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Inspirational Quotes

"Everybody is a genius. But if you judge a fish by its
ability to climb a tree, it will live its whole life

believing that it is stupid."
Albert Eisntein, Physicist

"Business is business. I don’t manufacture cars, but
we do manufacture money."

Kenneth Griffin, Hedge fund manager

"Drink wine. This is life eternal. This is all that youth
will give you. It is the season for wine, roses and
drunken friends. Be happy for this moment. This

moment is your life."
Omar Khayyam, Mathematician & Astronomer

"Science knows no country, because knowledge
belongs to humanity, and is the torch which

illuminates the world."
Louis Pasteur, Microbiologist
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Abstract

All models are wrong but some
are useful.

George P. E. Box

This PhD dissertation is comprised of two substantive chapters in different areas of
empirical finance. In the first chapter which is published in the International Re-
view of Financial Analysis, I dissect the investing style of different hedge fund strate-
gies, while in the second chapter (under review at Oxford Bulletin of Economics and
Statistics), I investigate the stock-oil conditional comoments, by employing a battery of
modern econometric methods. The following paragraphs provide a summary for each
chapter.

The first chapter, "Dissecting Hedge Funds’ Strategies" (joint with Asmerilda Hitaj),
dissects the dynamics of the hedge fund industry with four financial markets, includ-
ing the equity market, commodities, currencies, and debt market by employing a large
number of assets from these markets. We employ four main representative hedge fund
strategy indices, and a cap-weighted global index to estimate an asymmetric dynamic
conditional correlation (ADCC) GJR-GARCH model using daily data from April 2003
to May 2021. We break down the performance, riskiness, investing style, volatility, dy-
namic correlations, and shock transmissions of each hedge fund strategy thoroughly.
Further, the impact of commodity futures basis on hedge funds’ return is analyzed.
Comparing the dynamic correlations during the 2008 global financial crisis (GFC) with
COVID-19 pandemic reveals changing patterns in hedge funds’ investing styles. There
are strong and pervasive shock spillovers from hedge fund industry to other financial
markets, especially to futures commodities. An increase in the futures basis of several
commodities drives up hedge funds’ performance. While hedge fund industry un-
derperforms compared to equity market and commodities, the risk-reward measures
show that hedge funds are superior to other markets, and safer than the bond market.
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The second chapter "Stock-Oil Comovements Through Fear, Uncertainty, and Ex-
pectations: Evidence from Conditional Comoments", investigates the dependencies
and comovements between the S&P 500 and WTI by means of time-varying condi-
tional comoments from April 1983 to December 2021 at the daily level. The condi-
tional comoments mark a new pattern between the two markets’ dependencies since
the 2008 global financial crisis (GFC). I employ three macroeconomic sentiment mea-
sures, including VIX (representing fear), economic policy uncertainty (representing un-
certainty), and expected business condition index (representing expectation), to inves-
tigate the underlying mechanism for the new emerging stock-oil comovements, using
the time-varying parameter vector autoregression (TVP-VAR) to investigate the time-
varying impulse responses, and the nonlinear autoregressive distributed lag (NARDL)
model to analyze the asymmetries in the short- and long-run effects of the sentiment
indices for the pre- and post-GFC periods. The conditional comoments of both mar-
kets change direction since the GFC, with crude oil showing a stronger dependence
on the S&P 500’s return, skewness, and tail events than its counterpart. Overall, the
time-varying impulse responses show heightened short-lived responses to the three
sentiment indices after the 2008 GFC, with an asymmetric response from the condi-
tional comoments of WTI (negative) and S&P 500 (positive) to the positive shocks in
the fear index during the post-GFC period. The NARDL regression results prove that
the explanatory power of the three sentiment indices increase largely after the GFC,
pointing to the strong short-run asymmetries, and the ever-increasing effect of VIX.
Further investigations reveal that oil-specific fear index (OVX) has weaker effect on
stock-oil comoments than VIX.

In regards to the second chapter, I am grateful to the participants and chairs of the 8th

International Symposium on Environment and Energy Finance Issues, the 3rd Financial
Economics Meeting, the International Conference on Economic Modeling and Data Sci-
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Chapter 1

Dissecting Hedge Funds’ Strategies
MOHAMMAD NOORI

ASMERILDA HITAJ

Published in the International Review of Financial Analysis
https://doi.org/10.1016/j.irfa.2022.102453

1.1 Introduction

This paper is motivated by Büyükşahin & Robe (2014), Singleton (2014), and Knittel
& Pindyck (2016) , who blame Hedge Funds (HFs) for making noise, fluctuations, and
price bubbles across different financial markets; and by another strand of literature
which attributes the increased fluctuations in commodities to non-commercial players,
including Chong & Miffre (2010) who argue the futures market has become an essential
tool for strategic asset allocations; Tang & Xiong (2012), who find higher correlations
among non-energy commodity prices; and Christoffersen et al. (2019) who argue the
heightened volatility of commodity markets is linked to other markets’ shock spillover.
In this regard, we investigate the dynamics of the HFs with a large number of assets
from four financial markets, including commodity futures, equities, currencies, and
debt markets, with a special focus on futures contracts. We employ a variety of meth-
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2 CHAPTER 1. DISSECTING HEDGE FUNDS’ STRATEGIES

ods, including time-varying comovements and systemic shock transmission between
HFs and other financial markets, to dissect the investing styles of different HF strate-
gies. Then we calculate the futures basis, which is defined as the gap between futures
and spot prices, for 13 commodities from the 5 primary categories of commodity fu-
tures (Gorton et al., 2013), which have the most liquid and active market in their own
category1 (Christoffersen et al., 2019) to figure out HFs’ speculative behavior in com-
modities. Despite being inspired by Büyükşahin & Robe (2014), this study departs
from their work in a number of ways. First, we only focus on modelling the dynamics
of the HFs, and second, we use the return series to calculate the futures basis for each
commodity to look into how HFs benefit from the increase in the gap between futures
and spot prices (Section 1.3.2.2). In contrast, Büyükşahin & Robe (2014) model the
equity-commodity return correlation and then regress this correlation on HFs’ share
of open interests in futures and options-on-futures total open interests, to inspect HFs’
speculative behavior (among other intermediaries).

Understanding the volatility dynamics of HFs and unraveling their return generating
process is crucial for two reasons: first, as a strategy formation for hedging, trading,
or portfolio optimization; and second, in limiting their potential detrimental effect on
financial markets2. In regards to the former, using several simple risk-reward mea-
sures, we find that the return delivered by HFs bears less risk than any asset class in
our study, including the US 10-year Treasury note (T-note). In regards to the latter,
we find that shocks to HFs propagate to many asset classes, especially futures market.
Therefore, we provide insightful clues about HFs’ trading strategy to any investor for
asset and risk management and to policymakers for market intervention and regula-
tions for better welfare objectives, especially after the two giant crashes, the GFC and
COVID-19.

The literature3 mainly focuses on modeling the entire HF industry’s exposure to macroe-
conomic indicators like inflation, GDP, etc., in different business cycles (Roncalli &
Weisang, 2009; Billio et al., 2012; Cai & Liang, 2012a,b; Jawadi & Khanniche, 2012; Pat-
ton & Ramadorai, 2013; Agarwal et al., 2017; Racicot & Théoret, 2019; Gregoriou et al.,
2021). On the other hand, there are only a few studies analyzing HFs’ dynamics with
financial asset classes. For example, Li & Kazemi (2007) study the conditional proper-

1The reason is to avoid illiquid contracts, or those that have little market depth.
2Note that HFs do not disclose any information about their portfolio management, constituents, or

trading.
3This work is distinct from another strand of literature studying HFs’ flow-performance relationship,

and return determinants (see Fung & Hsieh, 2001; Mitchell & Pulvino, 2001; Bali et al., 2017).



1.1. INTRODUCTION 3

ties (by conditional density functions) of the HF indices with the S&P 500, the Lehman
High Yield indices, and the Treasury bill. They find that the conditional correlations
are symmetric and that there is no contagion between the HFs and other markets. On
the other side, Elyasiani & Mansur (2017) find the opposite results. They use a uni-
variate EGARCH, and claim that the volatility clusters of HFs affect those of S&P 500,
real estate, and major bank indices. We contribute to this scant literature by study-
ing HFs’ volatility dynamics, time-varying comovements, and shock spillovers with
a large number of assets using daily data4, with special attention to the HF’s impact
on the futures market, by employing the asymmetric dynamic conditional correlation
(ADCC) model (Cappiello et al., 2006), which is a promising model given HFs’ dy-
namic asset management, their time-varying risk exposure to various asset classes, and
their extensive usage of derivatives (which creates asymmetric responses to news), as
demonstrated by the literature.

The ongoing COVID-19 pandemic has severely disrupted financial markets and the
real economy worldwide, thus studying how HFs’ dynamics changed in response to
the recent COVID-19 pandemic is an important topic. In another novel contribution to
the literature, we compare and study HFs’ investing styles during the two giant crises,
the GFC and COVID-19. The results show that, unlike the GFC, HFs do not decrease
their exposure to equity markets during the COVID-19 crisis, but rather similar to the
GFC, they increase their exposure to commodity futures as a buffer against the crisis
in equity markets. This realignment of investment thesis might be a warning to policy
writers, as it seems like HFs are focusing more on futures contracts than equities be-
cause the exposure to equities has decreased substantially across several HF strategies
since the GFC.

In contrast to Li & Kazemi (2007) and Gregoriou et al. (2021), we find heterogeneity in
the investing styles across the four HF strategies in our study, including Event Driven,
Equity Hedge, Macro, and Relative Value Arbitrage. Only the Macro strategy seems
to have market timing ability, and its time-varying correlations with different assets
resemble option-like behavior, much like the Relative Value Arbitrage strategy. These
two strategies underperform compared to the Event Driven and Equity Hedge strate-
gies, which shows the adverse effect of intensive options trading.

The findings of this study make several contributions to the literature. First, we extend
the scarce and dated literature on the dynamics of HFs with different financial markets,

4Previous papers use low-frequency data, such as seasonal or monthly data.
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by employing data at higher frequency, that is daily data. Second, we study the sys-
temic shock transmissions between HFs and other financial markets, both at micro (by
strategies) and macro (by composite index) levels. In particular, corn and silver are the
commodities heavily hit by almost all HF strategies’ shocks, while E-mini contracts,
gold futures, and USDJPY are the assets with widespread shock spillover across all HF
strategies. Third, we compare the investing styles of different HF strategies during the
two crises, the GFC and the COVID-19. Fourth, we find that HF strategies benefit from
the increase in futures basis of different commodities, especially those with higher liq-
uid markets and lower basis standard deviation (i.e., getting the highest return with the
lowest risk) which is in line with the performance analysis in Section 1.2.1. Notably,
Event Driven and Equity Hedge strategies exploit the increase in gold basis, while all
strategies benefit from the increase in natural gas basis.

The paper is organized as follows: Section 1.2 contains the data with performance
analysis (1.2.1), and the method (1.2.2). Section 1.3 discusses the results for the indus-
try (1.3.1) and the strategies (3.2). Section 1.4 concludes.

1.2 Method & Data

1.2.1 Data

Our dataset spans from April 1, 2003 to April 29, 2021 for a total of 4546 daily observa-
tions. The continuous price indices for futures commodities are based on the nearest-
to-maturity contracts. The data comes from Thomson Reuters EIKON/Datastream.

We compute the daily return as rt = ln(
Pricet

Pricet−1
). More, all return series in this study

are stationary5 at 1% by augmented Dickey–Fuller (ADF) test. We employ hedgefun-
dresearch6 HFRX daily HF indices7. We use the HFRX UCITS8 investable indices, in-
cluding the cap-weighted composite global HF index (HFRXGL), Event Driven (HFRXED),
Equity Hedge (HFRXEH), Macro (HFRXM), and Relative Value Arbitrage (HFRXRVA),
with the last four representing HF strategies. As stated in many papers, HFR indices

5Test statistics are not reported due to space constraints.
6www.hfr.com
7The description of each strategy index is provided in appendix A.
8Undertakings for Collective Investment in Transferable Securities (UCITS) is an integrated EU di-

rective that permits the unrestricted operation of collective investment plans across the EU on the basis
of a single authorization from a single member state.

www.hfr.com
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are among the most reliable, accurate, and bias-free indices in the industry9. To the
best of our knowledge, we are the first to use daily indices to investigate the dynam-
ics of the HFs using a diverse set of assets across commodities, equities, forex, and
bond markets. Tables 1.1 to 1.5 summarize the statistical characteristics of the assets
under analysis. To conduct a performance analysis, we include measures like: the total
return for the enitre sample period; a robust measure for skewness and kurtosis; histor-
ical conditional value at risk (CVaR10); and the maximum drawdown11. In addition to
the Jarque-Bera test of normality, we employ both conventional and robust measures
of higher moments to justify the use of the Student’s t distribution in our study. While
robust measures significantly reduce the impact of outliers, conventional measures of
skewness and kurtosis significantly increase the impact of outliers. Additionally, ro-
bust measures can reveal the underlying riskiness of any asset (by tail events). We
employ Groeneveld & Meeden (1984) robust measure for the third moment:

Robust Skewness =
µ−Q2

E|rt −Q2|
(1.1)

Where µ is the sample mean, Q2 is the second quantile, and rt is the return observed at
time t. The value is zero for symmetric distributions (Gaussian) and is bounded by -1
and +1. The advantage of this robust measure is that, unlike other robust measures for
skewness, it does not completely ignore the impact of outliers (for more information,
see Kim & White, 2004). Similar to skewness, we also report two measures for kurtosis.
One is the conventional gross measure and the other is a quantile-based measure. Our
choice of robust kurtosis is Crow & Siddiqui (1967) quantile-based kurtosis:

Robust Kurtosis =
F−1(0.975)− F−1(0.025)
F−1(0.75)− F−1(0.25)

(1.2)

Note that for a Gaussian distribution, the value for conventional and robust kurtosis is
3 and 2.91 respectively.

Table 1.1 reports the descriptive statistics for the HF indices. The Event Driven strat-
egy (HFRXED) outperforms other strategies in terms of return, with an average daily

9Stafylas et al., 2018 conduct an in-depth study on HFRX indices’ methodology, and state that with
HFRX algorithm, the return series has the maximum statistical likelihood of being accurately reflective
of the HF industry.

10CVaR is the weighted average of the extreme losses in the tail of the distribution of returns, exceed-
ing the VaR critical point.

11Maximum drawdown is the maximum observed loss from a peak to the trough of an index before a
new peak is attained.
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Table 1.1: Descriptive statistics for HFRX hedge fund indices.
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HFRXGL 0.8 42 0.002 -1.25 -0.13 11.29 4.00 0.006 -0.27 FALSE
HFRXED 1.3 82 0.003 -1.30 -0.09 16.17 4.04 0.007 -0.28 FALSE
HFRXEH 0.8 41 0.004 -0.82 -0.10 8.43 4.09 0.010 -0.32 FALSE
HFRXM 0.5 25 0.003 -0.94 -0.06 9.57 3.87 0.009 -0.29 FALSE
HFRXRVA 0.7 35 0.002 -1.77 -0.10 45.78 5.06 0.006 -0.40 FALSE

return of 1.3 bps. It also has a comparably low maximum drawdown. The poor-
est performing strategy is the Macro (HFRXM), with a 0.5 bps average daily return.
The riskiest strategy is the Equity Hedge (HFRXEH) with a 0.4% standard deviation.
The conventional and robust measures of skewness both show evidence of likely fre-
quent small gains (positive returns) and infrequent large losses (tail events) when the
skewness is negative. The difference between conventional and robust measures of
skewness and kurtosis indicates the impact of tail events. The robust kurtosis value
across all HF indices shows that HFs are more likely to experience severe tail events.
The Macro strategy has the lowest robust kurtosis (3.87). Equity Hedge (HFRXEH)
is the strategy with the highest CVaR, and the highest standard deviation indicating
the riskiest strategy. The Relative Value Arbitrage strategy (HFRXRVA) has the largest
drawdown of 40% during the sample period. The Jarque-Bera test indicates the null
hypothesis that the returns come from a normal distribution is rejected at the 1% signif-
icance level. Conventional and robust measures of skewness and kurtosis also support
the non-normality of the return series. We employ the global HF index (represent-
ing the performance of the entire HF industry) when studying the dynamics of the
HF industry with other markets’ major indices in Section 1.3.1, while we employ HF
strategies and 30 assets from different markets to dissect the investing styles in HF in-
dustry in Section 1.3.2. In regards to the equity market, we include all sectors of the
S&P 500: information technology (abbreviated as SP InfoTech), healthcare (SP Health),
consumer discretionary (SP ConsDis), telecom services (SP TeleCom), financials (SP Fi-
nance), industrials (SP Indust), consumer staples (SP ConsStap), utilities (SP Utilities),
materials (SP Materials) and energy (SP Energy). We employ the Dow Jones (DJ) US
real estate index instead of the S&P 500 real estate index. The reason for this is that the
DJ real estate index is far more comprehensive than the S&P 500 real estate index and
better represents the real estate giant market. We also include the S&P 100 representing
the top 100 largest firms in the whole US economy representing 50% of the US stock
market capital.
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Table 1.2: Descriptive statistics for equity market indices.

