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Abstract
Many natural shapes have most of their characterizing features concentrated over a few regions in space. For example, humans
and animals have distinctive head shapes, while inorganic objects like chairs and airplanes are made of well-localized func-
tional parts with specific geometric features. Often, these features are strongly correlated – a modification of facial traits in
a quadruped should induce changes to the body structure. However, in shape modelling applications, these types of edits are
among the hardest ones; they require high precision, but also a global awareness of the entire shape. Even in the deep learning
era, obtaining manipulable representations that satisfy such requirements is an open problem posing significant constraints.
In this work, we address this problem by defining a data-driven model upon a family of linear operators (variants of the mesh
Laplacian), whose spectra capture global and local geometric properties of the shape at hand. Modifications to these spectra
are translated to semantically valid deformations of the corresponding surface. By explicitly decoupling the global from the
local surface features, our pipeline allows to perform local edits while simultaneously maintaining a global stylistic coherence.
We empirically demonstrate how our learning-based model generalizes to shape representations not seen at training time, and
we systematically analyze different choices of local operators over diverse shape categories.

CCS Concepts
• Computing methodologies → Shape analysis; Shape representations;

1. Introduction

Generative modeling of 3D shapes is a fascinating problem that
unifies geometry and statistics at their finest. The interest is both
theoretical and practical; we aim to better understand the rules ly-
ing “under the surface” and, as a direct consequence, to solve real-
world problems like automatic content generation, 3D shape re-
construction, and body tracking [CRXZ20, EST∗20], among many
others. This problem is as compelling as it is challenging, and the
research in the field has a long history. For several decades, many
linear statistical approaches have been proposed [RDP99,LMR∗15,
RTB17], until deep learning methods took the stage, unleashing
powerful non-linear methods [CRXZ20]. However, even if the re-
sults are getting better every day, many underlying properties re-
main mysterious, hardly interpretable and controllable.

Inspired by recent work in spectral geometry processing, with
this paper we propose a new shape modelling paradigm that ad-
dresses the following question: How should the global geometry
of a shape be changed, to make it coherent with user-defined local
edits that modify its semantics?

† Equal contribution

⊕
=

Figure 1: An example of semantic control provided by our method.
By combining a global spectrum (in blue) with a local spectrum (in
red) of two shapes with different discretizations, we generate a new
shape (on the right) possessing the global characteristics of the
blue shape and the local features of the red one.

Instead of attempting to rigorously define a geometrical notion
of ‘coherence’, which is ultimately subjective, we propose to learn
this concept from examples, namely, by finding latent correlations
between locally and globally supported geometrical features on a
collection of representative shapes. Technically, we achieve this
by learning a sum operation between the spectra of standard and
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localized Laplacians, followed by an inverse learnable solver that
recovers a 3D embedding from the combined spectrum. Operating
with spectra endows our pipeline with invariance to near-isometries
by construction, as well as robustness to mesh discretization, and
makes it applicable to any shape representation that admits the def-
inition of a Laplace operator (e.g., point clouds).

We position our work within a recent line of approaches that
emphasize the practical potential of using spectra as a rich, albeit
compact representation of the shape geometry [CPR∗19, RTO∗19,
MRC∗20, RPC∗21, MRC∗21]. Differently from these approaches,
which focus on applications such as shape correspondence, region
detection, style transfer and adversarial attacks, here we regard the
spectra as manipulable representations. Further, instead of operat-
ing with the standard Laplacian eigenvalues, we demonstrate for
the first time how the combination of multiple spectra from dif-
ferent operators can lead to a practical benefit in shape modelling
applications.

While working with multiple spectra at once makes the shape
recovery step more challenging (since the network must interpret
them all in one shot), we show that mixing spectra also improves
the reconstruction quality, as well as generalizing more easily to
unseen shapes. In the example of Fig. 1, we combine the Laplacian
eigenvalues of the blue shape with the eigenvalues of a Laplace
operator localized on the red region (head) of the shape in the mid-
dle, generating a new shape that globally reflects the features of
the former (height and robustness), but which is coherent with the
semantics of the latter (physiological gender). As shown in the ex-
ample, our method can deal with shapes that do not share the same
connectivity or pose. As a final point, we show that this statistical
correlation between local spectra and geometry is so strong that it
holds even on unorganized point clouds, i.e., with noisy spectra and
without known correspondence across the training data.

To summarize, our contribution is threefold:

1. We address the task of enforcing global semantic consistency of
3D geometry, when this undergoes local user edits. We do this in
a shape-from-spectrum setup, by proposing a generative model
from multiple spectra. The combination of global and local in-
formation is a novelty of our work, showing that this represen-
tation is capable of providing not only better reconstruction, but
also new application possibilities;

2. We propose a decoder-only architecture that directly connects
the spectrum to the 3D geometry. We show that this simple ap-
proach outperforms previous more sophisticated methods, it is
more interpretable, and provides new insights on inverse spec-
tral geometric problems;

3. We propose a new dataset designed for analyzing inverse spec-
tral methods, together with new error measures, establishing a
sound protocol for evaluating the performance on this task.

