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INTRODUCTION

The Gromov boundary of a hyperbolic group is an object which has been widely

studied in the past decades. Examples of this past and ongoing interest can be

found in the survey [KB02]. A particular effort has been made to detect “recur-

sive” presentations of such boundary: in their works [CP93, CP01], Coornaert

and Papadopoulos show how it can be seen as a semi-Markovian space when

the group is torsion free, while Pawlik [Paw15] provides a way to describe it

as a Markov-compacta and completes the work on semi-Markovian presenta-

tions in the general case, and Barrett [Bar18] gives an algorithm to determine

if the boundary is a circle and investigates other topological properties. Also

the well studied tool of subdivision rules plays a role in this context, see e.g.

[Rus14, Rus17].

The concept of rationality that we follow can be found in the work [GNS00] of

Grigorchuk, Nekrashevych and Sushchanskiı̌. The idea is to describe sets and

hence relations, and functions, by using finite state machines. One of the main

goals is to define homeomorphisms of the Cantor set {0, 1}ω via asynchronous

machines (one bit, i.e. 0 or 1, as input and a finite string written using {0, 1}

as output at each step of the computation), these are rational functions. On the

other hand, synchronous machines, which for us have just inputs, at each step

can read exactly one bit, are used to define rational sets and rational relations.

In [BBM21] Belk, Bleak and Matucci associate a self-similar tree called the tree

of atoms A(Γ) to any hyperbolic graph Γ, and they proceed to prove that the

action of a hyperbolic group on the boundary of such a tree is rational, that is

any element of the group can be regarded as a finite state machine that has a

boundary point as input and its image according to the action as output. They

also show that the boundary ∂A(Γ) projects onto the Gromov boundary ∂Γ of Γ
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(exploiting Webster and Winchester’s work [WW05]). Since any self-similar tree

defines a language, i.e. a subset of Σω where Σ is a finite set of symbols, and the

language is also rational, then the projection induces a coding of any element of

the Gromov boundary. Here we mean that to any boundary point we associate

some (possibly more than one) elements of Σω. It is natural to ask whether the

equivalence relation given by the projection is a rational relation.

In this dissertation, we tried to answer these and other questions about the re-

lation between the tree of atoms and the Gromov boundary.

In order to keep the treatment self-contained, we recall the main tools in metric

geometry, geometric group theory and language theory we need in Chapter 1.

Actually, Section 1.5 contains the first original results of this thesis, which re-

gard the relation of atoms with cones and balls and in some cases are an im-

provement of what is pointed out in [BBM21]. Furthermore, we introduce tips

of atoms (Definition 1.53), which turn out to be useful in our study.

In Chapter 2 we show how infinite sequences of atoms behave like geodesic

rays in hyperbolic graphs. The most useful result for the rest of the discussion

is the following.

Theorem 2.4 Let Γ be a hyperbolic graph and let A(Γ) be its tree of atoms. Let

u = (uk)
∞
k=1 and v = (vk)

∞
k=1 be two elements of ∂A(Γ). Then there exists a constant

C and a family of distances {dΓ
k}∞k=1 each defined on a level of the tree such that the

sequences u and v are mapped in the same element of the Gromov boundary ∂Γ if and

only if dΓ
k(uk, vk) ≤ C for all k ≥ 1.

Roughly speaking, this is an analog to the fellow traveler property of

geodesic rays. We also prove an atom-version of the exponential divergence for

viii



geodesics (see Proposition 2.19) and we define the Gromov product for atoms

and for infinite sequences of atoms, providing an explicit relation between the

latter and the Gromov product of elements of ∂Γ (see Lemma 1.59 and the dis-

cussion before it). Moreover, we bound the fibers of the projection ∂A(Γ) ↠ ∂Γ

(Theorem 2.22) and, consequently, we provide another way to bound the topo-

logical dimension of the Gromov boundary using Theorem 2.25.

One can construct, starting from the tree of atoms and the main results of

Chapter 2, the set of tips (T, dH), where dH is the Hausdorff metric, and the graph

of atoms ΓA endowed with the standard metric on graphs (Definition 3.4). In

particular, the graph is an augmented tree in the sense of [Kai03]. In Chapter 3

we provide a quasi-isometry between the Cayley graph of a hyperbolic group

and the set of tips (see Proposition 3.3 for both the definition of the set and the

quasi-isometry). Furthermore,

Theorem 3.7. Let G be a hyperbolic group and let Γ be its Cayley graph. Then the

graph of atoms ΓA and Γ are quasi-isometric.

We provide examples to better understand these results also from the point

of view of approximation of the Gromov boundary via finite graphs.

Finally, in Chapter 4 we present the machine which describes the equiva-

lence relation given by the projection ∂A(Γ) ↠ ∂Γ. The language is based on

the rigid structure of the tree of atoms, which is a particular self-similar structure

that assigns to each edge in the tree an element of Σ. The construction of the

machine uses, again, results from Chapter 2. The whole chapter can be summa-

rized obtaining the following
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Theorem 4.23. The quotient map ∂A(Γ) ↠ ∂Γ defines a rational equivalence rela-

tion.

We point out that being a semi-Markovian space implies the existence of

such a map with such a property, generally the two notions do not coincide and

our case seems to fail being semi-Markovian .

Section 4.2 and Section 4.3 are devoted to the complete or partial description

of gluing machines for a group acting on a regular tiling of the hyperbolic plane,

see Figure 22, and a group with an Apollonian gasket as Gromov boundary (see

also Section 3.3).
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CHAPTER 1

BACKGROUND

1.1 Metric Geometry

We will introduce some basic notions of metric geometry which will be useful

later on. The first definitions will be stated in the more general context of sets,

but soon we will restrict our attention to graphs.

Definition 1.1. Let X be a set. A function d : X × X → R ∪ {∞} such that

d(x, y) ≥ 0 or d(x, y) = ∞ is called distance if the following conditions hold:

(a) d(x, x) = 0 for all x ∈ X ;

(b) d(x, y) = d(y, x) for all x, y ∈ X .

In some cases, we add further conditions

(a) if d(x, y) = 0 with x, y ∈ X , then x = y;

(c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .

In particular, a semi-metric is a distance which satisfies (a) and a pseudo-

metric is a distance which satisfies (c).

Definition 1.2. A metric is a semi-metric that is also a pseudometric.

Note that this definition of metric allows two points to be at infinite distance. If

d(X ×X) ⊆ R, then we say that d is finite. A metric space (X, d) is a set X and

d a metric on X . We set

Bk(x) = {y ∈ X | d(x, y) ≤ k}

1



to be the ball of radius k centered in x.

Example 1.3 (Hausdorff metric). Let (X, d) be a metric space and let A and B

two non-empty subsets. We define the Hausdorff metric between A and B as

follows

dH(A,B) := max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}.

Note that it is actually a metric and when we deal with finite sets, all inf and sup

become min and max.

In metric geometry there are some techniques that allow a distance to be-

come a metric by changing the underlying set in a reasonable sense. We are

interested in the following two operations (for more details see [BH13, I.1.24]

and [BBI01, Proposition 1.1.5]).

First Move. Take a distance d on a spaceX and define d in the following way:

consider all the possible finite sequences of elements that start from x and end in

y and take the minimum of the sums of the distances between two consecutive

elements of the sequence. We get that d is a pseudo-metric. We do not modify

the space X in this case.

Second Move. Take a pseudo-metric d on a space X and consider the quo-

tient X/ d where elements are the equivalence classes of the following relation:

x ∼d y if and only if d(x, y) = 0. This leads to a metric space, which is a quotient

of X .

A geodesic between x and y in a metric space (X, d) is a map [x, y] : [0, l] → X

with [0, l] ⊂ R such that [x, y](0) = x, [x, y](l) = y and d([x, y](t1), [x, y](t2)) =

|t1− t2| for all t1, t2 ∈ [0, l]. There can be multiple geodesics between two points,

2



in general, though we use this interval notation when we only care about one

between them. When we want to put emphasis on the metric space, we write

[x, y]X . With a slight abuse of notation, we use [x, y]X meaning [x, y]([0, l]) ⊆ X .

A metric space is said to be geodesic if given two elements x, y ∈ X , then there

exists a geodesic between them.

A path is a continuous map from [0, l] for some l ∈ R to X . Note that any

geodesic is a path. On the other hand, we can define a distance starting from

paths. What we get is a so called length space. We start with the following

Definition 1.4. Let (X, d) be a metric space and let c : [0, l] → X with l ∈ R a

path. The length of c is

ℓ(c) := sup
0=t0≤t1≤...≤tn=l

n−1∑
i=0

d(ti+1, ti)

for all possible partitions 0 = t0 ≤ t1 ≤ . . . ≤ tn = l of [0, l] and no bound on n.

A path c is said to be rectifiable if ℓ(c) is finite.

Definition 1.5. A length space is a metric space such that the distance between

every pair of elements is equal to the infimum of the lengths of rectifiable paths

joining them.

Remark 1.6. Since a geodesic is a rectifiable path, it follows that a geodesic space

is a length space.

Given a metric space (X, d) it can be possible to turn it into a length space

defining a new metric d̂ such that d̂(x, y) coincides with the infimum of the

lengths (with respect to d) of rectifiable paths joining them.

Assume now that (X, d) is a length space and Y is a subset of X . In general

3



the metric space (Y, d|Y ) is not a length space. But, as presented above, we can

consider (Y, d̂|Y ) and we call d̂|Y the intrinsic metric on Y with respect to d.

An example to keep in mind is X = R2 with the Euclidean metric and Y =

S1. The intrinsic metric is the arc length metric on Y .

Remark 1.7. Let (X, d) be a length space and let Y be a subset endowed with the

intrinsic metric d̂. Then the following hold.

– If y1, y2 ∈ Y , then d(y1, y2) ≤ d̂(y1, y2).

– Let y1, y2 ∈ Y . Suppose that there exists a geodesic [y1, y2]X (with respect

to d) which is fully contained in Y . Then d(y1, y2) = d̂(y1, y2).

To conclude we note that a natural way to define maps between two metric

spaces is to require that distances are preserved, namely if ϕ : (X, dX) → (Y, dY )

is a map between metric spaces, we call it an isometry if it is bijective and

dY (x1ϕ, x2ϕ) = dX(x1, x2)

for all x1, x2 ∈ X .

Note that a geodesic can be seen as an isometry between [0, l] and its image.

1.2 Graphs and Coarse Geometry

Despite the generality of the context described in the previous paragraph, we

are looking for a combinatorial setting to work with. In particular, we give the

following

Definition 1.8. A graph Γ consists of sets V and E where E is a subset of the

collection of all unordered pairs in V . An element of V is called vertex and an

4



element of the structure E, i.e. a pair {x, y} with x, y ∈ V , is called edge.

By an abuse of notation we will often refer to Γ, and we will write x ∈ Γ, to

mean the vertex set. The reason will be clear soon, once we introduce a metric

on Γ. Note that, considering unordered pairs, we do not allow loops or multiple

edges.

A subgraph Γ0 is a subset of vertices together with a subcollection of the

edges such that if an edge {x, y} is in the subgraph collection of edges, then x

and y belong to the subset of vertices. A subgraph Γ0 is said to be induced if its

collection of edges consists of all the {x, y} ∈ E such that x, y ∈ Γ0.

A combinatorial path in a graph Γ is a sequence x1, . . . , xn+1 of vertices such

that {xi, xi+1} is an edge for all i = 1, . . . , n. We say that such a combinatorial

path has length n. A combinatorial path is called a combinatorial geodesic if its

length is the minimum length among all possible paths between the first vertex

and the last vertex.

Definition 1.9. Let Γ be a graph and x, y ∈ Γ. We define dΓ(x, y) to be the

length of any combinatorial geodesic that connects x and y or ∞ if x and y are

in different path components.

The map dΓ : Γ × Γ → Z ∪ {∞} is actually a metric and we call it the standard

metric of the graph.

Now we present three properties of graphs, which we will often assume for

the rest of this dissertation. Let x be a vertex of Γ. The degree of x is the number

of edges in which it is a vertex. We say that Γ is locally finite if every vertex has

finite degree. Moreover, if the degree is the same (and finite) for all vertices, the

5



graph is called regular. Finally, a graph is connected if every pair of vertices has

a combinatorial path joining them. A subgraph of a connected graph need not

be connected. Please note that a graph Γ is connected if and only if dΓ is finite.

If a graph Γ has a distinguished vertex x0, a vertex y in Γ that shares an edge

with another vertex x such that x ∈ [x0, y] is called a successor of x.

Definition 1.10. A locally finite connected graph such that for each pair of ver-

tices there exists exactly one combinatorial path joining them is called tree.

Whenever we choose a distinguished vertex x0, we say that the tree is rooted

and x0 is the root.

Similarly to graph with a distinguished vertex, a vertex y in a rooted tree that

shares an edge with another vertex x such that x ∈ [x0, y] is called a child of

x. A rooted regular tree is a tree such that each vertex has the same number of

children.

Trees are some of the main characters of the dissertation, together with their

boundaries. But we will discuss them later.

Assumption. From now on, when we talk about graphs we only refer to locally

finite connected ones.

In order to relate the discrete point of view to the general one and better

encode algebraic properties, we need a notion of map that is less rigid than that

of isometry.

Definition 1.11. Let (X, dX) and (Y, dY ) be two metric spaces. A map ϕ : X → Y

6



is called a quasi-isometric embedding if there exist L1 ≥ 1 and L2 ≥ 0 such that

1

L1

dX(x1, x2)− L2 ≤ dY (x1ϕ, x2ϕ) ≤ L1 dX(x1, x2) + L2

for all x1, x2 ∈ X .

A quasi-isometric embedding ϕ : X → Y is a quasi-isometry if there exists

a quasi-isometric embedding ψ : Y → X and a constant L such that

dX(xϕψ, x) ≤ L and dY (yψϕ, y) ≤ L

for all x ∈ X and y ∈ Y . An equivalent and useful definition follows from

Proposition 1.12 ([Lö17], Proposition 5.1.10). A quasi-isometric embedding ϕ :

X → Y is a quasi-isometry if and only if its image is quasi-dense, i.e. there exists

a constant L3 such that for all y ∈ Y there exists x ∈ X with dY (xϕ, y) ≤ L3.