M
ea

n
re

tu
rn

(in
bp

s)

To
ta

l r
et

ur
n

(in
%

)

St
an

da
rd

de
vi

at
io

n

Sk
ew

ne
ss

R
ob

us
t s

ke
w

ne
ss

K
ur

to
si

s

R
ob

us
t k

ur
to

si
s

C
Va

R
(5

%
)

M
ax

dr
aw

do
w

n

Ja
rq

ue
–B

er
a

te
st

S&P 100 3 340 0.012 -0.48 -0.04 17.21 4.89 0.03 -0.60 FALSE
S&P 500 3 391 0.012 -0.56 -0.05 17.41 4.95 0.03 -0.61 FALSE
VIX -2 -38 0.056 – – – – – – FALSE
Nasdaq 5 944 0.013 -0.47 -0.07 11.93 4.40 0.03 -0.60 FALSE
SP InfoTech 5 1011 0.014 -0.30 -0.06 12.61 4.35 0.03 -0.59 FALSE
SP Health 3 358 0.011 -0.22 -0.04 14.04 4.11 0.03 -0.44 FALSE
SP ConsDis 4 684 0.013 -0.38 -0.06 13.34 4.54 0.03 -0.65 FALSE
SP TeleCom 2 175 0.013 0.02 -0.04 13.85 4.11 0.03 -0.57 FALSE
SP Fin 2 112 0.019 -0.25 -0.03 20.91 5.37 0.05 -0.89 FALSE
SP Indust 3 370 0.013 -0.53 -0.05 12.93 4.58 0.03 -0.69 FALSE
SP ConsStap 3 276 0.009 -0.17 -0.03 17.76 3.99 0.02 -0.38 FALSE
SP Utilities 3 257 0.012 0.03 -0.08 20.12 3.82 0.03 -0.53 FALSE
SP Materials 3 362 0.015 -0.50 -0.05 11.87 4.17 0.04 -0.67 FALSE
SP Energy 2 105 0.018 -0.70 -0.03 19.50 4.14 0.04 -0.84 FALSE
DJ Real estate 2 156 0.018 -0.21 -0.03 26.85 7.30 0.04 -0.84 FALSE
E.mini 3 391 0.012 -0.40 -0.06 19.42 4.85 0.03 -0.62 FALSE

The price index for the popular futures contracts on S&P 500 (E-mini) and the Nasdaq
composite index, is also included in our study. Table 1.2 provides the descriptive statis-
tics for the equity assets. In short, the best performing equity asset, in terms of return is
the information technology (SP InfoTech) sector with a total return of 1011%, while the
poorest performing sector is energy with negative total return (105%) over the whole
period, although given other performance measures in Table 1.2, the financials sector
is the poorest performing sector (112%, second lowest after the energy sector), which
has the highest standard deviation (19%) among other sectors. This sector also has the
highest CVaR (5%) and maximum drawdown (89%). Consumer staples on the other
side, is the least risky sector with the lowest values for standard deviation (0.9%), CVaR
(2%) and maximum drawdown (38%).
Table 1.3 reports the statistical characteristics of the commodity assets in our study. We
have the Commodity Research Bureau (CRB) Index, gold and West Texas Intermediate
(WTI) crude oil spot prices, in addition to the continuous time price index for 13 con-
tracts from five different categories of futures market including metals, softs, grains,
energy and live stocks (Gorton et al., 2013). Note that, these 13 commodities have the
most liquid and active market in their own category (Christoffersen et al., 2019). Cop-
per futures outperforms other commodities by a total return of 519% during the entire
sample period. Gold futures is the least risky asset among all commodity assets with
the lowest standard deviation (0.6%), CVaR (1%), and maximum drawdown (24%). On
the other hand, WTI crude oil is the riskiest commodity by standard deviation (∼3%),
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Table 1.3: Descriptive statistics for commodities.
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CRB 0 -1 0.011 -0.53 -0.06 8.71 3.71 0.03 -0.82 FALSE
Gold spot 3 429 0.010 -0.49 -0.01 12.46 5.38 0.03 -0.43 FALSE
WTI spot 2 118 0.027 -0.58 -0.02 22.83 3.90 0.06 -0.97 FALSE
WTI futures 2 118 0.027 -2.30 -0.04 62.17 3.86 0.06 -0.98 FALSE
Natural Gas Futures 0 -43 0.016 0.30 0.00 10.11 3.98 0.03 -0.71 FALSE
Heat oil futures 2 165 0.010 -0.19 0.02 9.11 4.03 0.02 -0.59 FALSE
Gold futures 2 428 0.006 -0.53 -0.03 10.50 4.43 0.01 -0.24 FALSE
Silver futures 2 487 0.010 -0.96 -0.05 15.48 4.59 0.03 -0.48 FALSE
Copper futures 3 519 0.008 -0.14 0.01 6.85 4.24 0.02 -0.40 FALSE
Soybean futures 3 162 0.011 -1.44 -0.01 24.20 5.40 0.03 -0.57 FALSE
Corn futures 2 171 0.011 0.44 0.03 7.81 4.33 0.02 -0.47 FALSE
Wheat futures 2 158 0.020 0.17 0.05 4.72 3.34 0.04 -0.82 FALSE
Sugar futures 1 123 0.009 0.09 0.01 6.17 3.69 0.02 -0.47 FALSE
Coffee futures 1 145 0.009 0.38 0.02 6.68 3.72 0.02 -0.45 FALSE
Cotton futures 1 50 0.008 -0.18 0.00 7.40 4.14 0.02 -0.50 FALSE
Cattle futures 1 52 0.008 -1.88 -0.02 24.59 5.23 0.02 -0.31 FALSE

CVaR (6%), and maximum drawdown (∼100%). The large gaps between conventional
and robust measures of skewness and kurtosis, suggest intrinsic risky nature of this
fundamental commodity.

Table 1.4: Descriptive statistics for currencies and US 10-year Treasury note.
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USDEUR -0.05 -10 0.006 -0.03 0.02 5.10 3.58 0.01 -0.38 FALSE
USDGBP -0.005 13 0.006 1.07 0.00 18.56 3.40 0.01 -0.30 FALSE
USDJPY -0.02 -8 0.006 -0.13 0.00 7.99 3.75 0.01 -0.40 FALSE
10 year T-note 0.02 15 0.003 -0.05 0.01 8.54 4.62 0.01 -0.15 FALSE

Table 1.4 provides the descriptive statistics for the three currencies including US Dol-
lar to European Euro (USDEUR), US Dollar to British Pound (USDGBP), US Dollar
to Japanese Yen (USDJPY) and the US 10-year T-note. Except for the 10-year T-note,
the three currencies have negative average returns, and similar to commodities, the
currencies and the T-note seem to have symmetric distributions, evidenced by robust
skewness. The distribution of the data is different from the Gaussian distribution based
on the Jarque–Bera test at 1%.

Finally in Table 1.5, we provide the statistical characteristics of the futures basis for the
13 commodities. We compute futures basis as:
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Table 1.5: Descriptive statistics for currencies and US 10-year Treasury note.

W
TI

ba
si

s

N
at

ur
al

ga
s

ba
si

s

H
ea

t o
il

ba
si

s

G
ol

d
ba

si
s

Si
lv

er
ba

si
s

C
op

pe
r b

as
is

So
yb

ea
n

ba
si

s

C
or

n
ba

si
s

W
he

at
ba

si
s

Su
ga

r b
as

is

C
of

fe
e

ba
si

s

C
ot

to
n

ba
si

s

Li
ve

C
at

tle
ba

si
s

Mean basis 0.001 0.021 0.006 0.002 0.001 -0.003 0.019 -0.001 0.041 -0.056 -0.153 0.041 -0.005
Standard Deviation 0.01 0.06 0.02 0.00 0.01 0.01 0.05 0.04 0.11 0.08 0.11 0.04 0.05

The futures basis = ln
(

futures price indext
spot price indext

)
(1.3)

Table 5 shows that most commodities have a positive basis, with cotton and wheat
having the largest and sugar having the smallest. To conclude this section, note that
none of the HF strategies outperform equity market sectors. A passive strategy in
almost all equity sectors could yield more than twice of the HFs’ total return during the
sample period. But there is another facet: it seems that HFs are very safe investments.
The standard deviation of all HF strategies is generally one tenth of almost all assets
in the equity market or commodities. The CVaR of the HF industry is significantly
lower (0.6% by HFRXGL) than that of the equity (3% by S&P 500) and commodity
markets (2.7% by CRB). Further, the maximum drawdown of the HF industry (-27%
by HFRXGL) is much lower than equity (-61% by S&P 500) and commodity (-82% by
CRB) markets. HFs’ returns seem to resemble a risk-free asset. Moreover, if we look at
the 10-year T-note descriptive statistics in Table 1.4, the average return of this risk-free
asset is 0.2 bps, with a standard deviation of 0.003, robust kurtosis of 4.6, CVaR of 1%,
and with a maximum drawdown of -0.15, while HF’s average return (by HFRXGL) is
0.8 bps, with a standard deviation of 0.002, robust kurtosis of 4, CVaR of 0.6%, and with
a maximum drawdown of -0.27. These numbers clearly indicate that HFs are safer and
more attractive than the 10-year T-note, to a risk-averse investor.

1.2.2 Method: Asymmetric dynamic conditional correlation (ADCC)

Unlike the constant conditional correlation (CCC), the dynamic conditional correlation
(DCC) models the time-varying conditional correlations (R. Engle, 2002). The DCC
is an intelligent response to the heteroscedasticity of the disturbances in multivariate
models with the curse of dimensionality. Developed on the DCC, the ADCC12(Cappiello

12Almost all other empirical studies (See Laurent et al., 2012; Santos et al., 2013; Santos et al., 2013;
Hou & Li, 2016; Junttila et al., 2018; Bauwens & Xu, 2022) use the constrained version of the asym-
metric generalized dynamic conditional correlation (AGDCC) model due to the dimensionality issues.
Cappiello et al. (2006) state that, as the number of variables increases, AGDCC becomes infeasible and
suggest restricted versions of the model.
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et al., 2006) which has stronger statistical properties and the ability to capture the asym-
metries in the dynamic correlations, is proven to outperform many competing models
in empirical studies on financial markets (Cappiello et al., 2006; Laurent et al., 2012;
Santos et al., 2013; Gjika & Horvath, 2013; Hou & Li, 2016; Junttila et al., 2018; Ameur et
al., 2018; Samitas et al., 2020; Hoepner et al., 2021; Karkowska & Urjasz, 2021; Hachicha
et al., 2022; Bauwens & Xu, 2022). This model not only outperforms DCC and CCC
models, but also has an edge over vector error correction (VEC) and BEKK (Baba et
al., 1990) models (Laurent et al., 2012). In the VEC and BEKK models, the conditional
correlations are computed indirectly, unlike in ADCC. The existence of asymmetries
between the comovements of HFs and other assets is supported both empirically (i.e.,
H0 : g = 0 against H1 : g 6= 0) as the asymmetry parameter in the model estimation)
and by the previous studies in the literature13. Furthermore, it is essential to note that
since our sample period is a long one with several minor or major financial crashes,
and HFs’ investing styles change (potentially asymmetric due to the use of call/put
options) in response to these crashes, neglecting asymmetries in the dynamic correla-
tions can lead to unreliable inference (Racicot & Théoret, 2019). Therefore, the ADCC
is a perfect fit for studying HFs’ time-varying and dynamic risk exposure to different
financial assets and markets. The time-varying dynamic correlations also help in an-
alyzing the reaction and the investing styles of HFs to the COVID-19 pandemic with
regard to the GFC. The ADCC is generally estimated in two steps (Tsay, 2013); First we
estimate the residuals using a multivariate VAR (1)14 model as follows:

Rt = Φ0 + ΦRt−1 + Et (1.4)

Where R = (r1,t, r2,t, ..., rk,t)
′ is a k−dimensional vector of asset returns at time t, Φ0 is

a k−dimensional vector of intercepts, Φ is a k× k matrix containing the autoregressive
coefficients, and E = (e1,t, e2,t, ..., ek,t)

′ is the vector of error terms, which represents the
part of Rt that is not linearly dependent on past observations. In this paper we assume
that Et given the information at time t− 1(=t−1) is a sequence of serially uncorrelated
random vectors with zero mean, covariance matrix Ht and ν degrees of freedom or
Et|=t−1 ∼ Student − t(0, Ht, ν). The reason for assuming a multivariate Student’s t
distribution for the error terms is based on the non-normality of the returns’ series
(by Jarque–Bera test and measures of higher moments), which is crucial in estimating
the conditional variance-covariance matrix15. Ht can be decomposed as Ht = DtPtDt

13Racicot & Théoret, 2019 witness the asymmetries in HFs’ risk exposure to macroeconomic indicators.
The existence of time-varying and asymmetric comovements across financial markets is also evidenced
in several works (see, Junttila et al., 2018; Hu et al., 2020; Adams et al., 2021).

14Lag selection based on AIC.
15Several papers including Bollerslev (1987), Susmel & Engle (1994) or Baillie & Bollerslev (2002)
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wherein Pt is the time-varying correlation matrix which contains the conditional cor-
relations, and Dt is a diagonal k × k time-varying matrix of standard deviations, i.e.,
Dt =

[√
h2

i,t

]
k×k

, where h2
i,t is the conditional variance of the ith return series estimated

by a GARCH. We estimate the conditional variances by a GJR(1,1) of Glosten et al.
(1993) which can capture the leverage effect16. GJR(1,1) reads as follows:

h2
i,t = Ωi + αie2

i,t−1 + βih2
i,t−1 + γie2

i,t−1 Ii,t−1 for i = 1, ..., k (1.5)

where

I =

{
1 i f ei,t−1 < 0
0 Otherwise

(1.6)

with i referring to the ith asset, Ωi is a constant term, αi measures the impact of the
lagged shocks on the conditional variance (clusters or size of shocks), βi measures the
impact of lagged conditional variance (persistence of shocks), and γi captures asymme-
tries in the volatility (sign of shocks). At this point, we have estimated all the elements
for Dt. In order to compute the components of the matrix Pt, we must first compute
the standardized errors which are calculated as εi,t =

ei,t√
h2

i,t

for i = 1, ..., k then we

calculate Pt as:

Pt = diagQt
−1QtdiagQt (1.7)

where:

Qt = (1− a− b)P̄ + a(εt−1ε′t−1) + bQt−1 (1.8)

and

diagQt
−1 =


1
√

q11t
· · · 0

... · · · ...

0 · · · 1
√

qnnt

 (1.9)

recommend the use of Student’s t distribution in estimating models for financial time-series that are
non-normally distributed and have excess kurtosis. Francq & Zakoian (2019) emphasize the benefits of
employing GARCH processes with heavy-tailed distribution in capturing true data generating process
over regime-switching models, for financial series.

16According to R. F. Engle & Ng (1993), ignoring asymmetries leads to model misspecification.
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and P̄ = E[εt−1ε′t−1] is the unconditional correlation matrix of the standardized resid-
uals. For mean reversion, the condition a + b < 1 must hold for the sum of two scalars
a and b. Rewriting Pt = diagQt

−1QtdiagQt
−1 we get the time-varying conditional cor-

relation between assets i and j at time t as:

ρij,t =
qij,t

√qii,tqjj,t
(1.10)

where qij,t is the conditional covariance between the returns of asset ith and jth at time t,
and qii,t and qjj,t are the diagonal elements of the covariance matrix Qt, corresponding
to the conditional variance estimates of the ith and jth assets at time t, respectively. We
estimate the parameters by maximizing the log-likelihood of the probability density
function of a multivariate Student’s t distribution. Cappiello et al. (2006) state the
dynamics of the Qt for ADCC as follows with the three scalars a, b, g;

Qt = (P̄− a2P̄− b2P̄− gN̄) + a2(εt−1ε′t−1) + g2(nt−1n′t−1) + b2Qt−1 (1.11)

In eq. 1.11, the effect of negative shocks is absorbed by the variable nt which can be
exhibited as a Hadamard product of an indicator function and the standardized errors:

nt = I[εt−1] ◦ εt−1 =

{
εt εt < 0
0 εt ≥ 0

(1.12)

where I[εt] is a K× 1 indicator function and N̄ = E[nt−1n′t−1]. The positive definiteness
of Qt can be guaranteed if (a2 + b2 + wg2) < 1, where w is the maximum eigenvalue
of the matrix [P̄

−1
2 N̄P̄

−1
2 ]. g2 unveils whether conditional correlation between returns

asymmetrically reacts to previous shocks. In the empirical part of this paper, we also
report the shocks’ half-life, which is another facet of volatility persistence and is com-
puted as:

half–life =
ln(0.5)

ln(α + β + (1
2)γ)

(1.13)

It indicates the time it takes for volatility to move half-way back to its unconditional
mean.

1.3 Results

We start by discussing the dynamics of the entire HF industry (represented by the
global index, HFRXGL) with other financial markets’ major indices and fundamental
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macro variables in Section 1.3.1. It is important to emphasize that all previous studies
employ HF strategies but not a representative composite index to study the dynam-
ics of the entire HF industry. Systemic shock transmissions between HF industry and
financial markets are discussed in Section 1.3.1.1, focusing on HF’s effect. The invest-
ing style of each HF strategy is then covered in Section 1.3.2, and shock transmissions
between HF strategies and various assets, as well as the effect of futures basis on the
performance of the four HF strategies are examined in Sections 1.3.2.1 and 1.3.2.2, re-
spectively.

1.3.1 The dynamics of HF industry

To study the dynamics of the entire HF industry with other asset classes, we employ
eight major indices, including: S&P 100, S&P 500, Nasdaq, VIX, CRB, gold, WTI crude
oil spot prices, and the 10-year T-note. Panel A of Table 1.6 shows that the HF in-
dustry’s performance is Granger caused by all four equity indices (S&P 100, S&P 500,
Nasdaq, and VIX) and the 10-year T-note, at 5% significance or below. This is in line
with Patton & Ramadorai (2013), who find that the equity market is the primary source
of risk for HFs at firm level. The opposite sign of the coefficients of S&P 100 and S&P
500 in HFRXGL’s mean equation in the VAR model is interesting. The largest 100 firms
in the US market are included in both the S&P 100 and the S&P 500 indices, though
their effects on the HF industry differ. The top 100 largest firms in the US economy,
which represent more than half of the US equity market capital, have a negative im-
pact on the HF industry, while the remaining 400 top firms have a positive impact. We
attribute the opposite signs to the fact that giant firms perform better during crises17,
while during calm periods they underperform compared to the other 400 firms in the
S&P 500. There is a weak yet significant effect of VIX on HFs. In the literature, VIX is
identified as a primary significant contributor to HF’s systemic risk (see Gregoriou et
al., 2021, or Racicot & Théoret, 2019), but we find a very weak effect from VIX on the
HF industry. The S&P 100 has the greatest negative impact on the industry (-660 bps),
followed by the S&P 500’s positive impact. Furthermore, the results show a positive
spillover effect of Nasdaq and US 10-year T-note with a similar magnitude on the HF
industry (290 and 220 bps respectively). We can see that HFs affect equity market in-
dices in the same way, as seen in panel A of Table 1.6. HFRXGL has a positive impact
on S&P 100, while S&P 100 has a negative impact on HFRXGL. The equity market does
not appear to have any significant effects on commodities.

17Based on our sample data, during the three economic crises: Dec 2007-Nov 2008 (GFC), US-China
trade war in 2018, and Feb 2020-Jan 2021 (COVID-19), the total return of S&P 100 was -36.9%, -6.6%, and
+17.3%, while the performance of S&P 500 was -40%, -7%, and +14.3%.
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Figure 1.1: Dynamic correlations of HFRXGL.

The results demonstrate that the 10-year T-note Granger causes gold return signifi-
cantly (by 15%). The S&P 100 and S&P 500 have asymmetric effects on the 10-year
T-note. Empirically, during times of market turbulence, the bond market serves as a
haven. This effect is due to the heterogeneous performance between the top 100 com-
panies and the other 400 companies in the S&P 500, and is in line with the intuition
that giant firms are safer investments during crises. The volatility equation parameters
in panel B of Table 1.6 reveal that HFRXGL exhibits a substantial leverage effect, much
like the S&P 100, S&P 500, and Nasdaq. The positive sign means that negative news
(shocks) has a larger impact on volatility than positive news (shocks). Our results are
in contrast with the findings of Elyasiani & Mansur (2017). According to them, pos-
itive news generates more volatility in HFs than negative news. They use monthly
data, which could be the cause. That is, when low-frequency data is used in volatility
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models, information loss is substantially greater (Francq & Zakoian, 2019; Patton & Ra-
madorai, 2013). Furthermore, as pointed out earlier, GJR is shown to be more accurate
in capturing asymmetry in volatility compared to EGARCH,

which is based on a log-transformation approximation. The CRB index and WTI spot
price index exhibit leverage effects as well, though not to the same extent as the eq-
uity market indices. This could be related to lower fluctuations in commodities. Gold
and VIX, on the other hand, fluctuate more when a positive shock hits the prices. The
10-year T-note has no leverage effect. The ARCH test refers to the Lagrange Multiplier
test statistics for autoregressive conditional heteroscedasticity (ARCH) effects (R. En-
gle, 1982). The p-values strongly suggest the existence of nonlinear ARCH effects.
Further information about the ADCC is provided at the bottom of Table 1.6.

