(x)=t}

〈∇u,∇|∇u|〉2
|∇u|6

(

1 +
a′(|∇u|)
a(|∇u|) |∇u|

)

)

≤ L(t)L′′(t). (30)

To complete the argument note that since Ω is an annular domain whose components Ω1 and Ω2 are
homeomorphic to balls and K ≤ 0, the Gauss–Bonnet theorem can be applied as follows

∫

{x∈Ω :u(x)=t}
k = 2π −

∫

Int{x∈Ω :u(x)=t}
k ≥ 2π.

Here, we abuse notation and by Int{x ∈ Ω : u(x) = t} we denote the interior of the subset of Ω1

bounded by the level curve {x ∈ Ω : u(x) = t}. Then, upon applying this inequality at (30) we arrive
at assertion (8). By the discussion analogous to the one in the end of the proof of Theorem 1.1, we

obtain that inequality in (8) holds only if K ≡ 0 and if the function a(s) = 1/
√
1 + s2 for which in (6)

the equality holds. Moreover, equality has to hold in the Cauchy-Schwarz inequalities in (29), so that
|∇u| and 〈∇u,∇|∇u|〉 have to be constant on {u = t} for every t ∈ (t1, t2). In particular, k has to
be constant and the level sets are concentric circles. Accordingly, Ω is locally isometric to a standard
concentric annulus and by an explicit computation it turns out that u must be locally the graph of a
slice of catenoid. �
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We remark that in the special case of the minimal surface equation, defined by a(s) = 1/
√
1 + s2,

in order to deduce that the solution has no critical points we do not need the whole machinery we
introduced in Section 3. Indeed, the solution is a harmonic function with respect to the graph metric
du ⊗ du. Since the critical points of a function do not depend on the underlying metric, the easier
techniques for harmonic functions apply, see [1].

A similar technique as in the proof of Theorem 1.2 could also be applied to strictly spacelike solutions
to the equation for maximal surfaces in the Lorentzian space, see Example 4. In that case, one has

that 1 + a′(s)
a(s) s = (1− s2)−1, and

(

L′(t) +
∫

{x∈Ω : u(x)=t}
k

)2

=

(

∫

{x∈Ω :u(x)=t}

〈∇u,∇|∇u|〉
|∇u|3

|∇u| − 1

1− |∇u|2

)2

.

As |∇u| < 1, it holds (1− |∇u|)2 ≤ 1− |∇u|2, so that
(

L′(t) +
∫

{x∈Ω : u(x)=t}
k

)2

≤ L(t)

(

∫

{x∈Ω :u(x)=t}

〈∇u,∇|∇u|〉2
|∇u|6

1

1− |∇u|2

)

≤ L(t)L′′(t).

In particular, if M2 = R
2 then

∫

{x∈Ω : u(x)=t} k = 2π so that we have the relation

(

L′(t) + 2π
)2 ≤ L(t)L′′(t).

3. Critical points of a-harmonic functions on smooth surfaces

In this section we show that a-harmonic functions have isolated critical points on Riemannian
surfaces, a property similar to the corresponding one for the a-harmonic (in particular p-harmonic)
functions in the plane. The proof relies on the complex representation of the a-harmonic equation and
on the associated regularity lemma which allows to reformulate the equation as a complex first order
system of PDEs. Unlike the flat case of R2 the complex gradient need not be a quasiregular mapping,
see pg. 6 in [46]. Nevertheless, the theory of complex first order systems permits us to conclude that
the zeros of the gradient are isolated and form a discrete set of points, see [12].

For the readers convenience we now recall some information stated in the preceding sections.
Let (M2, g) be a Riemannian surface and Ω ⊂M2 be an open set. Moreover, we consider function

a ∈ C1(0,∞) such that it satisfies the following assumptions:

(A) 0 < α ≤ 1 +
a′(s)s
a(s)

≤ β, for all s > 0; (A’) sa(s) → 0 for s→ 0,

(A”) log a(s)is either upper or lower bounded (or both) on (0, 1].

Recall that in the setting of Riemannian surfaces we may locally introduce the isothermal coordi-
nates, denoted z = (x, y), in which the metric g takes the diagonal form with the conformal factor
λ > 0 a smooth, bounded and strictly positive function. Namely, g(X,Y ) = λ2(x)〈X,Y 〉 for any pair
of vectors X,Y at x ∈M2.

We denote local bounds of λ as follows: 0 < cg ≤ λ < Cg < ∞. Therefore, in the isothermal
coordinates, we have that

|∇u|g = λ−1|∇u|0 (31)

and equation (1) in coordinates reads:

∂

∂x

(

a(λ−1(z)|∇u(z)|0)ux
)

+
∂

∂y

(

a(λ−1(z)|∇u(z)|0)uy
)

= 0, (32)

interpreted in the distributional sense.
Our next goal is to find the complex representation of (32), following [46, 6], and for this we need

the auxiliary regularity observation, well known for p-harmonic functions in the plane and on smooth
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surfaces, as well as for planar A-harmonic equations with the δ-monotonicity condition, see [8, Chapter
16] and also [20, Section 3].

Proposition 3.1. Let u be an a-harmonic function, i.e. satisfying (32) in an open set Ω ⊂M , under

assumptions (A), (A’) and (A”). Then it holds that u ∈W 2,2
loc (Ω) and that

aδ(|∇u|g)∇u ∈W 1,2
loc (Ω) (33)

for any δ ∈ [0, 1].

In particular, when δ = 1/2, for the p-harmonic equation in M we retrieve the assertion in [46],

namely that |∇u|
p−2
2

g ∇u ∈ W 1,2
loc (M) for p ≥ 2. However, as explained later, our method allows to

handle the p-harmonic functions for the whole range of 1 < p <∞.

Example 5. Even if the assumption (A”) is verified in all the significant examples, it is not automat-
ically implied by (A) and (A’), so that we need to require it. Indeed, the following example, suggested
to us by D. Valtorta, shows that one can find a positive function a on (0,∞) satisfying (A) and (A’),
but which is neither upper bounded nor bounded away from 0. To this end, one can implement the
changes of variables t = − log s and f(t) = log a(s). Then, (A) and (A’) become

1− β < ∂tf(t) < 1− α < 1, and lim
t→∞

f(t)− t = −∞.