Code and data are available online†.

† https://github.com/Marco-Peg/
Localized-Shape-Modelling-with-Global-Coherence

2. Related work

Generative models. From a technical perspective, our method can
be classified as a generative model due to its ability to gener-
ate new shapes by sampling a learned parametric space. In the
realm of 3D shapes, existing generative models differ depending
on the final application, and on the chosen representation for the
3D geometry. Popular representations include voxels [WZX∗16],
triangle meshes [RBSB18, TTZ∗20, GFK∗18], implicit functions
[BSTPM20, CYAE∗20], and point clouds [QSMG17, ADMG18].
While each representation requires a specific architecture, shapes
that undergo non-rigid deformations, and in particular the class of
human bodies, have received increasing attention in the recent lit-
erature [XBZ∗20, BSTPM20, JZCZ20, JSS18].

While most of these works focus on reconstruction quality, only
a few have investigated ways to inject semantics in the genera-
tion process, in a controllable way. [AATJD19] proposed an au-
toencoder with a disentangled latent space, enabling a separate
control of intrinsic and extrinsic deformations; [CNH∗20] showed
that plausibility of the generated shapes can be improved by pro-
moting metric preservation in the loss function; [ZBPM20] pro-
posed an unsupervised technique to disentangle shape and pose
in the latent space representation; [CKF∗21] encoded geomet-
ric details as a style property that conditions the refinement of
a low-resolution coarse voxel shape through a generative adver-
sarial network (GAN). Other related works addressed the gener-
ation of rigid composite-objects [LHW∗19, GGC∗20, WZX∗20,
MGY∗19, YCC∗20] exploiting hierarchical neural network ar-
chitectures or probabilistic mixture models to manipulate shape
parts [ADMG18, HHGCO20, LZZ∗21].

Shape from spectrum. Recently, the Laplacian eigenvalues have
been used as a compact representation to recover and manipulate
3D geometry. According to a physical interpretation, the eigenfunc-
tions of the Laplace operator on a surface relate to the evolution of
waves over it, and the associated eigenvalues are the frequencies of
such waves. These are determined uniquely by the intrinsic geom-
etry of the shape, and are fully invariant to isometric deformations.
However, the inverse problem (i.e., determining the intrinsic geom-
etry from a set of Laplacian eigenvalues) has been an open question
for a long time [Kac66], with the negative result of Gordon and col-
leagues [GWW92] posing a theoretical tombstone to the problem.

The vision community has recently rediscovered interest in this
problem from a practical perspective, with [CPR∗19, RTO∗19]
showing that this inverse problem can be solved through a com-
plex optimization. The recent work [MRC∗20], and its exten-
sion [MRC∗21], replace the costly optimization with a data-driven
framework, where a latent encoding is connected with the Lapla-
cian spectrum via trainable maps. At test time, the network can
instantaneously recover a shape from its spectrum. While we con-
sider these works the closest to ours by their data-driven nature,
the authors of [MRC∗20, MRC∗21] limit their analysis to the stan-
dard Laplacian, without investigating localized operators such as
those studied in [MRCB18, CSBK20]. Importantly, the methods
of [MRC∗20,MRC∗21] address the generation problem by design-
ing a network that is hard to interpret, without providing the user
with a way to exert control on the desired output.
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Our method. With this paper, we propose a generative model for
3D shapes that makes full use of the spectrum as an informative,
compact, and manipulable representation. Our method is straight-
forward as it relies upon a simple decoder-only network, and con-
siders a combination of different spectra. The only loss we use is a
standard reconstruction loss, without any ad-hoc regularizer. This
way, our network is encouraged to discover by itself the hidden
mechanism that links a (combined) spectrum to the correspond-
ing 3D shape. Hence, the statistical relations within an object class
emerge, providing in turn a better control of the generative process.

3. Background and notation

Smooth setting. In this setting, a 3D shape is modelled as a
compact and connected Riemannian surface (2-dimensional man-
ifold) X embedded in R3. Each surface X is equipped with a
Laplace-Beltrami operator (LBO) ∆X , which generalizes the clas-
sical Laplacian operator to non-Euclidean domains. From now on,
we will refer to this operator as Laplacian to streamline our nota-
tion. The Laplacian ∆X is a positive semi-definite operator. From
its eigendecomposition we obtain the eigenvalues {λℓ} with λℓ ∈
R, 0 ≤ λ1 ≤ λ2 ≤ . . .≤ λ∞, and associated orthogonal eigenfunc-
tions {φℓ}. When X is a manifold with boundary ∂X , we consider
homogeneous Dirichlet boundary conditions as done in [RTO∗19]:

φℓ(x) = 0, ∀x ∈ ∂X . (1)

The ordered discrete sequence of Laplacian eigenvalues of X is
usually referred to as the spectrum of X . When X is a 1D Euclidean
domain, the eigenvalues coincide with the squares of frequencies of
Fourier basis functions. Following this analogy, we only consider a
truncated spectrum corresponding to the k eigenvalues with small-
est absolute values as a band-limited representation. In this paper,
we test values of k in the range from 10 to 80.