Let Γ be a graph. We define its geometric realization |Γ| to be the metric

space constructed in the following way: we associate to each edge a copy of [0, 1]

and we identify the two vertices x and y of an edge {x, y} respectively with 0 and

1 (note that, by definition of edge, the pair is unordered, so we arbitrarily choose

one identification). The metric d|Γ| defined on |Γ| comes from the Euclidean

metric on [0, 1].

Example 1.13. We consider the map | · | : (Γ, dΓ) → (|Γ|, d|Γ|) such that x 7→ x. The

map is an isometric embedding with L1 = 1 and L2 = 0. In fact, it is an isometry

when restricted on its image. We can construct a quasi-isometric embedding of

|Γ| onto Γ by shrinking one half on a geometric edge (the copy of [0, 1]) to the

vertex identified with 0 and the second half to the vertex identified with 1. One

can arbirarily choose where to send 1
2
. In this way | · | is a quasi-isometry.

It is straightforward that combinatorial paths in Γ are quasi-isometric to

7



paths in |Γ| and, in particular, combinatorial geodesics are quasi-isometric to

geodesics in |Γ| and the lengths are preserved. With a slight abuse of notation,

we drop the word “combinatorial” and we consider a graph Γ to be a length

space (actually a geodesic space) with respect to dΓ. Let n ∈ N. We define the

n-sphere Sn (centered at a distinguished point x0) to be the collection of all ver-

tices x such that there exists a geodesic between x and x0 of length n in Γ.

The focus on quasi-isometries is due to our forthcoming study of groups as

metric spaces.

First, we make an assumption which is very common in geometric group theory

and is related to the assumption we made on graphs.

Assumption. A group is always assumed to be finitely generated and a set of

generators is always symmetric, namely if s belongs to a set a generators S then

also s−1 ∈ S, and it does not contain 1G.

We turn groups into graphs in the following way

Definition 1.14. Let G be group and let S be a set of generators for G. The Cay-

ley Graph Γ(G,S) of G with respect to S is a graph that has G as the collection

of vertices and {{g, sg} | g ∈ G, s ∈ S} as edges.

When S is clear from the context, we will write Γ(G). If m is the cardinality of S,

then Γ(G,S) is regular with degree m. Moreover, it is connected. So it satisfies

the assumption we made on graphs.

Since Γ(G,S) is a graph, we can endow it with its standard metric and turn

it into a metric space. In this particular case, we will refer to the standard metric
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as the word metric. The reason for this choice is that vertices are reduced words

in S and, given two vertices g and h, their distance is the length of a shortest

word w such that wg = h in G.

Since we want to consider an action of G on Γ(G,S), we need to formalize

what we intend with a group action on a graph.

Definition 1.15. Let G be a group and let Γ be a graph. We say that G acts on

Γ if G acts on the collection of vertices and {xg, yg} is an edge for every edge

{x, y} in Γ and for every g ∈ G.

Please note that each element of G is an isometry of Γ with respect to to the

standard metric.

The natural action of G on Γ(G,S) is induced by the right multiplication in

G. As we noted before, the action is right invariant with respect to the word

metric i.e. the group acts by isometries.

As mentioned above, quasi-isometries are a good way to see algebraic ob-

jects as metric spaces.

Proposition 1.16 ([Lö17], Proposition 5.2.5). Let G be a group. If S1 and S2 are two

sets of generators, then there exists a quasi-isometry between Γ(G,S1) and Γ(G,S2).

We conclude this section discussing the so called fundamental theorem of

geometric group theory. To do that, we need some properties of a group action

on a metric space.

– A group action of G on a metric space (X, dX) is said to be cocompact if

the quotient space X/G is compact.

– A groupG acts properly discontinuously on a metric space (X, dX) if {g ∈

9



G | K ∩Kg ̸= ∅} is finite for every compact subspace K of X .

– If a group acts properly discontinuously and cocompactly on a metric

space, then we say that the action is geometric.

The last remark we want to do before stating the theorem is the following:

a metric space is said to be proper if any closed ball is compact, so, in our de-

scription of graphs as metric spaces, a graph is always proper.

Theorem 1.17 (Milnor-Schwarz Lemma). Let G be a group acting geometrically on

a proper geodesic metric space (X, dX). Then the (Γ(G,S), dΓ) and (X, dX) are quasi-

isometric.

Proof. See Proposition I.8.19 in [BH13].

The actual statement also says that the group is finitely generated, but since we

made that assumption before, we did not mention it.

This gives us the possibility to study certain aspects of groups via spaces

on which they act geometrically. On the other hand, we can reduce our coarse

study of spaces to that of graphs quasi-isometric to them.

1.3 Hyperbolic Groups and their Boundaries

For the first notions of this section we deal with spaces, but soon we will return

to our discrete setting.

Let (X, dX) be a metric space. We fix an element x0 and we consider the

10



quantity

(Π) (x | y) := 1

2
[dX(x, x0) + dX(y, x0)− dX(x, y)] ,

for any two elements x, y in X . We call it the Gromov product between x

and y with respect to the base-point x0.

Note that the notation (x | y) does not mention the basepoint, this happens

because at some point we will fix one and we will never change it.

Definition 1.18. Let (X, dX) be a geodesic metric space with a distinguished

point x0. Then X is hyperbolic if one of the following (equivalent) conditions

holds:

– there exists a constant δ̃ ≥ 0 such that

(H) (x | z) ≥ min{(x | y), (y | z)} − δ̃

for all x, y, z ∈ X ;

– there exists a constant δ such that for every triple ([x, y], [y, z], [z, x]) one of

the geodesics is contained in the union of the δ-neighborhoods of the other

two.

We call (H) the hyperbolic inequality.

A first step towards graphs is the following property.

Proposition 1.19 ([BH13], Theorem H.1.9). If a hyperbolic space X is quasi-

isometric to a space Y , then Y is hyperbolic.

The main reason to pass to discrete structures is given by this definition.

Definition 1.20. A group is said to be hyperbolic if one (and hence all) of its

Cayley graphs is hyperbolic.

11



(a) The portion of Cayley graph. (b) The 1-skeleton of the tiling.

Figure 1: Two examples of hyperbolic graphs: a portion of a Cayley graph for
the free product between the cylic groups of order 2 and 3 and the 1-skeleton of
the uniform tiling of the hyperbolic plane given by five squares meeting in each
vertex.

Elementary examples of hyperbolic groups are virtually cyclic groups (i.e. with

a finite-index cyclic subgroup). A hyperbolic group which is not virtually cyclic

is called non-elementary. Another example useful to understand the defini-

tions is the free group. It is well known that the Cayley graph of a free group

(with respect to free generators) looks like a rooted tree (in the identity). We can

see hyperbolic groups as groups such that their Cayley graphs behave like a tree

“up to a small error δ” (see Figure 2).

Through this informal point of view, we get a good interpretation of the con-

cepts involved in Definition 1.18: in rooted trees the Gromov product between

two vertices measures the length of their greatest common prefix or, in other

words, how far the geodesic between the two vertices is from the base-point

and it is straightforward that the hyperbolic property holds with δ̃ = 0, while

the condition on triangles holds for δ = 0. In hyperbolic graphs, we have that

two geodesics, starting from the base-point and reaching two vertices x and y,

12
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Figure 2: On the left an example of a hyperbolic triangle. On the right, a triangle
in a tree.

travel together (within a distance of 2δ) in their initial part of length (x | y) or,

more formally, we can generalize what we have just said about trees (see Fig-

ure 3).

Lemma 1.21 ([CDP90], Ch. 3, Lemma 2.7). Let Γ be a δ-hyperbolic graph with

a distinguished point x0. If x and y are two vertices of Γ and [x, y] is any geodesic

connecting x to y, then

dΓ(x0, [x, y])− 4δ ≤ (x | y) ≤ dΓ(x0, [x, y])

with dΓ(x0, [x, y]) defined as the minimum distance over all the points in [x, y].

This way of thinking about the Gromov product will be stressed throughout

the whole dissertation, for example when we will meet boundaries and metrics

on them, so it may be convenient keep it in mind whenever a new definition

will occur. Moreover, it is one of the many interesting features of hyperbolic

groups and it helps them having such nice properties.

In fact, we can say something more general about distances between two

13



x0

x

y(x | y)

x0

x

y(x | y)

Figure 3: On the left the geometric meaning of the Gromov product and the
behavior of two geodesics in a hyperbolic graph. On the right, the same picture
in a tree.

geodesics starting from the same point and about their behavior after their

bounded distance initial segments (see Figure 4).

Proposition 1.22. Let Γ be a hyperbolic graph and let [z, x] and [z, y] be two geodesics

such that dΓ(z, x) = tx and dΓ(z, y) = ty. Put tmax = max{tx, ty} and extend the

shorter one to [0, tmax] by the constant map. Then

dΓ([z, x](t), [z, y](t)) ≤ 2 dΓ(x, y) + 4δ

for all 0 ≤ t ≤ tmax.

For the proof see e.g. [BH13, Lemma H.1.15].

Proposition 1.23 (Exponential divergence). Let Γ be a hyperbolic graph. There exist

three constants E, E1 and E2 such that for any two geodesics [z, x] and [z, y] and given

t, t̃ such that t̃ + t ≤ min{dΓ(z, x), dΓ(z, y)}, if dΓ([z, x](t̃), [z, y](t̃)) > E and c is a

rectifiable path fully contained in Γ − Bt̃+t(z) from [z, x](t̃ + t) to [z, y](t̃ + t), then

ℓ(c) > E1e
E2t.

Moreover, E1 and E2 only depend on δ.

As a matter of fact, by the Milnor-Schwarz Lemma, we can give an (ap-

parently) more general characterization of hyperbolic groups. Namely, a hy-

perbolic group is a group which acts geometrically on a hyperbolic space. A
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Figure 4: On the left, we can see that on a rooted tree the number of vertices
between two points at the same level grows exponentially with respect to the
level. On the right, we have similar behavior on a hyperbolic graph, as any path
between the two points of the geodesics that are on the sphere of radius t is
longer than an exponential with respect to t.

first instance of the previous connection with trees is that geometric actions are

closely related to free actions and that a free group is a group that acts freely on

a tree providing there is no inversion of edges.

So from now on we are interested in hyperbolic graphs related to hyperbolic

groups and we choose a distinguished point x0 which will always remain im-

plicit.

We are going to introduce the first type of boundary. Despite the definitions

will be stated for hyperbolic graphs, they can be given in the general setting (see

e.g. [BH13]).

Let {xk}∞k=0 be a sequence of points in a graph Γ. We say that it goes to

infinity in the sense of Gromov if (xk | xj) diverges to infinity whenever k

and j go to infinity. Sequences that go to infinity in a suitable way are good

candidates to be representatives of some boundaries.

If {xk}∞k=0 and {yk}∞k=0 are two sequences as above with y0 = x0, we define the

following relation

{xk}
∞

k=0
∼Γ {yk}

∞

k=0
⇔ (xk | yk) −−−→

k→∞
∞.
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In general it is not an equivalence relation, but if the graph is hyperbolic, it is.

In fact, this is the first boundary we are interested in.

Definition 1.24. The Gromov boundary ∂Γ of a hyperbolic graph Γ is the quo-

tient of the collection of all sequences that go to infinity in the Gromov sense

over the relation ∼Γ.

Some remarks are needed before we continue. First of all, ∂Γ is always naturally

a metrizable space and we will be discussing metrics on ∂Γ later on. The bound-

ary does not depend on the choice of x0, that is if you start the construction from

another point, the resulting boundary is homeomorphic to the one defined with

x0.

More in general, a quasi-isometry of hyperbolic spaces induces a homeomor-

phism of Gromov boundaries. In particular, the Gromov boundary of a hyper-

bolic group is well-defined.

We now present a more geometric way of describing the Gromov bound-

ary. To do that we need to slightly generalize the concept of (combinatorial)

geodesic.

Definition 1.25. Let Γ be a hyperbolic graph with a distinguished point x0. A

geodesic ray is a function γ : [0,∞[→ |Γ| such that γ(0) = x0 and the restriction

γ|[t1,t2 ] is a geodesic for every interval [t1, t2]. As for geodesics, we will often

drop the geometric realization and consider combinatorial geodesic rays via the

standard quasi-isometry.

Note that the notion we just introduced can be stated in more generality, in-

deed it is usually not required that the path starts from a distinguished point.
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Our further assumption is merely a choice of convenience for our purposes.

Having a collection of sequences, we need a suitable equivalence relation:

we say that two geodesic rays γ and η are asymptotic if there exists a constant

C such that dΓ(γ(t), η(t)) ≤ C for all t and with C not depending on t. In fact,

we can see that this is a generalization of what we said for geodesics and that if

two geodesic rays are asymptotic then we take C = 2δ.

Lemma 1.26 ([BH13], Lemma H.3.13). Let Γ be a hyperbolic graph. Then there exists

a bijection between ∂Γ and the collection of equivalence classes of asymptotic geodesic

rays.

By virtue of this lemma, we will refer to both sets with an abuse of notation

as ∂Γ.

Example 1.27. Using this second characterization, it is easy to argue that the Gro-

mov boundary of a free group is a Cantor set, that is a compact, perfect, totally

disconnected metric space. We can show that two spaces with this topological

description are homeomorphic (see [Wil70, Theorem 30.3]), so the Cantor set is

well-defined in this way. One can also see that the boundary of a rooted regular

tree is a Cantor set and given a Cantor set one can always construct a rooted

regular tree whose Gromov boundary is homeomorphic to the given Cantor set

(see Figure 5).

We are aware that the concepts involved in the previous example lie in a far

more general setting, but, for our purpose, it was easier to exploit the Gromov

boundary.
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Figure 5: The fourth level of a (rooted) tree and its corresponding approximation
of a Cantor set.

It is worth noticing that adding the boundary to the graph Γ, you get a com-

pact space (the fact that Γ ∪ ∂Γ is a topological space will be stated later on).