A (two-side) unbounded function f with this properties can be quite easily constructed, for instance,

by smoothing out a piece-wise linear function f̃ which oscillates between −t and
√
t, with the slope

∂tf̃(t) equal to either 1
2 or −2 outside corners.

The following result is similar to Proposition 2.1 in [6], proved therein in the Euclidean setting,
where λ is constant.

Lemma 3.2. Let Ω ⊂M be a bounded connected open set and assume that ∂Ω satisfies the interior and
exterior ball condition. Let further φ ∈ C2(Ω). If (A) holds, then there exists a unique u ∈ C1,γ

loc ∩C(Ω)
solving weakly the following Dirichlet problem:

{

div(a(|∇u|g)∇u) = 0 in Ω,

u|∂Ω = φ|∂Ω.

Proof. The proof follows strictly the one in [6, Proposition 2.1] and therefore we will restrict our
discussion only to the key differences in the surface setting.

Reasoning as in [1, Lemma 3.6], we can introduce a global isothermal coordinates chart φ : Ω → R
2.

Accordingly, the problem (DP) can be reduced to the equation (32) subject to a C2 data, again denoted
by φ, in the plane.

Suppose that we know that a solution exists and is at least C1
loc(Ω) as proven in the further part of

the discussion. Then the uniqueness follows from the comparison principle, see e.g. Theorem 2.4.1 and
Proposition 2.4.3 in [41] once we have checked that our a-harmonic equation satisfies the assumptions of
that proposition. To this end, let A(x, ξ) : Ω×R

n → R
n be defined as follows A(x, ξ) := a(λ−1(x)|ξ|0)ξ.

Then A is continuous, since λ > 0 and a ∈ C1(0,∞). Next, we find the Jacobi matrix of A with respect
to ξ-variable:

DξA(x, ξ) =

[

δija(λ
−1(x)|ξ|0) + a′(λ−1(x)|ξ|0)

1

λ

ξiξj
|ξ|0

]

ij

, i, j = 1, 2.

This together with the smoothness of λ imply that A ∈ C1(Ω× (Rn \ {0})). Finally, we compute that

detDξA(x, ξ) = a2(λ−1(x)|ξ|0)
(

1 +
a′(λ−1(x)|ξ|0)λ−1(x)|ξ|0

a(λ−1(x)|ξ|0)

)

≥ αa2(λ−1(x)|ξ|0) > 0.
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Moreover, it holds that

(DξA(x, ξ))11 = a(λ−1|ξ|0)
[(

a′(λ−1|ξ|0)λ−1|ξ|0
a(λ−1|ξ|0)

+ 1

)

ξ21
|ξ|20

+
ξ22
|ξ|20

]

> a(λ−1|ξ|0)
[

αξ21 + ξ22
|ξ|20

]

> 0, ξ 6= 0,

and the similar estimate implies that (DξA(x, ξ))22 > 0. All together, we conclude that matrices
DξA(x, ξ) are positive definite on Ω × (Rn \ {0}). Therefore, Proposition 2.4.3 and Theorem 2.4.1
in [41] can be applied to our a-harmonic operator.

The existence and asserted regularity are proven by approximation of a by regular functions aǫ for
ǫ > 0 which satisfy a condition similar to (A) with slightly different bounds independent of ǫ, i.e,

0 < min{α; 1} ≤ 1 +
a′ǫ(s)s
aǫ(s)

≤ max{β; 1}, for all s > 0, (Aǫ)

and such that inf aǫ > c(ǫ) > 0; see pg. 197 in [6] for details, in particular (2.2) and (2.3) therein.
In a consequence we obtain a family of elliptic nondegenerate operators of corresponding Dirichlet
problems

{

div(aǫ(|∇uǫ|g)∇uǫ) = 0 in Ω,

uǫ|∂Ω = φ,
(DPǫ)

and of associated solutions uǫ ∈ C2,γ(Ω) ∩ C0(Ω̄), see [23, Theorem 12.5]. Instead of the family of
equations (2.4a)’ in [6] we have

∆uǫ + λ−2 a′ǫ(λ
−1|∇uǫ|0)

aǫ(λ−1|∇uǫ|0)λ−1|∇uǫ|0
∇uǫ∇2uǫ(∇uǫ)T − a′ǫ(λ

−1|∇uǫ|0)λ−1 |∇uǫ|0
aǫ(λ−1|∇uǫ|0)

〈∇λ
λ
,∇uǫ

〉

0

= 0.

(34)
In our setting the resulting aǫ depend additionally on z ∈ Ω through the presence of conformal factor
λ−1, cf. (32). However, since λ > 0 is assumed to be bounded and smooth the discussion in [6] stands
true in our case as well. In order to apply [23, Theorem 12.5] we verify by direct computations that
coefficients in (34) are defined and Hölder continuous. Moreover, the ratios of the eigenvalues of the
coefficients matrix are uniformly bounded giving the uniform ellipticity. Indeed, upon denoting these
eigenvalues by Λ1 ≤ Λ2, we find by (Aǫ) that

1 ≤ Λ2

Λ1
=

2 + a′ǫ(λ
−1|∇uǫ|0)λ−1|∇uǫ|0
aǫ(λ−1|∇uǫ|0) +

∣

∣

∣

a′ǫ(λ
−1|∇uǫ|0)λ−1|∇uǫ|0
aǫ(λ−1|∇uǫ|0)

∣

∣

∣

2 + a′ǫ(λ
−1|∇uǫ|0)λ−1|∇uǫ|0
aǫ(λ−1|∇uǫ|0) −

∣

∣

∣

a′ǫ(λ
−1|∇uǫ|0)λ−1|∇uǫ|0
aǫ(λ−1|∇uǫ|0)

∣

∣

∣

≤ max{β, α−1}. (35)

Finally, the growth condition (iii) in [23, Theorem 12.5] on the first order term expression for us reads

|f |
Λ1

≤

∣

∣

∣

a′ǫ(λ
−1|∇uǫ|0)λ−1|∇uǫ|0
aǫ(λ−1|∇uǫ|0)

∣

∣

∣ |∇λ|λ−1|∇uǫ|0
Λ1

≤ c(|λ|C1(Ω),min{α; 1},max{β; 1})|∇uǫ|0. (36)

Therefore, [23, Theorem 12.5] gives us the existence and desired regularity of uǫ. As in the proof of [6,

Proposition 2.1] we may now apply [23, Theorems 14.15 and 14.1] to get the uniform C0(Ω) and C1,γ
loc

estimates for uǫ. In particular [23, Theorems 14.15] gives us the equicontinuity of {uǫ}ǫ>0. Hence, the
Ascoli–Arzelà theorem can be applied and we may conclude the assertion of the lemma.