X

R
∂R

In this work, we also consider connected
submanifolds R⊂X with boundary ∂R (see
inset figure for an illustration). The region R
inherits the metric from the complete man-
ifold X , and is similarly equipped with a
Laplacian operator ∆R.

Discrete setting. We discretize smooth surfaces, submanifolds,
and their Laplacians in two alternative ways: (i) Triangle meshes:
M = (X ,F) with n vertices X and m triangular faces F . Sub-
manifolds are constructed as subsets of vertices and faces, with
their local connectivity preserved. We adopt the cotangent formula
to discretize the Laplacian [PP93]. (ii) Unorganized point clouds:
P = (X). Submanifolds are simply subsets of the vertices. We com-
pute the Laplacian using the implementation of [SC20]‡. In both
representations, the matrix X ∈ Rn×3 encodes vertex coordinates.

4. Method

This section outlines the proposed method, providing details about
its implementation and theoretical insights. A visualization of our
pipeline is given in Fig. 2.

‡ https://github.com/nmwsharp/robust-laplacians-py
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Figure 2: The proposed model. A neural network Π is trained to re-
construct 3D shapes from spectral encodings, obtained as the sim-
ple concatenation of a global and a local spectral encoding. Note
the lack of a learnable block between shapes and spectral encod-
ing, which differentiates our model from a classical autoencoder
architecture. Therefore, Π directly maps spectral encodings to 3D
coordinates, without ever seeing the input region.

Overall intuition. From a technical perspective, the main idea be-
hind our method is to learn a map that directly translates eigenval-
ues to 3D coordinates. However, the eigenvalues are a mixture of
a global spectrum (computed from the classical Laplacian) and a
local spectrum (computed from a Laplace-like operator localized
on a region); crucially, the learnable map does not know the region
used for computing the local spectrum. This has two important con-
sequences:

• Since the map is required to reconstruct the entire shape as ac-
curately as possible, it must learn on its own that the local spec-
trum encodes geometric details of some surface region, while the
global spectrum encodes the overall geometry.

• By seeing global and local spectra jointly, the network learns
how the two interact; namely, it learns to associate changes in
the local spectrum with changes in the global one.

In other words, the network learns (i) correlations between eigen-
values and geometric features, and (ii) correlations between global
and local spectra.

Both properties have a practical impact. Property (i) allows us to
use the eigenvalues directly as a parametric encoding of 3D shapes,
without the need to learn a new representation as done with the
autoencoder paradigm [MRC∗20]. For this reason, we can adopt
a simple decoder-only architecture. Further, eigenvalues are inter-
pretable due to their analogy with Fourier analysis, follow a natu-
ral ordering, are easy to compute, and are robust to discretization.
Property (ii), on the other hand, allows to recover statistical corre-
lations between local details and global shapes. This enables new
paradigms for shape modeling, as shown in Figure 1 and several
other examples in Section 5.

4.1. Proposed model

Given an input shape X , our pipeline involves the computation of a
local spectrum on a given region R⊂X . Here we detail the selec-
tion criteria for the region, and the choice of a localized operator.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

15

 14678659, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14599 by C

ochraneItalia, W
iley O

nline Library on [17/10/2022]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://github.com/nmwsharp/robust-laplacians-py


M. Pegoraro & al. / Localized Shape Modelling with Global Coherence

0

160

0

3k

X ,R ΛX ,ΛR

0

160

0

3k

dΛX ,dΛR

Figure 3: Two examples of the computation of the proposed spec-
tral encoding. Left: Starting shapes and regions (in red); Middle:
Global and local spectra, in blue and red respectively; Right: Bar
plots representing the differences of Eq. (4), which compose our
encoding.

Local region. The region is selected to be informative for the fi-
nal task, and the choice should be coherent across all shapes in the
training set. For example, if the application expects the user to mod-
ify facial features, then the human head should be included as a re-
gion of interest in the training data. Well-established segmentation
approaches may be used to select R automatically, e.g. for man-
made objects such as airplanes [KAMC,SACO20,DMB∗17,KO19]
or for organic shapes such as humans (e.g., see the head extractor
proposed in [MMRC20]).