Actually every compact space can be seen as a boundary of a hyperbolic space.

But since we are focused on groups, there are fewer possibilities. Indeed, the

Gromov boundary of a non-elementary hyperbolic group is a compact metriz-

able space without isolated points. For all these facts see [KB02, Section 2] for

further details. Something more specific can be said, once we introduce visual

metrics. In order to do so, we need to generalize the notion of Gromov product

to elements of the Gromov boundary.

Definition 1.28. Let Γ be a hyperbolic graph and let x∞, y∞ ∈ ∂Γ. Then the

Gromov product between x∞ and y∞ is

(x∞ | y∞) := inf lim inf
k

(xk | yk)

where the infimum is taken over all the Gromov sequences {xk}∞k=1 and {yk}∞k=1
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that converge respectively to x∞ and y∞.

There are some considerations that are worth pointing out before we con-

tinue. For a complete treatment on the argument, we recommend to see [Vä05,

Section 5].

Remark 1.29.

(a) In the same way, we can consider the product between an element x∞ ∈ ∂Γ

and an element y ∈ Γ by taking yn = y, for every n. Note that lim infn(x∞ |

yn) for some Gromov sequence {yn}∞n=1 is infinite if and only if the se-

quence converges to x∞.

(b) The hyperbolic inequality (H) can be extended to Γ ∪ ∂Γ.

(c) To define the Gromov product on the boundary, one can consider also the

inf lim sup and even sup lim inf or sup lim sup. We choose the smallest one,

but they are all related. Indeed, they all lie in a 2δ̃-interval where δ̃ is the

hyperbolic constant involved in (H) (see [Vä05, Definition 5.7] for details).

To stress the connection between trees and hyperbolic spaces, we give this

result that will be useful later. The proof can be found in Lemma 3.7 of [GMS19].

Lemma 1.30. Let Γ be a hyperbolic graph with a distinguished point x0. Let γ and η

be two geodesic rays of Γ. Then there exists a quasi-isometry, with L1 = 1 and L2 = 5δ

and δ the hyperbolic constant, between γ ∪ η and the tripod consisting of the rays glued

together along an initial segment of length ([γ] | [η]) .

See again Figure 3 for a reference.

Now that we have a tool that measure how long two geodesics or geodesic

rays fellow travel, we can define a distance such that the more they travel to-
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Figure 6: Fix β = 3. The distance between x and y is 3−2 = 1
9

while ⋎(x, z) = 3−0 = 1.

gether, the more the two points are close and viceversa.

Definition 1.31. Let β > 1 be a fixed constant. The visual metric on the comple-

tion Γ ∪ ∂Γ of a hyperbolic graph is defined as follow

⋎(x∗, y∗) := β−(x∗|y∗) with x∗, y∗ ∈ Γ ∪ ∂Γ,

with the convention that β−∞ = 0.

Again, we suggest to keep in mind the case of free groups (or the case of

rooted trees), where two geodesic rays, that are two elements of the boundary

since we are working with a tree, are close if they share a long common prefix.

Note that in this particular context, the visual metric on the boundary is in fact

a metric (see Figure 6).

For the general setting, we need some more properties that will also help us

with the fact that in the notation we do not explicitly mention β.

Lemma 1.32. Let Γ be a hyperbolic graph. Then

(a) the function ⋎ defines a topology on Γ ∪ ∂Γ;

(b) the function ⋎ is a semi-metric when restricted to ∂Γ;
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(c) using the First Move explained just after Definition 1.2 and with an abuse of

notation, we get a new function that we call again ⋎ and that is a metric on ∂Γ;

(d) taking ⋎ as in the previous point, there exists a constant B, depending only on δ,

such that for all 1 < β ≤ B we have

1

2
β−(x∗|y∗) ≤ ⋎(x∗, y∗) ≤ β−(x∗|y∗).

Proof. See Proposition 5.16 in [Vä05].

Please note that point (d) partially explains the ambiguity of point (c) and

the abuse of notation in the Definition, indeed from now on we will assume β

will satisfy the constraint just introduced.

With the metric, and hence the topology, just introduced on ∂Γ, we can ask

ourselves about connectivity properties of the boundary.

One well-investigated quasi-isometric invariant is the ends. We recall them

briefly giving two possible definitions and we state that they are the connected

component of ∂Γ.

We start with the notion that can be generalized to any topological space:

Definition 1.33 (Topological Ends). Let Γ be a graph with a distinguished point

x0. A sequence {Ck}∞k=1 such that Ck+1 ⊆ Ck and Ck is a connected component of

Γ−Bk−1 is called an end of Γ. We denote the collection of all ends with ET(Γ).

While the second is specific for graphs:

Definition 1.34 (Graph Ends). Let Γ be a graph with a distinguished point x0.

We put an equivalence relation on geodesic rays in this way: two geodesic rays
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γ1 and γ2 are equivalent if γ1([k,∞[) and γ2([k,∞[) belong to the same connected

component of Γ − Bk−1 for all k. Given a geodesic ray γ, we denote its equiva-

lence class with end(γ) and call this an end of Γ and denote the collection of all

ends with E(Γ).

In our case, i.e. hyperbolic graphs, it is not difficult to see that the second

definition induces a surjective map ∂Γ ↠ E(Γ) such that [γ] 7→ end(γ). This

map gives a correspondence between graph ends and connected components of

the Gromov boundary. More in general, the two definitions are equivalent, in

the sense that there exists a bijection between E(Γ) and ET(Γ) whenever Γ is a

graph (see [DK03]).

The famous Freudenthal-Hopf theorem (see [Lö17, Theorem 8.2.11]) tells us

that finitely generated groups can have only 0,1,2 or ∞ ends. As we also know

that groups with zero ends are finite and groups with two ends are virtually Z

(see [Lö17, Theorem 8.2.14(1) and 8.2.14(2)]); only two classes remains to study.

A model for groups with an infinite number of ends is the free groups on n ≥ 2

generators ([Lö17, Example 8.2.10]), while any group acting geometrically on a

tiling of the hyperbolic plane has one end (see [KB02, Theorem 5.4] and recall

that ends are connected components of the Gromov boundary). There are sev-

eral works in this direction. We mention, for example, the PhD Thesis of Barrett

[Bar18] in which it is shown that, given the presentation of a hyperbolic group,

one can determine with an algorithm if the Gromov boundary is a circle.
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1.4 Trees associated to Hyperbolic Graphs

Continuing with the connection between trees and hyperbolic graphs, we intro-

duce what we can call a tree structure. Namely, a rooted tree (usually built from

our graph Γ) together with a quotient map from its boundary onto the Gromov

boundary. In this section, we will present one of the many tree structures intro-

duced by Coornaert and Papadopoulos in [CP93] and a less intuitive structure

provided by [BBM21].

The first idea is to consider all the geodesic rays of a hyperbolic graph Γ

and x0 as the root. In order to get a tree, we define the vertices as all the finite

geodesics starting from x0. Two geodesics x0, x1, . . . , xn and x0, y1, . . . , yn+1 are

connected by an edge if and only if xi = yi for all i ≤ n. It easily follows by

the construction that it is a tree and that the boundary is the collection of all

geodesic rays (see Figure 7 for an example). Moreover, it is straightforward to

define a map from the vertices of this tree onto Γ sending each geodesic to its

endpoint. This induces a map from a boundary (the one of the tree) to another

(the Gromov boundary of Γ) given by the usual quotient γ 7→ [γ] ∈ ∂Γ where

γ is a geodesic ray in the tree, which define also a geodesic ray in Γ. In fact,

this map is Lipschitz (hence continuous) and surjective. Even if it does not have

finite fibers, in the case of groups one can consider a suitable subtree to get even

this property. This construction exploits a lexicographic order on the set of gen-

erators and it is explained in detail in [CP93, Section 5.4].

We now consider the abelian group F = ZΓ of functions from the vertices of

Γ (which we will identify with Γ) to Z. This space is endowed with the product
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Figure 7: Ball of radius 3 of the tree built from all the geodesic rays in Fig-
ure 1.(b).

topology (which is also the compact-open topology, since the set of vertices of

Γ is discrete). In particular, if we take the quotient F of F over the subgroup of

constant functions, it inherits the quotient topology.

We consider the function dx : Γ → Z defined as dx(−) := dΓ(x,−) with x ∈

Γ. The class dx in F has a global minimum at x. Hence there is a canonical

embedding ι : Γ → F since dx is an isolated point in Γι.

Definition 1.35. Let Γ be a hyperbolic graph. The horofunction boundary ∂hΓ

of Γ is the set of limit points of Γι.

An element of ∂hΓ is called horofunction. Using the definition, we say that a

sequence of vertices {xk}∞k=1 converges to a horofunction u if and only if the

sequence {dxk}∞k=1 converges to u (in the compact-open sense). Horofunctions

were initially introduced by Gromov in [BGS85], he refers to them as the “met-

ric boundary” and since then, they were widely studied. For a different, but

related notion see Definition 2.23.

Among horofunctions there are also the so-called Busemann points. Namely, a

horofunction is a Busemann point if it is the limit (in the sense explained above)

of a geodesic ray. This notion is a first step towards the next result, but please

note that in the general hyperbolic case there are horofunctions that are not
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Busemann points (see e.g. [WW06]).

This second boundary can always be constructed, instead of the first one

which requires hyperbolicity. Moreover, when the two are well-defined, we can

retrieve ∂Γ starting from horofunctions. Indeed, we have the following

Proposition 1.36. Let Γ be a hyperbolic graph. Then there exists a continuous surjec-

tive map πh : ∂hΓ ↠ ∂Γ.

Proof. See [WW05, Section 4].

In particular, if a sequence converges to a point in ∂hΓ then it goes to infinity in

the sense of Gromov.

There is another way to represent horofunctions, it is the so called tree of

atoms ([BBM21, Definition 3.4]). The idea is to construct a suitable collection

of partitions of Γ (seen as the set of vertices) and then to endow it with a tree

structure.

Let x be an element of a hyperbolic graph Γ. We consider the function

(F) fx(−) := dΓ(−, x)− dΓ(x0, x) : Γ → Z

for all x ∈ Γ.

Now we fix k to be a non-negative integer. The k-partition comes from the

following equivalence relation: two vertices x and y are equivalent if and only

if fx and fy agree on the ball Bk of radius k centered in x0 (this means that

dx = dy). We call the equivalence classes that contain an infinite number of

vertices k-level atoms and we denote the collection of such classes with Ak(Γ).

When Γ will be clear, we will drop it in the notation.

It can be shown that each partition is finite and it is a refinement of the previous

one. Indeed, given x ∈ Γ and k ∈ N, there are only finitely many possibilities
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(a) The atoms seen as subsets in the
graph together with the ball of radius
2 (in blue).

(b) The first two levels of the tree.

Figure 8: The first two levels of the atoms for the 1-skeleton in Figure 1.(b).

for the restriction of fx to Bk. Moreover, since we are dealing with restriction,

if fx and fy agree on Bk+1, then they agree on Bk. In particular, if we consider

atoms, they have a structure of an infinite tree

A(Γ) :=
∞∐
k=1

Ak(Γ).

For further details about this construction see [BBM21, Subsection 3.1].

Example 1.37. Consider the 1-skeleton of the hyperbolic tiling depicted in Fig-

ure 1.(b). The first level consists of ten atoms: in Figure 8 the subdivision given

by the red lines gives all ten of them and a finite region in which x0 is the only

element. The second level can be described as follows: every 1-level atom has

three children, given by the intersection between the atom and the brown lines.

A first property which says something about the asymptotic behavior of

atoms is the following

Proposition 1.38 ([BBM21], Proposition 3.5). Every k-level atom is contained in
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Γ−Bk−1.

But the key aspect of this structure is the following

Theorem 1.39 ([BBM21], Theorem 3.6). Let Γ be a hyperbolic graph. Then the bound-

ary of A(Γ) is homeomorphic to ∂hΓ.

This means that we can represent horofunctions via infinite nested sequences

of atoms, namely if u is an element of ∂hΓ, then there exists a unique nested

sequence (uk)∞k=1 such that uk is a k-level atom and the horofunction corresponds

to the sequence by virtue of the homeomorphism. In symbols we will simply

write u = (uk)
∞
k=1. We will frequently refer to this representation as the atom-

coding of the horofunction.

Remark 1.40. Let u = (uk)
∞
k=1 be a horofunction. If we denote with fu the rep-

resentative of u such that fu(x0) = 0, then fu|Bk
= fuk with fuk defined as the

restriction on Bk of fx for all x ∈ uk, where fx is the function introduced in (F).

1.5 Balls, Cones and Atoms

This section is devoted to describing some further properties of atoms. In par-

ticular, we will present a first relation with the Gromov boundary and others

with cones and balls which will be useful to establish a full connection with ∂Γ.

We will also define Gromov products on atoms and horofunctions in a different

(and improper, but very useful) way. Unless specified, the results contained in

this section are to be considered new.

Before starting, we clarify a notation that will be used from now on. If x ∈ Γ

and B ⊆ Γ, then with dΓ(x,B) we mean the mininum over all elements of B of
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their distances with respect to dΓ from x.

Also, in this section we deal with two different definitions of type in two dif-

ferent situations. This occurs because usually in the literature the collection of

types refers to a partition of the vertices.

We begin defining some collections of points.

Definition 1.41. Let Γ be a hyperbolic graph with a distinguished point x0 and

let x be an element in Γ−Bk for some k ∈ N.

(a) A nearest neighbor for x is a vertex x in Bk such that dΓ(Bk, x) = dΓ(x, x).

(b) A point p ∈ Bk is visible for x if [p, x] ∩ Bk = {p} for every geodesic [p, x]

from p to x.

(c) A point p ∈ Sn with n ≤ k is said to be n-proximal (or simply proximal

when the n is clear) to x if there exists a geodesic [x0, p] such that for every

geodesic [x0, x] we have

dΓ(pi, xi) ≤ 4δ + 2 for 1 ≤ i ≤ n

where pi is the i-th vertex of [x0, p] and xi is the i-th vertex of [x0, x].