Applying [23, Theorems 14.15 and 14.1] reduces to checking that structure condition (14.9) in [23,
Chapter 14.1] holds in our case. Namely, we need to verify that

|p|Λ2 + |f(x)| ≤ µE(x, p) for all (x, p) ∈ Ω× R
n, (37)
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with |p| ≥ µ. Here E(x, p) := ∑

i,j=1,2 aǫij(x, p)pipj is the quadratic form defined by the coefficients
matrix of aǫ. By direct computations we find that

E(x, p) =
(

1 + λ−1 a
′
ǫ(λ

−1|p|)
aǫ(λ−1|p|)

p21
|p|

)

p21 + 2λ−1

(

a′ǫ(λ
−1|p|)

aǫ(λ−1|p|)
p1p2
|p|

)

p1p2 + λ−1

(

1 +
a′ǫ(λ

−1|p|)
aǫ(λ−1|p|)

p22
|p|

)

p22

= |p|2 + λ−1a
′
ǫ(λ

−1|p|)
aǫ(λ−1|p|) |p|

3 ≥ min{α, 1}|p|2.

On the other hand, by the estimate of |f | in (36) we have that |p|Λ2 + |f | ≤ |p|(Λ2 + c(|λ|C1(Ω), α, β))
(here c denotes a possibly different constant which also includes Λ1). Therefore, by setting µ :=
√

Λ2+c(|λ|
C1(Ω),α,β)

min{α,1} , we get that for |p| ≥ µ condition (37) holds true, justifying the use of [23, Theorems

14.15]. Hence the proof is completed. �

Proof of Proposition 3.1. First, suppose that a is upper bounded. By the discussion in the proof of
Lemma 3.2 we have that the solution of the Dirichlet problem (DP) for (32), and hence for (2), is
continuous in Ω. Let now U ⋐ V ⋐ Ω be smooth domains and consider the same ǫ-regularization
aǫ of a as in the proof of the previous lemma. For such a family of operators we solve the Dirichlet
problems (DPǫ) in V subject to continuous boundary data u|∂V . Then, by the discussion on pg.

198 in [6] the sequence (uǫ) is uniformly bounded in C1,α
loc (V ) and converges, up to a subsequence, in

C1(V ) ∩ C0(V̄ ) to the unique solution u to the Dirichlet problem on V . To each one of the uǫ we
apply Theorem 3.6 to deduce that ‖uǫ‖W 2,2(U) is bounded, independently of ǫ. Hence, a subsequence

of (uǫ) converges in W 2,2(U) to a limit function u0 ∈ W 2,2(U), and necessarily u0 = u. In particular

u ∈W 2,2
loc .

In order to prove the second assertion of the proposition, we first compute

∂x

(

aδǫ(λ
−1|∇uǫ|0)ux

)

= aδǫ(λ
−1|∇uǫ|0)

(

[

δAǫ
uǫ

2
x

|∇uǫ|20
+ 1

]

uǫxx + δAǫ
uǫxuǫy
|∇uǫ|20

uǫxy − δ
λx
λ
Aǫuǫx

)

,

∂x

(

aδǫ(λ
−1|∇uǫ|0)uy

)

= aδǫ(λ
−1|∇uǫ|0)

([

δAǫ

uǫ
2
y

|∇uǫ|0
+ 1

]

uǫxy + δAǫ
uǫxuǫy
|∇uǫ|20

uǫxx − δ
λx
λ
Aǫuǫy

)

,

where Aǫ =
a′ǫ(λ

−1|∇uǫ|0)λ−1|∇uǫ|0
aǫ(λ−1|∇uǫ|0) . Similar expressions hold for ∂y. Now, |Aǫ| is bounded independently

of ǫ, and for every ǫ small enough there exists a constant Ca such that 0 < aǫ ≤ Ca on (0, u∗], with
u∗ := supǫ ‖∇uǫ‖L∞(V ). Hence, the a

δ
ǫ(λ

−1|∇uǫ|0)∇uǫ are uniformly bounded in W 1,2(U,R2) and thus

one of its subsequences converges in W 1,2(U,R2) to a vector field X ∈W 1,2(U,R2).
In order to conclude the first part of the proof of (33), we claim that aδǫ(λ

−1|∇uǫ|0)∇uǫ converges
to aδ(λ−1|∇u|0)∇u point-wisely, so that X = aδ(λ−1|∇u|0)∇u. Indeed

∣

∣

∣aδǫ(λ
−1|∇uǫ|0)∇uǫ − aδ(λ−1|∇u|0)∇u

∣

∣

∣ ≤
∣

∣

∣aδǫ(λ
−1|∇uǫ|0)− aδ(λ−1|∇uǫ|0)

∣

∣

∣ |∇uǫ|

+
∣

∣

∣aδ(λ−1|∇uǫ|0)∇uǫ − aδ(λ−1|∇u|0)∇u
∣

∣

∣ .

The second term on the right-hand side converges to 0 since ∇uǫ → ∇u uniformly on U and
aδ(s)s = (a(s)s)δs1−δ is continuous on [0,∞) by assumption (A’). The first term on the right-hand side
converges to 0 since aδǫ → aǫ in C

1
loc(0,+∞) by the construction in [6], while [aδǫ(s) − aδ(s)] s ≤ 2Cδ

at
on (0, t].

Suppose now that a is not upper bounded in a neighborhood of 0. Then 1/a is. By mimicking
the stream function method for p-harmonic equation in the plane we will show that in such a case
assertion of the lemma holds as well, see [8, Chapter 16.1, Theorem 16.3.1] and [7].
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Let U ⋐ Ω be simply-connected. We define a function v : U → R as a solution of the equation

∇v = ⋆(a(|∇u|g)∇u).

Such a solution exists, as the vector field ⋆(a(|∇u|g)∇u) is irrotational in the simply connected set U ,
hence conservative. In local coordinates this corresponds to the following system of PDEs:

{

vx = −a(λ−1(z)|∇u(z)|0)uy
vy = a(λ−1(z)|∇u(z)|0)ux.