Localized operator. Once a region R ⊂ X has been identified,
we compute a localized operator over it and, in turn, its truncated
spectrum ΛR. Perhaps the most natural choice is to disconnect the
region from the rest of the shape, and compute the standard Lapla-
cian on the resulting surface with boundary conditions; we refer
to this choice as PAT. Other possibilities include the definition of
a Hamiltonian operator with a sharp potential [CSBK20] (HAM),
and the localized manifold harmonics [MRCB18], which yields a
Hamiltonian-like operator whose eigenfunctions are orthogonal to
the Laplacian eigenbasis (LMH). In Section 6 we compare these
choices experimentally.

Spectral encoding. Given the (truncated) global spectrum ΛX ∈
Rk, sorted non-decreasingly, we first compute the differences:

dλℓ = λℓ−λℓ−1, ∀ℓ ∈ 2, . . . ,k , (2)

where dλℓ ≥ 0, ∀ℓ, and store them in a vector:

dΛX = [dλ2, . . . ,dλk] ∈ Rk−1 . (3)

We do the same for the local spectrum ΛR ∈Rh, obtaining dΛR ∈
Rh−1. Finally, we simply concatenate the two vectors dΛX and
dΛR to generate our spectral encoding:

dΛ = [dΛX ; dΛR] ∈ R(k−1)+(h−1) . (4)

An illustration of this computation is depicted in Fig. 3, and is rep-
resented in green in the middle of Fig. 2. This encoding exploits the
natural hierarchy carried by each set of eigenvalues. We observed
that using differences between subsequent eigenvalues, in place of

their absolute values, has a regularizing effect that helps training
more effectively. Taking differences does not disrupt the geometric
information encoded in the spectra, and can be effectively used by
the network to recover the original eigenvalues if needed.

Map training. We aim to learn the map Π, which receives as input
a spectral encoding dΛ, and outputs a 3D shape that corresponds
to that encoding. Given a collection of training shapes {Xi} from
a given class, we compute for each of them the spectral encod-
ing {dΛi} following the process described above. We implement
the map Π as a fully-connected decoder, and train it to minimize a
standard reconstruction loss:

Loss = ∑
i
∥Π(dΛi)−Xi∥2

F . (5)

When we deal with point clouds, we replace the Frobenius norm
with the Chamfer distance defined in [ADMG18]. We remark that
while local regions are involved in the computation of the spectral
encoding, we are not using any specific loss to guide the recon-
struction of the corresponding local geometry.

Modeling at test time. Once the model is trained, one can feed the
network a previously unseen spectral encoding dΛ. The resulting
3D shape exhibits the geometric details encoded in dΛ, but with the
discretization of the training set. One can also compose global and
local encodings from different shapes, interpolate the encodings, or
perform other operations as shown in the next Section.

Network architecture. The proposed network is composed of 4
fully connected layers. We refer to the supplementary materials for
further details.

5. Results

5.1. Datasets

CUBE.

R

This is a synthetic dataset comprising 1000 cube
meshes with 7350 vertices each. Each cube shows
one of 125 different patterns on its front face, and
has a depth picked at random from 8 possible values (see inset for
an example). These two factors of variation are uncorrelated and
provide a controlled setup for our tests. As region R on each of
these samples, we select the front face since this is where we apply
the local variations.

SURREAL. To challenge our model on more realistic data, we col-
lect 2337 human shapes from SURREAL [VRM∗17]. As R on
these human bodies, we choose the head for three reasons: 1) it
encodes the identity characteristics; 2) it is unique in the body and
hard to confuse with other body parts; 3) in contrast with cubes,
where pattern and depth are uncorrelated, head and body tend to
correlate. We are interested in verifying how this impacts our learn-
ing process.

SMAL. We test our model with another example of a realistic
dataset: SMAL [ZKJB17], a dataset of 3D mesh animals gener-
ated by a morphable model learned by scanning toy figurines. As a
dataset, we choose 4872 animals belonging to five different classes:

© 2022 The Author(s)
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A

B

AR BR

A

B

AR BR

Figure 4: On the left, semantic swap experiment with PAT15+15. On the right, the same using LBO30.

tiger, wolf, cow, zebra, hippo. Each mesh has 3889 vertices and rep-
resents the animal in the rest pose. As R we consider the head for
the same reasons as above. Like SURREAL, SMAL allows us to
test the model in a realistic setting where each local variation may
correlate with the rest of the body. Moreover, SMAL is composed
of multiple kinds of animals with distinctive and different features.
The higher diversity allows us to discriminate better the different
contribution of the local and global spectra during reconstruction.

AIRPLANES. The above datasets have a common discretization.
To test if our model can discover the underlying relation between
spectrum and geometry even in more general cases, we selected 448
airplanes from ShapeNet [YSS∗17] and sampled 500 points from
each of them, producing unordered point clouds without known
correspondence. As R we selected the tail segment.

We report complete details about the datasets we used in the
supplementary materials. If not differently stated, the shapes we
adopt in all our experiments and figures have never been seen dur-
ing training, and belong to the test set or a completely different
dataset.