We denote with N(x,Bk) the collection of nearest neighbors in Bk of x; and

with V (x,Bk) and P (x, Sn) the collections of visible points and proximal points

respectively.

Lemma 1.42. Let Γ be a hyperbolic graph and let x ∈ a for some k-level atom a. Then

the following properties hold.

(a) Every nearest neighbor of x is visible and every visible point is proximal, in short

N(x,Bk) ⊆ V (x,Bk) ⊆ P (x, Sk).

(b) A point p is k-proximal if and only if there exists a (k − 1)-proximal point at
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distance 1 from p and dΓ(p, q) ≤ 4δ + 2 for all q ∈ V (x,Bk). In particular, the

diameter of P (x, Sk) is bounded by 8δ + 4.

(c) If p is a nearest neighbor in Bk for x ∈ a, then it is a nearest neighbor for all

elements in a. The same statement is true for V (x,Bk) and P (x, Sk).

An immediate consequence is that N(a,Bk), V (a,Bk) and P (a, Sk) are well-

defined.

Proof. The proofs of all these statements can be found in [BBM21]: the first part

of (a) is straightforward, for the second see Proposition 3.19, for (b) see Propo-

sition 3.21 and Corollary 3.22, while for (c) we need to put together Proposition

3.15 and Corollary 3.24.

We turn now to the other important notion we will care about, but before

doing that we note that if x belongs to N(x,Bk) for some x ∈ Γ − Bk, then

there exists a geodesic [x0, x] via x, i.e. x ∈ [x0, x]. In fact, this can be seen as an

alternative definition.

Definition 1.43. Let Γ be a hyperbolic graph with a distinguished point x0. If p

is a vertex of Γ, then we define its cone to be

C(p) := {x ∈ X | dΓ(x0, x) = dΓ(x0, p) + dΓ(p, x)}.

Equivalently, a point x is in the cone of p if and only if there is a geodesic [x0, x]

such that p ∈ [x0, x].

For the case Γ = Γ(G,S) and x0 = id with G some hyperbolic group, we can

define the so-called cone types.
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Definition 1.44. Let G be a hyperbolic group and let S be one of its generating

set. If g ∈ G then its cone type is the collection

{h ∈ G | ℓ(hg) = ℓ(h) + ℓ(g)}

where g is intended as a geodesic between id and g.

In particular, if g1 and g2 have the same cone type then the map g−1
1 g2 is an

isometry of cones.

Even if they are largely studied, we just report the main result about them

(due to Cannon)

Proposition 1.45. Let G be a hyperbolic group. Then the number of cone types of its

Cayley graph is finite.

Proof. See e.g. Proposition 7.5.4 in [Lö17]. For a different approach, see [Can84].

We now come back to our purpose, that is to link atoms with the Gromov

boundary and so to the Gromov product. A property which will describe the

behavior of the product over an atom is the following

Remark 1.46. If p ∈ Sk, i.e. dΓ(x0, p) = k, then the Gromov product restricted to

its cone is more than or equal to k. Indeed, taken x, y ∈ C(p) we have

(x | y) = 1

2
[k + dΓ(p, x) + k + dΓ(p, y)− dΓ(x, y)]

and a triangle inequality yields the claim.

One can see that there is a weak connection between cones and atoms,

namely
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Proposition 1.47. Let Γ be a hyperbolic graph with a distinguished point x0 and let a

be a k-level atom. Then

a ⊆
⋂

p∈N(a,Bk)

C(p)−
⋃

q∈Sk−N(a,Bk)

C(q).

Proof. The fact that a lies in the intersection of its nearest neighbors cones fol-

lows immediately from the definition.

Now suppose that x ∈ a and x ∈ C(q) with q ∈ Sk−N(a,Bk). This means that

there exists p ∈ Bk such that dΓ(q, x) > dΓ(p, x). Hence dΓ(x0, x) = dΓ(x0, q) +

dΓ(q, x) ≥ dΓ(x0, p) + dΓ(q, x) > dΓ(x0, p) + dΓ(p, x) ≥ dΓ(x0, x), and this proves

the claim.

The goal should be to fully characterize atoms in geometric terms (i.e. via

cones). Even though this question is still open, we can bind atoms with the so

called N -types introduced by Cannon (see [Can84] and [CP93] for other applica-

tions). If Γ is the Cayley graph of an hyperbolic group, we say that two elements

x and y have the same N -type if dΓ(xz, id)− dΓ(x, id) = dΓ(yz, id)− dΓ(y, id) for

all z ∈ BN(id). In fact, they are a useful tool to prove Proposition 1.45.

Remark 1.48. Let Γ be the Cayley graph of a hyperbolic group. Then x, y ∈ Γ

belong to the same N -level atom if and only if x−1 and y−1 are of the same N -

type. This is straightforward once we notice that dΓ(x, id) = dΓ(x
−1, id) and

dΓ(xz, id) = dΓ(z, x
−1).

The problem is that, again, the connection between N -types and cones is yet

to be fully understood.

A topic on which we can say something is the topology of atoms in ∂Γ. More
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precisely, exploiting the correspondence given by πh, we can define the shadows

of a k-level atom a as

∂a := {u ∈ ∂hΓ | fu = fak on Bk}.

We know that they are closed subsets of ∂hΓ and since πh is a closed map (it

is continuous from a compact space to a metrizable space) we get that ∂aπh is

closed in ∂Γ.

In this context, the diameter of ∂aπh with respect to the visual metric is bounded

above by β−k with a ∈ Ak.

We return for a moment to our (otherwise implicit) group action of G on Γ.

In particular, we use it to induce a notion of morphisms between subtrees of

A(Γ).

Definition 1.49. Let G be a group that acts geometrically on a hyperbolic graph

Γ with a distinguished point x0. Let an ∈ An and am ∈ Am. We say that an

element g ∈ G induces a morphism between an and am if

– ang = am,

– (an ∩Bn+k)g = am ∩Bm+k for all k ≥ 0,

– for each k > 0 and each atom ãn+k ∈ An+k contained in an, there exists an

atom ãm+k ∈ An+k contained in am such that ãn+kg = ãm+k.

The second condition can be restated in these terms

(L) dΓ(x0, xg)−m = dΓ(x0, x)− n ∀x ∈ an.

The third condition fits into the context of subtrees of A(Γ). In fact, we can

see the atoms that are contained in a fixed one a as a subtree A(Γ)a rooted in
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a and the condition admits the existence of an isomorphism between two such

subtrees given by g. With this in mind, we give the following

Definition 1.50. Let G be a group that acts geometrically on a hyperbolic graph

Γ with a distinguished point x0. Two atoms of Γ are of the same type if there

exists a morphism (given by an element of G) between them.

As for cones, the following important property holds (see [BBM21] for a

complete proof and Chapter 4 for further details).

Theorem 1.51. Let G be a group that acts geometrically on a hyperbolic graph Γ with

a distinguished point x0. Then the number of different types of atoms in A(Γ) is finite.

Using these considerations, we get a tool, useful in the next chapter, about

atoms and their balls:

Hooking Lemma 1.52. There exists a constant λa that bounds the distances between

atoms and their balls.

The symbol λa will be used from now on to denote the hooking constant.

Proof. Condition (L) says that the distance between an atom and its ball depends

only on the type of the atom. Since the graph is hyperbolic we know it has a

finite number of types (by Theorem 1.51). These two facts combined together

allow us to consider the maximum over all the types of the distances and to get

the constant.

Open Question. Is there a way to express λa with respect to δ?

The last collection of vertices we define are tips.
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Definition 1.53. We call the tip of an atom a ∈ Ak the collection T (a) := {x ∈ a |

dΓ(Bk, x) = dΓ(Bk, a)}, or, equivalently, the first non-empty intersection a∩Sk+i

with i ≥ 0.

Proposition 1.54. Let a be an atom of Γ. Then

diamT (a) := max
x,y∈T (a)

dΓ(x, y)

is bounded by 2λa.

Proof. It suffices to construct a triangle made by geodesics with two elements

of T (a) and a nearest neighbor of a as vertices, namely if x̂, ŷ ∈ T (a) and x ∈

N(a,Bk) then dΓ(x̂, ŷ) ≤ dΓ(x̂, x) + dΓ(x, ŷ). The claim follows by the Hooking

Lemma.

To understand how small a tip could be, we give the following

Lemma 1.55. Let ak ∈ Ak. Suppose Bk ∩ ak ̸= ∅, then Bk ∩ ak consists of one point.

Which means that T (ak) = N(ak, Bk) consists of one point.

Proof. The fact that Bk ∩ ak = T (ak) = N(ak, Bk) is straightforward.

It suffices to show that T (ak) is a point: given x, y ∈ T (ak), and hence to Sk, by

definition of atom we get

dΓ(x, y)− k = dΓ(x, x)− k = −k

that is dΓ(x, y) = 0 and the claim holds.

Example 1.56. We consider again the uniform tiling of the hyperbolic plane made

of squares such that each vertex has degree 5. Recall that we have ten 1-level

atoms. They divide equally into two different types. One type has the property
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Figure 9: In blue the ball of radius 1. Each element of the sphere coincides with
the tip of a 1-level atom.

described above. Indeed, each element of the sphere S1 is the tip of one of the

five atoms. See Figure 9.

Remark 1.57. It is worth pointing out that two different atoms a and b such that b

is a child of a can have the same tip. This could happen in one of the following

situations

– the atom b is the only child of a and it is isometric to it. For an example see

narrow type atoms in Section 3.3.

– the atom a splits in different children, but one of them has the same tip.

See type C and D atoms in Example 4.8.

A first application of tips is that the two projections πh and ∂Γ ↠ ET(Γ) are

compatible.

Remark 1.58. We induce the map ι̂ : ∂hΓ ↠ ET(Γ) from the family of surjective

maps ιk from Ak to the collection of connected components of Γ−Bk−1 defined

in the following way: ak 7→ Ck if ak ⊆ Ck. Note that any k-level atom a is fully

contained in a connected component of Γ−Bk−1 since, if x, y ∈ a, in order to get
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a path between the two of them, one can consider a geodesic going from x to a

nearest neighbor x and then a geodesic from x to y. Now, taking a horofunction

u = (uk)
∞
k=1 its image is Cu = (Cuk )∞k=1 with uk ⊆ Cuk and uk+1 ⊆ uk ⊆ Cuk , so

Cuk+1 ⊆ Cuk . Moreover, we claim that the diagram below commutes.

∂hΓ

∂Γ ET(Γ)

πh
ι̂

To prove this, let [γu] be a point in the Gromov boundary such that uπh = [γu].

Let Cγ ∈ E(Γ) such that end(γ) = Cγ and Cγ corresponds to some sequence

(Ck)∞k=1 ∈ ET(Γ). We want Cγ ≃ Cu.

Now Cn is such that γ([0,∞[) ⊆ Cn and there exists a sequence {x̂k}∞k=1 in Γ such

that x̂k ∈ T (uk), hence going to infinity in the sense of Gromov, that converges

to u ∈ ∂hΓ such that (x̂k | γ(k)) → ∞. So x̂k and γ(k) need to be in the same

connected component. Otherwise

dΓ(x̂k, x0) + dΓ(γ(k), x0)− dΓ(x̂k, γ(k)) ≤ λa + 2k ∀k > k.

Indeed, dΓ(x̂k, x0) ≤ k + λa for the Hooking Lemma, dΓ(γ(k), x0) = k since γ is

a geodesic ray and dΓ(x̂k, γ(k)) ≥ 2k − 2k where k ∈ N is such that Ck is the first

component not containing x̂k. It follows that Cn = Cun and hence the claim.

The conclusion of this section is devoted to describing a different Gromov

product for atoms. Definition (Π) of product that we gave can be applied to

A as a tree, we will denote it with (· | ·)A. It will be useful in the next chap-

ters and it has an associated visual metric ⋎A. What we want to do here is to

define a Gromov product between atoms of the same level and one between ho-

rofunctions (recall Theorem 1.39 and the atom-coding) that keeps track of what
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is happening in the underlying hyperbolic graph. Namely, we put

(ak | bk)k := max
x̂∈T (ak),ŷ∈T (bk)

(x̂ | ŷ) and (u | v) := lim inf
k

(uk | vk)k

We will always drop the k in the notation, as it will be clear from the context.

We need to check that this notion somehow agrees with the one regarding

points of the Gromov boundary.

Lemma 1.59. Let u and v be two horofunctions of Γ. Then

(uπh | vπh) ≤ (u | v) ≤ (uπh | vπh) + 2δ̃.

Proof. By Definition 1.28, we have (uπh | vπh) ≤ (u | v). For the second inequal-

ity, we start by saying that

(u | v) ≤ max
xk∈T (uk),yk∈T (vk)

lim inf
k

(xk|yk),

here we mean that the maximum has to be taken over all the possible pairs of

sequences of vertices such that xk ∈ T (uk) and yk ∈ T (vk).

Now

max
xk∈T (uk),yk∈T (vk)

lim inf
k

(xk|yk) ≤ sup
{xk}∈uπh,{yk}∈vπh

lim inf
k

(xk|yk),

hence combining the two inequalities and using Remark 1.29(c), we get (u | v) ≤

(uπh | vπh) + 2δ̃.

1.6 Languages and Automata

This section is devoted to recalling some basic definitions in Language Theory,

to fix some notations, but most importantly to discuss the connection between
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(self-similar) trees and languages and to formalize what it means for a compact

metrizable space to be encoded via a Cantor set.

We start by setting Σ as our finite alphabet, that is a finite collection of sym-

bols σ ∈ Σ. Since we need more alphabets at the same time, we will use also

Σ̃, Ξ and Ξ̃. From an alphabet Σ, we can construct two different objects: the

collection of all finite strings Σ∗ and the collection of all infinite strings Σω. A

language is a subcollection of Σ∗ or of Σω. We will usually deal with infinite

strings, the reason is that Σω is a Cantor set (see Example 1.27) and hence it pro-

vides the geometric feature we need. Even if it is clear intuitively, we will make

it more formal later.

Since a languange can be any subcollection, we need tools to represent and to

classify it in a reasonable and constructible way. These tools are called machines.