From this, we get |∇v|0 = a(λ−1(z)|∇u(z)|0)|∇u|0 and hence

|∇v|g = a(|∇u|g)|∇u|g. (38)

Define function F : (0,∞) → R+ as follows F (t) := a(t)t. Since,

F ′(t) = a

(

1 +
a′(t)t
a

)

,

we have that, by assumption (A), 0 < αa(t) ≤ F ′(t) ≤ βa(t) for all t > 0. Therefore, the inverse of F
exists and |∇u|g = F−1(|∇v|g). Moreover, observe that by (38) we have that |∇u|g = 0 if and only if
|∇v|g = 0, and so the sets of critical points for u and v are the same. We directly check that v satisfies
the following equation:

div

(

1

a(F−1(|∇v|g))
∇v
)

= 0. (39)

Define function b as follows b(t) := 1
a(F−1(t))

. It holds that b(t) > 0 for t > 0 and, moreover, b satisfies

assumption (A). Indeed, it holds that

b′(t) = − a′(F−1(t))

a(F−1(t))2
d

ds

(

1

F (s)

) ∣

∣

∣

∣

s=F−1(t)

= − a′(F−1(t))

a(F−1(t))3
1

1 + a′(s)s
a(s)

∣

∣

∣

∣

s=F−1(t)

.

Henceforth,

1 +
b′(t)t
b(t)

= 1− a′(s)s
a(s)

1

1 + a′(s)s
a(s)

=
1

1 + a′(s)s
a(s)

.

Therefore, b satisfies (A) with α′ = α−1 and β′ = β−1. Moreover, since by assumption 1/a is bounded
in a neighbourhood of 0, function a > 0 and satisfies (A’), we have that tb(t) → 0, as t → 0, giving
that b satisfies (A’). Furthermore, since a is unbounded in the neighbourhood of 0, then b is bounded

and Lemma 3.2 can be applied to b. In a consequence we get that b1−δ(|∇v|g)∇v ∈ W 1,2
loc (Ω) for v

solving (39). However, in the local coordinates we have that

b1−δ(|∇v|g)∇v =
1

a1−δ(F−1(|∇v|g))
⋆(a(|∇u|g)∇u) =

(

−aδ(λ−1(z)|∇u(z)|0)uy, aδ(λ−1(z)|∇u(z)|0)ux
)

.

This implies that also aδ(|∇u|g)∇u ∈ W 1,2
loc (Ω) even in case a is lower bounded away from 0 in a

neighborhood of 0, but not necessarily upper bounded. �

Example 6. Let a(s) = sp−2 for 1 < p < ∞, then F−1(t) = t
1

p−1 and a(F−1(|∇v|g)) = |∇v|
p−2
p−1
g .

Therefore, the conjugate equation of the p-harmonic one is q-harmonic for q = p
p−1 , as

div(|∇v|
2−p
p−1
g ∇v) = div(|∇v|

p
p−1

−2
g ∇v) = div(|∇v|q−2

g ∇v) = 0.
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Similarly, let a(s) = (1 + s2)−1/2, which corresponds to the minimal surface equation. Then F−1(t) =
√

t2

1−t2 and

div(b(|∇v|g)∇v) = div

(

1

a(F−1(|∇v|g))
∇v
)

= div





1
√

1− |∇v|2g



 ,

i.e., the maximal graph equation in Lorentzian spacetime.

3.1. Complex representation of a-harmonic equation on surfaces. Let us now pass to finding
the complex system of equations corresponding to (2). In order to complete this goal we will follow
the standard approach, see e.g. [46] for the setting of p-harmonic functions on surfaces and [6, Section
3] for the setting of planar a-harmonic functions.

Recall that the complex gradient of u can be defined in local coordinates as f := ux − iuy and the
associated operator is

F (z) := a
1
2

(

λ(z)−1|f(z)|
)

f(z). (40)

Since, in the distributional sense, it holds that uxy = uyx and F ∈W 1,2
loc by Proposition 3.1, we have

that

∂

∂y

(

F + F

a
1
2 (λ−1|f |)

)

= i
∂

∂x

(

F − F

a
1
2 (λ−1|f |)

)

, (41)

in the sense of distributions. Recall that ∂
∂z := 1

2(
∂
∂x−i ∂

∂y ) and
∂
∂z := 1

2(
∂
∂x+i

∂
∂y ). Using this notation

we rewrite (41) so that the following holds in the distributional sense:

∂

∂z

(

F

a
1
2 (λ−1|f |)

)

=
∂

∂z

(

F

a
1
2 (λ−1|f |)

)

.

Equivalently this reads

Fz − Fz =
(a1/2)z

a1/2
F − (a1/2)z

a1/2
F. (42)

Next, we express the above equation in terms of F and related expressions. Note that

λ−1|F | = a
1
2 (λ−1|f(z)|)λ−1|f(z)|. (43)

As above we find that the inverse function of A(t) = a
1
2 (t)t exists due to a satisfying assumption (A),

and thus λ−1|f(z)| = A−1(λ−1|F |). This implies that

a(λ−1|f(z)|) = a(A−1(λ−1|F |)).
Therefore, we may rewrite (42) as follows:

Fz − Fz =
(a

1
2 (A−1(λ−1|F |))z

a
1
2

F − (a
1
2 (A−1(λ−1|F |))z

a
1
2

F

=
1

2a

(

a′(A−1)
[

A−1
]′)
∣

∣

∣

λ−1|F |

{(

(λ(z)−1|F (z)|)
)

z
F −

(

(λ(z)−1|F (z)|)
)

z
F
}

=
1

4a

(

a′(A−1)
[

A−1
]′)
∣

∣

∣

λ−1|F |
λ−1|F |

{

Fz − Fz +
F

F̄
Fz −

F̄

F
Fz − 2

F

λ
λz + 2

F̄

λ
λz

}

. (44)

Upon denoting by B := 1
4a

(

a′(A−1)
[

A−1
]′
)

∣

∣

λ−1|F |λ
−1|F |, we solve the equation for Fz − Fz to get

Fz − Fz =
B

1−B

{

F

F̄
Fz −

F̄

F
Fz −

F

λ
λz +

F̄

λ
λz

}

. (45)
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Example 7. If a(s) = sp−2, then A(s) = a
1
2 (s)s = s

p
2 and by the direct calculations we find that

B
1−B = p−2

p+2 . Therefore, we retrieve the p-harmonic case in [46, Formula (2.6)].