5.2. Shape modeling

Here and throughout the manuscript, we adopt the notation
PATR15+15 to denote the spectral encoding composed of 15 eigen-
values of the standard (global) Laplacian and 15 eigenvalues of
the local PAT operator defined by the region R. Other choices of
the operator, local region, and dimensions of the spectral encoding
follow the same notation. When the region we are considering is
clear and unique, we remove the subscript R, and we only write
PAT15+15. As the main baseline, we consider LBO30, which cor-
responds to the encoding provided by the first 30 eigenvalues of the
global Laplacian.

Semantic swap. To better present the impact of our method in
shape modeling applications, we provide qualitative examples in

Figure 5: Shapes obtained by combining the global spectrum of a
tiger with the local spectra of the heads of different animals (one
per column). Observe the change in body shapes induced by the
different heads; in the last column, the body does not change much,
but the head has an intermediate shape between tiger and hippo.
The operator used in these tests is PAT15+15.

different contexts. We start by showing how our method allows
to recombine the encoding of different objects to generate novel
shapes with natural coherence.

In Figure 4 we show an example on humans, where we consider
two shapes, namely A and B, from different datasets( [VRM∗17]
and [PMRMB15], respectively), and fix for both the local region on
the head, respectively denoted as AR and BR. On the left we use
the map recovered for the PAT15+15 input, whereas on the right
we use the map obtained from the standard LBO30 input. On the
main diagonal of each grid, we report the reconstruction results
from the original encoding of the two shapes. We notice that both
approaches return reliable results, generalizing to datasets unseen
at training time (such as B).

The off-diagonal entries show the results produced by mixing the
spectra of the two inputs. In the top right, we concatenated the first
15 values of the encoding of A with the last 15 of the encoding of
B. Both PAT15+15 and LBO30 start with the first 15 eigenvalues

© 2022 The Author(s)
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dΛ

dΛX

dΛR

Start End

Figure 6: Interpolation results for a pair of cubes: the left one is taken from the test set, while the rightmost from the train set. We plot
the spectral encoding associated with each shape as a bar plot; we highlight in green the part of the encoding that we are interpolating in
each row, and in red the values that we keep fixed. First row: Two input cubes. Second row: Interpolation of the entire encoding. Third row:
Interpolation of the global part only (blue in the bar plots); observe how the pattern on the front face does not change, while the volume of
the entire cube is correctly interpolated. Last row: Interpolation of the local part of the encoding (red in the bar plots), inducing a change in
the front pattern only.

dΛ dΛX dΛRStart End

Figure 7: Final results of the interpolation from Start to End. On
the right side we show the interpolation of the entire encoding (dΛ),
of the global part only (dΛX ) and of the local part only (dΛR).

of the LBO from A while for PAT15+15 the second part is given
by the first 15 eigenvalues of the localized operator on the region
BR region, while for LBO30 the eigenvalues from 16 to 30 of the
LBO of B. In the bottom left, the same with the inverse role of B
and A. We notice that PAT15+15 succeeded to produce meaningful
modifications but keeping an overall coherence. Injecting into the
network the spectra of A and the one of BR produces a man with
similar height and proportions of A, but more robust (while not as
robust as B). Using the head of AR on the body of B has the effect
to obtain similar proportions to B (producing a shorter person), but
respecting the semantics suggested by AR, which does not suggest
a robust human. On the contrary, the grid on the right shows that
working with the LBO30 representation does not provide the same
level of control.

A clearer example is depicted in Figure 5. We take the global

spectrum of a tiger and combine it with the local spectrum (one per
column) of all the others animals in the dataset. As before, when
we change the local spectrum, the identity of the shape changes.
The most peculiar instance is the combination between the global
spectrum of the tiger and the local spectrum of the hippo (last col-
umn). The resulting mesh has ears similar to the tiger, but has a
snout different from both animals. This intermediate result may be
due to the dominance of the global features of the tiger that prevent
the snout to puff up like in the hippo. The rest of the body remains
more similar to the tiger.

Shape space exploration. Our encoding also allows to explore the
space of shapes. We report what we believe is a significant example
from the CUBE dataset. This dataset has, by construction, two fac-
tors of variation: the depth of the cube and the pattern on the front
face. These two features have no statistical correlation and are thus
fully disentangled by purpose.