The dynamic correlations of the global HF index (HFRXGL) with market indices and
fundamental assets are depicted in Fig. 1.1. The two shaded ovals in each graph rep-
resent the GFC and COVID-19 crisis periods. The dynamic correlations of HFRXGL
with the S&P 100, S&P 500, and Nasdaq are comparable and significantly stronger
when compared to other markets, which is consistent with the previous section’s VAR
results. HFRXGL’s dynamic correlation with VIX appears to be the inverse of that of
three stock market indices. Fig. 1.1 shows several major widespread patterns across all
dynamic correlations. When equity markets began to plummet in the early stages of
the GFC, the dynamic correlation of HFRXGL with the three equity market indices and
the gold price falls down. Simultaneously, the dynamic correlation of HFRXGL with
the CRB commodity index and WTI initially increases, but then decreases in September
2008, when the crisis reaches a climax and Lehman Brothers declares bankruptcy. In
September 2008, the dynamic correlation of HFRXGL with all of the three equity mar-
ket indices, CRB, and WTI has dropped. The only increasing correlation is the one of
gold. Then, from that time to mid-2009, all dynamic correlations with the three equity
indices, plus CRB and WTI, experience a fast increase fol- lowed by a fast decline.

The second widespread pattern starts from 2011 up to 2015, contemporaneous with
the zero-interest rate environment and European sovereign debt crisis. During this
time, the dynamic correlation of HFRXGL with the three equity indices is steadily ris-
ing, while the dynamic correlations with CRB, WTI, and gold is gradually declining.
Another main widespread pattern emerges in 2018 due to US-China trade war, which
marks another switching position between the equity market and commodities by HFs.
During that year, the dynamic correlations with the equity market decrease while they
increase with commodities. Unlike the GFC, we do not witness declining correlations
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with equity market indices during the COVID-19 crisis. On the other hand, at the be-
ginning of the pandemic in early 2020, we see transient jumps in the HFs’ correlation
with CRB, WTI, and gold. It is apparent that HFs are more focused on equity markets
(Fig. 1.1). The average dynamic correlation of HFs with the S&P 100, S&P 500, and
Nasdaq is 0.66, 0.70, and 0.67, respectively, compared to 0.32, 0.25, and 0.15 with the
CRB, WTI, and gold, respectively. HFRXGL’s average dynamic correlation with the
10-year T-note is -0.15. Our findings point to the evolving patterns in HF industry’s
investing strategy. Literature posits that HFs reduce their risk exposure to equity mar-
kets during market turmoil. According to Patton & Ramadorai (2013), HFs resort to
cash at times of crises. While our findings suggest a significant drop in HF industry
comovements with equity markets during the GFC, no such phenomenon is observed
for the COVID-19 crisis.

1.3.1.1 Shock transmissions between HF industry and other markets

Using volatility clusters, we investigate the systemic shock transmissions between the
HF industry and the financial markets discussed in Section 1.3.1. It is important to
note that we only use the systemic shocks related to each index rather than using
the conditional variance, which includes volatility clusters (systemic shocks), persis-
tence (unsystemic shocks), and asymmetry. This way, we only focus on the systemic
shocks between the markets, neglecting unsystemic shocks. In this regard, we com-

pute the absolute value of the standardized errors
∣∣∣∣ e√

h2

∣∣∣∣ = ψ obtained from our estima-

tions through the ADCC-GJR(1,1)-t and then use an OLS regression to model the shock
transmissions between different markets. With an emphasis on HFs, we explore shock
spillovers between markets and identify the systemic risk implications, as:

ψi,t = θi,0 +
8

∑
j=1

θjψj,t + υi,t i, j = 1, ..., 9 and i 6= j (1.14)

where ψi, t and υi,t are the volatility cluster and error terms for each asset i at time t
respectively, and θi,0 is the constant term for the asset i. We report the results of the
cluster interdependencies between major indices in Table 1.7. The second column of
Table 1.7 reports the regression coefficients for HFRXGL cluster dependency equation.
The shocks from the 10-year T-note, gold, WTI, CRB, Nasdaq, and VIX permeate the
HF We discover that volatility cluster of WTI has no impact on those of S&P 100 and
S&P 500, whereas gold volatility clusters do influence both of these equity indices.
Another interesting result is the impact of the 10- year T-note. The volatility clusters
of the 10-year T-note affect only the S&P 500 and has no effect on the S&P 100’s giant
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companies. On the other hand, CRB only affects the S&P 100 and not the S&P 500.
There are no shock transmissions between the CRB and VIX mutually. Among other
results in Table 1.7, we note the strong bi-directional impact of the 10-year T-note and
gold spot price volatility clusters on each other. Furthermore, WTI volatility clusters
have the greatest impact on CRB volatility clustering, as expected. The HFs’ volatility
clusters affect the volatility clusters of the Nasdaq, CRB, gold, WTI, and 10-year T-note.
This means that shocks to the HFs spread to other markets, which is consistent with
the findings of dynamic correlations and shows that HFs exploit other markets during
a crisis. Our paper suggests additional regulatory mandates are required to decrease
HFs’ detrimental effects on other markets.

1.3.2 The dynamics of HF strategies

In this section, we study the dynamics and investing styles of the four HF strategies,
including Event Driven (HFRXED), Equity Hedge (HFRXEH), Macro (HFRXM), and
Relative Value Arbitrage (HFRXRVA), with 30 liquid and major assets from four finan-
cial markets, including equities, commodity futures, currencies, and debt markets.
We consider all sectors in S&P 500 including: information technology (SP InfoTech),
healthcare (SP Health), consumer discretionary (SP ConsDiscr), telecom services (SP
TeleCom), financials (SP Finance), industrials (SP Indust), consumer staples (SP Con-
sStap), utilities (SP utilities), materials (SP materials), and energy (SP energy). As dis-
cussed in the data section, we prefer the Dow Jones (DJ) US real estate market index
over the S&P 500 real estate index, because of its comprehensiveness. In addition, we
consider the S&P 100, which includes the top 100 largest companies in the US and ac-
counts for more than 50% of the US equity market cap. We also consider the E-mini
contract (a popular futures contract on the S&P 500), which has a very deep and active
market. Moreover, 13 commodity futures contracts reflecting 5 distinct categories of
commodities are also considered. Among the commodities we consider in this section,
are WTI crude oil (WTI F), natural gas (Gas F), and heating oil (Heat Oil F) as the three
most traded energy futures contracts; gold (Gold F), silver (Silver F), and copper (Cop-
per F) as the three most traded precious metals contracts; soybean (Soybean F), corn
(Corn F), and wheat (Wheat F) as the three largest grain futures contracts; sugar (Sugar
F), coffee (Coffee F), and cotton (Cotton F) as the three most traded soft futures con-
tracts; and finally, the most liquid livestock futures contract, live cattle (Cattle F) from
the Chicago Mercantile Exchange (CME). Given the crucial impact of debt securities in
asset management, we consider the 10-year US T-note (10-year T-note). Finally, three
heavily traded exchange rates from the forex market are included in our analysis: US-



1.3. RESULTS 19

Ta
bl

e
1.

7:
C

lu
st

er
in

te
rd

ep
en

de
nc

ie
s

be
tw

ee
n

m
ar

ke
ts

.

H
FR

X
G

L
S&

P
10

0
S&

P
50

0
V

IX
N

as
da

q
C

R
B

G
ol

d
sp

ot
W

TI
sp

ot
U

S
10

-y
ea

r
T-

no
te

co
ef

p-
va

lu
e

co
ef

p-
va

lu
e

co
ef

p-
va

lu
e

co
ef

p-
va

lu
e

co
ef

p-
va

lu
e

co
ef

p-
va

lu
e

co
ef

p-
va

lu
e

co
ef

p-
va

lu
e

co
ef

p-
va

lu
e

C
on

st
an

t
0.

49
0.

00
0.

41
0.

00
0.

39
0.

00
0.

35
0.

00
0.

53
0.

00
0.

51
0.

00
0.

44
0.

00
0.

49
0.

00
0.

54
0.

00
H

FR
X

G
L

0.
01

0.
53

0.
00

0.
76

0.
11

0.
00

0.
06

0.
00

0.
04

0.
01

0.
07

0.
00

0.
03

0.
02

0.
04

0.
01

S&
P

10
0

0.
01

0.
53

0.
24

0.
00

0.
06

0.
00

0.
07

0.
00

0.
03

0.
05

0.
03

0.
05

0.
01

0.
55

0.
00

0.
87

S&
P

50
0

0.
00

0.
76

0.
25

0.
00

0.
03

0.
04

0.
09

0.
00

0.
00

0.
86

0.
05

0.
00

0.
02

0.
11

0.
04

0.
01

V
IX

0.
10

0.
00

0.
06

0.
00

0.
03

0.
04

0.
06

0.
00

0.
01

0.
53

0.
06

0.
00

0.
05

0.
00

0.
08

0.
00

N
as

da
q

0.
06

0.
00

0.
08

0.
00

0.
10

0.
00

0.
07

0.
00

0.
04

0.
01

0.
05

0.
00

0.
17

0.
00

-0
.0

1
0.

48
C

R
B

0.
04

0.
01

0.
03

0.
05

0.
00

0.
86

0.
01

0.
53

0.
04

0.
01

0.
01

0.
49

-0
.0

2
0.

33
0.

00
0.

79
G

ol
d

sp
ot

0.
07

0.
00

0.
03

0.
05

0.
04

0.
00

0.
06

0.
00

0.
01

0.
49

0.
04

0.
00

0.
03

0.
03

0.
10

0.
00

W
T

Is
po

t
0.

03
0.

02
0.

01
0.

55
0.

02
0.

11
0.

05
0.

00
-0

.0
1

0.
33

0.
16

0.
00

0.
03

0.
03

0.
03

0.
04

U
S

10
-y

ea
r

T-
no

te
0.

04
0.

01
0.

00
0.

87
0.

04
0.

01
0.

09
0.

00
0.

00
0.

79
-0

.0
1

0.
48

0.
11

0.
00

0.
03

0.
04

F-
St

at
18

0.
00

49
0.

00
50

0.
00

26
0.

00
19

0.
00

22
0.

00
20

0.
00

23
0.

00
17

0.
00

R
2

0.
03

0.
08

0.
08

0.
04

0.
03

0.
04

0.
03

0.
04

0.
03



20 CHAPTER 1. DISSECTING HEDGE FUNDS’ STRATEGIES

DEUR, USDGBP, and USDJPY.

Note that all of these assets are directly investable for any investor. Unlike previous
studies, we focus on easily investable assets rather than including or constructing ex-
otic portfolios. In studying HF strategies’ investing styles, we only consider futures
contracts rather than spot contracts because HFs cannot buy and store goods. As in
HFR’s defined formulaic methodology 18, any subscribed HF has to choose one of the
following four main investing style categories initially: Event Driven, Equity Hedge,
Macro, and Relative Value Arbitrage.

The literature analyzes HF strategies’ dynamics with very broad economic indicators,
from gold spot price, to inflation or GDP gap output. While there are potential rela-
tionships between those variables, we believe the 30 assets considered here are able to
explain a large portion of the variation in volatility of the HFs, because HFs can invest
in these assets, not in the GDP gap or inflation. Restating, the 30 assets are easily in-
vestible, heavily traded, and deep enough to include large groups of market players.
As discussed in Section 1.2.1 (descriptive statistics), many of these assets had more
than 200% return, during the whole sample period. Needless to mention that exces-
sive derivatives trading generally leads to underperformance (Cici & Palacios, 2015).
Table 1.8 shows the result of our estimation. We estimate the dynamic conditional
correlations with the 30 assets for each HF strategy, avoiding spillovers between HF
strategies. Panel A of Table 1.8 shows the result of the VAR(1) model for each HF strat-
egy return equation. The constant terms show that Event Driven strategy generates 2
bps abnormal return (also referred to as manager’s skill) during the entire sample pe-
riod, outperforming other strategies. The HFRX*** coefficients represent the effect of
the lagged return of each strategy on itself. In this regard, all strategies exhibit mean-
reverting behavior. The S&P 100 has a severe negative impact on the Event Driven and
Equity Hedge strategies.

Note that the two strategies are more focused on equity markets than other markets,
based on their prospectuses. Looking at VAR results for Event Driven, we see a pos-
itive effect from the consumer discretionary sector. Amazon, McDonald’s, Starbucks,
and Walt Disney belong to this sector. Companies proved to be immune to market
downsides, with steady yet slow growth. On the other hand, the consumer staples
sector has a negative impact on the Event Driven strategy. The sector with businesses,
less sensitive to economic cycles. The results also show that real estate market perfor-

18https://www.hfr.com/sites/default/files/pdf/HFRX_formulaic_methodol ogy.pdf

https://www.hfr.com/sites/default/files/pdf/HFRX_formulaic_methodol ogy.pdf
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mance negatively affects Equity Hedge performance, although significant only at 10%.
The widespread effect of the 10-year T-note is interesting. This bond, Granger causes
the performance of three out of four HF strategies. This shows that HFs are active in
the debt market as well. The performance of the Event Driven strategy can only be af-
fected by two futures contracts: corn and live cattle, with the former having a positive
effect and the latter having a negative effect.

The only strategy in our study that is significantly influenced by all four markets is the
Equity Hedge, which is largely hit by the performance of the S&P 100. On the other
hand, information technology, consumer discretionary, and financials sectors have a
positive impact on this strategy. The real estate market has a negative impact on the
Equity Hedge strategy, at 1% significance level. It is evident that the performance of
E-mini positively influences the performance of Even Driven and Equity Hedge strate-
gies. We also find that corn and cotton futures contracts Granger cause the Equity
Hedge positively, while wheat has a negative impact on this strategy. Another positive
effect comes from the currency market. We find a weak but positive relationship be-
tween the lagged return of the USDEUR and the Equity Hedge strategy performance.
Moreover, the stronger the US Dollar against the European Euro (USDEUR), the higher
returns for this HF strategy. This strategy is positively affected by silver futures con-
tract, in addition to the comparably large influence from the 10-year T-note and infor-
mation technology sector. There is a negative impact from the financials sector linked
to this strategy, significant at 10%.

Finally, we witness the healthcare, consumer discretionary, and energy sectors, Granger
cause the Relative Value Arbitrage strategy performance.

In Panel B of Table 1.8, we have the parameter estimates of the uni- variate GJR volatil-
ity model for each HF strategy. We can see significant parameters for volatility cluster
(α1), volatility persistence (β1), and volatility asymmetry (γ1) for all strategies. The
persistence parameter explains a large amount of the conditional volatility in all HF
strategies. The persistence (capturing the effect of the last period conditional variance)
denoted by parameter β1 is the largest in case of the Macro strategy (0.935) and small-
est for the Equity Hedge (0.823) among the four strategies. The cluster effect α1 refers
to the impact of lagged shocks and ranges from 0.029 for the Equity Hedge, to 0.1 for
the Relative Value Arbitrage. All strategies except the Macro, show significant and
large leverage effect, which means negative news creates larger volatility than positive
news. This result is in line with studies on stock market volatility modelling, poten-
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Table 1.8: Model parameters for each HF strategy.

Panel A: VAR coefficients for each HF strategy mean equation with the p-value

HFRXEDt HFRXEHt HFRXMt HFRXRVAt

Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value

Constant 0.000 0.00 0.000 0.00 0.000 0.23 0.000 0.00
HFRX***t−1 0.051 0.01 0.047 0.06 0.045 0.01 0.072 0.00
S&P 100t−1 -0.048 0.06 -0.158 0.00 -0.014 0.73 -0.005 0.78
SP Information technologyt−1 0.007 0.45 0.034 0.01 0.022 0.09 0.003 0.65
SP Healthcaret−1 -0.002 0.82 0.009 0.39 -0.001 0.96 0.009 0.03
SP Consumer discretionaryt−1 0.018 0.03 0.052 0.00 0.017 0.14 0.016 0.00
SP Telecom servicest−1 -0.001 0.79 -0.010 0.16 -0.005 0.47 -0.001 0.66
SP Financialst−1 -0.004 0.50 0.015 0.09 -0.015 0.08 0.003 0.49
SP Industrialst−1 0.001 0.92 -0.005 0.68 -0.003 0.78 -0.005 0.33
SP Consumer Staples t−1 -0.019 0.04 0.005 0.68 -0.004 0.70 -0.003 0.50
SP Utilitiest−1 0.001 0.89 0.011 0.16 0.011 0.11 -0.004 0.21
SP Materialst−1 0.003 0.60 0.007 0.44 -0.001 0.89 0.005 0.22
SP Energyt−1 -0.003 0.44 0.009 0.20 0.007 0.21 0.006 0.01
DJ US Real estatet−1 -0.007 0.10 -0.013 0.01 -0.008 0.13 0.005 0.17
US 10-year Treasury notet−1 0.020 0.10 0.033 0.07 0.072 0.00 0.002 0.90
E.minit−1 0.071 0.00 0.082 0.00 0.026 0.20 0.009 0.45
WTI futurest−1 -0.002 0.46 -0.001 0.75 0.002 0.42 0.001 0.68
Gas futurest−1 0.002 0.35 -0.001 0.73 0.000 0.86 0.000 0.88
Heating oil futurest−1 -0.001 0.87 -0.002 0.75 -0.009 0.20 -0.003 0.39
Gold futurest−1 0.007 0.60 0.008 0.60 -0.019 0.20 0.003 0.66
Silver futurest−1 0.001 0.85 -0.001 0.88 0.020 0.02 0.001 0.62
Copper futurest−1 -0.007 0.21 0.012 0.13 -0.007 0.36 -0.004 0.22
Soybean futurest−1 -0.001 0.83 0.001 0.90 0.004 0.41 -0.005 0.05
Corn futurest−1 0.008 0.05 0.014 0.01 -0.005 0.47 0.005 0.07
Wheat futurest−1 -0.003 0.19 -0.007 0.03 -0.001 0.82 -0.001 0.35
Sugar futurest−1 0.005 0.14 0.005 0.35 0.000 0.95 0.002 0.38
Coffee futurest−1 0.003 0.47 -0.001 0.90 -0.003 0.53 -0.002 0.25
Cotton futurest−1 0.006 0.19 0.013 0.04 0.002 0.75 0.002 0.47
Live cattle futurest−1 -0.008 0.07 -0.007 0.20 0.002 0.70 -0.002 0.51
USDEURt−1 -0.004 0.65 0.020 0.10 0.036 0.00 0.002 0.69
USDGBPt−1 0.002 0.83 -0.012 0.32 -0.024 0.05 0.000 0.96
USDJPYt−1 0.010 0.17 0.006 0.55 -0.013 0.19 -0.007 0.20

Panel B: Volatility equation GJR(1,1) parameters

Ω 0.000 0.00 0.000 0.00 0.000 0.02 0.000 0.01
ARCH(α1) 0.056 0.00 0.029 0.05 0.094 0.00 0.092 0.00
GARCH(β1) 0.837 0.00 0.823 0.00 0.935 0.00 0.870 0.00
GJR(γ1) 0.126 0.00 0.178 0.00 -0.066 0.00 0.067 0.00
Half-life (in days) 16 11 174 288
Log-likelihood 20860 19464 19374 23147
ARCH test 1012 0.00 828 0.00 637 0.00 1078 0.00

Panel C: ADCC parameters

a∗ 0.0051 0.00 0.0051 0.00 0.0065 0.00 0.0051 0.00
b∗ 0.9903 0.00 0.9905 0.00 0.9868 0.00 0.9901 0.00
g∗ 0.0003 0.00 0.0003 0.00 0.0005 0.00 0.0003 0.00
Log-likelihood 529032 528773 526870 530159
AIC -233 -233 -232 -233
BIC -233 -233 -232 -233
HQ -235 -234 -232 -234
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tially due to the large activity of HFs in equity markets. However, Elyasiani & Mansur
(2017) find that positive news creates larger volatility compared to negative news in
many HF strategies. As discussed earlier, one potential explanation for their result is
the use of low-frequency monthly data. We also calculate the half-life volatility shock
for each strategy, which states that when a shock permeates the conditional variance,
how many days it takes for the volatility to get halfway back to its unconditional mean.
While the Event Driven and Equity Hedge strategies have short-lived shock half-life (∼
2 weeks), shocks take 174 days, and 288 days to get back to their unconditional mean
in the case of the Macro and Relative Value Arbitrage strategies, respectively. These
results raise the possibility of a long-term shock spillover between these two strategies
and their portfolio constituents. The Event Driven and Equity Hedge strategies seem
to have more active asset management such that when a shock hits them, the shock
is transient. On the other hand, when a shock spreads to the Macro or Relative Value
Arbitrage strategies, it takes a long time to dissipate. This might be a sign of the semi-
passive investing style of these two strategies. Finally, panel C of Table 1.8 reports the
estimated parameters for the ADCC model.

