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The hadronic contribution to the muon anomalous magnetic moment aμ = (gμ − 2)/2 has to be 
determined at the per-mille level for the Standard Model prediction to match the expected final 
uncertainty from the ongoing E989 experiment. This is 3 times better than the current precision 
from the dispersive approach, and 5-15 times smaller than the uncertainty on the purely theoretical 
determinations from lattice QCD. So far the stumbling-block is the large statistical error in the Monte 
Carlo evaluation of the required correlation functions which can hardly be tamed by brute force. Here 
we propose to solve this problem by multi-level Monte Carlo integration, a technique which reduces the 
variance of correlators exponentially in the distance of the fields. We test our strategy by computing the 
Hadronic Vacuum Polarization on a lattice with a linear extension of 3 fm, a spacing of 0.065 fm, and a 
pion mass of 270 MeV. Indeed the two-level integration makes the contribution to the statistical error 
from long-distances de-facto negligible by accelerating its inverse scaling with the cost of the simulation. 
These findings establish multi-level Monte Carlo as a solid and efficient method for a precise lattice 
determination of the hadronic contribution to aμ. As the approach is applicable to other computations 
affected by a signal-to-noise ratio problem, it has the potential to unlock many open problems for the 
nuclear and particle physics community.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The current experimental value of the muon anomalous mag-
netic moment aμ = 11659208.9(6.3) × 10−10 by the E821 ex-
periment has the remarkable precision of 0.54 parts per million 
(ppm) [1], while the on-going E989 experiment at FNAL is ex-
pected to reach the astonishing precision of 0.14 ppm by the end 
of its operation [2] when also E34 at J-PARC may be well under 
way [3]. The Standard Model (SM) prediction includes contribu-
tions from five-loop Quantum Electrodynamics, two-loop Weak in-
teractions, the Hadronic leading-order Vacuum Polarization (HVP) 
and (the much smaller) Hadronic Light-by-Light scattering (HLbL), 
see Ref. [4] and references therein. The overall theoretical uncer-
tainty is dominated by the hadronic part. So far,1 lacking precise 
purely theoretical computations, the hadronic contributions have 
been extracted (by assuming the SM) from experimental data via 
dispersive integrals (HVP & HLbL) and low-energy effective models 
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1 A recent proposal for an independent determination of the HVP from the muon-
electron elastic scattering has been put forward in Ref. [5].
https://doi.org/10.1016/j.physletb.2021.136191
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SCOAP3.
supplemented with the operator product expansion (HLbL). This 
leads to aμ = 11659181.0(4.3) ×10−10 (0.37 ppm) [4], which devi-
ates by 3 −4 standard deviations from the E821 result, a difference 
persisting for a decade which may be a hint for a New Physics sig-
nal.

State-of-the-art lattice Quantum Chromodynamics (QCD) deter-
minations of the HVP are becoming competitive. At present, quoted 
uncertainties range between 0.6% to roughly 2% [6–12] corre-
sponding to an overall error on aμ which is still 5-15 times larger 
than the anticipated uncertainty from E989. Taken at face value, 
the most recent lattice determination of the HVP [12] differs from 
the dispersive result by more than 3 standard deviations, and gen-
erates tensions with the global electroweak fits [13–15].

All these facts call for an independent theoretically-sound lat-
tice computation of the hadronic contribution to aμ at the per-
mille level from first principles. The main bottleneck toward this 
goal is the large statistical error in the Monte Carlo evaluation 
of the required correlation functions, see Ref. [4] and references 
therein. The aim of this letter is to solve this problem by a novel 
computational paradigm based on multi-level Monte Carlo inte-
gration in the presence of fermions [16–18]. With respect to the 
standard approach, this strategy reduces the variance exponentially 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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with the temporal distance of the fields, thus opening the possi-
bility of making negligible the contribution to the statistical error 
from long-distances. Here we focus on the HVP, but the strategy is 
general and can be applied to the HLbL, the isospin-breaking and 
electromagnetic contributions as well.