On the other hand the a-harmonic equation can be written as follows:

∂

∂x

(

(F + F )a
1
2 (λ−1|f |)

)

+ i
∂

∂y

(

(F − F )a
1
2 (λ−1|f |)

)

= 0,

which, using the complex derivative, reads:

∂

∂z

(

Fa
1
2 (λ−1|f |)

)

+
∂

∂z

(

Fa
1
2 (λ−1|f |)

)

= 0.

By (43) and the discussion following it, we arrive at the equation

∂

∂z

(

F
λ−1|F |

A−1(λ−1|F |)

)

+
∂

∂z

(

F
λ−1|F |

A−1(λ−1|F |)

)

= 0. (46)

Upon direct differentiation equation (46) becomes

0 = (Fz + Fz)A
−1(λ−1|F |)λ−1|F |

+A−1(λ−1|F |)
[(

(λ(z)−1|F (z)|)
)

z
F +

(

(λ(z)−1|F (z)|)
)

z
F
]

− (A−1)′(λ−1|F |)λ−1|F |
[(

(λ(z)−1|F (z)|)
)

z
F +

(

(λ(z)−1|F (z)|)
)

z
F
]

= (Fz + Fz)A
−1(λ−1|F |)λ−1|F |

+
1

2

[

A−1(λ−1|F |) − (A−1)′(λ−1|F |)λ−1|F |
]

λ−1|F |
{

Fz + Fz +
F

F̄
Fz +

F̄

F
Fz − 2

F

λ
λz − 2

F̄

λ
λz

}

.

Similarly to (45), we solve the last equation for Fz + Fz and arrive at the following one

Fz + Fz = C

{

F

F̄
Fz +

F̄

F
Fz − 2

F

λ
λz − 2

F̄

λ
λz

}

, (47)

where

C :=
(A−1)′(λ−

1
2 |F |)λ− 1

2 |F | −A−1(λ−
1
2 |F |)

3A−1(λ−
1
2 |F |)− (A−1)′(λ−

1
2 |F |)λ− 1

2 |F |
.

We add up (45) and (47) to obtain the following equation:

Fz − a1Fz − a2Fz = −2a1F
λz
λ

− 2a2F
λz
λ
, (48)

with a1 :=
1
2 (C − B

1−B )FF and a2 :=
1
2(C + B

1−B )F
F
. It remains to prove that

‖a1‖L∞(Ω) + ‖a2‖L∞(Ω) < 1, (49)

which implies the uniform ellipticity of (48).

First, let A(s) = a
1
2 (s)s and notice that (A−1(t))′ = 1

A(s)′ at s = A−1(t), which gives that

(A−1(t))′ =
1

a
1
2 (s)

1
1
2
a′(s)s
a(s) + 1

.

Hence (s = A−1(t))

(A−1(t))′t
A−1(t)

=
1

a
1
2 (s)

1
1
2
a′(s)s
a(s) + 1

A(s)

s
=

1
1
2
a′(s)s
a(s) + 1

. (50)
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Setting D = D(s) = a′(s)s
a(s) , we have (A−1(t))′t

A−1(t)
= 1

1
2
D+1

, from which

B =
1

4

a′(A−1)

a(A−1)
A−1 1

1
2
a′(s)s
a(s) + 1

=
1

4
D

1
1
2D + 1

=
1

2

D

D + 2
.

Moreover, from (50),

C =

(A−1(t))′t
A−1(t)

− 1

3− (A−1(t))′t
A−1(t)

=

1
1
2
D+1

− 1

3− 1
1
2
D+1

=
−D

3D + 4
.

Hence,

B

1−B
=

D

D + 4
, C +

B

1−B
=

2D2

(3D + 4)(D + 4)
, C − B

1−B
= −4D

D + 2

(3D + 4)(D + 4)
.

Note that C+B/(1−B) > 0 as, by assumption (A), −1 < α−1 ≤ D ≤ β−1, while C−B/(1−B) > 0
if and only if D < 0. In particular
∣

∣

∣

∣

C +
B

1−B

∣

∣

∣

∣

+

∣

∣

∣

∣

C − B

1−B

∣

∣

∣

∣

=
2D2

(3D + 4)(D + 4)
− 4D

D + 2

(3D + 4)(D + 4)
=

−8D − 2D2

(3D + 4)(D + 4)
< 2

if −1 < D < 0, while
∣

∣

∣

∣

C +
B

1−B

∣

∣

∣

∣

+

∣

∣

∣

∣

C − B

1−B

∣

∣

∣

∣

=
2D2

(3D + 4)(D + 4)
+ 4D

D + 2

(3D + 4)(D + 4)
=

6D2 + 8D

(3D + 4)(D + 4)
< 2

if D ≥ 0. Thus, under the growth condition (A), the inequality (49) is proved and the uniform
ellipticity of (48) follows.

Remark 3.3. Since aδ(λ(z)−1|f(z)|)f is in W 1,2
loc for any δ ∈ [0, 1], we can repeat the argument above

for different values of the exponent. For instance, take δ = 1 and define G(z) := a
(

λ(z)−1|f(z)|
)

f(z).
Then (42) reads

Gz −Gz =
az
a
G− az

a
G. (51)

We define A(t) := a(t)t and repeat computations as in (44). The equation corresponding to (45) takes
the following form:

Gz −Gz =
B′

1−B′

{

G

Ḡ
Gz −

Ḡ

G
Gz −

G

λ
λz +

Ḡ

λ
λz

}

,

where

B′ :=
1

2a(A−1(w))

(

a′(A−1)
[

A−1
]′) ∣
∣

w
w, w := λ−1|G|.

Furthermore, we find that

(A−1(w))′ =
1

(a(s)s)′
=

1

a(s)

1

1 + a′(s)s
a(s)

,
(A−1(w))′w
(A−1(w))

=
1

1 + a′(s)s
a(s)

.

From this B′ = 1
2D

1
D+1 , where D as above. Hence

∣

∣

∣

∣

B′

1−B′

∣

∣

∣

∣

=

∣

∣

∣

∣

D

D + 2

∣

∣

∣

∣

≤ min{|α− 1|, |β − 1|}
α+ 1

.