Figs. 1.2–1.5 depict the dynamic correlations between HF strategies and each of the 30
assets. In Fig. 1.2, we have the dynamic correlations of the Event Driven strategy with
the 30 assets. One can observe three ubiquitous patterns across many dynamic correla-
tions: the first happens during the GFC, the second is the gradual decline across equity
market assets that begins in early 2013, and the third one occurs during the COVID-
19 pandemic. Prior to the GFC, the dynamic correlations are increasing across equity
market sectors, but when the GFC hits the equity market at full strength in mid-2008,
the Event Driven strategy decreases its exposure to nearly all equity market sectors
except the utilities and energy. On the other hand, we witness jumps in the dynamic
correlations of this strategy with commodities from mid-2008 to mid-2009, including
those of WTI futures, natural gas, heating oil, soybean, wheat, corn, sugar, coffee, cot-
ton, and cattle. The second ubiquitous pattern relates to the long-term gradual decline
in dynamic correlations with equity market assets, which emerges in early 2013, after
the low-interest environment of post-GFC. The second pattern seems to end just before
the onset of the COVID-19. The third pattern that emerges during the COVID-19 also
reveals a change in the investing style of this HF strategy. Similar to the GFC, the Event
Driven strategy utilizes the futures contracts as a buffer against equity market turmoil
at the beginning of the COVID-19 pandemic. This is evident by looking at the dynamic
correlations with WTI, gas, heating oil, silver, soybean, and sugar, among other fu-
tures contracts. However, in contrast to the GFC, this time the dynamic correlations



24 CHAPTER 1. DISSECTING HEDGE FUNDS’ STRATEGIES

increased in several equity market assets. All in all, the dynamic correlations are very
strong with equity market assets compared to other markets’ assets, which means this
strategy is concentrated on the equity market.

Fig. 1.3 shows the dynamic correlations between the 30 asset classes and the Equity
Hedge strategy. It is evident that Equity Hedge strategy is highly focused on the eq-
uity market, similar to the Event Driven strategy. The dynamic correlations with equity
market assets reach 80% in many cases, while in general the comovements of this HF
strategy with currencies (except USDJPY) and the T-note are negative, especially dur-
ing the GFC or Europe’s sovereign debt crisis. Unlike the Event Driven strategy, the
dynamic correlations of the Equity Hedge strategy with equities do not fall sharply
during the GFC, and throughout the crisis, this strategy maintains or increases expo-
sure to TeleCom, industrials, consumer staples, utilities, materials, energy, and real
estate. On the other hand, by mid-2010, when the crisis has totally plagued the mar-
kets, the dynamic correlations with the S&P 100, InfoTech, Indust, and E-mini begin
to fall. This is consistent with the fact that this strategy has the highest standard de-
viation, CVaR, and maximum drawdown when compared to the other HF strategies
(Table 1.1).

This strategy is extremely vulnerable to crises due to a lack of market timing skill, and
as a result, the increase in dynamic correlations with commodities only occurs after
2009. Futures contracts like WTI, silver, heating oil, copper, soybean, corn, wheat, and
cotton are the ones with a pronounced increased correlation from 2009 to 2011. We ob-
serve a gradual decline in all equity market sector correlations during the COVID-19
pandemic period. In contrast, dynamic correlations with some futures contracts show
a brief but significant surge in various contracts in early 2020. This trend is confirmed
by the dynamic correlations of HFRXEH with gas, heating oil, sugar, cotton, and cattle.

As previously noted, the Macro strategy performed the worst among the HF strategies
in terms of return in the whole sample period (Table 1.1). We do not notice a distinct
difference in terms of investing style when examining its dynamic correlations with
various asset classes from various markets (Fig. 1.4). A majority of dynamic correla-
tions fluctuate between -10% and -50%. Consequently, this strategy is not focused on a
particular market. When the equity markets were booming in early 2006, the dynamic
correlations of the Macro strategy with those sectors swiftly increased. However, start-
ing in mid-2007 (the start of the GFC), we observe the beginning of a sharp decline in
the dynamic correlations, causing the correlations to turn negative. The dynamic cor-
relations with commodity futures suggest this strategy too, exploits futures contracts,
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Figure 1.2: HFRXED (Event Driven strategy) dynamic correlations.
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similar to the other HF strategies (2008–2010).

The jagged correlation lines across different markets and assets seem to resemble the
extensive use of options by this HF strategy. During the COVID-19 period, the comove-
ments of the Macro strategy in both equity and commodity assets show an increasing
pattern, while the comovements with currencies are generally negative and decreasing.
The dynamic correlation of the Macro strategy with the S&P 100, information technol-
ogy, healthcare, consumer discretionary, telecommunications services, and materials
all show rising trends. Similarly, WTI, gold, silver, copper, and cotton show a positive
upward trend. This is the only HF strategy that has a positive correlation with the 10-
year Treasury note, especially during crises. Patton & Ramadorai (2013) find that this
strategy has the highest time-varying risk exposure compared to other strategies. Our
results show that the Macro strategy seems to have good market timing skills (in line
with Gregoriou et al., 2021) and is quick in switching between markets and assets to
decrease the adverse effects of crashes, although this timing skill comes at the cost of
underperformance.

Fig. 1.5 exhibits the dynamic correlations of Relative Value Arbitrage strategy with
other assets across different financial markets. Similar to other strategies, the dynamic
correlations with equity market assets show an upward trend since 2007, and then a
downward trend in late 2008, falling to zero in early 2010, across all equity market
sectors. Unlike other HF strategies, we do not find sharp increases or decreases in
the dynamic correlations of this strategy with commodities in response to the GFC,
although gradual rises in comovements with commodities exist across several futures
contracts, including natural gas, wheat, cotton, and cattle. Relative Value Arbitrage
appears to be an active speculator, much like the Macro strategy, based on the oscilla-
tions in its dynamic correlations, particularly with futures contracts.

Further support for the heavy usage of options can be seen in the statistical characteris-
tics of this strategy’s return. As in Table 1.1, among the four HF strategies, this strategy
has the lowest standard deviation (0.2%) and smallest skewness (-1.77), but with the
largest kurtosis (46) and maximum drawdown (-40%).

1.3.2.1 Shock transmissions between HF strategies and financial assets

To study the dynamics of the HF strategies in further detail, we analyze the (volatil-
ity) cluster dependency of each HF strategy on those of the 30 assets considered in the
previous section. In this regard, and similar to Section 1.3.1.1, we employ the absolute
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Figure 1.3: HFRXEH (Equity Hedge strategy) dynamic correlations.
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Figure 1.4: HFRXM (Macro strategy) dynamic correlations.
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value of the standardized errors
∣∣∣∣ e′√

h′2

∣∣∣∣ = κ and regress the volatility cluster of each HF

strategy on the volatility clusters of the 30 assets, with no spillover effect between HF
strategies by an OLS regression. To that end, we investigate shock transmissions from
those 30 assets on each of the four HF strategies in the following way:

κi,t = ηi,0 +
30

∑
j=1

ηjκj,t + εi,t j = 1, 2, 3, ..., 30 and i 6= j (1.15)

where κi,t and κj,t are the volatility clusters of HF strategy i (i = 1, ..., 4) and asset j
(j = 1, 2, 3, ..., 30) at time t, respectively, ηi,0 is the constant term in HF i’s cluster de-
pendency regression, ηj refers to the estimated coefficients for each of the 30 assets,
and εi,t are the error terms for HF strategy i at time t.

Table 1.9 shows the cluster dependencies of HF strategies. The results show that the
volatility cluster of the Event Driven strategy is affected by the S&P 100, information
technology, financials, consumer staples, materials, and E-mini volatility clusters heav-
ily. Silver, live cattle, and USDJPY also have cluster spillover on this HF strategy. The
volatility cluster of the Equity Hedge strategy is under the influence of four equity mar-
ket assets’ volatility clusters: consumer discretionary, consumer staples, materials, and
the E-mini. Moreover, the two forex rates, USDGBP and USDJPY, also transmit shocks
to this HF strategy. The volatility cluster of the Macro strategy is heavily influenced by
the several assets from different markets. The volatility clusters of the S&P 100, health-
care, consumer staples, utilities, energy, E-mini, the 10-year T-note, WTI, gold, silver,
copper, soybean, coffee, and the three currencies all have significant spillover effect
on the volatility clusters of Macro strategy. This might be the reason why the Macro
strategy underperforms. The volatility cluster of the Relative Value Arbitrage strategy
is affected by the volatility clusters of health- care and information technology sectors,
the 10-year note, E-mini, gas, gold, and live cattle. Like other strategies, the volatility
cluster of USDJPY has an impact on this HF strategy. Overall, consumer staples, E-
mini, gold futures, and USDJPY are the assets with widespread cluster spillover across
HF strategies in our work.

To see if the volatility clusters of HF strategies affect those of the 30 assets, we employ
a Granger causality test. The Equity Hedge strategy influences 13 out of 30 assets in
our study, as the most influential strategy. On the other hand, the volatility cluster
of the Macro strategy, which is heavily influenced by the volatility clusters of the 30
assets, only Granger causes 5 assets’ volatility clusters, as the least influential strategy
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Table 1.9: HF strategies’ cluster dependencies.

HFRXEDt HFRXEHt HFRXMt HFRXRVAt

Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value

Constant 0.432 0.00 0.448 0.00 0.296 0.00 0.432 0.00
S&P 100 0.045 0.00 0.017 0.26 -0.025 0.10 0.010 0.54
S&P Information technology 0.027 0.08 0.015 0.30 0.004 0.76 0.036 0.02
S&P Healthcare 0.008 0.59 0.008 0.60 0.026 0.07 0.046 0.00
S&P Consumer discretionary 0.017 0.27 0.041 0.01 -0.013 0.39 -0.021 0.18
S&P Telecom services 0.011 0.47 0.011 0.45 0.005 0.73 0.018 0.24
S&P Financials 0.026 0.10 0.011 0.46 0.006 0.71 0.008 0.63
S&P Industrials -0.009 0.55 0.009 0.53 0.001 0.93 -0.012 0.44
S&P Consumer Staples 0.029 0.06 0.036 0.02 0.039 0.01 0.004 0.80
S&P Utilities 0.001 0.94 0.024 0.12 0.030 0.04 0.010 0.55
S&P Materials 0.041 0.01 0.026 0.08 0.013 0.36 0.004 0.78
S&P Energy 0.020 0.20 0.022 0.15 0.038 0.01 -0.009 0.59
DJ US Real estate -0.002 0.92 -0.007 0.65 0.022 0.15 0.020 0.23
US 10-year Treasury note 0.013 0.40 0.005 0.76 0.037 0.01 0.031 0.05
E.mini 0.040 0.01 0.024 0.10 0.032 0.03 0.038 0.01
WTI futures -0.008 0.59 0.015 0.33 0.060 0.00 0.021 0.19
Gas futures 0.016 0.29 0.021 0.16 -0.003 0.86 0.029 0.06
Heating oil futures 0.004 0.79 -0.015 0.32 -0.004 0.79 0.005 0.74
Gold futures 0.007 0.63 0.025 0.09 0.059 0.00 0.056 0.00
Silver futures 0.029 0.04 0.006 0.66 0.041 0.00 0.014 0.35
Copper futures 0.003 0.86 0.007 0.62 0.024 0.09 -0.003 0.82
Soybean futures 0.012 0.43 -0.017 0.23 0.003 0.81 0.009 0.57
Corn futures 0.012 0.42 0.020 0.17 0.020 0.13 0.005 0.74
Wheat futures 0.015 0.34 0.002 0.91 0.014 0.32 -0.009 0.56
Sugar futures -0.006 0.68 0.015 0.31 0.015 0.27 -0.007 0.64
Coffee futures 0.006 0.67 0.019 0.19 0.030 0.03 0.019 0.22
Cotton futures 0.014 0.31 -0.008 0.56 -0.018 0.18 -0.010 0.50
Live cattle futures 0.034 0.01 0.012 0.35 0.000 0.98 0.043 0.00
USDEUR 0.000 0.99 0.013 0.40 0.068 0.00 0.026 0.11
USDGBP 0.010 0.49 0.027 0.06 0.027 0.06 0.019 0.22
USDJPY 0.030 0.05 0.036 0.01 0.031 0.03 0.036 0.02
R2 0.021 0.012 0.041 0.023
F-statistic 3.23 0.00 2.83 0.00 6.35 0.00 3.50 0.00

in our study (Table 1.10). It is intuitive to see that the Event Driven and Equity Hedge
strategies, which are mainly focused on the equity market, Granger cause many assets’
volatility clusters in this market.

The p-values in Table 1.10 show that the industrials, the 10-year T-note, and the futures
contracts including WTI, natural gas, heating oil, copper, soybean and coffee are not
under the influence of any of the HF strategies. It is interesting to see that USDJPY,
whose volatility cluster influences all four HF strategies’ volatility clusters, is not af-
fected by any of the HF strategies’ volatility clusters. Further, corn and silver are the
futures contracts heavily hit by the volatility clusters of several HF strategies.
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Figure 1.5: HFRXRVA (Relative Value Arbitrage strategy) dynamic correlations.
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1.3.2.2 Futures basis and HFs’ performance

The last section in our study, looks at the impact of the futures basis on HFs’ perfor-
mance. The theory of storage (Fama & French, 2016; Schwartz, 1997; Working, 1949)
posits that, when the futures basis defined as the spread between the futures and spot
prices of a commodity increases, the opportunity for arbitrage increases. Among our
notable contributions to the literature, we examine whether the basis computed for the
13 commodities can explain HFs’ performance to some degree. We do not find any
previous study to examine this relationship.

As in theory of storage, the basis is defined as:

The futures basis = ln
(

futures price indext
spot price indext

)
(1.16)

When the gap between futures and spot prices of a commodity in- creases, the chance
for opportunistic speculation increases. In this regard, we regress the returns of each
HF strategy on the 13 bases computed on the commodities employed in our study.
(Table 1.5)

ri,t = mi,0 +
13

∑
j=1

mjbj,t + ξi,t; i = 1, .., 4 j = 1, 2, 3, ..., 30 and i 6= j (1.17)

In this regression equation, ri,t represents the return of the HF strategy i(i = 1, ..., 4) at
time t, mi,0 is the constant term, mj is the coefficient of the j(j = 1, .., 13) futures basis,
bj,t is the basis for each commodity j(j = 1, .., 13) at time t, and ξi,t, t is the error term
for HF strategy i at time t. The results are provided in Table 1.11. We find a generally
mixed relationship between the bases and HFs’ performance. The results show that
there are positive relationships between all HF strategies’ returns and natural gas ba-
sis, the largest of which belongs to the Equity Hedge strategy. The Macro is the only
strategy that takes advantage of the basis of WTI. A 1% increase in the basis of WTI,
increases the performance of Macro strategy by 88% bps. The large coefficients of gold
basis in the regression equation of the Event Driven and Equity Hedge strategies, show
that the two strategies benefit largely from the increased gap between gold’s futures
and spot prices. A 1% increase in gold’s basis yields a 3 bps increase in the performance
of the two strategies. Moreover, a 1% increase in silver’s basis yields a 3.1 bps increase
in the Relative Value Arbitrage’s return, similarly a 1% increase in silver’s basis cre-
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ates approximately a 2 bps increase in the Macro’s return. The relationship between
cattle’s basis and HFs’ return is positive and significant, except for the Macro strategy.
The Event Driven is the only strategy that benefits from cotton’s basis, and the strategy
that exploits the futures basis of more commodities than other strategies.

This evidence clearly shows the active presence of HFs in commodities with higher liq-
uid market (like WTI, natural gas, silver, and gold), and lower basis standard deviation
(gold, silver, and WTI) as in Table 1.5 which is in line with the performance analysis in
Section 1.2.1, that is, delivering a higher return with the lowest risk.

1.4 Discussion & conclusion

Studies on HFs are scarce in comparison to other areas of the Finance literature. One
particular reason is that this industry discloses the least amount of information possi-
ble. Almost all studies in the literature study HFs’ performance utilize low-frequency
data. The models and methods used to analyze HFs’ performance are not totally suited
to HFs’ nature. To examine the anatomy of HFs, advanced models are necessary to
account for their dynamic and time-varying investing styles across various financial
markets and asset classes.

As a response, we apply ADCC-GJR-t to explore the dynamics of HFs with four finan-
cial markets: equities, commodity futures, debt, and currencies markets. We discover
that, whereas HFs exploit the futures market as a hedge against financial crises and
enjoy the equity market at other times, they do not have market timing overall. Fur-
thermore, the dynamic correlations demonstrate that the reaction of HFs to the 2008
crisis differs from that of COVID-19 pandemic. During the current pandemic, HFs did
not reduce their exposure to equity market (unlike the GFC), but instead increased
their risk exposure to commodity futures (similar to the GFC).