In Figure 6 we report the results obtained by interpolating the
spectra of two different cubes (‘Start’ and ‘End’ respectively). We
interpolate the entire encoding (global+local, second row), only the
global part (third row) or only the local part (last row). These tests
suggest that the learned map has learned to disentangle between
the factors of variations in this dataset, which would not be possi-
ble by using only a global spectrum. It would also be hard to obtain
with a standard autoencoder architecture, unless a disentanglement
technique is explicitly implemented. To see how our method can

© 2022 The Author(s)
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dΛ

dΛX

dΛR

Start End

Figure 8: Different interpolations between two inputs from human shapes (first row): Global+Local (dΛ-second row), only Global(dΛX -
third row) and only Local(dΛR-fourth row). We add a ruler behind each shape to emphasize the height variation.

effectively learn correlations between local regions and the whole
shapes, we train our network on a different setting where cubes
have the same pattern applied to all the faces and the local region
R is a single face as before. On the right of Figure 7, we show
the final results of the interpolations from the ‘Start’ to the ‘End’
cube (depicted on the left). The interpolation of the global encoding
changes only the length of the cube without modifying the pattern
on the faces, while the local interpolation changes all the patterns
coherently but leaves the cube’s depth unchanged. We report the
full experiment in the supplementary materials. These two exper-
iments confirm the ability of our encoding to discover the corre-
lation between local details and global variation if present (Figure
7) and to preserve their independence if it is the case (Figure 6).
A variation in the local encoding produces more or less localized
changes according to the level of dependency between the selected
region R and the rest of the shape. In any case, the generated de-
formation, even if local, can induce a wider variation to maintain
global consistency.

A similar example is depicted in Figure 8. In this example,
the two shapes have different discretizations, emphasizing that our
method is agnostic to them. We observe that the method discovered
a relation between the local (head) region and the global region,
as we expected for human data. Interpolating the global spectra
change keeps the identity suggested by the head while changing the

body proportion (the ruler behind each shape eases the comparison
of the heights). Interpolating the head requires keeping the body di-
mension while changing the subject identity; it is worth noting that
the final head is coherent with the target shape.

Finally, our method is efficient at inference time, enabling real-
time shapes explorations. We attach a video of interactive naviga-
tion via an intuitive interface.

Remark. At training time, our network does not know the associ-
ation between local spectrum and region, but it just sees 30 values
without knowing where they originate from. Therefore, it effec-
tively learns what values are responsible for local changes and what
are those responsible for the global changes in geometry.

Different discretizations and point clouds. In previous experi-
ments, we require all the shapes in the training set to be in full
point-to-point correspondence, which is of great help for the net-
work to discover patterns in the data. To investigate if the rela-
tionship between the input eigenvalues and the 3D points is strong
enough to arise even without providing point correspondences, we
remove the mesh connectivity and consider a noisy scenario of
unordered point clouds of airplanes. Differently from [MRC∗20],
which requires redesigning the encoder to handle unordered point
clouds, our model does not require any modification.

We considered the tail segment as the local region. The tails of
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Figure 9: Minimum and maximum spectra mixing on point clouds
(more details in the text).

airplanes are interesting because their size and shape vary and iden-
tify specific categories (such as jet and passenger transport aircraft,
among others).

In Fig. 9, we propose a spectra swap similar to Fig. 4. For
all the point clouds in the AIRPLANES dataset, we consider the
PAT15+15 encoding. For each of the 30 dimensions, we compute
the minimum and the maximum among all the 448 shapes. Then
we divide the sequence of 30 maxima and the sequence of the 30
minima into global (the first 15 values) and local information (the
last 15). We refer to these four output vectors respectively as Λ

max
X ,

Λ
max
R from the maximum values, and Λ

min
X , Λ

min
R for the minimum

ones. We denote the global values with X and the local ones with
R. We then compose 4 new spectra as the possible different com-
binations of the local and global parts. On the main diagonal, the
generated airplanes are a large aircraft associated with the frequen-
cies’ minimum values (top left) and a thinner and longer jet for the
maximum values (bottom right). As a first observation, this behav-
ior is coherent with our expectations in terms of spectrum-geometry
association. The two airplanes exhibit different empennage of the
tails: the large aircraft has a conventional tail, while the jet has a
T-tile. The kind of airplane determines the shape of the tail, and the
coherence between the two would be critical for some applications.
What we observe in this case is that the global spectrum ΛX (rows)
captures the type of airplane and determines the tail shape. Instead,
by editing the local spectrum ΛR (columns), we obtain a variation
in tail dimensions, with slight modifications to airplane structure to
adapt to this change, but without changing the class.

We consider this a fascinating result because the network is
trained without a point-to-point correspondence across the train-
ing shapes. The spectrum statistics are informative enough to re-
late spectrum and geometry through the unsupervised Chamfer dis-
tance. We report further examples of point clouds in the supplemen-
tary materials.

Figure 10: Qualitative results on the CUBE with extrinsic and in-
trinsic measures. With MSE, a wrong scale causes an error that ac-
cumulates on the cube extremities, while the Area error highlights
the wrong pattern extrusion. Errors are color-coded, growing from
white to dark red.

6. Evaluation and analysis

Here we report our analysis of different elements of the method,
providing justification of our choices and useful insights.