2. The signal-to-noise problem

The HVP can be written as [19]

aHVP
μ =

( α

π

)2
∞∫

0

dx0 K (x0,mμ) G(x0) , (1)

where α is the electromagnetic coupling constant, K (x0, mμ) is 
a known analytic function which increases quadratically at large 
x0 [20], mμ is the muon mass, and G(x0) is the zero-momentum 
correlation function

G(x0) =
∫

d3x 〈 J em
k (x) J em

k (0)〉 (2)

of two electromagnetic currents J em
k = i 

∑N f

i=1 qiψ̄iγkψi . In this 
study we consider N f = 3, the three lighter quarks of QCD with 
the first two degenerate in mass, so that

G(x0) = Gconn
u,d (x0) + Gconn

s (x0) + Gdisc
u,d,s(x0) . (3)

The light-connected Wick contraction Gconn
u,d (x0) and the discon-

nected one Gdisc
u,d,s(x0) are the most problematic contributions with 

regard to the statistical error. In standard Monte Carlo computa-
tions, the relative error of the former at large time distances |x0|
goes as

σ 2
Gconn

u,d
(x0)

[Gconn
u,d (x0)]2

∝ 1

n0
e2 (Mρ−Mπ )|x0| , (4)

where Mρ is the lightest asymptotic state in the iso-triplet vector 
channel, and n0 is the number of independent field configurations. 
For physical values of the quark masses, the difference (Mρ − Mπ )

can be as large as 3.2 fm−1. The computational effort, proportional 
to n0, of reaching a given relative statistical error thus increases 
exponentially with the distance |x0|. For the disconnected contri-
bution Gdisc

u,d,s(x0), the situation is even worse since the variance is 
constant in time and therefore the coefficient multiplying |x0| is 
larger. At present this exponential increase of the relative error is 
the barrier which prevents lattice theorists to reach a per-mille 
statistical precision for the HVP. In order to mitigate this prob-
lem, in state-of-the-art calculations the contribution to the integral 
in Eq. (1) is often computed from Monte Carlo data only up to 
time-distances of 1.5 − 2 fm or so, while the rest is estimated by 
modeling G(x0), see Ref. [21] for an up-to-date review.

3. Multi-level Monte Carlo

Thanks to the conceptual, algorithmic and technical progress 
over the last few years, it is now possible to carry out multi-level 
Monte Carlo simulations in the presence of fermions [16,17]. The 
first step in this approach is the decomposition of the lattice in 
two overlapping domains �0 and �2, see e.g. Fig. 1, which share a 
common region 	1. The latter is chosen so that the minimum dis-
tance between the points belonging to the inner domains 	0 and 
	2 remains finite and positive in the continuum limit.

The next step consists in rewriting the determinant of the Her-
mitean massive Wilson-Dirac operator Q = γ5 D as
2

Fig. 1. Domain decomposition of the lattice adopted in this paper. Periodic (anti-
periodic) boundary conditions in the time direction are enforced for gluons 
(fermions).

det Q = det (1 − w)

det Q 	1 det Q −1
�0

det Q −1
�2

, (5)

where Q 	1 , Q �0 , and Q �2 indicate the very same operator re-
stricted to the domains specified by the subscript. They are ob-
tained from Q by imposing Dirichlet boundary conditions on the 
external boundaries of each domain. The matrix w is

w = P∂	0 Q −1
�0

Q 	1,2 Q −1
�2

Q 	1,0 , (6)

where Q 	1,0 and Q 	1,2 are the hopping terms of the operator 
Q across the boundaries in between the inner domains 	0 and 
	2 and the common region 	1 respectively, while P∂	0 is the 
projector on the inner boundary of 	0 [17]. The denominator in 
Eq. (5) has already a factorized dependence on the gauge field 
since det Q 	1 , det Q −1

�0
and det Q −1

�2
depend only on the gauge 

field in 	1, �0 and �2 respectively.
In the last step, the numerator in Eq. (5) is rewritten as

det (1 − w) = det [1 − R N+1(1 − w)]
C

∏N/2
k=1 det

[
(uk − w)†(uk − w)

] , (7)

where uk and u∗
k are the N roots of a polynomial approximant 

for (1 − w)−1, the numerator is the remainder, and C is an ir-
relevant constant. The denominator in Eq. (7) can be represented 
by an integral over a set of N/2 multi-boson fields [22,23] hav-
ing an action with a factorized dependence on the gauge field in 
	0 and 	2 [16–18] inherited from w . When the polynomial ap-
proximation is properly chosen, see below, the remainder in the 
numerator of Eq. (7) has mild fluctuations in the gauge field, and 
is included in the observable in the form of a reweighting factor in 
order to obtain unbiased estimates.