Among the four HF strategies in our study, the Event Driven strategy outperforms the
others, while the Macro strategy exhibits market timing. By investigating the volatil-
ity dynamics of HF strategies, we discovered significant heterogeneity in the shock
lifetime of different HF strategies. The strategies that focus primarily on the equity
markets (Event Driven and Equity Hedge) have a shock lifespan of less than a month.
On the other hand, shocks take 174 days, and 288 days to get back to their conditional
mean in the case of Macro and Relative Value Arbitrage strategies respectively.
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Additionally, we looked into the cluster interdependencies between 30 assets from dif-
ferent financial markets, and HF strategies. We detect numerous bidirectional cluster
interdependencies. According to the findings of the Granger causality test, there are
widespread shock transmissions between HF strategies and many assets in financial
markets, especially those of commodity futures. In the final section of our study, we
analyzed the effect of the futures basis on the performance of HF strategies. The results
indicate that HFs benefited from the rise in the basis of many commodities.

In comparison to other financial markets, we find that HFs indeed performed poorly
in terms of returns from April 2003 to May 2021. A passive strategy that tracks one
or two equity market sectors can produce at least three times higher returns than the
returns delivered by the top-performing HF strategy in our sample. However, when
risk indicators like the standard deviation, CVaR, etc., are taken into account, the HF
industry stands out as being safer than other markets, even the bond market.

This paper makes clear contributions to portfolio managers, investors, and hedgers
with volatility sensitivity in their portfolio strategies, as well as policymakers seek-
ing a better understanding of the links between HFs and other financial asset classes.
The manipulative behavior of HFs in the futures market, which is a market for real
production and hedging, creates increased market volatility in times of crisis. This is
detrimental for the entire economy, such that when a crisis happens, in addition to job
loss, unemployment, and market turmoil, the economy also has to deal with unrealistic
surges in commodity prices, which are partially the result of the speculative behavior
of HFs. This paper is a step forward in understanding the behavior of hedge funds
across financial markets.
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Table 1.11: OLS regression of the bases on HF strategies’ performance.

HFRXED HFRXEH HFRXM HFRXRVA

Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value

Constant 0.0002 0.07 0.0003 0.03 0.0004 0.01 -0.0001 0.08
WTI basis 0.0020 0.56 0.0052 0.25 0.0088 0.05 -0.0011 0.69
Natural gas basis 0.0028 0.00 0.0032 0.00 0.0018 0.06 0.0023 0.00
Heating oil basis -0.0001 0.98 0.0029 0.40 0.0007 0.84 0.0023 0.27
Gold basis 0.0338 0.02 0.0322 0.08 -0.0411 0.02 0.0118 0.32
Silver basis -0.0125 0.16 -0.0412 0.00 0.0197 0.09 0.0313 0.00
Copper basis 0.0036 0.34 0.0078 0.12 0.0007 0.89 0.0014 0.65
Soybean basis -0.0032 0.00 -0.0025 0.05 -0.0006 0.66 -0.0026 0.00
Corn basis 0.0008 0.53 0.0014 0.39 0.0011 0.53 0.0014 0.15
Wheat basis -0.0029 0.00 -0.0030 0.00 -0.0011 0.06 -0.0015 0.00
Sugar basis 0.0012 0.05 0.0012 0.14 0.0005 0.48 0.0008 0.10
Coffee basis -0.0001 0.76 0.0003 0.56 0.0016 0.00 -0.0018 0.00
Cotton basis 0.0023 0.08 0.0002 0.90 0.0015 0.39 -0.0004 0.72
Live cattle basis 0.0027 0.01 0.0038 0.00 0.0017 0.42 0.0022 0.00
R2 0.015 0.012 0.006 0.024
F-statistic 5.264 0.00 4.261 0.00 2.148 0.00 8.501 0.00
Degree of freedom 13 13 13 13
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Appendix A

HFRX indices description.

We use the hedgefundresearch https://www.hfr.com (HFR) database’s following 5 indices. These indices are net of all fees. Indices are based on funds
with an asset under management (AUM) of at least $50 million and a minimum of 24 months of performance history. These summaries were taken
from the HFR website.

HFRXGL The HFRX Global Hedge Fund Index is designed to be representative of the overall composition of the hedge fund universe. It is comprised of all
eligible hedge fund strategies; including but not limited to Convertible Arbitrage, Distressed Securities, Equity Hedge, Equity Market Neutral, Event
Driven, Macro, Merger Arbitrage, and Relative Value Arbitrage. The strategies are asset weighted based on the distribution of assets in the hedge fund
industry.

HFRXEH Equity Hedge strategies maintain positions both long and short in primarily equity and equity derivative securities. A wide variety of investment
processes can be employed to arrive at an investment decision, including both quantitative and fundamental techniques; strategies can be broadly
diversified or narrowly focused on specific sectors and can range broadly in terms of levels of net exposure, leverage employed, holding period,
concentrations of market capitalizations and valuation ranges of typical portfolios. Equity Hedge managers would typically maintain at least 50%, and
may in some cases be substantially entirely invested in equities, both long and short.

HFRXED Event Driven Managers maintain positions in companies currently or prospectively involved in corporate transactions of a wide variety including
but not limited to mergers, restructurings, financial distress, tender offers, shareholder buybacks, debt exchanges, security issuance or other capital
structure adjustments. Security types can range from most senior in the capital structure to most junior or subordinated, and frequently involve
additional derivative securities. Event Driven exposure includes a combination of sensitivities to equity markets, credit markets and idiosyncratic,
company specific developments. Investment theses are typically predicated on fundamental characteristics (as opposed to quantitative), with the
realization of the thesis predicated on a specific development exogenous to the existing capital structure.

HFRXM Macro strategy managers trade a broad range of strategies in which the investment process is predicated on movements in underlying economic
variables and the impact these have on equity, fixed income, hard currency and commodity markets. Managers employ a variety of techniques,
both discretionary and systematic analysis, combinations of top down and bottom-up theses, quantitative and fundamental approaches and long and
short term holding periods. Although some strategies employ Relative Value Arbitrage techniques, Macro strategies are distinct from Relative Value
Arbitrage strategies in that the primary investment thesis is predicated on predicted or future movements in the underlying instruments, rather than
realization of a valuation discrepancy between securities. In a similar way, while both Macro and Equity Hedge managers may hold equity securities,
the overriding investment thesis is predicated on the impact movements in underlying macroeconomic variables may have on security prices, as
opposed to Equity Hedge, in which the fundamental characteristics on the company are the most significant and integral to investment thesis.

HFRXRVA Relative Value (Relative Value Arbitrage Index) investment managers who maintain positions in which the investment thesis is predicated on realization
of a valuation discrepancy in the relationship between multiple securities. Managers employ a variety of fundamental and quantitative techniques to
establish investment theses, and security types range broadly across equity, fixed income, derivative or other security types. Fixed income strategies
are typically quantitatively driven to measure the existing relationship between instruments and, in some cases, identify attractive positions in which
the risk adjusted spread between these instruments represents an attractive opportunity for the investment manager. RVA position may be involved in
corporate transactions also, but as opposed to HFRXED exposures, the investment thesis is predicated on realization of a pricing discrepancy between
related securities, as opposed to the outcome of the corporate transaction
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Chapter 2

Stock-Oil Comovements Through Fear,
Uncertainty, and Expectations: Evidence
from Conditional Comoments
MOHAMMAD NOORI

2.1 Introduction

There is a rich literature studying the effect of oil price shocks on economic variables
and systems, highlighting the importance and fundamental effect of oil price fluctua-
tions in real economy1. As noted by the Energy Information Administration (EIA), in
2010, the expenditures on energy products, largely by petroleum category, accounted
for 8.3% of the US GDP. However the deregulation of commodity markets in the early

1See Kilian (2014).
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2000s opened the doors to non-commercial players looking for asset diversification
and extra yields in other markets, especially in the crude oil futures contracts. Con-
sequently, the tradings of these investors with diversified portfolios, create volatility
spillover between commodities and equities. There are many papers (Tang & Xiong,
2012; Fattouh et al., 2013; Singleton, 2014; Christoffersen & Pan, 2018; Christoffersen
et al., 2019 among others), evidencing that since 20042 the links between the equity
markets and commodities have strengthened vastly. Christoffersen et al. (2019) find
that commodity volatility correlations have set a new mean since that time and they
are strongly related to stock market volatility (more than returns). They state that "the
principal components in commodity futures volatility appear to be strongly related
to volatility in other asset markets including the U.S. equity market". Christoffersen
& Pan (2018) even find that oil shocks create funding constraints for financial inter-
mediaries. Heath (2019) posits that the majority of the studies in the literature are
conducted by linear, time-invariant, and model-free approaches, or via vector autore-
gression (VAR) models. He points to the fact that the previous models developed by
VAR variants, neglect the apparent time variations in crude oil price risk, and empha-
sizes on time-varying and pro-cyclical nature of the oil price dynamics (Kilian, 2014;
Hamilton & Wu, 2014).

Another strand of literature regarding the stock-oil relationship posits that since the
GFC the correlation between the stock market’s and crude oil’s price has witnessed a
structural change. A few papers have investigated this structural change, and attribute
this nascent phenomenon to the aggregate growth shocks (Hitzemann, 2016), the slow
down in global economic activity (Bernanke, 2016), the sovereign wealth funds specu-
lative activity (Mohaddes & Pesaran, 2017), and the oil demand shocks (Ready, 2018).
As stated by Heath (2019), these studies do not take into account the time-varying and
pro-cyclical nature of the stock-oil comovements. Furthermore, all of these studies are
primarily concerned with oil supply/demand shocks and are carried out at the macro
level; thus the current paper differs from them and is carried out at the micro level us-
ing sentiment indicators. This is crucial as Kozlowski et al. (2015) posit, the persistence
of the ex-ante quite unlikely 2008 GFC recession, has made market participants to up-
date their prior beliefs about tail events in the markets, and accordingly when market
participants face the challenge of accurately fathoming the probability distribution of
the future economic development, ambiguity becomes more critical than risk in their
decision making (Rossi et al., 2016).

2The period termed as "financialization" of commodity markets.
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This paper aims at investigating the stock-oil comovements by means of conditional
higher comoments focusing on the drivers of the post-GFC nascent stock-oil dynamic.
Providing novel contributions to the literature, three time-varying conditional como-
ments (Fang & Lai, 1997) including beta, coskewness, and cokurtosis3 are estimated for
both crude oil and stock, which measure the sensitivity to the returns, skewness, and
tail events in the counterpart market respectively, to investigate the interdependencies
between the two markets from April 1983 to December 2021 using daily data. Then,
given the observed structural changes in the conditional comoments after the GFC, we
analyze the effect of the three macroeconomic sentiment indicators including the CBOE
VIX representing fear, the Baker et al. (2016) economic policy uncertainty (EPU) which
represents uncertainty, and the thorough Aruoba et al. (2009) index for expectation
of real economic condition (ADS henceforth), on the conditional comoments4 using
the time-varying parameter vector autoregression (TVP-VAR) developed by Primiceri
(2005) to analyze the time-varying impulse responses of the conditional comoments to
shocks in the aforementioned sentiment indices. This is to learn if the recent elevated
conditional comoments (post-GFC) relate to the macroeconomic sentiments. Whether
macroeconomic upturns and downturns can have asymmetric impact on stock-oil co-
movements is another topic that hasn’t been addressed in the literature. This becomes
more important, especially when these asymmetries might persist in the long-run. For
this inquiry, a nonlinear autoregressive distributed lag (NARDL) model (Shin et al.,
2014) is employed to observe if the positive and negative movements in macroeco-
nomic sentiment indicators influence the conditional comovements asymmetrically.

The time-varying conditional comoments estimated by the asymmetric dynamic condi-
tional correlation (ADCC) GJR-GARCH (Glosten et al., 1993; R. Engle, 2002; Cappiello
et al., 2006) show that, in this dual relationship between stock and oil, it is the crude
oil which is heavily dependent on stock’s performance, skewness, and tail events, with
the COVID-19 marking the pinnacle of this dependency. Since the GFC, the increased
mutual exposure of the two markets means a decreased opportunity for the portfolio
managers, speculators, and hedgers to benefit from diversification between these gi-
ant markets. The time-varying impulse response analyses declare that since the GFC,
shocks to the sentiment indices (fear, uncertainty, and expectation) create unprece-
dented strong responses in the stock-oil comovements, especially in the long-run. In

3Dittmar (2002) argues that kurtosis measures the likelihood of extreme values while cokurtosis cap-
tures the sensitivity of asset returns to extreme market return realizations.

4We highlight the three macroeconomic indicators’ distinctive feature of having higher frequency
daily data, a characteristic that is both uncommon in macroeconomic variables and crucial in studies on
volatility modeling.
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particular, shocks to the fear index create an asymmetric response in stock (positive)
and oil (negative) markets. Given the asymmetric responses in the time-varying im-
pulse response, we examine whether there are asymmetries in the explanatory power
of the macroeconomic indices, that is, if positive and negative movements have asym-
metric effects on the conditional comoments. The NARDL regression results support
the findings of the time-varying impulse responses by showing strong short-run asym-
metric effects, especially after the GFC. Similar to the time-varying impulse responses,
NARDL regression estimates show that the explanatory power of the three sentiment
indices increase vastly for the post-GFC period. In particular, the effect of fear index on
WTI conditional beta changes from positive in the pre-GFC period to negative in the
post-GFC period. Lastly, in a further inquiry we reestimate the NARDL regressions
for the post-GFC period, accommodating the oil-specific fear index (OVX) effect in the
models. Interestingly, we find that the effect of the VIX fear index is greater than oil-
specific fear index, even for WTI conditional beta. Overall, the results shed light on the
alarming and ever-increasing effect of VIX on the stock-oil dependencies.

To summarize, this paper is the first in the literature to: study stock-oil dependen-
cies using time-varying conditional comoments; analyze the time-varying impulse re-
sponses to identify the primary macro sentiment shock sources on the stock-oil como-
ments; investigate the asymmetric effects of macroeconomic sentiment indices on the
stock-oil comoments in both the short- and long-run; and identify the major source of
the nascent post-GFC dynamics in stock-oil comovements.

The paper is organized as follows. Section 2.2 describes the data, elaborates the es-
timation procedure of conditional comoments, and presents the theoretical TVP-VAR,
with Section 2.3 discussing the estimated conditional comoments and the time-varying
impulse responses. Section 2.4 then investigates the asymmetric effects of macroeco-
nomic indicators on the conditional comoments using the NARDL, with the empirical
results discussed in Section 2.5. Section 2.6 concludes.
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Table 2.1: Descriptive statistics of the dataset
Mean SD Skewness Kurtosis Expected Shortfall (5%) Jarque-Bera (1%) ADF† ARCH(1)

S&P500 0.00035 0.011 -1.22 30 0.027 FALSE -17.5 2527
WTI Futures 0.00010 0.024 -1.90 50.6 0.056 FALSE -17.8 442
†ADF test with constant, linear and quadratic trend.

2.2 Method & data

In our empirical analysis, we model the conditional comoments between WTI contin-
uous time futures5 price index6, and S&P 500 index from April 1983 to December 2021
using daily data. Table 2.1 reports the descriptive statistics of the dataset. In this table,
expected shortfall refers to the historical conditional value at risk, Jarque-Bera tests the
normality of returns (False in this case, denotes the non-normality of returns), ADF
refers to augmented Dickey–Fuller test stat on unit root test at 1% significance level,
and finally ARCH(1) is the Lagrange Multiplier test statistics for autoregressive condi-
tional heteroscedasticity (ARCH) effect (R. Engle, 1982) with the values significant at
1%. We calculate the daily changes as rt = Ln( Pt

Pt−1
) where Pt refers to index price at

time t. Note that, only the daily changes of the WTI and S&P 500 are in excess of the
one-month TBill rate.

We employ three important macroeconomic indices including CBOE VIX represent-
ing fear, Baker et al. (2016) EPU representing uncertainty, and Aruoba et al. (2009)
real business conditions index as macroeconomic expectations in the economy7. The
EPU uncertainty index8 developed by Baker et al. (2016) is truly an uncertainty mea-
sure. This news-based index uses newspaper archives from the Access World News
Bank service on words related and/or associated with the word "uncertainty". Several
studies find significant relationship between EPU index with many macroeconomic
and financial variables (see Al-Thaqeb & Algharabali (2019) for a comprehensive re-
view). The Aruoba et al. (2009) ADS daily index9 is an indicator for expectation on
real business conditions which is computed on economic variables including: weekly
initial jobless claims, monthly payroll employment, monthly industrial production,
monthly real personal income less transfer payments, monthly real manufacturing and

5Fattouh et al. (2013), Hamilton & Wu (2014), Heath (2019) emphasize the advantage of employing
oil futures price in capturing all types of demands, from speculators and arbitrageurs to true hedgers,
i.e. oil futures price is truly representative of all oil market participants. It is a stylized fact that futures
market (especially for crude oil) is deeper than spot market and its time-varying term structure helps in
forecasting spot prices (Heath, 2019).

6Based on nearest-to-maturity price.
7We also compute the daily log changes for the three sentiment indices. All the three macro indices’

series, are stationary by ADF test.
8The data is available at federal reserve bank of Saint Louis.
9The data is available at federal reserve bank of Philadelphia.
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Figure 2.1: Macroeconomic indices

trade sales, and quarterly real GDP. This index has a zero mean, with positive values
as progressively better-than-average conditions, and negative values as progressively
worse-than-average conditions. Figure 2.1 depicts the three macroeconomic time se-
ries. Note that in studying the impact of macroeconomic indicators on the conditional
comoments, the empirical analyses are conducted from the year 1990, due to the avail-
ability of the macroeconomic variables.