Among all the machines one can find in the literature, one of the most famous

is the synchronous deterministic finite state automaton. Before giving the formal

definition, we recall that a partial function is a binary relation between two sets

that associates to every element of the first set at most one element of the second.

Definition 1.60. A synchronous deterministic finite state automaton is a

quadruple (Σ,Θ,→, θ0) with Θ a finite set called the set of states, θ0 ∈ Θ called

initial state and a partial function → between Θ × Σ and Θ which is called the

transition function.

The informal idea is that one moves through the states and processes an

element of Σ every time a movement occurs and the element determines the

38



direction of the movement. We use the word “process”, since it can be seen as

reading a (finite or infinite) string in input or as producing a string while mov-

ing on the machine.

The machine is referred to as finite state for obvious reasons, while it is deter-

ministic since → is an actual (partial) function, which means that there cannot

be two different transitions starting from a state and processing the same ele-

ment of the alphabet, and it is synchronous because it processes one element

of Σ at each step. We will drop all the adjectives and we will simply call it an

automaton, this because it will be the only machine of this type.

We say that an automaton recognizes a language when a string belongs to the

language if and only if it is processed by the automaton. Note that the fact the

function is partial plays a key role here. In general, at each given state of an

automaton, we may not have transition functions for all possible elements of Σ

(i.e. there might be letters that are not sent to anything).

Definition 1.61. If a language of infinite strings is recognized by an automaton,

it is called a rational subset of Σω.

We also want machines that turn languages into other languages. Again, we

will consider just one of them:

Definition 1.62. An asynchronous deterministic finite state transducer is a

quintuple (Σ,Ξ ∪ {ε},Θ,→, out, θ0) with Θ a finite set called the set of states,

θ0 ∈ Θ called initial state, a transition function defined as (θ1, σ) → θ2 with

θ1, θ2 ∈ Θ and σ ∈ Σ and the output function defined as (θ, σ)out = ξ1 . . . ξn

with θ ∈ Θ, σ ∈ Σ and ξi ∈ Ξ or ξi = ε the empty string.
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Figure 10: Strings of length 3 based on the alphabet Σ = {σ1, σ2, σ3} in their
geometric representation.

In this case, the interpretation is that we have an input alphabet and an out-

put one, we read in input a string and we determine a string in output by using

the machine.

As before, we will drop all the adjectives and we will simply call it a transducer.

A first step towards geometry is the following: we can see the set of finite

strings Σ∗ as a rooted regular tree where the number of children of each vertex

is the cardinality of Σ and the root is the empty string ε. Two strings share an

edge if and only if the difference of their lengths is 1 and one is the prefix of the

other (see Figure 10).

It follows immediately that the boundary of the tree is Σω and hence the

latter is a Cantor set. We now want to define maps between Cantor sets by

using transducers:

Definition 1.63. A map ϕ between two Cantor sets Σω and Ξω is called rational

if there exists a transducer such that wϕ = (θ0, w)out for all w ∈ Σω.

One can show that these maps form a category. Moreover, they are continu-

ous with respect to the product topology and if they are bijective, then they are

homeomorphisms (see [GNS00, Subsection 2.3]).
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Figure 11: Two examples of rooted subtrees.

Definition 1.64. A bijective rational map is called a rational homeomorphism.

It is also true that the inverse of a rational homeomorphism is a rational

homeomorphism. So, fixing an alphabet Σ, we can define the group of ratio-

nal homeomorphisms R over Σ. Since two different alphabets (with at least two

elements) give two isomorphic groups, we refer to one of them simply as R,

without mentioning the underlying alphabet.

For a generalization of this setting to non-finite state machines and to better

understand the topic see [GNS00]. Here, we just mention the following result

as it will be useful later.

Proposition 1.65 ([GNS00], Proposition 2.11). A set L ⊆ Ξω is rational if and only

if it is the image of a rational map ϕ : Ξ
ω → Ξω with Ξ a finite alphabet.

A language is any subcollection of Σω, but we are only interested in the ra-

tional ones. And we have a geometric interpretation of Σ∗. We want to consider

rooted trees that are not necessarily regular, but still have some nice properties.

Given a rooted tree T and a vertex x, we can consider the rooted subtree Tx such

that the root is x (see Figure 11).

Definition 1.66. A self-similar structure on a rooted tree T is a partition of
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the vertices into finitely many classes together with a finite set of rooted tree

isomorphisms between Tx and Ty for each pair of vertices x and y in the same

class and where each isomorphism maps vertices of Tx to vertices of Ty in the

same class.

Moreover, we want the isomorphisms to satisfy some natural conditions. They

are closed under taking the inverse, composition and restriction. Namely, if

φ : Tx → Ty and ψ : Ty → Tz belong to the self-similar structure, then φ−1, φψ

and φ|Tx′
: Tx′ → Tx′φ belong to the structure too.

A tree T with a self-similar structure is called self-similar. Note that the equiva-

lence classes are originally called types, though we do not use that terminology,

to avoid confusion.

If we set Σ to be the set of classes of a self-similar tree T , it can be seen,

but we will not give further details here, that there is a projection of the Gromov

boundary ∂T onto a subset L of Σω. Furthermore, one can see that L is a rational

subset and, in fact, that any rational subset can be characterized geometrically

in this way (see e.g. [BBM21, Subsection 2.1]). In order to make the projection

bijective, which means that ∂T is a subset of Σω, we need to rely on a different

coding that comes from rigid structures. These are again self-similar structures,

but with some further hypothesis, and we will see that we can get a rigid one

starting from a self-similar structure which is not rigid a priori. All the details

are provided in Chapter 4.

An important example of self-similar tree associated to a hyperbolic graph

is the tree of atoms. In fact, it was introduced to prove the following
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Theorem 1.67. Let G be a hyperbolic group. Then every element of G acts on A(G) as

a rational homeomorphism.

Again, see ([BBM21]) for a full treatment of the topic.

The last connection between the geometric and the symbolic points of view

is due to this well-known property of Cantor sets:

Proposition 1.68 ([Wil70], Theorem 30.7). Let X be a compact metrizable space.

Then there exists a continuous surjective map from a Cantor set onto X .

Exploiting the discussions we made in this section, every compact metriz-

able space can be encoded by a collection of infinite strings Σω (it could be a

proper subcollection of the whole space as far as the map is still surjective).

Namely, every element is represented by a (non-necessarily unique) infinite

string. Such a string is called a coding.

Example 1.69. Set Σ = {0, 1, . . . , 9} and let [0, 1] be the unit interval. Then each

element of [0, 1] has at most 2 codings due to the decimal expansion: exactly one

if the number is irrational and exactly two if the number is rational. Namely,

σ1σ2 . . . σn0 and σ1σ2 . . . (σn − 1)9 where σn − 1 is the difference mod 10 and σ =

σσ . . . σ . . ..

Remark 1.70. Despite the presence of a tree and choice of using the same word,

to avoid ambiguity, it is worth mentioning that atom-coding is not coding in

this sense.
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CHAPTER 2

GEODESIC BEHAVIOR OF ATOM-CODINGS

In this chapter we will present some properties of atom-codings that are simi-

lar to the ones of geodesic rays. In the first section, we will deal with a coarse

version of the so called fellow traveler property using only elementary defini-

tions and a result that comes from an analytic point of view. The second section

exploits the notion of tips, which can be seen as a coarse version of the spheres

in the following sense: considering the set of tips for a fixed level k, one get a

subset of a bounded annulus. Tips lead to the exponential divergence result.

Despite the differences, this way of thinking shares many points with [CP93],

in particular the proof of finiteness of fibers of πh uses the same technique pro-

vided there. The last section contains the stronger results and is based on the

following strategy: first we will associate quasi-geodesic rays to atom-codings,

then finite geodesics and in the end also geodesic rays. This approach allows us

to put together and generalize the previous sections and gives a first approxi-

mation of the Gromov boundary via atoms.

2.1 Gluing Relation via Atoms

Now that we developed the two points of view for the horofunction boundary

of a hyperbolic graph Γ and some tools regarding the tree of atoms, we want

to find a connection between them to understand the gluing relation given by

the quotient map πh : ∂hΓ ↠ ∂Γ. More precisely, the goal is a way to determine

when two horofunctions are glued by looking at the tree of atoms.

In order to do that, we introduce the following
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Definition 2.1. Let Γ be a hyperbolic graph and let A(Γ) be its tree of atoms.

For all k, we choose dk a semi-metric defined on the k-level of A(Γ). We say

that dk represents the gluing if there exists a constant C such that given two

horofunctions u = (uk)
∞
k=1 and v = (vk)

∞
k=1, then

uπh = vπh ⇔ ∀k ≥ 0 dk(uk, vk) ≤ C.

In this way, we see that, under such a family of semi-metrics, the horofunctions

which glue have a similar, or maybe we should say generalized, behavior of two

geodesics that glue on ∂Γ.

We are going to introduce three semi-metrics and to prove that they repre-

sent the gluing.

The first one we consider comes from a natural way to think about distances

between atoms. Let a and b two k-level atoms, then

dΓ
k(a, b) := min

x∈a,y∈b
dΓ(x, y).

Since dΓ
k is defined between atoms of the same level k, we will always refer to

dΓ
k simply as dΓ when k will be already specified by a and b. Whenever we will

deal with atoms of different levels and hence with dΓ
k and dΓ

k+1, we will make

it clear. Moreover, in statements and discussions we may consider the collection

of semi-metrics {dΓ
k}∞

k=1
and we will simply say the semi-metric dΓ (note that dΓ

defined on Γ is instead a metric).

Since we are interested in horofunctions, given u = (uk)
∞
k=1 and v = (vk)

∞
k=1,

we will consider {dΓ(uk, vk)}
∞

k=1
. The first thing we note is that the sequence

of distances is non-decreasing. Indeed, we take xk+1 ∈ uk+1 and yk+1 ∈ vk+1

such that dΓ(uk+1, vk+1) = dΓ(xk+1, yk+1). But xk+1 ∈ uk and yk+1 ∈ vk, hence by
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definition

dΓ(uk, vk) ≤ dΓ(xk+1, yk+1).

Despite the fact that we are looking to ∂hΓ from a geometric viewpoint, we can

adopt a more analytic distance

dh(u, v) := ∥fu − fv∥∞.

In particular, we have the following result which is clearly related to our goal

and will be useful for our proof.

Proposition 2.2. Let Γ be a hyperbolic graph. Let u and v be two horofunctions of Γ

and let fu ∈ u and fv ∈ v be two representatives such that fu(x0) = fv(x0) = 0. Then

u and v are glued on ∂Γ if and only if there exists λh (independent from u and v) such

that

dh(u, v) := ∥fu − fv∥∞ < λh.

We will always denote this constant with λh.

Proof. See [WW05, Proposition 4.4]

Note that if u = (uk)
∞
k=1 is a horofunction and fu is the representative such that

fu(x0) = 0. When we consider its restriction to Bk, we get

fuk := dΓ(−, uk)− dΓ(x0, uk)

and dh(uk, vk) = ∥fuk − fvk∥∞.

With the following results we link the geometric distance with the analytic

one.

Lemma 2.3. For all k ∈ N and for all pairs of k-level atoms uk and vk we have

1

2
dh(uk, vk) ≤ dΓ(uk, vk) ≤ dh(uk, vk) + 2λa.
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Proof. The first part follows by two triangle inequalities. Indeed, for all p ∈ Γ

we have

| dΓ(uk, p)− dΓ(vk, p)| ≤ dΓ(uk, vk),

and since we also have

| dΓ(uk, p)− dΓ(uk, x0)− dΓ(vk, p) + dΓ(vk, x0)| ≤

| dΓ(uk, p)− dΓ(vk, p)|+ | dΓ(vk, x0)− dΓ(uk, x0)|,

with p ∈ Bk, by applying the first inequality with two times, we get dh(uk, vk) ≤

2 dΓ(uk, vk).

For the second part, we start by taking x ∈ uk and x ∈ Bk (resp. y ∈ vk and

y ∈ Bk) such that

dΓ(Bk, uk) = dΓ(x, x) (resp. dΓ(Bk, vk) = dΓ(y, y)).

By definition of fvk and y we know that fvk(y) = −k. This implies that fuk(y) +

k ≤ dh(uk, vk). Equivalently, we have dΓ(y, x)− dΓ(x0, x) + k ≤ dh(uk, vk) and by

using the definition of x, we get

dΓ(y, x)− [dΓ(x0, x) + dΓ(x, x)] + k =

dΓ(y, x)− [k + dΓ(x, x)] + k ≤ dh(uk, vk).

Which means that dΓ(y, x) ≤ dΓ(x, x) + dh(uk, vk).

Now

dΓ(uk, vk) ≤ dΓ(x, y) ≤ dΓ(x, y) + dΓ(y, y),

by the discussion in the previous paragraph we get

dΓ(uk, vk) ≤ dΓ(x, x) + dh(uk, vk) + dΓ(y, y)

and by the Hooking Lemma we have the thesis.
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By combining the previous facts, we get the main result about dΓ.

Theorem 2.4. Let Γ be a hyperbolic graph and let πh : ∂hΓ ↠ ∂Γ be the projection

of the horofunction boundary onto the Gromov boundary. Let u = (uk)
∞
k=1 and v =

(vk)
∞
k=1 be two horofunctions expressed via their infinite sequences of infinite atoms.

The following are equivalent.

(A) The horofunctions are glued on ∂Γ i.e. uπh = z∞ = vπh for some z∞ ∈ ∂Γ.

(B) There exists a constantC and two sequences of vertices {xk}∞k=1 and {yk}∞k=1 such

that xk ∈ uk and yk ∈ vk, and dΓ(xk, yk) ≤ C for all k ≥ 1.

From now on λ will be the gluing constant, that is the smallest constant

such that the claim holds. Note that, since dΓ(xk, yk) is a natural number, λ is

well-defined and is a natural number.