A simple implementation of these ideas is to divide the lattice 
as shown in Fig. 1, where 	0 and 	2 have the shape of thick time-
slices while 	1 includes the remaining parts of the lattice. The 
short-distance suppression of the quark propagator implies that a 
thickness of 0.5 fm or so for the thick-time slices forming 	1 is 
good enough, see e.g. Fig. 4 in Ref. [24], and is not expected to 
vary significantly with the quark mass. This is the domain decom-
position that we use for the numerical computations presented in 
this letter.

The Monte Carlo simulation is then performed using a two-level 
scheme. We first generate n0 level-0 gauge field configurations by 
updating the field over the entire lattice; then, starting from each 
level-0 configuration, we keep fixed the gauge field in the overlap-
ping region 	1, and generate n1 level-1 configurations by updating 
the field in 	0 and in 	2 independently thanks to the factoriza-
tion of the action. The resulting gauge fields are then combined 
to obtain effectively n0 · n2

1 configurations at the cost of generating 
n0 · n1 gauge fields over the entire lattice. In particular, for each 
level-0 configuration, we compute the statistical estimators by av-
eraging the values of the correlators over the n2

1 level-1 gauge 
fields. Previous experience on two-level integration [25,26,16,17]
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Fig. 2. Left: variance of the light-connected contraction as a function of the difference between the time-coordinates of the currents for n1 = 1, 3, 10 (n1 = 3∗ is obtained by 
skipping 48 MDUs between two consecutive level-1 configurations). Data are normalized to the analogous ones computed on CLS configurations generated by one-level HMC. 
Dashed lines represent the maximum reduction which can be obtained by two-level integration, namely 1/n2

1, in the absence of correlations between level-1 configurations. 
Grey bands indicate the thick time-slices where the gauge field is kept fixed during level-1 updates. Right: variance of the light-connected contribution to the integrand in 
Eq. (1).
suggests that, with two independently updated regions, the vari-
ance decreases proportionally to 1/n2

1 until the standard deviation 
of the estimator is comparable with the signal, i.e. until the level-1
integration has solved the signal-to-noise problem. From Eq. (4) we 
thus infer that the variance reduction due to level-1 integration 
is expected to grow exponentially with the time-distance of the 
currents in Eq. (2). The overhead for simulating the extra multi-
boson fields increases the cost by an overall constant factor which 
is quickly amortized by the improved scaling.

4. Lattice computation

In order to assess the potential of two-level Monte Carlo in-
tegration, we simulate QCD with two dynamical flavours supple-
mented by a valence strange quark. Gluons are discretized by the 
Wilson action while quarks by the O (a)-improved Wilson–Dirac 
operator, see Refs. [27,18] for unexplained definitions. Periodic and 
anti-periodic boundary conditions are imposed on the gluon and 
fermion fields in the time direction respectively, while periodic 
conditions are chosen for all fields in the spatial directions. We 
simulate a lattice of size 96 × 483 with an inverse bare coupling 
constant β = 6/g2

0 = 5.3, corresponding to a spacing of a = 0.065
fm [28,27]. The size of the lattice, rather large for a proof of con-
cept, is chosen so to be able to accommodate a light pion and 
still be in the large volume regime, namely Mπ = 270 MeV and 
Mπ L ≥ 4. The domains 	0 and 	2 are the union of 40 consecutive 
time-slices, while each thick time-slice forming the overlapping 
region 	1 is made of 8 time-slices corresponding to a thickness 
of approximately 0.5 fm. The determinants in the denominator of 
Eq. (5) are taken into account by standard pseudofermion repre-
sentations, while the number of multi-bosons is fixed to N = 12. 
The very same action and set of auxiliary fields are used either 
at level-0 or level-1. The reweighting factor is estimated stochasti-
cally with 2 random sources, which are enough for its contribution 
to the statistical error to be negligible. Further details on the algo-
rithm and its implementation can be found in Ref. [18].