2.2.1 Conditional comoments

The importance of higher moments in asset pricing models was primarily initiated by
Samuelson (1975), and Rubinstein (1973), although only later finds place in asset pric-
ing models proposed by Kraus & Litzenberger (1976), Fang & Lai (1997), and Harvey
& Siddique (2000). CAPM a two-moment (mean-variance) asset pricing model states
that, given the risk free rate r f , the expected gross return Ri,t of asset i at time t is
generated by the expected market premium (or excess return) Rm,t through asset i’s
conditional covariance with the market scaled by the market’s variance σ2

m,t that is :

E(Ri)− r f =
Cov(Rm, Ri)

Var(Rm)
Et(Rm) (2.1)
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Note that the covariance Cov(Rm, Ri) is equal to E[(Ri − R̄i)(Rm − R̄m)] with R̄i and
R̄m referring to the mean return of the asset i and market respectively. Quite often
Cov(Rm, Ri)

Var(Rm)
is defined as the conditional βi,t of the asset i with the market. Now let’s

provide a broader view of the CAPM foundations. In the absence of arbitrage, given
the available information set Ωt and asset i’s gross return Ri,t+1, the stochastic discount
factor mt+1 is defined as (Cochrane, 2009):

E[mt+1Ri,t+1 | Ωt] = 1 (2.2)

If the canonical assumptions of CAPM are met including Gaussian distribution of re-
turns, or quadratic utility function for an investor (among other assumptions), then the
stochastic discount factor (SDF) mt+1 can be formulated as a linear function of market
return, or:

mt+1 = δ1 + δ2,tRm,t+1 (2.3)

However, given the evident failure of the CAPM’s assumptions including the Gaussian
distribution of the returns, and the quadratic utility function10, the SDF has a nonlin-
ear relationship with the market return Rm,t+1, and can be specified with a third-order
polynomial of market return as:

mt+1 = δ1 + δ2,tRm,t+1 + δ3,tR2
m,t+1 + δ4,tR3

m,t+1 (2.4)

with the δ1 as the constant term and δ2,t, δ3,t, and δ4,t as the coefficients. Following
Fang & Lai (1997), CAPM is extended to account for the coskewness and cokurtosis in
a four-moment pricing model:

E(Ri)− r f = ζ1Cov(Rm, Ri) + ζ2Cov(R2
m, Ri) + ζ3Cov(R3

m, Ri) (2.5)

Where Cov(Rm, Ri), Cov(R2
m, Ri), and Cov(R3

m, Ri) are the time-varying conditional
beta, coskewness, and cokurtosis respectively, with the associated coefficients ζ1, ζ2,
and ζ3. It is evident that in equation 5, the conditional comoments are not scaled, so
in order to arrive at a correct inference, we must scale these covariances. In this regard
we have that:

Betai(βi) =
Cov(Rm, Ri)

Var(Rm)
Coskewnessi(Γi) =

Cov(R2
m, Ri)

[Var(Rm)]1.5 Cokurtosisi(Λi) =
Cov(R3

m, Ri)

[Var(Rm)]2

(2.6)

10Quadratic utility requires investors to have increasing absolute risk aversion, which is counter intu-
itive.
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Now after scaling the covariances we arrive at the following model which is the start-
ing point of our empirical investigation:

E(Ri)− r f = ζ ′1βi,t + ζ ′2Γi,t + ζ ′3Λi,t (2.7)

In the empirical analysis, we get WTI’s conditional β after dividing the Cov(Rsp, Rwti)

by the S&P 500’s variance Var(Rsp), and the conditional coskewness and cokurtosis
of WTI, dividing Cov(R2

sp, Rwti) and Cov(R3
sp, Rwti), by [Var(Rsp)]1.5 and [Var(Rsp)]2

respectively. Similarly, the conditional beta, coskewness, and cokurtosis of S&P 500
can be calculated dividing the Cov(Rsp, Rwti), Cov(Rsp, R2

wti), and Cov(Rsp, R3
wti), by

[Var(Rwti)], [Var(Rwti)]
1.5, and [Var(Rwti)]

2 in turn.

Unlike the literature (Guidolin & Timmermann, 2008; Yang et al., 2010; Chiang, 2016;
Chan et al., 2018), we employ a multivariate GARCH model which is superior to the
typically used regime switching model where the correlations and covariances are time
invariant in each regime. Francq & Zakoian (2019) state that while Markov switching
regime models are flexible, they are only an approximation of the data generating pro-
cess. Additionally in our empirical model, we consider the role of asymmetries (lever-
age effect) within and in-between the assets11. None of the above studies address those
issues in their work. The method used in this paper is also superior to rolling regres-
sion, in that we take into account the stochastic nature of the conditional comovements
in the time-varying covariances, and there is no arbitrary choice of an interval, nor
neglecting some part of the data as in rolling regression methods.

We estimate the Cov(Rsp, Rwti) by the following multivariate GARCH model, specified
as below:

Rwti,t = φwti + εwti,t (2.8)

Rsp,t = φsp + εsp,t (2.9)

Where φwti and φsp are the relevant constants and εwti,t and εsp,t are the relevant in-
novations. Then to compute the Cov(R2

sp, Rwti) and Cov(R3
sp, Rwti), we substitute R2

sp

and R3
sp in equation 2.9 respectively. We scale these estimated conditional covariances

by the conditional variance of the S&P 500 using a univariate GJR(1,1)12 as explained

11Francq & Zakoian (2019) encourage the use of heavy-tailed marginal distributions when estimating
long return series with GARCH processes, to avoid a possible spurious strong volatility persistence

12To obtain the conditional comoments for S&P 500, we repeat the same procedure by substituting
R2

wti and R3
wti in equation 2.8 to get Cov(Rsp, R2

wti) and Cov(Rsp, R3
wti), and then divide the covariances

by the WTI’s conditional variance.
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earlier. To estimate the time-varying covariances, we employ ADCC − GJR− t. The
ADCC model (Cappiello et al., 2006) is built on the DCC model of R. Engle (2002). Dy-
namic conditional correlation models, are an intelligent response to the heteroscedas-
ticity of the disturbances with the highest parsimony in estimating the parameters. The
ADCC can capture the potential asymmetries between comovements of the assets, in
addition to having stronger statistical properties. The GJR(1,1) process of Glosten et al.
(1993) reads as:

h2
i,t = ωi + αie2

i,t−1 + β′ih
2
i,t−1 + γie2

i,t−1 Ii,t−1 i = S&P 500, WTI (2.10)

where I =

{
1 i f ei,t−1 < 0
0 Otherwise

(2.11)

In equation 2.10, h2
i,t refers to asset i’s conditional variance, ωi is a constant term in asset

i’s conditional variance, αi measures the impact of the lagged shocks to the conditional
variance (known as clusters or size of shocks), β′i measures the impact of the lagged
conditional variance (known as persistence of shocks) and γi captures asymmetries in
the volatility (sign of shocks). Now that we have computed the conditional variances
in the previous step, we need to compute the standardized errors by εi,t =

εi,t

hi,t
and

the time-varying covariance matrix Ht afterwards. We posit that the vector of time-
varying innovations (Et = [εwti,t, εsp,t]′) follows Et | ∆t−1 ∼ Student′s t(0, Ht, v) where
the time-varying covariance matrix Ht = DtPtDt consists of the time-varying correla-
tion matrix Pt and the time-varying diagonal matrix of the standard deviations Dt. The
time-varying correlation matrix Pt reads as:

Pt = diagQt
−1QtdiagQt

−1 (2.12)

where:

Qt = (P̄− a2P̄− d2P̄− gN̄) + a2(εt−1ε′t−1) + g2(nt−1n′t−1) + d2Qt−1 (2.13)

and P̄ = E[εt−1ε′t−1] is the unconditional correlation matrix of the standardized errors,
with N̄ = E[nt−1n′t−1] and the scalars a, d, and g. Further the effect of negative shock is
absorbed by the variable nt which can be expressed as a Hadamard product with the
following characteristics:

nt = I[εt−1] ◦ εt−1 =

{
εt εt < 0
0 εt ≥ 0

(2.14)
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Where I[εt−1] is a K× 1 indicator function. The positive definiteness of the Qt is guar-

anteed only if (a2 + d2 +
1
2

g2) ≤ 1. We employ a multivariate Student’s t to estimate
the parameters of the time-varying correlation matrix Qt. Table 2.2 summarizes the
estimated parameters of a GJR(1,1) process for each of the parameters.

Table 2.2: Volatility equation parameters
S&P500 p-value WTI futures p-value S&P5002 p-value S&P5003 p-value WTI2 futures p-value WTI3 futures p-value

φ ∗ 104 0.02 0.00 0.00 0.57 0.10 0.89 0.1 0.13 1.9 0.14 0.4 0.51
ω ∗ 104 0.02 0.00 0.02 0.31 0.02 0.00 0.3 0.01 0.6 0.00 144 0.00
ARCH (α) 0.015 0.03 0.062 0.00 0.057 0.00 0.027 0.20 0.070 0.00 0.068 0.00
GARCH (β′) 0.896 0.00 0.911 0.00 0.920 0.00 0.891 0.00 0.924 0.00 0.826 0.00
GJR (γ) 0.131 0.00 0.047 0.00 -0.004 0.79 0.148 0.00 -0.039 0.49 0.167 0.00

2.2.2 Fear, uncertainty, and expectations: TVP-VAR with stochastic

volatility

In order to study the impact of the three daily macroeconomic variables on condi-
tional comoments, the TVP-VAR (Primiceri, 2005, Del Negro & Primiceri, 2015) is em-
ployed. Categorized in non-linear VAR class (Primiceri, 2005; Kilian & Lütkepohl,
2017), TVP-VAR is able to identify the asymmetric effect of positive vs negative struc-
tural shocks either by the state of the economy or by the variables and lags. The model
is so flexible that state variables can capture both gradual and sudden changes in the
economy. More importantly, this model is developed to provide time-varying VAR
coefficients (based on some stochastic process) and impulse response functions (IRFs)
which is suitable to our analysis of the conditional comoments that encompasses sev-
eral decades of different economic policies and boom/bust. The evident existence of
the different economic regimes, and changes in the conditional volatility of both oil
and stock market (Figure 2.2) all refer to the smooth structural changes (Primiceri,
2005; Nakajima et al., 2011 ; Del Negro & Primiceri, 2015; Kilian & Lütkepohl, 2017).
Following Primiceri (2005) the TVP-VAR model is derived from structural VAR model,
and reads as follows for a multivariate case:

Y t = ct + A1,tY t−1 + · · ·+ Ap,tY t−p + ut t = 1, ..., T (2.15)

Where Y is a n × 1 vector of endogenous variables, ct is an n × 1 vector of constant
terms’ coefficient, and the coefficients Ai,t with i = 1, ..., p are n × n time dependent
matrices. The heteroscedastic unobservable shocks ut are assumed to be a zero-mean
white noise process with time-varying covariance matrix, i.e. ut ∼ (0, Σu,t). To facili-
tate structural analysis, the innovations’ covariance is decomposed to:
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Σu,t = B−1
t Σw,tB

′−1
t (2.16)

Where Σw,t = diag[σ2
1,t, ..., σ2

k,t] is a diagonal matrix with the variances of the structural
shocks, and B−1

t is a lower-triangular matrix as follow:

Bt =


1 0 · · · 0

b21,t 1 · · · 0
...

... . . . ...
bk1,t · · · bkk−1,t 1


Restrictions on Bt can be used to uniquely identify the structural shocks or wt = Btut,
and using it, we can rewrite the model in structural form as:

Y t = ct + A1,tY t−1 + ... + Ap,tY t−p + B−1
t wt (2.17)

If we gather all the reduced-form VAR slope coefficients in the vector αt = vec[ct, A1,t, ..., Ap,t]

and the unrestricted elements of the Bt in bt = [b21,t, b31,t, b32,t, · · · , bk1,t, · · · , bkk−1,t]
′

then the vector bt is the 1
2 K(K− 1)-dimensional vector of elements below the main di-

agonal of Bt which is row-wised such that the parameters for each individual equation
are grouped together. Now having σt = [σ1,t, · · · , σk,t]

′ as the vector of wt’s standard
deviations, we can specify the dynamics of the time-varying vectors of coefficients as
random walk processes for αt and bt, and a geometric random walk for σt. Restating,
the model allows for stochastic volatility with considerable persistence:

αt = αt−1 + ηα
t (2.18)

bt = bt−1 + ηb
t (2.19)

logσt = logσt−1 + ησ
t (2.20)

Summing up, the covariance matrix shock terms of the model equations is block diag-
onal as:

Cov


wt

ηα
t

ηb
t

ησ
t

 =


Σw,t 0 0 0

0 Σα 0 0
0 0 Σb 0
0 0 0 Σσ
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Where Σα, Σb, and Σσ are the positive definite covariance matrices of ηα
t , ηb

t , and ησ
t

respectively. Note that, the shock terms are independent of one another with:

αt ∼ N (µα, Σα) bt ∼ N (µb, Σb) σt ∼ N (µσ, Σσ) (2.21)

Assuming Zt−1 ≡ (1, Y t, · · · , Y t−p)′ the initial VAR in equation 2.15 becomes:

Y t = (Z′t−1 ⊗ Ik)αt + ut (2.22)

With the symbol⊗ referring to Kronecker product. Equation 2.22 and the random walk
process of αt (Eq. 2.18) are basically a state-space model with measurement equation
(Eq. 2.21) and transition equation (Eq. 2.18). Generally there are two ways to estimate
this model, one is maximum likelihood estimation, and the other, Bayesian estimation
based on the Markov Chain Monte Carlo (MCMC), which the latter is employed given
the issues with maximum likelihood estimation. In implementing the TVP-VAR, we
use one lag, further we follow Primiceri (2005) regarding priors and distributions of
parameters as follows13:

(Σα)
−2
i ∼ Gamma(20, 0.01) (Σb)

−2
i ∼ Gamma(2, 0.01) (Σσ)

−2
i ∼ Gamma(2, 0.01)

(2.23)
Where i refers to the ith element of the matrices. We also picked the first 1000 data
points corresponding to nearly 4 years of data for calibration of the prior distributions.

2.3 Empirical results part A: Conditional comoments &

time-varying impulse responses

Figure 2.2 depicts the conditional variances for S&P 500 and WTI futures. The giant
impact of the ongoing COVID-19 pandemic is greater than any crisis during the last
four decades. While COVID-19 effect on WTI’s conditional variance is comparable to
the Iraq-Kuwait war in early 1990s14, stock’s response to crises seem to follow a wor-
risome upward trend. Moreover, WTI shows greater fluctuations than its counterpart
during the sample period.

13Note that due to the data daily frequency, long sample period, and the complexity of the model,
including the number of observations required for initialization of the priors, calculating the impulse
response for each comoment might take several hours to days.

14For a comprehensive review of civil conflicts and geopolitical risks effects on oil price refer to
Noguera-Santaella (2016).
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(a) S&P 500 (b) WTI futures

Figure 2.2: Conditional variances 1983-2021

Figures 2.3 and 2.4 exhibit the time-varying conditional comoments of S&P 500 and
WTI futures respectively. Figure 2.4 shows that from 1983 to 2008, WTI’s conditional
beta had a zero mean with two salient negative spikes around the 1987 black Monday
crisis, and Iraq-Kuwait war, while after GFC, the sensitivity of the WTI to the stock
market performance finds a new positive mean, restating the fact that the two market
are getting more connected than before15. Similarly, the S&P 500 beta has found a new
mean since GFC, although the late 2002 spike could have been an early signal for the
beginning of a new stock-oil comovement era. S&P 500 coskewness and cokurtosis
show an emerging pattern since GFC too. Figure 2.3 clearly illustrates a visible pattern
happening between 2008-201416, which relates to zero-interest rate period, starting in
the aftermath of GFC, and ending in late 2014 when the US economy fully recovered
from GFC crash. The conditional coskewness of both markets (Figures 2.3 and 2.4),
illustrate that the two markets were sensitive to each others’ skewness since 1997, even
crude oil were already sensitive to stock, beginning 1983. The oil’s coskewness sug-
gests that whenever the stock’s skewness gets more positive (stock market performs
bad for some period), WTI return decreases. Similarly, WTI cokurtosis shows that oil’s
response to stock’s tail events is getting more extreme, with COVID-19 stock market
crash on February 2020, as the pinnacle. In the beginning of COVID-19 pandemic
(early March to early May 2020) WTI futures contracts experienced an unprecedented
stressful period for several weeks, such that on April 20, 2022 even the delivery price
of May contracts which would expire in less than hours, turned to negative. Two con-
secutive major events including worldwide travel restrictions to limit COVID spread,
and the Saudi-Russian oil price war were largely responsible for the event. This is
reflected in the coskewness of both S&P 500, which is novel since 1980s oil glut. Over-

15Macroeconomic literature attributed the emerging phenomenon to aggregate growth shocks (Hitze-
mann, 2016), slow down in global economic activity (Bernanke, 2016), the sovereign wealth funds spec-
ulative activity (Mohaddes & Pesaran, 2017), or oil demand shocks (Ready, 2018).

16With a pause in early 2011, when the oil price increased for a short while due to the Arab Spring.
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all, these evidences denote that the new phase of stock-oil comovement since GFC,
is a source of concern for investors who used to benefit from diversification between
the two markets, and for policy makers since speculators might turn to another fun-
damental market(s) in search of better diversification, thus contributing to fragility of
financial systems (Lagunoff & Schreft, 2001). It is noteworthy that, oil’s comoments
are greater than stock’s, meaning that oil is more sensitive to stock condition than the
other way around, contributing to oil’s already high fluctuations (Figure 2.2, panel b).

Figures 2.5 to 2.7 present the time-varying impulse responses of S&P 500’s (panel a)
and WTI futures’ (panel b) conditional comoments to a +1% permanent increase to
fear (VIX), uncertainty (EPU), and expectation (ADS) indices. There are three time
intervals, a 6-day response by blue line (short-lived response), a 12-day response by
purple line, and a 24-day17 response (long-lasting response) by green line 18. All im-
pulse responses show time-varying and asymmetric patterns during our long sample
period. Also, comparing panels a and b in Figures 2.5 to 2.7, we realize that the re-
sponse of oil’s comoments to shocks in the three sentiment indicators are much more
intense than those of stock’s (for instance in case of WTI’s cokurtosis, the responses
to macro indices are roughly ten times greater than the response of stock’s cokurto-
sis). Figure 2.5, shows the response of conditional beta of both market to the shocks
in the macro indices. It is evident that since GFC, the responses of both WTI (panel
b) and S&P 500 (panel a) are much stronger to fear, and uncertainty than before. As
in top graphs in panel a and b of the Figure 2.5, the positive response of S&P 500 beta
to a shock in fear index (more fearful market) translates to an increase in the expo-
sure to crude oil market, while on the other side, the response of WTI beta is negative,
which means decrease in the exposure to stock market performance. We witness the
same asymmetric pattern by looking at Figures 2.6 and 2.7, regarding the asymmetric
response of conditional coskewness and cokurtosis to shocks in the fear index. It is in-
tuitive to see the persistence of macro shocks on WTI’s cokurtosis (Figure 2.7, panel b)
denoting the strong dependence of oil to stock tail events. Figure 2.7, also shows that
macroeconomic shocks have much more long-lasting effects on cokurtosis than beta or
coskewness, emphasizing the fact that tail events have long-lasting impact on stock-
oil dynamics. Overall, responses to shocks in macro expectations are much stronger,
gradual, long-lasting, and more asymmetric than the responses to shocks in fear or
uncertainty indices, while on the other hand uncertainty has the weakest effect on the

17Response after 6, 12, and 24 days.
18Note that, in experimenting with longer time intervals for the impulse responses, the responses

were negligible to nonexistent above 50 days, which is inline with the nature of our study.



2.3. EMPIRICAL RESULTS PART A 55

Figure 2.3: Conditional comoments of S&P 500
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Figure 2.4: Conditional comoments of WTI Futures
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conditional comoments. These findings are in line with Kozlowski et al. (2015) who
state that ex-ante the 2008 GFC was deemed unlikely by markets participants, and in
this regard the recession caused by GFC was quite long, which led to economic agents
updating their beliefs about the macroeconomic risk, creating long-lasting effects on
investment among other economic realities19.