This is all that we need, because now (47) reads Gz +Gz = 0 and C = 0. Therefore, the counterpart
of (48) reads:

Gz − a1Gz − a2Fz = −a1G
λz
λ

− a2G
λz
λ
.
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with a1 = − B′

2(1−B′) and a2 = −a1. One directly checks that the ellipticity condition | B′

1−B′ | < 1 for

a = sp−2 reads | B′

1−B′ | = |p−2|
p < 1 which is exactly the formula after (2.9) on pg. 6 in [46] for a = p−2.

Notice, that on the contrary to the planar case (i.e. λ = const), we now cannot conclude that F is
a quasiregular map. Nevertheless, by the representation theorem on pg. 259 in [12] we may write

F (z) = φ(w(z)) exp ψ, (52)

where φ is holomorphic, w is a Hölder continuous homeomorphism in W 1,2+ǫ
loc for some ǫ > 0 and

ψ is Hölder continuous. The Sobolev regularity of w follows from the Gehring’s lemma on higher
integrability of quasiconformal mappings, see the proof of the representation formula on pg. 260 in
[12]. In particular, zeros of F are governed by zeros of φ, and hence by complex analysis critical points
of a-harmonic functions u are isolated and form a discrete set.

Moreover, by the discussion in [12, Chapter 6.4], the representation formula (52) implies the unique
continuation property on smooth surfaces for a-harmonic equations in subject, in particular for the
p-harmonic equation. This result is well known in the plane. In the p-harmonic case, the Riemannian
counterpart is a direct consequence of [46]. However, according to our best knowledge, the general
Riemannian result has not been observed in the literature so far, and therefore, we formulate it here
below.

Proposition 3.4. Let Ω ⊂ M be a bounded connected open set and assume that ∂Ω satisfies the
interior and exterior ball condition. Let further φ ∈ C2(Ω) and u be the unique weak solution of the
following Dirichlet problem:

{

div(a(|∇u|g)∇u) = 0 in Ω,

u|∂Ω = φ.

Then, u satisfies the unique continuation property, provided that function a satisfies conditions (A),
(A’) and (A”).

Notice that if u in the above proposition is a priori C2, then we only need condition (A) to hold.
Finally, we are in a position to formulate and prove a key observation allowing us to study the

isoperimetric inequality, namely that the gradient of an a-harmonic function in subject does not
vanish. Therefore, we formulate this observation as a separate result, see Lemma 3.5 below. This
lemma generalizes similar observation for harmonic functions on surfaces, see [1, Lemma 2.9], for a-
harmonic functions in the plane, see [5, Theorem 2.1] and also [1, Section 2] for further references.
The proof of Lemma 3.5 is strictly following its harmonic counterpart in [1, Lemma 2.9]. Nevertheless,
for the convenience of readers we recall the full proof, addressing the a-harmonic modifications.

Lemma 3.5. Let Ω be a C1,α-topological annular domain in a 2-dimensional Riemannian manifold
(M2, g). Let t1, t2 ∈ R be such that t1 < t2 and let us consider a continuous up to the boundary
a-harmonic solution u of the Dirichlet problem (DP) in Ω under assumptions (A), (A’) and (A”).
Then, it holds that ∇u 6= 0 on Ω.

Proof. In order to show the assertion of the lemma let us suppose on the contrary that there exists
x0 ∈ Ω such that ∇u(x0) = 0. Consider the corresponding level curve γ = {x ∈ Ω : u(x) = u(x0)}.

Claim: There exists at least two simple closed curves γ′i ⊂ γ, i = 1, 2.
Proof of the claim: We introduce isothermal coordinates (x, y) induced by a conformal chart φ :

Ω → R
2. The existence of such global isothermal coordinate systems on annular domain can be

justified as in [1, Lemma 3.6]. Since the a-harmonic equation (2) in such coordinates has the form (32)
we associate with it the first order complex equation (48) satisfied by the complex function F defined

in (40). Under assumptions (A), (A’) and (A”), F is in W 1,2
loc due to Proposition 3.1, while (48) turns

out to be uniformly elliptic under condition (A). Since φ(x0) remains a critical point for u◦φ−1, we see
by the form of solution (52) and by the theory of planar holomorphic functions that the level curve in
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the neighbourhood of φ(x0) forms a finite family consisting of at least two arcs intersecting at φ(x0).
Thus, for points on the level curve γ we obtain, via φ−1, that there are at least two curves passing
through x0 contained in γ. If any of those branches would intersect ∂Ω, then by the assumption of
continuity of u up to the boundary, it would hold that u(x0) = t1 (or u(x0) = t2), hence the maximum
of u (or, respectively, minimum of u) would be attained in the interior of Ω, forcing u = const by the
strong maximum (respectively, minimum) principle, see [41, Theorem 8.5.1], whose assumption (A2)
is implied by our assumptions (A) and (A’) (cf. the paragraph in Introduction following formulations
of those two assumptions). This is impossible, since t1 6= t2.

Next, we rule out the possibility that the level curve γ terminates at a point inside Ω. Indeed,
suppose that there exists y0 ∈ γ ∩ Ω, where γ terminates, and consider two cases.

If ∇u(y0) 6= 0, then the implicit function theorem implies that γ can not terminate inside Ω, since
it must be at least C1 in a neighbourhood of y0.

If ∇u(y0) = 0, then by the discussion above, γ would branch at y0, contradicting assumption that
it terminates there.

To summarize, since γ does not intersect ∂Ω and does not terminate in Ω, it must contain at least
two simple closed curves, denoted γ′i, i = 1, 2, obtained by gluing regular curves (contained in γ). This
ends the proof of the claim.

Since none of the curves γ′1 and γ′2 touches the boundary of Ω, a topological argument together
with the maximum principle allow us to infer that at least one of them bounds a domain Ω′ ⋐ Ω.
Therefore, u is constant in Ω′, and thus by the unique continuation property, cf. Proposition 3.4, u is
constant in Ω, contradicting that t1 < t2. Hence, we conclude that ∇u 6= 0 in Ω. �

Example 8. We present a class of Riccati-type equations which are covered by the above discussion
and, hence, have their sets of critical points isolated and discrete.

Let us consider the solution on the surface M of the following equation with function a as above
and a real-valued function b defined on a domain Ω ⊂M such that b ∈ L∞(Ω):

div(a(|∇u|g)∇u) = b(x)|∇u|qg, 1 ≤ q <∞.