We generate n0 = 25 level-0 configurations separated by 48
molecular dynamics units (MDU), so that in practice they can be 
considered statistically uncorrelated [28,27]. For each level-0 back-
ground gauge field, we generate n1 = 10 configurations in 	0 and 
	2 spaced by 16 MDUs. The connected contraction is calculated 
3

by inverting the Wilson-Dirac operator on local sources, while the 
disconnected one is computed via split-even random-noise estima-
tors [29]. For each level-0 configuration, the statistical estimators 
are computed by averaging the correlators over the n2

1 combina-
tions of level-1 fields. The error analysis then proceeds as usual. 
For the sake of the presentation, we show results in physical units 
and properly renormalized: the central value of the lattice spacing 
is taken from Ref. [27], and the one of the vector-current renormal-
ization constant from Ref. [30]. We do not take into account their 
contributions to the errors since on one side we are interested in 
investigating the statistical precision of the vector correlator com-
puted via two-level integration only, and on the other side the 
numerical accuracy of those quantities can be improved indepen-
dently.

To single out the reduction of the variance due only to two-
level averaging, we carry out a dedicated calculation of correlation 
functions. We compute the light-connected contraction by averag-
ing over 216 local sources put on the time-slice (y0/a = 32) of 	0
at a distance of 8 lattice spacings from its right boundary and, as 
usual, by summing over the sink space-position. This large number 
of sources guarantees that the dependence of the variance on the 
gauge field in the domains 	0 and 	2 is on equal footing, since 
no further significant variance reduction is observed by increasing 
their number. We determine the disconnected contraction by aver-
aging each single-propagator trace over a large number of Gaussian 
random sources, namely 768, so to have a negligible random-noise 
contribution to the variance [29].

The variance of the light-connected contribution as a function 
of the distance from the source is shown on the left plot of Fig. 2. 
For better readability only the time-slices belonging to �2 are 
shown, i.e. those relevant for studying the effect of two-level in-
tegration given the source position. Data are normalized to the 
variance obtained with the same number of sources on CLS con-
figurations2 which were generated with a conventional one-level 
HMC [31,32,28]. The exponential reduction of the variance with 
the distance from the source is manifest in the data, with the max-
imum gain reached from 2.5 fm onward for n1 = 10. The loss of 
about a factor between 2 and 3 with respect to the best possible 
scaling, namely n2

1, either for n1 = 3 or 10 (dashed lines) is com-

2 https://wiki -zeuthen .desy.de /CLS /CLS.

https://wiki-zeuthen.desy.de/CLS/CLS
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Fig. 3. Left: best results for the contribution to the integrand in Eq. (1) from the light-connected (red squares), strange-connected (blue circles) and disconnected (green 
triangles) contractions as a function of the time coordinate. Right: best results for the contributions to aHVP

μ from light-connected (red squares), strange-connected (blue 
circles), and disconnected (green triangles) contractions as a function of the upper extrema of integration xmax

0 .
patible with the presence of a residual correlation among level-1
configurations. Indeed the variance reduction for n1 = 3, obtained 
by skipping 48 MDUs between consecutive level-1 configurations 
(labeled by n1 = 3∗), is compatible with the n2

1 scaling at large dis-
tances within errors. In our particular setup, even for n1 = 10 the 
statistical error at large distances scales de-facto with the inverse 
of the cost of the simulation rather than with its squared root. 
This is easily seen by comparing the variance reduction shown in 
the left plot of Fig. 2 with the cost of the simulation for n1 = 10. 
The latter is in fact 4 times the one for n1 = 1 due to the different 
separation in MDU units between two consecutive configurations 
at level-0 and level-1.

The power of the two-level integration can be better appreci-
ated from the right plot of Fig. 2, where we show the variance 
of the light-connected contribution to the integrand in Eq. (1) as 
a function of the time-distance of the currents. The sharp ris-
ing of the variance computed by one-level Monte Carlo (n1 = 1, 
red squares) is automatically flattened out by the two-level multi-
boson domain-decomposed HMC (n1 = 10, blue triangles) without 
the need for modeling the long-distance behaviour of Gconn

u,d (x0).
To further appreciate the effect of the two-level integration, we 

compute the integral in Eq. (1) as a function of the upper ex-
trema of integration xmax

0 which we allow to vary. For n1 = 1, the 
integral reads 446(26) and 424(38) for xmax

0 = 2.5 and 3.0 fm re-
spectively, while for n1 = 10 the analogous values are 467.0(8.4)

and 473.4(8.6). While with the one-level integration the errors 
on the contributions to the integral from 0 to 2.5 fm and from 
2.5 to the maximum value of 3.0 fm are comparable, with the 
two-level HMC the contribution to the variance from the long dis-
tance part becomes negligible. This pattern of variance reduction 
is expected to set in at shorter distances for lighter quark masses, 
where the gain due to the two-level integration is expected to be 
significantly larger due to the sharp increase of the exponential in 
Eq. (4). Considerations analogous to those made for the connected 
contribution apply also to the much smaller disconnected one, al-
though even larger values of n1 are required to render the variance 
approximately constant.