2.4 The asymmetric responses to macroeconomic indica-

tors: A NARDL approach

In this section, we investigate the effect of the three macro sentiment indicators in ex-
plaining the variations of conditional betas20. In this regard, we employ the nonlinear
autoregressive distributed lag (NARDL) model of Shin et al. (2014) which separates
the asymmetric nonlinear responses based on the positive and negative sums of the
movements in explanatory variables. Moreover the model reveals the short-run and
long-run dynamics between the dependent and independent variables. This method
is particularly suitable to our study, since the conditional comoments are nonlinear
with great fluctuations through time. Shin et al. (2014) derive the dynamic conditional
error correction representation associated with the asymmetric long-run cointegrating
regression, resulting in the NARDL model. NARDL is an extension to the original
autoregressive distributed lag (ARDL) model of Pesaran et al. (1995) and is capable
of producing consistent and unbiased estimators in the presence of I(0) and I(1) re-
gressors. Another advantage of this model is to reveal the responses to positive and
negative changes in the independent variables both at short- and long-run based on
partial sum of positive and negative changes. In addition, bounds test (Pesaran et al.,
2001) stats are employed to test the existence of long-run cointegration.
Following Shin et al. (2014) a NARDL(p,q) can be represented by its asymmetric con-
ditional error correction form as follows:

19There are three strands of literature regarding the effect of sentiment on economy: i) animal spirit
followers who believe that all economic booms and busts are due to optimism and pessimism of eco-
nomic agents; ii) another large strand, points to the self-fulfilling beliefs, stating that sunspot-driven
waves create macroeconomic fluctuations; iii) news and noise advocators who suggest that economic
booms (short-term busts) emerge when economic agents have the correct (false) signal about the future
growth in the economy ex-ante (Nowzohour & Stracca, 2020).

20NARDL results for conditional coskewness and cokurtosis are provided in appendix B.
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(a) S&P 500 beta impulse responses

(b) WTI futures beta impulse responses

Figure 2.5: Time-varying impulse responses for beta Jan 1990 - Dec 2021
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(a) S&P 500 cond. coskewness impulse responses

(b) WTI futures cond. coskewness impulse responses

Figure 2.6: Time-varying impulse responses of cond. coskewness Jan 1990 - Dec 2021
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(a) S&P 500 cond. cokurtosis impulse responses

(b) WTI futures cond. cokurtosis impulse responses

Figure 2.7: Time-varying impulse responses of cond. cokurtosis Jan 1990 - Dec 2021
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4yi,t = µi +

Long-run dynamics︷ ︸︸ ︷
ρiyi,t−1 + θ+l x+l,t−1 + θ−l x−l,t−1 +

Short-run dynamics︷ ︸︸ ︷
p−1

∑
j=1

ψi,j4yi,t−j +
q−1

∑
j=0

(π+
l,j4x+l,t−j + π−l,j4x−l,j−t) +ε′i

(2.24)

where x+l,t−j and negative x−l,t−j are respectively l × 1 vectors of the positive and neg-
ative partial sums of the explanatory variables l = {VIX, EPU, ADS} calculated as
follows:

x+l,t−j =
t

∑
j=1
4x+l,t =

t

∑
j=1

max(4xl,j, 0) x−l,t−j =
t

∑
j=1
4x−l,t =

t

∑
j=1

min(4xl,j, 0) (2.25)

Note that in equation 2.24, yi,t is the dependent variable i = {SPBeta, WTIBeta} at
time t, 4 is the first difference operator, µi is the intercept, θ+l (θ−l )21 is the parameter
that measures the long-run adjustment to the positive changes (negative changes) in
the explanatory variable l while ρi is the autoregressive parameter, the parameters for
short-run/shocks dynamics include ψi,j for the dependent variable i and π+

l,j (π−l,j) for
the positive (negative) changes in the explanatory variable l, p and q refer to the re-
spective lag orders for the dependent variable i and explanatory variable l, and ε′i are
an I ID process with zero mean and finite variance. It is evident that NARDL corrects
for residual autocorrelation (by use of lag order), the possible endogeneity in the re-
gressors22, the omitted variable bias, and the reverse causality (Harris & Sollis, 2003).

Finally, the long-run asymmetry parameters are computed as
−θ+l

ρi
for positive changes

and
−θ−l

ρi
for the negative changes.

2.5 Empirical results part B: NARDL regression

We start by dividing the sample into two periods, pre-GFC (1990-2008) and post-GFC
(2009-2021) since the conditional comoments evolve after the GFC. To check whether
the conditional comments are not integrated of order two or more (i.e. I(2)) we per-
form the standard Augmented Dickey-Fuller (ADF) and find that both conditional be-
tas (dependent variables) and the macro indices (independent variables) are I(0)23.
Our goal is twofold, first to study whether the effect of the three sentiment indicators

21Also known as asymmetric distributed lags parameters.
22For further information about the mathematical derivation of NARDL, refer to the original paper

by Shin et al. (2014).
23Results are not reported due to space constraints.



62 CHAPTER 2. STOCK-OIL COMOVEMENTS

on the conditional betas at the short-and long-run are asymmetric regarding the posi-
tive and negative movements in the independent variables, and second, to investigate
how the NARDL regression parameters (if any) change from pre- to post-GFC.

Tables 2.3 and 2.4 report the results of the NARDL regressions for the two betas (S&P
500 and WTI respectively), in the pre- and post-GFC periods. The choice of lags in
each NARDL regression are based on AIC. The panels that report short- and long-run
symmetry tests in each table, are based on the following hypotheses tested by a two-
tailed F-test:

Long-run symmetry H0 : θ+l = θ−l against H1 : θ+l 6= θ−l

Short-run symmetry H0 :



π−l,j = π+
l,j for each l and j

or

∑
q
l=1 π−l = ∑

q
l=1 π+

l

Short-run symmetry H1 :



π−l,j 6= π+
l,j for each l and j

or

∑
q
j=1 π−l 6= ∑

q
j=1 π+

l

In reporting the NARDL regression parameters, if a variable enters the model with
zero-lag, the short-run symmetry test cannot be tested. In addition to the bounds test
stats (by two-tailed F-stat and t-stat) related to long-run cointegration (H0 : ρi = θ+l =

θ−l = 0), we also conduct a Wald test to rule out degenerate cointegration, which is a
joint test of parameter significance on all coefficients associated with distributed lag
variables at the levels (H0 : θ+l = θ−l = 0). Two test stats for residuals diagnos-
tics including Breusch-Godfrey serial correlation test (H0 : residuals are serially un-
correlated) and Breusch-Pagan-Godfrey heteroscedasticity test (H0 : residuals are ho-
moscedastic) are reported in the diagnostics and stats panels. Since our data is at daily
level, and the null hypothesis that residuals are homoscedastic is rejected, the covari-
ance matrix is estimated by White (1980) heteroscedasticity-consistent estimator.
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Table 2.3: NARDL regression results – S&P 500 Beta

Pre-GFC Post-GFC

Asymmetric conditional error correction

Const. 0.0001 Const. -0.0012
SPBetat−1 −0.0175∗∗∗ SPBetat−1 −0.0215∗∗∗

VIX+
t−1 0.0166∗∗∗ VIX+

t−1 0.1128∗∗∗

VIX−t−1 0.0167∗∗∗ VIX−t−1 0.1128∗∗∗

EPU+
t 0.0000 EPU+

t 0.0004
EPU−t 0.0000 EPU−t 0.0004
ADS+

t 0.0000 ADS+
t−1 0.0001

ADS−t −0.0009∗ ADS−t−1 0.0000
4SPBetat−1 −0.0423∗∗∗ 4SPBetat−1 −0.0547∗∗∗

4SPBetat−2 0.0227 4VIX+
t 0.0315∗∗∗

4VIX+
t 0.0072 4VIX−t −0.0570∗∗∗

4VIX−t -0.0006 4VIX+
t−1 0.0271∗∗∗

4VIX−t−1 −0.0640∗∗∗

4VIX+
t−2 −0.0433∗∗∗

4VIX−t−2 -0.0048
4VIX+

t−3 −0.0134∗∗

4VIX−t−3 −0.0142∗∗∗

4ADS+
t -0.0004

4ADS−t 0.0109∗∗∗

Long-run parameters

VIX+
t−1 0.9499∗∗∗ VIX+

t−1 5.2471∗∗∗

VIX−t−1 0.9539∗∗∗ VIX−t−1 5.2467∗∗∗

EPU+
t 0.0027 EPU+

t 0.0198
EPU−t 0.0033 EPU−t 0.0202
ADS+

t -0.0047 ADS+
t−1 0.0060

ADS−t −0.0514∗ ADS−t−1 0.0026

Long-run coefficient symmetry F-test

ADS 3.1∗ ADS 1.9
EPU 1.5 EPU 0.1
VIX 0.3 VIX 0.1

Short-run coefficient symmetry F-test

ADS NA ADS 6.1∗∗∗

EPU NA EPU NA
VIX 1.3 VIX 119.3∗∗∗

Diagnostics and stats

R2 0.01 R2 0.30
Log likelihood 13700 Log likelihood 8505

F-stat 6.6∗∗∗ F-stat 77∗∗∗

AIC -5.7 AIC -5.2
Bounds F-stat 7.5∗∗∗ Bounds F-stat 23.3∗∗∗

Bounds t-stat −6.4∗∗∗ Bounds t-stat −6.6∗∗∗

Wald test 2.7∗∗∗ Wald test 21.8∗∗∗

Serial Correlation Test 0.6 Serial Correlation Test 1.3
Heteroscedasticity Test 47.6∗∗∗ Heteroscedasticity Test 36.4∗∗∗

*, **, *** denote statistical significance at the 10%, 5%, and 1% levels respectively.
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Table 2.4: NARDL regression results – WTI futures Beta

Pre-GFC Post-GFC

Asymmetric conditional error correction

Const. -0.0005 Const. 0.0346∗∗∗

WTIBetat−1 −0.0253∗∗∗ WTIBetat−1 −0.0247∗∗∗

VIX+
t−1 0.1487∗∗∗ VIX+

t−1 −0.2523∗∗∗

VIX−t−1 0.1486∗∗∗ VIX−t−1 −0.2527∗∗∗

EPU+
t -0.0002 EPU+

t−1 -0.0030
EPU−t -0.0001 EPU−t−1 -0.0030
ADS+

t 0.0062∗∗∗ ADS+
t−1 -0.0009

ADS−t -0.0007 ADS−t−1 -0.0010
4WTIBetat−1 0.0216 4WTIBetat−1 −0.0318∗

4WTIBetat−2 0.0179 4VIX+
t -0.0184

4WTIBetat−3 0.0422∗∗∗ 4VIX−t 0.0602∗∗

4VIX+
t -0.0186 4VIX+

t−1 −0.0656∗∗

4VIX−t 0.0683∗∗ 4VIX−t−1 0.0657∗∗∗

4VIX+
t−1 −0.0814∗∗∗ 4EPU+

t 0.0037
4VIX−t−1 -0.0100 4EPU−t −0.0083∗

4ADS+
t −0.0262∗

4ADS−t 0.0068
4ADS+

t−1 0.0520∗∗∗

4ADS−t−1 0.0543∗∗∗

Long-run parameters

VIX+
t−1 5.8694∗∗∗ VIX+

t−1 −10.1995∗∗∗

VIX−t−1 5.8668∗∗∗ VIX−t−1 −10.2154∗∗∗

EPU+
t -0.0116 EPU+

t−1 -0.1237
EPU−t -0.0066 EPU−t−1 -0.1213
ADS+

t 0.2478∗∗∗ ADS+
t−1 -0.0382

ADS−t -0.0196 ADS−t−1 -0.0416

Long-run coefficient symmetry F-test

ADS 4.8∗∗ ADS 0.1
EPU 5∗∗ EPU 0.2
VIX 0.0 VIX 0.1

Short-run coefficient symmetry F-test

ADS NA ADS 8.4∗∗∗

EPU NA EPU 4.4∗∗

VIX 7.6∗∗∗ VIX 19.3∗∗∗

Diagnostics and stats

R2 0.02 R2 0.09
Log likelihood 4520 Log likelihood 3388

F-stat 6.3∗∗∗ F-stat 17.8∗∗∗

AIC -1.8 AIC -2.06
Bounds F-stat 10.6∗∗∗ Bounds F-stat 12.8∗∗∗

Bounds t-stat −7.9∗∗∗ Bounds t-stat −6.4∗∗∗

Wald test 3.7∗∗∗ Wald test 8.1∗∗∗

Serial Correlation Test 0.5 Serial Correlation Test 0.9
Heteroscedasticity Test 2.7∗∗∗ Heteroscedasticity Test 11.9∗∗∗

*, **, *** denote statistical significance at the 10%, 5%, and 1% levels respectively.
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Table 2.3 presents the results of NARDL regression for S&P 500 beta for pre- and post-
GFC periods. In both periods, bounds test stats firmly verify the existence of long-run
cointegration, and the Wald test stat reject any degenerate cointegration. The R2 de-
clares that the explanatory power of the model increases vastly from pre- (0.01) to
post-GFC (0.30) periods. Similarly, the NARDL regression parameters increase in size.
In particular the long-run parameters of VIX get roughly 5 times greater (from ap-
proximately 0.9 to 5.2 in both positive and negative parameters). We witness the same
pattern in all other parameters generally. The symmetry coefficient test stats show
that while in the pre-GFC period there are some instance of long-run parameter asym-
metry, no such asymmetry exists post-GFC era. On the other hand, there is a strong
statistically significant asymmetry in the short-run parameter for both VIX and ADS
parameters only in the post-GFC period. The contemporaneous short-run parameters
of VIX (4VIX+

t and 4VIX−t ) and ADS (4ADS+
t and 4ADS−t ) show that any posi-

tive or negative shocks in the stock market fear index (the expectation index) leads to
increased (decreased) exposure of S&P 500 performance to WTI. These homogeneous
responses in the short-run are in contrast to those of the long-run parameters.

The result of the NARDL regression for WTI is summarized in Table 2.4. In this re-
gard, uncertainty and expectation are not significant factors on WTI beta fluctuations
in the long-run in both sample periods (except positive movements in uncertainty).
On the other hand, there are evidences of strong asymmetry effects in the short-run
(shocks) in post-GFC period. In addition, compared to the pre-GFC period, in the post-
GFC period, nearly all regression parameters including R2 increase largely in WTI beta
NARDL regression similar to that of the S&P 500. The results in the Table 2.4, indicate
that the direction of the WTI beta to positive and negative changes in the contempo-
raneous short-run parameter of VIX, EPU, and ADS is homogeneous in contrast to
that of the long-run parameters. While responding the question about why the con-
ditional betas respond homogeneously to the contemporaneous short-run movements
(i.e. shocks), remains a question for studies in the future, nonetheless we attribute it to
the disposition effect (Shefrin & Statman, 1985) which is the tendency of investors to
ride losses and realize gains, leading to underreaction to the news in the short-run.

Table 2.4, also reveals that the response of the WTI beta to the positive and negative
movements (both long-run and short-run) in the fear index VIX, is the opposite of
those of the S&P 500 beta. 24 This becomes more surprising when we realize that the

24Note that the time-varying impulse responses supported this result for the post-GFC period in sec-
tion 2.4.
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long-run VIX coefficients in the S&P 500 and WTI NARDL regressions have the same
sign during the pre-GFC period, but in the post-GFC period, that sign changes to neg-
ative for the WTI NARDL regression. This is a clear evidence that the external shocks
in WTI, most likely stem from the speculators’ activities in the stock market. There is
another evidence to back up our claim, which is the fact that the long-run parameters
of VIX in the WTI beta NARDL regression are twice larger than those of the S&P 500.
Among the three sentiment indices in our studies, the fear index VIX has the strongest
effect on the stock-oil conditional beta both at short- and long-run, by far.

2.5.1 VIX versus OVX

The CBOE oil volatility index (OVX) which was developed only after 2007, measures
the fear index in the crude oil market. OVX is based on the United States Oil Fund
(USO) options, which is a commodity Exchange-Traded Fund (ETF) designed to repli-
cate the returns of the WTI price through the use of futures contracts. Because OVX
only covers a small part of our sample period (1990-2021), we can only reestimate the
NARDL regressions for the post-GFC period to see how OVX’s impact on conditional
betas compares to VIX’s. This inquiry stems from our findings that WTI responds more
strongly to fluctuations in the S&P 500 and VIX. As in Table 2.5, the inclusion of OVX
in the NARDL regressions increases the explanatory power of the estimated earlier
NARDL regressions (Tables 2.3 and 2.4, post-GFC) for both the S&P 500 beta and WTI
beta. In comparison to the Table 2.3 (Post-GFC) the R2 increases from 0.30 to 0.33 in
the S&P 500 beta NARDL regression, and in case of the WTI (Table 2.4, post-GFC) it
doubles (from 0.09 to 0.18). The jump in the R2 of WTI is intuitive since OVX measures
fear exclusively for crude oil market participants.

Table 2.5 indicates that the impact of oil fear on the S&P 500 beta is negative; that
is, when the tensions in the crude oil market are high, the performance of the S&P
500 is less exposed to the crude oil return decreases, while when the oil market is at
peace (low fear), the comovement of S&P 500 return with the crude oil return increases.
Based on the coefficient symmetry tests, in the long-run there is no asymmetric effect
between positive and negative movements in the crude oil fear index on S&P 500 beta,
but the short-run coefficients are asymmetric and significant. The long-run parameters
show that a 1% increase in VIX leads to roughly 7% increase in S&P 500 beta while
a 1% increase in OVX creates approximately 4.2% decrease in S&P 500 beta. On the
other hand, when the oil fear index increases, the exposure of WTI return to S&P 500
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market return increases. Interestingly, the long-run parameters suggest that the fear in
the stock market has a stronger effect on WTI’ beta than WTI’s own fear index. This
result is in line with the previous findings in our paper that, crude oil market acts as a
safe haven for stock market participants’ sudden whims. Similar to the previous sec-
tion, we find that the response of the conditional betas to short-run contemporaneous
parameters is homogeneous.

2.6 Conclusion

This paper conducts an empirical analysis to disentangle the stock-oil comovements
using a battery of econometrics methods including the ADCC, TVP-VAR, and NARDL.
The conditional comoments mark a strong structural break in stock-oil comoments
during the 2008 GFC, and to investigate the underlying patterns for this structural
change, we utilize three fundamental macroeconomic indices which measure investors’
behavior including VIX, EPU, and ADS representing fear, uncertainty, and expecta-
tions in the economy, respectively. The results of the time-varying impulse responses
show that shocks to these sentiment indices create much stronger responses in the con-
ditional comoments since the GFC, with long-lived responses in case of cokurtosis, and
short-lived responses in beta. More importantly, there is an unprecedented asymmet-
ric response between the S&P 500 and WTI to the shocks in the fear index VIX.

To examine whether the sentiment indices have an asymmetric effect on the condi-
tional comoments in the short- and long-run, this paper employs the NARDL model.
The results suggest that there are strong asymmetries associated with the effect of all
three sentiment indices on the conditional comoments, only in the short-run and af-
ter the GFC. In particular, the change in the sign of the fear effect on WTI conditional
beta that happens after the GFC should increase alarms for policymakers. This phe-
nomenon gets more worrisome when we realize that the conditional comoments of
WTI respond several times stronger to fluctuations in VIX than those of the S&P 500,
especially after the 2008 GFC. Finally, we turn to the oil-specific fear index (OVX) to
determine if it has stronger effect on WTI conditional beta than VIX, and realize that,
surprisingly, the effect of VIX is greater than OVX.