Observe that (45) holds for this equation as well, since it corresponds to equality of mixed second
order derivatives of u in the distributional sense. Furthermore, by direct computations we obtain that
(47) holds with addtional expression

γ =
2b(z)[A−1(λ−

1
2 |F |]q)

3A−1(λ−
1
2 |F |)λ− 1

2 |F | − (A−1)′(λ−
1
2 |F |)λ−1|F |2

.

In a consequence (48) takes the following modified form

Fz − a1Fz − a2Fz = −a1F
λz
λ

− a2F
λz
λ

+
γ

2
.

In order to apply the representation theorem on pg. 259 in [12] we need to have bounded γ = γ(z),
that is independent of F , cf. formulas (8) and (9) on pg. 257 in [12]. If a(s) = sp−2, then by

computations similar to the one in Example 3 above, we have that for A(s) = a
1
2 (s)s the following

holds

γ = 2b(z)
[A−1(λ−

1
2 |F |]q−1)

λ−
1
2 |F |

(

3− (A−1)′(λ−
1
2 |F |)λ−

1
2 |F |

A−1(λ−
1
2 |F |)

) = 2b(z)
sq−1

a
1
2 (λ−

1
2 |f |)λ− 1

2 |f |
(

3− 1
1
2

a′(s)s
a(s)

+1

)

=
2p

3p− 2
b(z)sq−1− p

2 =
2p

3p − 2
b(z),
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provided that q = 1 + p
2 . Since b is bounded, then so is γ and we can apply the above discussion also

to equations

div(|∇u|p−2
g ∇u) = b(x)|∇u|1+

p
2

g .

The above computations open possibility to establish the no-critical points lemma in the setting of
Riccati-type equations on surfaces. Moreover, the isoperimetric inequalities for such equations can
also be investigated upon establishing formulas for L′ and L′′. However, we leave this task to the
future projects.

Appendix A

In this Appendix we adapt to our setting the regularity theory due to Talenti [47], see also [36].
Unlike the original approach, we restrict to the two dimensional case, which permits us to write a
quite short and almost self-contained proof.

Theorem 3.6. Let v ∈ C2(Ω) be a solution to

div(a(|∇v|g)∇u) = 0

in a domain Ω ⊂M2, where a ∈ C1(0,∞) is a positive function satisfying (A) and inf a(s) > 0. Then,
for all C0-smooth domains U ⋐ V ⋐ Ω it holds

‖v‖W 2,2(U) ≤ C,

for some constant C > 0 which depends on U, V, ‖v‖W 1,2(V ), constants α, β in condition (A) and

‖λ‖C1(V ), the norm of the conformal factor given by the isothermal coordinates on M2.

We remark that condition ensuring inf a(s) > 0 states that the equation in subject is nondegenerate
elliptic.

Set A(s) = a′(s)s
a(s) and introduce the operator L acting on C2 functions defined by

Lv = ∆v +A(λ−1|∇v|0)
∇v∇2v(∇v)T

|∇v|20
=

2
∑

i,j=1

aij(v)vij ,

where aij(v) = δij +A(λ−1|∇v|0) vivj
v21+v22

. Then, v satisfies

Lv = A(λ−1|∇v|0)〈
∇λ
λ
,∇v〉0.

We need the following result (see [47, Theorem 2]).

Proposition 3.7. Let w ∈ C2(V ) be a function such that supp(w) ⋐ V . Then
∫

V

2
∑

i,j=1

w2
ij ≤ c

∫

V
(

2
∑

i,j=1

aij(v)wij)
2,

for a constant c > 0 which depends on α, β.

Proof. Without loss of generality, by approximation we can assume that w ∈ C3(V ). Fix x ∈ V .
Consider the real symmetric 2 × 2 matrix a = (aij(v)) at x. Note that tr a = 2 + A and tr a2 =
∑2

i,j=1 a
2
ij = 2 + 2A + A2. As x and w are fixed, in what follows we omit the argument of A =

A(λ−1(x)|∇w|0). Choose constants c1, c2 such that

c1 >
1 + β2

2α
≥ (A+ 1)2 + 1

2(1 +A)
=

2 + 2A +A2

2 + 2A =
tr a2

(tr a)2 − tr a2
(53)

c2 =
c21 − 1

2c1α− 1− β2
≥ c21 − 1

c1((tr a)2 − tr a2)− tr a2
.
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The last inequality is due to the fact that denumerator of the right-hand side can be written as
2c1(1+A)−1− (1+A)2 and it is thus positive when 1+A ∈ [α, β] due to the choice of c1. We observe
that the first inequality (53) corresponds to what is known in the literature as Cordes’ condition, cf.
formula (1.7) in [36]. Indeed, in our notation and for n = 2 the Cordes’ condition reads:

tr a2 ≤ (1 + δ)−1(tr a)2

for some δ ∈ (0, 1], that is,
1

δ
≥ tr a2

(tr a)2 − tr a2
.

This latter is verified by the choice δ = c−1
1 < 2α

1+β2 .

Next, we need the following algebraic observation.

Claim:
2
∑

i,j=1

w2
ij + 2c1 detHessw ≤ c2(

2
∑

i,j=1

aij(v)wij)
2. (54)

Proof: Since p := Hessw is a real symmetric matrix, it holds that p = m−1km for some orthogonal

matrix m and some diagonal matrix k =

(

k1 0
0 k2

)

. Define b = m−1am. We have
∑2

i,j=1w
2
ij =

tr p2 = tr k2, detHessw = det p = det k and

2
∑

i,j=1

aij(v)wij = tr(ap) = tr(bk) = b11k1 + b22k2.

Hence (54) is implied by

k21 + k22 + 2c1k1k2 ≤ c2(b11k1 + b22k2)
2, for all k1, k2 ∈ R.

Up to rescaling (k1, k2) it is enough to prove that

k21 + k22 + 2c1k1k2 ≤ c2, for all k1, k2 ∈ R : b11k1 + b22k2 = 1.