Proof. Suppose that (B) holds. The fact that xk ∈ uk for all k ≥ 1 implies that

{xk}∞k=1 converges to the horofunction u. It follows that {xk}∞k=1 goes to infinity

in the sense of Gromov. Analogously we have that {yk}∞k=1 converges to v and

goes to infinity in the sense of Gromov. A fortiori, the distances dΓ(x0, xk) and

dΓ(x0, yk) go to infinity as k → ∞. By hypothesis

(xk | yk) ≥
1

2
[dΓ(xk, x0) + dΓ(yk, x0)− C]

and (A) follows.

All that is left is to combine the previous results to get (B) starting from (A).

By Lemma 2.3 we know that dΓ(uk, vk) ≤ dh(uk, vk)+ 2λa and by Proposition 2.2

we have that dh(u, v) < λh, hence dh(uk, vk) < λh. To conclude, we have that

dΓ(uk, vk) < λh + 2λa for all k ≥ 1, so there exist xk ∈ uk and yk ∈ vk such that

dΓ(xk, yk) < C with C = λh + 2λa.
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A straightforward consequence is what we were looking for.

Corollary 2.5. The semi-metric dΓ represents the gluing.

The second distance we introduce is aimed to illustrate the fact that atoms

which glue are near in an asymptotic way i.e. the distance occurs to be less than

the gluing constant λ in an infinite number of points which lie in the atoms.

Definition 2.6. We define

dF
k(a, b) := sup

A⊂a,B⊂b
min
x∈a−A
y∈b−B

dΓ(x, y)

with a and b atoms of the k-level and the A and B finite sets.

Again, we will write dF when k is clear or to mean the collection of {dF
k}∞

k=1
.

Note that if dF(a, b) is finite, then the supremum is actually a maximum.

The aim, the definition and the discussion that follow show how we can

think dF as a limit of dΓ.

A particular benefit of this distance is that, for a fixed level, it can be calcu-

lated by looking at the level below. In fact, dF(a, b) is the minimum over all the

children of a and b of the distances between such children.

We start a comparison with dΓ by stating some properties.

(1) The distance dF is a semi-metric.

(2) If ak+1 ⊆ ak and bk+1 ⊆ bk, then dF(ak, bk) ≤ dF(ak+1, bk+1). This follows im-

mediately from the definition (as for dΓ) or using the discussion we made

above.

(3) The distance dΓ is less than or equal to the distance dF. Indeed, if we put

A = B = ∅ in the definition of dF we recover dΓ.
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In general the converse of Property (3) is not true: it can happen that two

atoms are dΓ-adjacent but not dF-adjacent. But something more specific can be

stated.

Lemma 2.7. Let u = (uk)
∞
k=1 and v = (vk)

∞
k=1 two horofunctions. If dΓ(uk, vk) ≤ C

for all k ≥ 1, then dF(uk, vk) ≤ C for all k ≥ 1.

Proof. We fix k. We know that for all n ≥ k there exists a k̂ ≥ k such that

uk̂ ⊆ uk −Bn and vk̂ ⊆ vk −Bn. So that

min
x∈uk−Bn
y∈vk−Bn

dΓ(x, y) ≤ min
x∈u

k̂
y∈v

k̂

dΓ(x, y) = dΓ(uk̂, vk̂) ≤ C.

It follows that sup
n≥k

min
x∈uk−Bn
y∈vk−Bn

dΓ(x, y) ≤ C.

Taking a finite subset A of uk and a finite subset B of vk, there exists an n

such that A ∪ B ⊆ Bn. Hence uk − A ⊇ uk − Bn and vk − B ⊇ vk − Bn, that

implies

min
x∈uk−A
y∈vk−B

dΓ(x, y) ≤ min
x∈uk−Bn
y∈vk−Bn

dΓ(x, y).

Finally, we get dF(uk, vk) ≤ sup
n≥k

min
x∈uk−Bn
y∈vk−Bn

dΓ(x, y) and the claim follows.

As an immediate consequence of Theorem 2.4 and Lemma 2.7 we have

Corollary 2.8. The semi-metric dF represents the gluing.

Remark 2.9.

– In fact, we have proven that if there exists a level k such that dF(uk, vk) ≤ C,

then there exist two horofunctions u and v with uk and vk respectively in

their sequences such that uπh = vπh.

– If uπh ̸= vπh, then dΓ(uk, vk) → ∞. So there exists an index k such that

dF(uk, vk) is finite and dF(uk+1, vk+1) = ∞.

50



We are interested in a distance which can represent the gluing, but also that

increases exponentially when there is no gluing. It can easily be seen that dΓ

is too slow. Indeed, if we suppose that a and b are two k-level atoms, then

dΓ
k(a, b) ≤ dΓ(x, x0) + dΓ(x0, y) ≤ 2k + 2λa for some x ∈ a and y ∈ b. On the

other hand, dF is too fast, as stated in the second point of the previous Remark.

With this purpose in mind, we give the following

Definition 2.10. Let k be an integer greater or equal to 1. We consider Γ− Bk−1

as the induced subgraph with respect to the subset of vertices Γ−Bk−1. We can

put a metric on Γ− Bk−1 which is the standard metric on the graph and we call

it dB
k.

The notation is subject to the same convention used before with dΓ and dF.

Please note that dB
k is finite if and only if Γ − Bk−1 is connected and that, ac-

cording to Proposition 1.38, it holds Ak ⊆ Γ−Bk−1.

In the same way we defined the semi-metric dΓ, we put

dB(a, b) = min
x∈a,y∈b

dB(x, y)

with a, b ∈ Ak.

We note that dB is an intrinsic metric with respect to dΓ, and hence we know that

dΓ ≤ dB (see Remark 1.7), that is dΓ(a, b) ≤ dB(a, b) for all a, b ∈ Ak and for all

k. It follows that dB is faster than dΓ as a semi-metric (when defined on atoms).

We are going to prove a technical lemma, which will be useful to prove that dB

represents the gluing.

Lemma 2.11. Let a, b ∈ Ak such that dF(a, b) ≤ C. Then there exists n ≥ k such

that there exist x̃ ∈ a − Bn and ỹ ∈ b − Bn with the following properties: dΓ(x̃, ỹ) =

min
x∈a−Bn
y∈b−Bn

dΓ(x, y) and there exists a geodesic [x̃, ỹ]Γ (with respect to dΓ) fully contained in
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Γ−Bk−1.

Proof. By hypothesis, we know that for all n ≥ k it holds we have

min
x∈a−Bn
y∈b−Bn

dΓ(x, y) ≤ C. We take n ≥ C

2
+ k − 1 and x̃, ỹ ∈ Γ such that

l := dΓ(x̃, ỹ) = min
x∈a−Bn
y∈b−Bn

dΓ(x, y).

Suppose that there exists [x̃, ỹ]Γ = {zi}
l

i=0
and there exists a j ∈ {0, . . . , l} such

that zj ∈ Bk−1. Now

C ≥ dΓ(x̃, ỹ) = dΓ(x̃, zj) + dΓ(zj, ỹ) > C

and the claim follows.

Combining Lemma 2.11 with Remark 1.7, in the case that dF(a, b) ≤ C, we

get

dB(a, b) ≤ dB(x̃, ỹ) = dΓ(x̃, ỹ) ≤ dF(a, b).

Note that dF(a, b) = ∞ the inequality is true. So we can state the following

Proposition 2.12. The semi-metric dB is slower than dF, namely dB ≤ dF, which

means dB(a, b) ≤ dF(a, b) for all a, b ∈ Ak and for all k.

If we put together the previous Proposition and the discussion we made

about intrinsic metrics, we get the following

Corollary 2.13. The semi-metric dB represents the gluing.

2.2 Distances on tips and consequences

In this section we will combine distances on atoms and tips to answer the ques-

tion on exponential behaviors of atom-codings that arose at the end of the previ-
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ous section, more precisely we will find a distance with the following property:

Definition 2.14. A distance d on atom-codings has the exponential property if

taking two horofunctions u = (uk)
∞
k=1 and v = (vk)

∞
k=1 one of the following holds

(1) uπh = vπh and d(uk, vk) is bounded above by some constant (depending

only on Γ) for all k (that is d represents the gluing);

(2) uπh ̸= vπh and d(uk, vk) ≥ E1e
E2(k−j) for some constant E1 and E2 and for

all k ≥ j with j sufficiently large (we say that d diverges exponentially).

Note that this definition resembles the property of geodesics in hyperbolic

spaces (see Proposition 1.23) and that it will be discussed again later on using

more powerful tools to relate it with the Gromov product.

We will also prove that the Hausdorff distance can represent the gluing and we

will bound the fibers of πh.

We start by introducing a useful notation. Given a semi-metric d on some level

of atoms Ak, we will denote by

T* d(a, b) := d(T (a), T (b)) with a, b ∈ Ak.

where we recall that T (a) and T (b) denote the tips of a and b.

Remark 2.15. We point out that we already know something important about

T* dΓ. Indeed, if we look at the proof of Theorem 2.4, we see that we actually

prove that (A) implies (B) for T* dΓ, while for the other direction we can easily

exploit the same technique in the proof to get the result.

So we have the following

Corollary 2.16. The semi-metric T* dΓ represents the gluing.

In fact, we can prove a stronger result about the relation between dΓ and
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T* dΓ.

Proposition 2.17. Let a, b ∈ Ak. Then

dΓ(a, b) ≤ T* dΓ(a, b) ≤ 2 dΓ(a, b) + 4δ + 2λa.

Proof. We only need to prove the second inequality. Let x ∈ a and y ∈ b such

that dΓ(a, b) = dΓ(x, y). By Proposition 1.47, we have that x ∈ C(x) for some

x ∈ N(a,Bk). The same is true for y and y ∈ N(b, Bk). Now we apply Proposi-

tion 1.22 to the geodesics [x0, x] and [x0, y] respectively passing through the two

nearest neighbors at the time k, so that dΓ(x, y) ≤ 2(dΓ(x, y) + 2δ). To finish the

proof, we use the the Hooking Lemma together with a triangle inequality

dΓ(x̂, ŷ) ≤ dΓ(x̂, x) + dΓ(x, y) + dΓ(y, ŷ) ≤ 2 dΓ(x, y) + 4δ + 2λa,

which leads to dΓ(x̂, ŷ) ≤ 2 dΓ(x, y) + 4δ + 2λa for any two vertices x̂ ∈ T (a) and

ŷ ∈ T (b).

With a bit of work, we can say something about T* dB too.

Proposition 2.18. The semi-metric T* dB represents the gluing.

Proof. Since dΓ ≤ dB, it follows that T* dΓ ≤ T* dB, or more precisely

T* dΓ(a, b) ≤ T* dB(a, b) for all a, b ∈ Ak and for all k. It remains to prove that: if

u = (uk)
∞
k=1 and v = (vk)

∞
k=1 are two horofunctions and there exists C1 such that

T* dΓ(uk, vk) ≤ C1 for all k ≥ 1, then there exists C2 such that T* dB(uk, vk) ≤ C2

for all k ≥ 1.

Let x̂ ∈ T (uk) and ŷ ∈ T (vk). We know that if uk̃ ⊆ uk and vk̃ ⊆ vk are such
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that uk̃ ∪ vk̃ ⊆ Γ − BC1
2
+k−1

, then T* dB
k(uk̃, vk̃) = T* dΓ(uk̃, vk̃) (this is the same

argument from Lemma 2.11).

We take uk̃ and vk̃ to be the first occurrences of atoms contained in Γ− BC1
2
+k−1

(i.e. the one with minimal distance from x0 contained in uk and vk respectively).

We set x̃ ∈ T (uk̃) and ỹ ∈ T (vk̃) such that T* dΓ(uk̃, vk̃) = dΓ(x̃, ỹ).

Note that by the Hooking Lemma we know that T (uk̃)∪T (vk̃) ⊆ Γ−BC1
2
+k−1+λa

.

Since we want to study dB(x̂, ŷ), we start by applying a triangle inequality

and the main hyphotesis:

dB(x̂, ŷ) ≤ dB
k(x̂, x̃) + dB

k(x̃, ỹ) + dB
k(ỹ, ŷ) ≤ dB

k(x̂, x̃) + C1 + dB
k(ỹ, ŷ).

Now x̃ ∈
(
Γ−BC1

2
+k−1+λa

)
∩ C(p) for every p ∈ N(uk, Bk). We have that

there exists [p, x̃]Γ ⊆ Γ − Bk−1 and its length is less or equal than C1

2
− 1 + λa.

Exploiting the Hooking Lemma again, we get

dB
k(x̂, x̃) ≤ dB

k(x, p) + dB
k(p, x̃) = dΓ(x, p) + dΓ(p, x̃) ≤

C1

2
− 1 + 2λa.

In an analogous way, we get dB
k(ŷ, ỹ) ≤ C1

2
− 1 + 2λa; and hence the claim.

It remains to prove the following

Proposition 2.19. The semi-metric T* dB diverges exponentially.

Proof. Let u, v ∈ ∂hΓ such that uπh ̸= vπh. Since dΓ(uk, vk) is unbounded as k

tends to infinity, we can choose j such that dΓ(uj, vj) is arbitrarily large. In fact,

taken x ∈ N(uj, Bj) and y ∈ N(vj, Bj), we know by the Hooking Lemma that

dΓ(x, y) ≥ dΓ(uj, vj)− 2λa
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hence we can take dΓ(x, y) arbitrarily large.

Now for all k ≥ j we have that xk ∈ uk belongs to C(x), and the same holds for

yk ∈ vk and C(y). We construct a pair of geodesics [x0, xk] and [x0, yk] passing

through x and y respectively and by Proposition 1.23, we know that their fellow

travelers diverge exponentially. We consider x to be nearest neighbor of xk such

that it belongs to [x0, xk] ∩ Sk and the same for y ∈ [x0, yk] ∩ Sk, so it holds that

dB
k(x, y) ≥ E1e

E2(k−j)

for some constants E1 and E2. To conclude, we take xk ∈ T (uk) and yk ∈ T (vk)

(with dB
k(xk, yk) = T* dB

k(uk, vk)) and we have

T* dB
k(uk, vk) = dB

k(xk, yk) ≥ dB
k(x, y)− dB

k(x, xk)− dB
k(y, yk)

≥ E1e
E2(k−j) − dB

k(x, xk)− dB
k(y, yk).