5. Results and discussion

Our best result for the light-connected contribution to the inte-
grand in Eq. (1) is shown on the left plot of Fig. 3 (red squares). 
It is obtained by a weighted average of the above discussed corre-
lation function computed on 32 point sources per time-slice on 7
4

time-slices at y0/a = {8, 16, 24, 56, 64, 72, 80} and on 216 sources 
at y0/a = 32. We obtain a good statistical signal up to the max-
imum distance of 3 fm or so. The strange-connected contraction 
Gconn

s (x0) is much less noisy, and is determined by averaging on 
16 point sources at y0/a = 32. Its value, shown on the left plot of 
Fig. 3 (blue circles), is at most one order of magnitude smaller than 
the light contribution, and has a negligible statistical error with 
respect to the light one. The best result for the disconnected con-
tribution has been computed as discussed in the previous section, 
and it is shown in the left plot of Fig. 3 as well (green triangles). It 
reaches a negative peak at about 1.5 fm, and a good statistical sig-
nal is obtained up to 2.0 fm or so. Its absolute value is more than 
two orders of magnitude smaller than the light-connected contri-
bution over the entire range explored (notice the multiplication by 
10 for a better readability of the plot).

In the right plot of Fig. 3 we show the best values of the 
light-connected (red squares), strange-connected (blue circles), and 
disconnected (green triangles) contributions to aHVP

μ · 1010 as a 
function of the upper extrema of integration xmax

0 in Eq. (1). The 
light-connected part starts to flatten out at xmax

0 ∼ 2.5 fm and, at 
the conservative distance of xmax

0 = 3.0 fm, its value is 471.8(6.2). 
The value of the strange-connected contribution is 52.55(21) at 
xmax

0 = 3.0 fm, and its error is negligible with respect to the 
light-connected one. The disconnected contribution starts to flat-
ten out at about xmax

0 ∼ 2.0 fm, where its value is −1.98(84). 
For xmax

0 = 3.0 fm, its statistical uncertainty is 2.1 which is still 
3 times smaller with respect to the light-connected one. Clearly 
the disconnected contribution must be taken into account to at-
tain a per-mille precision on the HVP, but the combined usage of 
split-even estimators and two-level integration solves the problem 
of its computation. By combining the connected contributions at 
xmax

0 = 3.0 fm with the disconnected part at xmax
0 = 2.0 fm, the 

best total value that we obtain is aHVP
μ = 522.4(6.2) · 10−10.

In this proof of concept study we have achieved a 1% statisti-
cal precision with just n0 · n1 = 250 configurations on a realistic 
lattice. This shows that for this light-quark mass a per-mille sta-
tistical precision on aHVP

μ is reachable with multi-level integration 
by increasing n0 and n1 by a factor of about 4–6 and 2–4 respec-
tively. When the up and the down quarks become lighter, the gain 
due to the multi-level integration is expected to increase expo-
nentially in the quark mass, hence improving even more dramati-
cally the scaling of the simulation cost with respect to a standard 
one-level Monte Carlo. The change of computational paradigm pre-
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sented here thus removes the main barrier for making affordable, 
on the computer installations available today, the goal of a per-
mille precision on aHVP

μ .
Here we focused on the main bottleneck in the computation 

of the HVP. It goes without saying that the very same variance-
reduction pattern is expected to work out also for the calibration 
of the lattice spacing, the calculation of the electromagnetic cor-
rections and the HLbL.

It is also interesting to notice that multi-level integration can 
be well integrated with master-field simulation techniques [33] if 
very large volumes turn out to be necessary to pin down finite-
size effects at the per-mille level. As a final remark, we stress that 
the very same approach is applicable to many other computations 
which suffer from signal-to-noise ratio problems, where a similar 
breakthrough is expected [34].
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