Note that k21 + k
2
2 +2c1k1k2 = c2 is a hyperbola whose symmetry axis is the line k1 = k2. Accordingly,

it is enough to prove that this hyperbola does not intersect the line b11k1 + b22k2 = 1, i.e. that the
system

{

k21 + k22 + 2c1k1k2 = c2

b11k1 + b22k2 = 1

admits no solutions. Upon computing k1 from the second equation and substituting it in the first one,
yields the following second order equation in k2

(b222 + b211 − 2c1b11b22)k
2
2 + 2(c1b11 − b22)k2 + (1− c2b

2
11) = 0

whose discriminant ∆ satisfies
∆

4b211
= b−2

11

[

(c1b11 − b22)
2 − (b222 + b211 − 2c1b11b22)(1 − c2b

2
11)
]

= c21 − 1− c2(2c1b11b22 − b211 − b222)

= c21 − 1− c2
[

c1((b11 + b22)
2 − (b211 + b222))− (b211 + b222)

]

< c21 − 1− c2[c1((tr a)
2 − tr a2)− tr a2] < 0,

as tr a = tr b and tr a2 = tr b2 =
∑2

i,j=1 b
2
ij ≥ b211 + b222. Thus, the proof of the claim is complete.

An explicit computation shows that for any C3 function w,

detHessw =
1

2
div(∆w∇w)− 1

4
∆|∇w|2.



25

By the assumptions of Proposition 3.7, w is zero in a neighborhood of ∂V , and so the Stokes theorem
implies

∫

V detHessw = 0. Therefore, we conclude the proof of Proposition 3.7 by integrating (54)
over V . �

Once we have Proposition 3.7, the proof ot Theorem 3.6 can be done by mimicking the proof of
Theorem 9.11 in [23].

Proof of Theorem 3.6. Let ϕ ∈ C∞
c (Ω) such that ϕ ≡ 1 on U and suppϕ ⋐ V . Furthermore, let

|∇φ| ≤ c
dist(∂U,∂V ) and let similar growth condition hold for |∇2φ|. By Proposition 3.7 applied to ϕv,

we obtain that
∫

U

2
∑

i,j=1

v2ij ≤
∫

V

2
∑

i,j=1

(ϕv)2ij ≤ c

∫

V





2
∑

i,j=1

aij(v)(ϕv)ij





2

. (55)

We compute




2
∑

i,j=1

aij(v)(ϕv)ij





2

=





2
∑

i,j=1

aij(v)ϕijv + 2
2
∑

i,j=1

aij(v)ϕivj + ϕLv





2

(56)

≤ 3
∑

ij

(

‖aij(v)‖2L∞(V )‖ϕij‖2L∞(V )v
2 + ‖aij(v)‖2L∞(V )‖ϕi‖2L∞(V )v

2
j

)

+
3

4
‖ϕ‖2L∞(V )‖A(λ−

1
2 |∇v|0)‖2L∞(V )‖∇ log λ‖L∞(V )|∇v|2.

Since ‖aij(v)‖L∞(V ) and ‖A(λ−
1
2 |∇v|0)‖L∞(V ) can be upper bounded in terms of α and β and ‖ϕ‖C2(V )

can be estimated in terms of U and V , inserting (56) into (55) concludes the proof.
�
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[4] A. L. Albujer and L. J. Aĺıas, Calabi–Bernstein results for maximal surfaces in Lorentzian product spaces. J.
Geom. Phys. 59(5) (2009), 620–631.

[5] G. Alessandrini, Isoperimetric inequalities for the length of level lines of solutions of quasilinear capacity problems
in the plane, Z. Angew. Math. Phys. 40(6) (1989), 920–924.

[6] G. Alessandrini, D. Lupo, E. Rosset, Local behavior and geometric properties of solutions to degenerate quasi-
linear elliptic equations in the plane, Appl. Anal. 50(3-4) (1993), 191–215.

[7] G. Aronsson, P. Lindqvist, On p-harmonic functions in the plane and their stream functions, J. Differential
Equations 74(1) (1988), 157–178.

[8] K. Astala, T. Iwaniec, G. Martin, Elliptic partial differential equations and quasiconformal mappings in the
plane, Princeton Mathematical Series, vol. 48, Princeton University Press, Princeton, NJ, 2009

[9] R. Bartnik and L. Simon, Spacelike Hypersurfaces with Prescribed Boundary Values and Mean Curvature. Com-
mun. Math. Phys. 87, (1982) 131-152

[10] L. Benatti, M. Fogagnolo, L. Mazzieri, Minkowski inequality on complete Riemannian manifolds with non-
negative Ricci curvature. arXiv:2101:06063. Accepted by Mathematische Annalen.

[11] G. P. Bessa and J. F. Montenegro, Mean time exit and isoperimetric inequalities for minimal submanifolds of
N × R. Bull. Lond. Math. Soc. 41 (2009), no. 2, 242–252.

[12] L. Bers, F. John, M. Schechter, Partial differential equations. With supplements by Lars G̊arding and A. N.
Milgram. With a preface by A. S. Householder. Reprint of the 1964 original. Lectures in Applied Mathematics, 3A.
American Mathematical Society, Providence, R.I., 1979. xiii+343 pp.

[13] D. Bonheure, P. d’Avenia, A. Pomponio, On the electrostatic Born-Infeld equation with extended charges
Comm. Math. Phys. 346 (2016), no. 3, 877–906.



26

[14] E. Calabi, Examples of Bernstein problems for some nonlinear equations. 1970 Global Analysis (Proc. Sympos.
Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) pp. 223–230 Amer. Math. Soc., Providence, R.I.

[15] J.-B. Casteras, I. Holopainen and J. Ripoll, Asymptotic Dirichlet problem for A-harmonic and minimal graph
equations in Cartan-Hadamard manifolds. Comm. Anal. Geom. 27 (2019), no. 4, 809–855.

[16] S.Y. Cheng and S.T. Yau, Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces. Ann. of Math. (2)
104 (1976), no. 3, 407–419.

[17] A. Cianchi, V. Maz’ya, Second-order two-sided estimates in nonlinear elliptic problems, Arch. Ration. Mech.
Anal. 229(2) (2018), 569–599.

[18] T.H. Colding, W.P. Minicozzi, A course in minimal surfaces. Graduate Studies in Mathematics, 121, American
Mathematical Society, Providence, RI, 2011.

[19] P. Collin and H. Rosenberg, Construction of harmonic diffeomorphisms and minimal graphs. Ann. of Math.
(2) 172 (2010), no. 3, 1879–1906.

[20] E. Duse, Conformal Structure of Autonomous Leray-Lions Equations in the Plane and Linearisation by Hodograph
Transform, arXiv:2201.11721.

[21] M. Fogagnolo, L. Mazzieri, A. Pinamonti, Geometric aspects of p-capacitary potentials. Ann. Inst. H. Poincaré
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