By construction, the geodesic [x, xk] ⊆ Γ−Bk−1 and hence dΓ(x, xk) = dB
k(x, xk).

Analogously, we get dΓ(y, yk) = dB
k(y, yk).

Again, by virtue of the Hooking Lemma combined with the previous inequality,

we finally obtain

T* dB
k(uk, vk) ≥ E1e

E2(k−j) − 2λa.

Corollary 2.20. The semi-metric T* dB has the exponential property.

There are two other important consequences that we want to briefly discuss,

that comes from the tips approach. The first one involves a well-known metric.

Proposition 2.21. The Hausdorff metric T* dH represents the gluing.
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Proof. Let a, b ∈ Ak. Since T* dΓ is the minimum over all pairs of elements (x̂, ŷ)

that belong to the tips T (a) and T (b) respectively, it is straightforward that

T* dΓ(a, b) ≤ min
ŷ∈T (b)

dΓ(x̂, ŷ) ≤ max
x̂∈T (a)

min
ŷ∈T (b)

dΓ(x̂, ŷ)

and that the same holds in the other way (with a and b switched). So

T* dΓ(a, b) ≤ T* dH(a, b).

For the other direction, we need to use Proposition 1.54, that leads to

max
x̂∈T (a)

min
ŷ∈T (b)

dΓ(x̂, ŷ) ≤ T* dΓ(a, b) + 2λa

and hence T* dH(a, b) ≤ T* dΓ(a, b) + 2λa as before.

The last consequence is about the fibers of πh. We have already discussed

some properties, in particular Theorem 2.4 tells us when two elements belong

to the same fiber. But now, we can prove the following

Theorem 2.22. The map πh : ∂hΓ ↠ ∂Γ is finite-to-one. Moreover, the number of

elements in a fiber is bounded by a constant that depends only on λa and δ.

Proof. We recall our assumption on the graph Γ: it is locally finite and hence

the balls are finite. We consider the atom-coding of a horofunction u = (uk)
∞
k=1

and we know that the tip T (uk) has a finite diameter due to Proposition 1.54 for

all k. In particular, it is bounded above by 2λa. We choose an element in T (uk)

and we consider a ball B of radius 2(λa + 2δ) + 2λa centered at that element.

By Theorem 2.4 and Remark 2.15, we get that two horofunctions map onto the

same point in the Gromov boundary if the distance of their tips at each level is

less or equal than 2(λa+δ). So by definition of the ballB, the k-level tip of every

horofunction that is contained in the same fiber of u must intersect B. Since it

holds for all k and the constants do not depend on k, we have the claim.
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It is worth noting that this result can be achieved in a different way. In their

work [CP93, CP01], Coornaert and Papadopoulos use a different notion of ho-

rofunction (this defintion was provided by Gromov in [Gro87]).

Definition 2.23. Let Γ a hyperbolic graph and let x0 be a distinguished vertex

in Γ. A map f : |Γ| → R with f(x0) = 0 is called a CP -function if it satisfies the

following two conditions:

(1) There exists ϵ > 0 such that

f(lγ(t)) ≤ (1− t)f(lγ(0)) + tf(lγ(1)) + ϵ

with γ : [0, l] → |Γ| geodesic and l : [0, 1] → [0, l] that maps t ∈ [0, 1] to

lt ∈ [0, l];

(2) f(x) = t̃+ dΓ(x, f
−1(t̃)) for every x ∈ |Γ| and every t̃ ∈]−∞, f(x)].

They then managed to prove that the space of CP -functions that assume

only integer values on the vertices of Γ projects onto ∂Γ and the quotient map

is finite-to-one (see [CP01, Proposition 4.5]). So all we need to conclude that the

fibers are finite is the following

Proposition 2.24 ([Bel19]). Let Γ be a hyperbolic graph. Then a horofunction is a

CP -function.

Note that the converse is false. Since there are hyperbolic graphs such that

the two notions do not coincide (see [Bel19] for details).

Theorem 2.22 gives us a tool to bound the topological dimension of ∂Γ.

Theorem 2.25 (Hurewicz). Let X be a compact metrizable space that is a continuous

image of a Cantor set. If the fibers of the map are bounded above by an integer n > 0,
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then the topological dimension of X is less than n− 1.

See [Kur66, Chapter XIX].

Applications of this theorem are common in geometric group theory, see e.g.

the bound for limit sets of contracting self-similar groups in [Nek07, Proposi-

tion 5.7] and the bound for hyperbolic graphs in two different versions, namely

Proposition 3.7 and Proposition 4.2 followed by Corollary 5.2 in [CP93].

2.3 Using geodesics and geodesic rays

Our first step is to construct a quasi-geodesic ray for each atom-coding in a very

natural way. To start, we need to iterate the hooking lemma, that is

Proposition 2.26. Let uk ⊇ uk+1 two atoms respectively of level k and k + 1. Then

max
x∈T (uk)
y∈T (uk+1)

dΓ(x, y) ≤ 2λa + 1.

Proof. Let x̂k+1 ∈ T (uk+1). By the Hooking Lemma, we know that dΓ(x0, x̂k+1) is

less than or equal to k+1+λa. And so it is the length of a geodesic starting from

x0 and passing through any nearest neighbor x ∈ Sk of uk (recall that we can take

any of them due to Lemma 1.42(c)). We know that such a geodesic exists because

x̂k+1 ∈ uk and by Proposition 1.47. But this means that dΓ(x, x̂k+1) ≤ λa + 1 and

again by the Hooking Lemma, we have dΓ(x, x̂k) ≤ λa with x̂k any element

in the tip of uk. Combining these two facts in a triangle inequality we get the

claim.

Note that if we look at the minimum, namely

min
x∈T (uk)
y∈T (uk+1)

dΓ(x, y),
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then maybe the estimate provided is naive. Indeed, it can happen that two

elements in two consecutive tips are one the successor of the other.

Example 2.27. Looking at Figure 8.(a), we get an example of two consecutive

tips. Indeed, every element in the sphere of radius 2 which is an element in the

tip of a 2-level atom is a successor of an element in the tip of the corresponding

1-level atom.

Despite this aspect, we are able to construct a quasi-geodesic ray

Proposition 2.28. Let u = (uk)
∞
k=1 be an element of ∂hΓ described by its atom-coding.

Then any sequence of points {x̂k}∞k=1 such that x̂k ∈ T (uk) has a subsequence that is a

quasi-geodesic ray.

Proof. Take {x̂k}∞k=1 as in the statement. It may occur that some x̂k are equal so,

for each k, we remove all the redundant copies of the same x̂k to get a new se-

quence {x̂n}∞n=1. We claim that {x̂n}∞n=1 is a quasi-isometric embedding of N in

Γ.

By Proposition 2.26 we know that dΓ(x̂n, x̂n+1) ≤ D for some constant D de-

pending only on λa. To conclude, we know that if x̂n, x̂m ∈ {x̂n}∞n=1 and n ≤ m,

then dΓ(x̂n, x̂m) ≤ D(m− n) by iterations of the triangle inequality.

On the other hand, x̂n ∈ Bn−1+λa by virtue of the Hooking Lemma and x̂n ∈

Γ−Bm−1 by Proposition 1.38, hence dΓ(x̂n, x̂m) ≥ m− n− λa.

An interesting fact to remark is that if such a quasi-geodesic ray is a geodesic

ray, then by definition the horofunction is a Busemann point.

Remark 2.29. Note that two horofunctions u and v are mapped into the same
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point in ∂Γ if and only if the Hausdorff distance between the two geodesic

rays constructed using the previous proposition is bounded (see [BH13, Lemma

H.3.1] for a different, but equivalent, definition of ∂Γ that leads to this fact).

The technique used in the following Remark will not only improve the struc-

ture of the quasi-geodesic ray, but it will also be the key ingredient for most of

the incoming proofs:

Remark 2.30. Let an ∈ An and take pn a proximal point of an. By Lemma 1.42(b),

we can consider a combinatorial geodesic [p0, pn] = (p0, p1, . . . , pn) such that p0 =

x0 and pi ∈ P (x, Si) for some (and hence all) points x ∈ an and for all i ≤ n. But

we can say more, we actually find a geodesic such that pi ∈ P (ai, Si) with ai ∈ Ai

and ai ⊇ an for all i ≤ n, as x ∈ ai.

Following Definition 1.31 and the discussion right after it, we look at ∂A as a

metric space with respect to ⋎A, which is nothing more than the standard visual

metric on the boundary of a rooted tree. Explicitly, we define ⋎A(u, v) := β−k

where k is such that uk = vk (this implies ui = vi for every i ≤ k) and uk+1 ̸=

vk+1. As for other tree structures that are related to ∂Γ (see e.g. the beginning of

Section 1.4 and [CP93, Proposition 2.3]), we have the following

Proposition 2.31. The map πh : (∂A,⋎A) ↠ (∂Γ,⋎) is Lipschitz.

Proof. Let u = (un)
∞
n=1 and v = (vn)

∞
n=1 be two horofunctions with ⋎A(u, v) =

β−k. Pick {x̂n}∞n=1 and {ŷn}∞n=1 such that x̂n ∈ T (un) and ŷn ∈ T (vn) for all n and

with x̂n = ŷn for all n ≤ k, now Remark 1.29(c) leads to

2δ̃ + (uπh | vπh) ≥ sup(sup
n≥0

inf
m≥n

(xm | ym)) ≥ sup
n≥0

inf
m≥n

(x̂m | ŷm)

where the first sup is over all the sequences {xn}∞n=1 and {yn}∞n=1 such that xn

converges to uπh and yn converges to vπh.
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Since x̂m = ŷm for all m ≤ k, then (x̂m | ŷm) = d(x̂m, x0) ≥ m, while if m > k

then we have dΓ(x̂m, ŷm) ≤ dΓ(x̂m, x̂k) + dΓ(ŷm, ŷk) and

dΓ(x̂m, x̂k) ≤ dΓ(x̂m, xm) + dΓ(xm, pm) + dΓ(pm, pk) + dΓ(pk, xk) + dΓ(x̂k, xk)

with xm and xk nearest neighbors of x̂m and x̂k respectively; and pm and pk

proximal points of x̂m and x̂k on the same geodesic (see Remark 2.30). So that

dΓ(x̂i, xi) ≤ λa by the Hooking Lemma and dΓ(xi, pi) ≤ 4δ+2 by Lemma 1.42(b)

for i = k,m. Moreover, dΓ(pm, pk) = m− k and so we can conclude that

dΓ(x̂m, x̂k) ≤ m− k +D with D = 2(λa + 4δ + 2).

The same holds for ŷm and ŷk.

Returning to the Gromov product, we can say that

dΓ(x̂m, x0) + dΓ(ŷm, x0)− dΓ(x̂m, ŷm) ≥ 2m− 2(m− k +D) = 2(k −D)

with D a constant only depending on λa and δ. Hence ⋎(uπh, vπh) ≤ D̃β−k with

D̃ = βD+2δ̃ as desired.

Open Question. Is there a connection between the visual metric and the uniform

metric on ∂hΓ so that we can say the map (∂hΓ, | · |∞) ↠ (∂Γ,⋎) is Lipschitz?

Starting from an atom-coding, we want to find a geodesic ray that represents

the same element of ∂Γ as the horofunction associated to the atom-coding, more

formally

Proposition 2.32. Let u be a horofunction. Then there exists a geodesic ray γu such

that γu(0) = x0 and γu(k) is proximal to uk for all k ∈ N. Furthermore [γu]∂Γ = uπh.

Note that we are not saying that every horofunction is a Busemann point,

this is false in general for hyperbolic graphs, as we already mentioned. What
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is true is that the horofunction u is a Busemann point if and only if it coincides

with the horofunction defined by γu.

The proof of the Proposition involves the following well-known result, to-

gether with the proximal points technique mentioned before.

Theorem 2.33 (Arzelà-Ascoli). Let X be a proper geodesic space with a distinguished

point x0. Let {γk}k∈N be a sequence of functions γk : [0,∞[→ X such that

(a) γk(0) = x0 for all k ∈ N,

(b) γk is a geodesic on [0, k].

Then there exists a subsequence {γ̃n}n∈N that converges uniformly on compacts to a

geodesic ray γ : [0,∞[→ X .

Proof(Proposition 2.32). Let (uk)∞k=1 be the sequence of atoms representing u. For

each k, we exploit Remark 2.30 to get a geodesic γk such that γk(n) ∈ P (un, Sn)

for all n ≤ k. Then we apply Theorem 2.33 to the sequence {γk}∞k∈N by saying

that γk(t) := γk(k) for all t ≥ k and we obtain a geodesic ray γ. We claim that

every n-vertex of γ (i.e. γ(n) with n ∈ N) is a proximal point of uk. Indeed, we

are dealing with uniform convergence on compacts, that is

lim
k

max
t∈[0,n]

dΓ(γ̃k(t), γ(t)) = 0

or in other words

∀ϵ > 0 ∃j s.t. ∀k ≥ j and ∀t ∈ [0, n], dΓ(γ̃k(t), γ(t)) < ϵ.

This means that any vertex γ(n) is arbitrarily close to a proximal point, but since

we are in a graph, taking ϵ small enough means that the proximal point and γ(n)
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are in fact the same vertex.

To prove that γ represents the same point of uπh, we argue as before: we

use the Hooking Lemma to bound the distance between an element x̂k ∈ T*(uk)

and a nearest neighbor xk of uk; then we apply Lemma 1.42(b) to say that xk and

γ(k) are (4δ + 2)-near. And we conclude with a triangle inequality that yields

dΓ(γ(k), x̂k) ≤ 4δ + 2 + λa.

Definition 2.34. Let u be a horofunction. We call the geodesic ray γu defined by

Proposition 2.32 a proximal ray with respect to u.

We know that, in some sense, the Gromov product of two points in ∂Γ mea-

sures how long two geodesic rays representing these points fellow travel. In the

following result, we will provide an atom-coding version of this fact.

Theorem 2.35. Let u = (uk)
∞
k=1 and v = (vk)

∞
k=1 be two horofunctions coded by atoms.

Then the following holds.