6.1. Different local operators

In Table 1, we report the performance of our method under dif-
ferent choices of local operators. We consider three different error
measures:

1. MSE: mean squared error between the 3D coordinates of our re-
construction and the ground-truth, measured on the entire shape;

2. MSE-R: mean squared error defined as above, measured only
on the region R;

3. Area: average difference between the area elements of each ver-
tex of our reconstruction, and the corresponding area elements
of the ground-truth shape; this measure quantifies the intrinsic
metric distortion caused by the reconstruction module.

The values of MSE and MSE-R in the table are all multiplied by
10e6, while the Area values are multiplied by 10e3. We notice that
PAT maintains the best performance in general, across different
dataset and measures. We suppose that this is due to the following
reason: PAT is the only operator that is fully localized on the re-
gion, because it treats the region as a disconnected component. The
other two, HAM and LMH, have both global support and are com-
puted by localizing the LBO by means of a scalar potential, which
is known to cause leaking outside of the region [RTO∗19]. More-
over, LMH has an additional term of orthogonality that enforces
its dependency on the LBO, thus potentially increasing redundancy
and, in turn, reducing the amount of information that can be used
for a faithful reconstruction.

6.2. Dimension of the embedding

Since previous works do not highlight the relation between the in-
put dimension and the obtained reconstruction, we analyzed the
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CUBE SURREAL SMAL
Method MSE MSE-R Area MSE MSE-R Area MSE MSE-R Area
LBO30 11 62.5 1.96 1.7 2.12 0.82 1.39 1.48 1.90

PAT15+15 5.66 27.1 2.31 0.71 0.5 0.46 1.08 1.07 1.63
HAM15+15 6.61 32.87 1.86 0.86 0.57 0.51 1.11 1.13 1.54
LMH15+15 13.64 61.25 3.54 1.5 0.98 0.71 1.78 1.9 1.93

Table 1: In all settings we considered 30 dimensional encodings; for LBO we used the first 30 eigenvalues, for PAT, HAM, and LMH we
considered the first 15 eigenvalues from LBO and the first 15 from the local operators.

GT LBO30 LMH15+15 HAM15+15 PAT15+15

1e-1

0

Figure 11: Qualitative result on the SURREAL. The Area error is
shown on the reconstructed surfaces, encoded by color growing
from white to dark red.

CUBE
Method MSE MSE-R Area

LBO30 11 62.5 1.96
LBO50 10.7 62 1.80
LBO80 11.1 63.5 1.73

PAT15+15 5.66 27.1 2.31
PAT25+25 3.59 19.1 1.33

HAM25+25 4.07 20.1 1.33
LMH25+25 14.7 69.2 1.96

Table 2: Reconstruction error on CUBE at varying size of input

method scalability for the different operators. In Table 2 we report
the results with LBO at varying dimensions. We see that the in-
stability of higher frequencies dramatically impacts the scalability,
preventing further improvement. Instead, considering local opera-
tors, both PAT and HAM show improvement when the encoding
grows in size. In the supplementary, we report further results on
different ratios between global and local information, showing that,
in general, an even splitting between the two provides the best re-
sults.

6.3. Number and kind of local regions

H
TIn this section, we investigate the importance

of the choice of the selected region. Previ-
ously, we consider a unique region R for each
class, claiming that it characterizes the objects.
In particular, we stated that this selection lets the network cor-
relate between local geometric patterns and global features of
the shape, and that this relation respects some semantics.
In the SMAL dataset, we tested two different regions: head H and
tail T , respectively depicted in red and pink in the inset figure,
and as PATH15+15 and PATT 15+15 in Table 3. With respect to

SURREAL SMAL
Method MSE Area MSE Area

LBO30 1.7 0.82 1.39 1.90

PATH15+15 0.71 0.46 1.08 1.63

PATF15+15 4.33 1.3
PATT 15+15 1.71 0.94 3.93 3.05

PATH+T
10+10+10

0.89 0.56 1.96 2.37

PATH+T
15+15+15

0.68 0.48 1.82 2.24

Table 3: Reconstruction error on SURREAL and SMAL test sets
considering various regions

LBO30, with PATH15+15 the error decreases, while PATT 15+15
worsens significantly. We justify this behavior with the absence of
enough high-frequency details on the tail to produce an informative
spectrum for the entire shape.

F

H

T

In the same spirit of the previous experiment,
we validate this hypothesis on the SURREAL
dataset, selecting another region with few fea-
tures, i.e., in which the details are less character-
izing. We choose the right forearm as local re-
gion F on the human body (highlighted in green
in the inset figure), and we trained the model PAT15+ 15. We re-
fer to this method as PATF15+ 15, while for the method with the
head as region H we use the notation PATH15+ 15. In the third
row of Table 3, we report the errors for this choice. Similar to the
tail region in SMAL, the errors are higher than PATH15+ 15 and
LBO30. We also test PAT15+15 with the torso as region T , (high-
lighted in blue in the inset figure) and refer to it as PATT 15+ 15.
The torso region comprises both the chest (that can significantly
change between men and women) and the abdomen (that is larger
or thinner in different subjects). T can be comparable to the tail
region but with more continuous and significant variations. In all
cases, on SURREAL, PAT 15 + 15 performs significantly better.
These experiments emphasize the importance of the input repre-
sentation and that some local regions contain more information on
the whole shape than others. In particular the torso region, besides
having important features, has a central position in the shape. Thus
its improvement affects the MSE of all the other body parts. On the
contrary, the tail region on the SMAL dataset has indeed similar
important features but it is a peripheral region and its improvement
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does not flow on other regions. The elbow instead is a region with
poor features that do not add enough information to the global spec-
trum.