The findings of this paper should alarm policymakers since the effects of financializa-
tion are changing the natural dynamics of crude oil fluctuation much faster than before.
Previous studies have identified aggregate growth shocks, a slowdown in global eco-
nomic activity, oil demand shocks, or speculative activity by sovereign wealth funds as
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Table 2.5: Post-GFC NARDL regression results with OVX
S&P 500 Beta WTI Beta

Asymmetric conditional error correction

Const. -0.0003 Const. 0.0232∗∗∗
SPBetat−1 −0.0206∗∗∗ WTIBetat−1 −0.0214∗∗∗

VIX+
t−1 0.1469∗∗∗ VIX+

t−1 −0.4043∗∗∗

VIX−t−1 0.1465∗∗∗ VIX−t−1 −0.4047∗∗∗

OVX+
t−1 −0.0888∗∗∗ OVX+

t−1 0.4022∗∗∗

OVX−t−1 −0.0884∗∗∗ OVX−t−1 0.4026∗∗∗

EPU+
t 0.0003 EPU+

t−1 -0.0035
EPU−t 0.0003 EPU−t−1 -0.0034

ADS+t−1 0.0000 ADS+t−1 -0.0001
ADS−t−1 -0.0000 ADS−t−1 -0.0001
4SPBetat−1 −0.0655∗∗∗ 4WTIBetat−1 −0.0557∗∗∗

4VIX+
t 0.0395∗∗∗ 4VIX+

t −0.0624∗∗∗

4VIX−t −0.0583∗∗∗ 4VIX−t 0.1046∗∗∗

4VIX+
t−1 0.0171 4VIX+

t−1 −0.0574∗

4VIX−t−1 −0.0828∗∗∗ 4VIX−t−1 0.1303∗∗∗

4VIX+
t−2 −0.0528∗∗∗ 4OVX+

t 0.1328∗∗∗

4VIX−t−2 -0.0111 4OVX−t −0.1466∗∗∗

4VIX+
t−3 −0.0174∗∗∗ 4OVX+

t−1 0.1655∗∗∗

4VIX−t−3 −0.0164∗∗∗ 4OVX−t−1 −0.2841∗∗∗

4OVX+
t −0.0176∗∗∗ 4OVX+

t−2 −0.1704∗∗∗

4OVX−t -0.0021 4OVX−t−2 0.1181∗∗∗

4OVX+
t−1 0.0015 4EPU+

t 0.0043
4OVX−t−1 0.0591∗∗ 4EPU−t −0.0075∗

4OVX+
t−2 0.0346∗∗∗ 4ADS+t -0.0193

4OVX−t−2 0.0101 4ADS−t 0.0196
4OVX+

t−3 0.0220∗∗∗ 4ADS+t−1 0.0270∗

4OVX−t−3 0.0035 4ADS−t−1 −0.0427∗∗

4ADS+t 0.0027
4ADS−t 0.0125∗∗∗

4ADS+t−1 -0.0008
4ADS−t−1 -0.0070
4ADS+t−2 -0.0025
4ADS−t−2 −0.0092∗∗

4ADS+t−3 0.0023
4ADS−t−3 0.0106∗∗

Long-run parameters

VIX+
t−1 7.0988∗∗∗ VIX+

t−1 −18.8851∗∗∗

VIX−t−1 7.0820∗∗∗ VIX−t−1 −18.9026∗∗∗

OVX+
t−1 −4.2956∗∗∗ OVX+

t−1 18.7869∗∗∗

OVX−t−1 −4.2732∗∗∗ OVX−t−1 18.8047∗∗∗

EPU+
t 0.0152 EPU+

t−1 -0.1618
EPU−t 0.0161 EPU−t−1 -0.1605

ADS+t−1 0.0037 ADS+t−1 -0.0053
ADS−t−1 -0.0030 ADS−t−1 -0.0063

Long-run coefficient symmetry F-test

ADS 2.7∗ ADS 0.0
EPU 0.3 EPU 0.0
OVX 0.7 OVX 0.0
VIX 0.5 VIX 0.0

Short-run coefficient symmetry F-test

ADS 2.9∗ ADS 1.6
EPU NA EPU 4.7∗∗
OVX 3.5∗ OVX 43.0∗∗∗
VIX 138.3∗∗∗ VIX 58.0∗∗∗

Diagnostics and stats

R2 0.33 R2 0.18
Log likelihood 8575 Log likelihood 3570

F-stat 46.9∗∗∗ F-stat 28.6∗∗∗
AIC -5.2 AIC -2.01

Bounds F-stat 22.3∗∗∗ Bounds F-stat 17.5∗∗∗
Bounds t-stat −6.3∗∗∗ Bounds t-stat −5.7∗∗∗

Wald test 21.1∗∗∗ Wald test 14.4∗∗∗
Serial Correlation Test 2.1 Serial Correlation Test 0.7
Heteroscedasticity Test 21.1∗∗∗ Heteroscedasticity Test 24.6∗∗∗

*, **, *** denote statistical significance at the 10%, 5%, and 1% levels respectively.
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potential macro sources of the new stock-oil comovements. However, the findings of
this study indicate that market sentiment is among the main drivers of this emerging
pattern. Asset managers, speculators, and other non-commercial parties in the crude
oil market shall not benefit from the diversification between the two markets, and this
could potentially lead them to migrate to another fundamental market, creating bub-
bles in other sections of the economy. The higher the dependencies between different
markets, the greater the fragility of financial systems. The conclusions of this research
take our understanding of stock-oil comovements one step further.
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Table B.1: NARDL regression results – S&P 500 Coskewness

Pre-GFC Post-GFC

Asymmetric conditional error correction

Const. 0.0000 Const. 0.0000
SPCoskewt−1 −0.0173∗∗∗ SPCoskewt−1 −0.0372∗∗∗

VIX+
t−1 -0.0016 VIX+

t−1 −0.0048∗

VIX−t−1 -0.0016 VIX−t−1 -0.0047
EPU+

t−1 0.0000 EPU+
t 0.0000

EPU−t−1 0.0000 EPU−t 0.0000
ADS+

t−1 -0.0001 ADS+
t−1 −0.0002∗∗∗

ADS−t−1 -0.0002 ADS−t−1 −0.0001∗∗∗

4SPCoskewt−1 −0.1931∗∗∗ 4SPCoskewt−1 −0.1990∗∗∗

4SPCoskewt−2 −0.0638∗∗∗ 4VIX+
t −0.0041∗∗

4SPCoskewt−3 0.0617∗∗∗ 4VIX−t 0.0114∗∗∗

4VIX+
t 0.0001 4VIX+

t−1 −0.0102∗∗∗

4VIX−t 0.0021 4VIX−t−1 0.0026
4EPU+

t 0.0000 4VIX+
t−2 0.0017

4EPU−t 0.0001 4VIX−t−2 −0.0063∗∗∗

4ADS+
t 0.0038 4ADS+

t -0.0011
4ADS−t 0.0006 4ADS−t 0.0020

4ADS+
t−1 0.0007

4ADS−t−1 0.0045∗∗∗

4ADS+
t−2 -0.0000

4ADS−t−2 0.0028∗∗

4ADS+
t−3 0.0001

4ADS−t−3 −0.0055∗∗∗

Long-run parameters

VIX+
t−1 -0.0937 VIX+

t−1 -0.1313
VIX−t−1 -0.0957 VIX−t−1 -0.1265
EPU+

t−1 0.0036 EPU+
t 0.0018

EPU−t−1 0.0037 EPU−t 0.0012
ADS+

t−1 -0.0064 ADS+
t−1 −0.0048∗∗∗

ADS−t−1 0.0099 ADS−t−1 −0.0044∗∗∗

Long-run coefficient symmetry F-test

ADS 0.3 ADS 0.65
EPU 0.3 EPU 5.9∗∗∗

VIX 1.3 VIX 4.8∗∗

Short-run coefficient symmetry F-test

ADS 0.6 ADS 5.0∗∗

EPU 1.2 EPU NA
VIX 0.4 VIX 32.2∗∗∗

Diagnostics and stats

R2 0.05 R2 0.13
Log likelihood 20841 Log likelihood 12275

F-stat 17.9∗∗∗ F-stat 22.9∗∗∗

AIC -8.7 AIC -7.5
Bounds F-stat 5.1∗∗∗ Bounds F-stat 8.9∗∗∗

Bounds t-stat −5.7∗∗∗ Bounds t-stat −7.2∗∗∗

Wald test 1.8∗ Wald test 5.5∗∗∗

Serial Correlation Test 1.2 Serial Correlation Test 0.6
Heteroscedasticity Test 20.7∗∗∗ Heteroscedasticity Test 14.3∗∗∗

*, **, *** denote statistical significance at the 10%, 5%, and 1% levels respectively.
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Table B.2: NARDL regression results – WTI futures Coskewness

Pre-GFC Post-GFC

Asymmetric conditional error correction

Const. 0.0000 Const. 0.0003
WTICoskewt−1 −0.0367∗∗∗ WTICoskewt−1 −0.0571∗∗∗

VIX+
t−1 0.0598∗∗∗ VIX+

t−1 0.0398∗∗∗

VIX−t−1 0.0598∗∗∗ VIX−t−1 0.0400∗∗∗

EPU+
t −0.0004∗ EPU+

t−1 0.0002
EPU−t −0.0004∗ EPU−t−1 0.0002

ADS+
t−1 0.0016∗∗∗ ADS+

t−1 -0.0000
ADS−t−1 −0.0007∗ ADS−t−1 -0.0000

4WTICoskewt−1 0.0008 4WTICoskewt−1 0.0048
4WTICoskewt−2 0.0494∗∗∗ 4WTICoskewt−2 0.0491∗∗∗

4WTICoskewt−3 −0.0286∗∗ 4WTICoskewt−3 0.0269∗

4WTICoskewt−4 0.0220 4WTICoskewt−4 0.0135
4VIX+

t 0.0081∗∗ 4WTICoskewt−5 -0.0003
4VIX−t -0.0009 4WTICoskewt−6 −0.0258∗

4VIX+
t−1 -0.0030 4VIX+

t 0.0077∗∗∗

4VIX−t−1 −0.0138∗∗∗ 4VIX−t −0.0193∗∗∗

4ADS+
t 0.0151 4VIX+

t−1 0.0113∗∗∗

4ADS−t -0.0160 4VIX−t−1 −0.0118∗∗∗

4ADS+
t−1 −0.0255∗∗ 4EPU+

t -0.0001
4ADS−t−1 0.0249∗∗ 4EPU−t 0.0003

4EPU+
t−1 -0.0005

4EPU−t−1 -0.0000
4ADS+

t 0.0018
4ADS−t -0.0014
4ADS+

t−1 −0.0105∗∗∗

4ADS−t−1 0.0065∗∗∗

Long-run parameters

VIX+
t−1 1.6300∗∗∗ VIX+

t−1 0.6962∗∗∗

VIX−t−1 1.6288∗∗∗ VIX−t−1 0.7002∗∗∗

EPU+
t −0.0117∗ EPU+

t−1 0.0043
EPU−t −0.0111∗ EPU−t−1 0.0037

ADS+
t−1 0.0440∗∗∗ ADS+

t−1 -0.0006
ADS−t−1 0.0190∗ ADS−t−1 -0.0007

Long-run coefficient symmetry F-test

ADS 5.0∗∗ ADS 0.0
EPU 6.9∗∗∗ EPU 6.6∗∗∗

VIX 0.2 VIX 5.5∗∗∗

Short-run coefficient symmetry F-test

ADS 1.1 ADS 40.2∗∗∗

EPU NA EPU 3.5∗

VIX 7.8∗∗∗ VIX 149∗∗∗

Diagnostics and stats

R2 0.08 R2 0.30
Log likelihood 14483 Log likelihood 11454

F-stat 21.2∗∗∗ F-stat 54.4∗∗∗

AIC -6.0 AIC -7.0
Bounds F-stat 29.7∗∗∗ Bounds F-stat 12.8∗∗∗

Bounds t-stat −9.7∗∗∗ Bounds t-stat −6.4∗∗∗

Wald test 3.7∗∗∗ Wald test 27.2∗∗∗

Serial Correlation Test 1.5 Serial Correlation Test 0.5
Heteroscedasticity Test 2.2∗∗∗ Heteroscedasticity Test 12.8∗∗∗

*, **, *** denote statistical significance at the 10%, 5%, and 1% levels respectively.
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Table B.3: NARDL regression results – S&P 500 Cokurtosis

Pre-GFC Post-GFC

Asymmetric conditional error correction

Const. −0.0148∗∗∗ Const. 0.0188∗

SPCokurtt−1 −0.0290∗∗∗ SPCokurtt−1 −0.0290∗∗∗

VIX+
t−1 −0.0956∗∗∗ VIX+

t−1 0.2040∗∗∗

VIX−t−1 −0.0939∗∗∗ VIX−t−1 0.1972∗∗∗

EPU+
t 0.0011 EPU+

t -0.0101
EPU−t 0.0010 EPU−t -0.0092

ADS+
t−1 −0.0037∗ ADS+

t 0.0005
ADS−t−1 −0.0072∗∗∗ ADS−t 0.0010

4SPCokurtt−1 −0.0247∗ 4SPCokurtt−1 −0.0298∗

4VIX+
t −0.0441∗ 4SPCokurtt−2 0.0606∗∗∗

4VIX−t -0.0437 4SPCokurtt−3 −0.0451∗∗∗

4ADS+
t −0.1631∗∗ 4VIX+

t−1 0.1013∗

4ADS−t 0.1659∗∗ 4VIX−t−1 −0.1478∗∗

4ADS+
t−1 0.3315∗∗∗

4ADS−t−1 −0.3097∗∗∗

Long-run parameters

VIX+
t−1 −3.2945∗∗∗ VIX+

t−1 7.0170∗∗∗

VIX−t−1 −3.2352∗∗∗ VIX−t−1 6.7842∗∗∗

EPU+
t 0.0368 EPU+

t−1 -0.3478
EPU−t 0.0352 EPU−t−1 -0.3181

ADS+
t−1 −0.1291∗ ADS+ 0.0187

ADS−t−1 −0.2480∗∗∗ ADS− 0.0369

Long-run coefficient symmetry F-test

ADS 1.6 ADS 0.9
EPU 1.0 EPU 7.2∗∗∗

VIX 5.3∗∗ VIX 6.4∗∗∗

Short-run coefficient symmetry F-test

ADS 6.1∗∗∗ ADS NA
EPU NA EPU NA
VIX 0.0 VIX 9.2∗∗∗

Diagnostics and stats

R2 0.02 R2 0.04
Log likelihood 5220 Log likelihood 959

F-stat 8.5∗∗∗ F-stat 10.4∗∗∗

AIC -2.1 AIC -0.5
Bounds F-stat 11.6∗∗∗ Bounds F-stat 8.2∗∗∗

Bounds t-stat −8.3∗∗∗ Bounds t-stat −6.6∗∗∗

Wald test 3.9∗∗∗ Wald test 4.4∗∗∗

Serial Correlation Test: 1.2 Serial Correlation Test 0.4
Heteroscedasticity Test 42.1∗∗∗ Heteroscedasticity Test 28.8∗∗∗

*, **, *** denote statistical significance at the 10%, 5%, and 1% levels respectively.
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Table B.4: NARDL regression results – WTI futures Cokurtosis

Pre-GFC Post-GFC

Asymmetric conditional error correction

Const. −0.0458∗ Const. 0.5667∗∗∗

WTICokurtt−1 −0.0247∗∗∗ WTICokurtt−1 −0.0620∗∗∗

VIX+
t−1 -0.2173 VIX+

t−1 −3.9974∗∗∗

VIX−t−1 -0.2191 VIX−t−1 −4.0107∗∗∗

EPU+
t−1 -0.01690 EPU+

t−1 0.0264
EPU−t−1 -0.01601 EPU−t−1 0.0280
ADS+

t−1 0.0220∗∗ ADS+
t−1 −0.0296∗∗∗

ADS−t−1 −0.0215∗ ADS−t−1 −0.0276∗∗∗

4VIX+
t -0.1242 4WTICokurtt−1 −0.1676∗∗∗

4VIX−t 0.0218 4WTICokurtt−2 −0.0380∗∗

4VIX+
t−1 −0.2554∗∗ 4WTICokurtt−3 0.0120

4VIX−t−1 0.1453 4WTICokurtt−4 −0.0759∗∗∗

4EPU+
t -0.0010 4VIX+

t -0.4794
4EPU−t 0.0061 4VIX−t 2.1691∗∗∗

4EPU+
t−1 0.0303∗∗∗ 4VIX+

t−1 −1.4321∗∗∗

4EPU−t−1 -0.0074 4VIX−t−1 2.7892∗∗∗

4ADS+
t −0.6520∗∗ 4EPU+

t 0.0002
4ADS−t 0.2172 4EPU−t -0.0174
4ADS+

t−1 0.5910∗ 4EPU+
t−1 0.0438

4ADS−t−1 -0.3551 4EPU−t−1 -0.0623
4ADS+

t−2 0.9757∗∗∗ 4ADS+
t −0.8990∗∗∗

4ADS−t−2 -0.3152 4ADS−t 0.3193
4ADS+

t−3 −0.7467∗∗ 4ADS+
t−1 1.6365∗∗∗

4ADS−t−3 0.1640 4ADS−t−1 −0.7474∗∗∗

Long-run parameters

VIX+
t−1 -8.7770 VIX+

t−1 −64.3965∗∗∗

VIX−t−1 -8.8490 VIX−t−1 −64.610∗∗∗

EPU+
t−1 -0.6820 EPU+

t−1 0.4264
EPU−t−1 -0.6462 EPU−t−1 0.4514
ADS+

t−1 0.8908∗∗∗ ADS+
t−1 −0.4769∗∗∗

ADS−t−1 −0.8720∗ ADS−t−1 −0.4457∗∗∗

Long-run coefficient symmetry F-test

ADS 14.7∗∗ ADS 0.3
EPU 19.6∗∗∗ EPU 0.7
VIX 0.3 VIX 0.7

Short-run coefficient symmetry F-test

ADS 0.6 ADS 11.2∗∗∗

EPU 4.1∗∗ EPU 1.8
VIX 8.0∗∗∗ VIX 111.3∗∗∗

Diagnostics and stats

R2 0.02 R2 0.20
Log likelihood 483 Log likelihood 4332

F-stat 4.6∗∗∗ F-stat 36.2∗∗∗

AIC 0.5 AIC 3.1
Bounds F-stat 9.2∗∗∗ Bounds F-stat 26.8∗∗∗

Bounds t-stat −7.2∗∗∗ Bounds t-stat −9.5∗∗∗

Wald test 5.1∗∗∗ Wald test 11.7∗∗∗

Serial Correlation Test 0.4 Serial Correlation Test 1.1
Heteroscedasticity Test 7.2∗∗∗ Heteroscedasticity Test 31.0∗∗∗

*, **, *** denote statistical significance at the 10%, 5%, and 1% levels respectively.
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