Multi-region. Until now, we experimented only using a single local
spectrum as input. To underline how our method can be used with
multiple regions, we perform additional experiments on SURREAL
and SMAL without modifying the parameters of the decoder. In
SMAL, we have already tested the single efficacy of the head and
tail. In the next experiment, we test their efficacy when combined
together. We train the PAT version using as input the local spectra
computed both on the head and tail surface. We indicate the results
with PATH+T k+h′+h′′ where k is the number of LBO eigenval-
ues, h′ the number of local eigenvalues for the first region (head)
and h′′ the number of local eigenvalues for the second region (tail
for SMAL and torso for SURREAL). In particular, we consider the
cases 10 + 10 + 10 and 15 + 15 + 15. Notice that in this second
case the input encoding is larger then other methods. In the last two
rows of Table 3 we show the instrinsic and extrinsic errors. The
addition of multiple regions does not improve the performance of
PATH15+15, but neither worsens them as in PATT 15+15.

Our conclusions are that including other regions can be done,
giving more freedom during the generation. At the same time, there
is a trade-off between the control and the reconstruction quality,
since increasing the number of regions limits the amount of encod-
ing assigned to each part (PATT 10+10+10). Discovering the pat-
terns across multiple regions is more challenging; it requires a de-
sign in the encoding partition (i.e., assigning to each region eigen-
values proportional to its semantic significance, as we report in sup-
plementary materials) or a deeper network to properly exploit the
encoding information. Even when we increased the number of total
eigenvalues in input (PATH+T 15+15+15) the performance did not
always improve. We attribute this slight drop to the fact that, for a
fair comparison, we trained all the models with the same number
of epochs, while PATH+T 15+15+15 may have needed more time
to optimize the larger input information effectively.

6.4. Decoder-only vs Autoencoder

In Table 4, we compare our architecture (32M parameters) against
the one proposed in [MRC∗20] (9M parameters) also by empower-
ing its decoder and, coherently, its encoder (namely [MRC∗20]big
in the table, 90M parameters). We trained [MRC∗20] using the ab-
solute value of eigenvalues, as proposed in the original paper. Re-
sults show not only that our decoder approach is better than the
full architecture even in the LBO setting, but that [MRC∗20] is
not equally capable of combining local information with its latent
space.

7. Conclusions

This paper presented a novel approach for generating and model-
ing 3D shapes from a canonical and ubiquitous spectral representa-
tion. We consider this theoretically exciting task helpful for shape
manipulation, especially in combining semantic characteristics of
local and global parts. We highlighted several properties of local
spectral operators and their relation with the standard Laplacian in

SURREAL
Method MSE MSE-R Area
LBO30 1.7 2.12 8.19

PAT15+15 0.71 0.5 4.58
[MRC∗20]
PAT15+15

3.1 3.89 19.81

[MRC∗20]big
PAT15+15

2.51 1.8 16.9

[MRC∗20]big
LBO30

2.51 2.26 15.74

Table 4: In all settings we considered 30 dimensional encodings;
for LBO we used the first 30 eigenvalues, for PAT, HAM, and LMH
we considered the first 15 eigenvalues from LBO and the first 15
from the local operators computed on the head region.

this encoding. For the first time, we performed a shape from spec-
trum pipeline from a mix of spectra of different operators. Further-
more, we have also shown the close relationship between spectra
and the geometry from which they come, even in a noisy and unsu-
pervised scenario. Dealing with multi-region localization would be
a stimulating future direction, considering parts with different se-
mantics and proportions. While a complete analysis is beyond this
paper’s scope, our preliminary evidence suggests this is a promis-
ing field for further exploration.

The main theoretical limitation of our study is not considering
the spectra of extrinsic operators, like the Dirac operator [LJC17].
Extrinsic operators could be successfully injected into our pipeline,
providing a mixture of intrinsic and extrinsic information. More-
over, we do not consider inter-class experiments since the spectrum
may be ambiguous among different classes. We believe that our
work may elicit discussion in the community on these topics. The
main applicative limitations arise from the limitation of the intrin-
sic spectral representations in the presence of shapes with different
topology, significant noise, or outliers. The research on these as-
pects is quite active in the community, and our method lends itself
well to methodological progress.
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