(a) If T* dΓ(ui, vi) ≤ C for all i ≤ k, then (uπh | vπh) ≥ k − C ′,

(b) if (uπh | vπh) ≥ k, then T* dΓ(ui, vi) ≤ C ′′ for all i ≤ k,

where C, C ′ and C ′′ are constants. Furthermore, if C depends only on λa and δ, so do

C ′ and C ′′.

In particular, we obtain a new proof of Theorem 2.4 when the hypotheses

hold for each k.

Proof. For the first assertion, we proceed as in the proof that πh is Lipschitz (see

Proposition 2.31). When l ≤ k, we have (ul | vl) ≥ l − C by hyphotesis. If l > k,
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we consider the following triangle inequality

dΓ(x̂l, ŷl) ≤ dΓ(x̂l, x̂k) + dΓ(x̂k, ŷk) + dΓ(ŷk, ŷl)

with x̂i ∈ T (ui) and ŷi ∈ T (vi) for i = l, k.

Then we use the argument in Remark 2.30 to get two geodesics of proximal

points and to give an estimate of dΓ(x̂l, x̂k) and dΓ(ŷl, ŷk), so that we have

T* dΓ(ul, vl) ≤ 2(l − k) + 4(λa + 4δ + 2) + dΓ(x̂k, ŷk).

To conclude, we use again the hypothesis that dΓ(x̂k, ŷk) ≤ C and hence

T* dΓ(ul, vl) ≤ 2(l−k)+4(λa+4δ+2)+C. In this way, we found a lower bound

for each Gromov product of the type (ul | vl) (we implicitly use the Hooking

Lemma and the claim follows).

What is left to point out is that (u | v) ≤ (uπh | vπh) + 2δ̃ due to Remark 1.29(c).

For the second assertion, we set γu and γv to be to proximal rays with respect

to u and v (see Definition 2.34 and Proposition 2.32). We consider

T* dΓ(uk, vk) ≤ dΓ(T (uk), γu(k)) + dΓ(γu(k), γv(k)) + dΓ(γv(k), T (vk)).

The distance dΓ(T (uk), γu(k)) is bounded by 4δ + 2 + λa for the same argument

as before, that is taking a nearest neighbor and exploiting Lemma 1.42(b) to-

gether with the Hooking Lemma. The same occurs to dΓ(T (vk), γv(k)). The

distance dΓ(γu(k), γv(k)) is bounded by virtue of Lemma 1.30. More clearly if

(uπh | vπh) ≥ k it means that the distance between dΓ(γu(i), γv(i)) for all i ≤ k is

bounded by 5δ due to the quasi-isometry.

This version of the theorem gives a chance of characterizing the Gromov

boundary via horofunctions through a metric viewpoint.
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Corollary 2.36. The function β−(·|·) on ∂hΓ is a distance and if ⋎h is the pseudo-metric

computed using the First Move, then the quotient ∂hΓ/⋎h defined by the Second Move

is ∂Γ.

We recall that the two moves are explained after the Definition 1.2 at the very

beginning of the dissertation.

Proof. We start by proving that the function is a distance. Symmetry is obvious.

Taken u ∈ ∂hΓ, then

max
xk∈T (uk),yk∈T (vk)

lim inf
k

(xk|yk) = ∞

and so is (u | u), by virtue of the proof of Lemma 1.59. Hence β−(u,u) = 0. Using

the First Move, we get the pseudo-metric ⋎. It remains to prove that the metric

quotient is the Gromov boundary. We point out that two horofunctions u ̸= v

can satisfy β−(u,v) = 0 and indeed this happens if they glue (they are in the same

fiber of πh). We need to show that this is the only possible case, which means

that if β−(u,v) = 0, then u and v glue. But now (u | v) = ∞, and so there exists

a couple of Gromov sequences converging to u and v such that their Gromov

product is infinite, hence these two sequences are the same element in ∂Γ.

In literature, there are many examples of metric spaces (or similar structures)

that in some way converge to the Gromov boundary of a hyperbolic group. We

cite as an example, the work of Pawlik [Paw15] and Lemma 3.8 of [GMS19]

which says that spheres with center in a distinguished point x0 and endowed

with the visual metric weakly converge to ∂Γ in the sense of Gromov-Hausdorff. As

mentioned before, we can look at the tips as a coarse version of spheres and so

our aim now is to provide a tip-version of this convergence.

In the following discussion, we will adopt the notation ⋎k(uk, vk) = β−(uk|vk) in

which uk and vk are atoms of the same level. We recall that the Gromov product
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is the one defined right before Lemma 1.59 and that ⋎k is not a metric (not even

a distance), but still plays an important role in the theory. With this in mind, we

will consider the weak Gromov-Hausdorff limit of (Ak,⋎k) as k goes to infinity

even if they are not metric spaces.

A formal definition for the limit we discussed is the following

Definition 2.37. Let {Γi, di}i∈N be a sequence of graphs endowed with the stan-

dard metric. We say that the graph (Γ, d) is the weak Gromov-Hausdorff limit,

or that the sequence weakly converges in the sense of Gromov-Hausdorff, if for

all i ∈ N there exists a quasi-isometry ϕi : Γ → Γi with Li1 not depending on

i and Li2 that goes to zero as i tends to infinity, where Li1 is the multiplicative

constant and Li2 is the additive constant of the quasi-isometric embedding.

Note that this is a coarse version of the standard notion of Gromov-Hausdorff

convergence in metric geometry (see e.g. [BBI01]).

Before proving the result, we need a technical lemma that links the Gromov

product between two atoms with the one between two proximal points:

Lemma 2.38. Let uk and vk be two k-level atoms. Let pk ∈ P (uk, Sk) and qk ∈

P (vk, Sk). Then

|T* dΓ(uk, vk)− dΓ(pk, qk)| ≤ 8δ + 4 + 2λa and |(uk|vk)− (pk|qk)| ≤ 4δ + 2 + 2λa.

Proof. The first part is the usual consequence of the Hooking Lemma together

with Lemma 1.42(b) applied to

T* dΓ(uk, vk) ≤ dΓ(T (uk), pk) + dΓ(pk, qk) + dΓ(qk, T (vk))
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and the triangle inequality where proximal points and atoms are switched.

For the second part, we use the first part as follows

2(uk | vk) ≥ 2k − dΓ(pk, qk)− 8δ − 4− 2λa,

and

2(uk | vk) ≤ 2k + 2λa − dΓ(pk, qk) + 8δ + 4 + 2λa.

All is left is to notice that 2k − dΓ(pk, qk) = 2(pk | qk).

Proposition 2.39. The metric space (∂Γ,⋎) is the weak Gromov-Hausdorff limit of the

sequence (Ak,⋎k) as k → ∞.

Proof. First, we introduce the map we claim induces the quasi-isometry.

Φ : ∂Γ → T (Ak)

x∞ 7→ u 7→ T (uk)

We consider an element x∞ ∈ ∂Γ and a section Sh : ∂Γ → ∂hΓ of the pro-

jection πh. Now x∞Sh = u and uk is the k-level atom of the atom-coding. So

x∞Φ := T (uk).

Quasi-dense image. Let a ∈ Ak. Take x∞ ∈ ∂aπh and evaluate T ∗ dΓ(x∞Φ, a).

Since there exists a horofunction that passes through a and projects onto x∞,

we know that such a horofunction and x∞Sh identify on ∂Γ. Hence by Theo-

rem 2.4, the tips of their k-th terms of the atom-codings (which are a and x∞Φ)

stay within 2(λa + δ) .
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Quasi-isometric embedding. We will proceed by cases.

If (x∞ | y∞) ≥ k, we apply Theorem 2.35(b) and we have T* dΓ(ui, vi) ≤ C for all

i ≤ k and hence (uk|vk) ≥ k−C by applying Theorem 2.35(a). To conclude then

that |⋎k (uk, vk)−⋎(x∞, y∞)| ≤ ⋎k(uk, vk) ≤ β−k+C .

If (x∞ | y∞) ≤ k, then we consider two proximal rays γ ∈ x∞ and η ∈ y∞ and by

virtue of Lemma 1.30, we have

|(γ(k)|η(k))− (x∞|y∞)| ≤ 5

2
δ.

All that is left to do is combine it with Lemma 2.38 and get

|(uk|vk)− (x∞|y∞)| ≤|(uk|vk)− (γ(k)|η(k))|+

|(γ(k)|η(k))− (x∞|y∞)| ≤ 4δ + 2 + 2λa +
5

2
δ.

Hence D−1 ⋎ (x∞, y∞) ≤ ⋎k(uk, vk) ≤ D ⋎ (x∞, y∞) for a suitable constant D as

desired.
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CHAPTER 3

QUASI-ISOMETRIES

3.1 The set of tips and the graph of atoms

We now continue our parallelism between the graph Γ, its spheres, its geodesic

rays and the atom-coding tree A, the tips and the horofunctions; we will now

present a couple of quasi-isometries between the set of tips and the graph Γ.

Note that for the other tree structure introduced in Section 1.1.4 (see Figure 7

for an example and the discussion at the very beginning of the section for a gen-

eral setting), a quasi-isometry between the vertices of the trees and the elements

in the graph is in some sense trivial: vertices of the tree correspond to vertices

in the graph and the distance between two of them in the tree is actually the one

on the original graph.

The following result will help us restricting our attention to elements with

infinite cones in both the quasi-isometries we are going to describe.

Lemma 3.1. Let Γ be a hyperbolic graph quasi-isometric to the Cayley graph of some

hyperbolic group. Then there exists a constant λ∞ such that every element x ∈ Γ with

a finite cone is in a ball of radius λ∞ centered at an element with an infinite cone.

From now on λ∞ will be such a constant.

Proof. Let us start by determining λ∞. Since two finite cones with the same type
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have the same number of points, we can consider λ∞ to be the maximum of the

cardinalities among all types of finite cones (they are finite by Proposition 1.45).

This allows us to find a predecessor xc of x (i.e. an element that belongs to a

geodesic between x0 and x), such that dΓ(x
c, x) ≤ λ∞ that has an infinite cone.

Indeed, suppose that every element that belongs to a geodesic [xc, x] with xc a

predecessor and dΓ(x
c, x) = λ∞ has a finite cone. This means that the geodesic

is fully contained in the cone C(xc) but exceeds the number of possible elements

in the cone. Hence we have a contradiction. This implies that the cone C(xc) has

to be infinite.

The following is useful for proving the quasi-density in both cases.

Lemma 3.2. Let Γ be a hyperbolic graph. If S∞
n is the subset of all elements in Sn such

that their cones are infinite, then S∞
n ⊆

⋃
a∈An

V (a,Bn).

Proof. Let x′ be an element of S∞
n . Now C(x′) is infinite and there are finitely

many atoms of level n, so there exists an atom a ∈ An such thatC(x′)∩a ̸= ∅. We

take y ∈ C(x′)∩ a so that [x′, y]∩Bn = x′ and by definition x′ ∈ V (y,Bn). By the

property of visible points (see Lemma 1.42(c)), we have V (y,Bn) = V (a,Bn).

Throughout Chapter 2, we were dealing with many distances (almost all of

them were not metrics) and we studied the connections between them. We then

proved two quasi-isometry like results (Proposition 2.17 and Proposition 2.21).

As a first step, we now want to formally prove what these results naturally

suggest.

Proposition 3.3. Let (T, dH) be the set of tips without repetitions (that means that

if two atoms share the same tip, we count it once) endowed with the usual Hausdorff

metric. Then T is quasi-isometric to Γ.
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We recall the discussion made in Remark 1.57 to better understand what “with-

out repetitions” means.

Proof. The map ST : T → Γ we want to show is a quasi isometry is defined as

T (a)ST := x̂ with x̂ some fixed element in T (a).

Quasi-dense image. Let x ∈ Γ. We consider n such that x ∈ Bn−1.

First, suppose that x ∈ S∞
n−1, then there exists at least one of its successor x′ that

belongs to S∞
n . By Lemma 3.2, we know that x′ is a visible point for some atom

a ∈ An. Now we take x ∈ N(a,Bn) and we know that dΓ(x
′, x) ≤ 4δ + 2 by a

property of visible points (by combining Lemma 1.42(a) with Lemma 1.42(b)).

So dΓ(x, x) ≤ 4δ + 3 and by the Hooking Lemma we get dΓ(x, x̂) ≤ 4δ + 3 + λa

for any point x̂ ∈ T (a).

Now, suppose that the cone of x is finite. Combining Lemma 3.1 with the first

case, we get dΓ(x, T (a)) ≤ λ∞ + 4δ + 3λa.

Quasi-isometric embedding. We argue as in the proof of Proposition 2.21.

Indeed, we already know that dH(T (a), T (b)) ≤ min
x̂∈T (a),ŷ∈T (b)

dΓ(x̂, ŷ)+2λa and by

Proposition 1.54 we get

dH(T (a), T (b)) ≤ dΓ(T (a)ST, T (b)ST) + 4λa.

On the other side, Proposition 2.21 provides

min
x̂∈T (a),ŷ∈T (b)

dΓ(x̂, ŷ) ≤ dH(T (a), T (b)).

All we have to do is combine it with

dΓ(T (a)ST, T (b)ST) ≤ min
x̂∈T (a),ŷ∈T (b)

dΓ(x̂, ŷ) + λa

coming from Proposition 1.54.
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The second step of the chapter is inspired by the work of Kaimanovich

([Kai03]) on fractals and of Nekrashevych ([Nek03], [BGN03]) on limit spaces

of contracting self-similar groups. See also [LW09] for an application in dynam-

ical systems.

The main object of the discussion is:

Definition 3.4. Let Γ be a hyperbolic graph and A its tree of atoms. We define

ΓA and we call it the graph of atoms in the following way:

Vertices: all elements of A;

Vertical Edges: given two vertices an ∈ An and an+1 ∈ An+1, there exists an

edge if and only if an ⊇ an+1;

Horizontal Edges: given two vertices an, bn ∈ An there exists an edge if and

only if dΓ(an, bn) ≤ 2(λ∞ + 4δ + λa) + 7 and define this as λe.

As before, λe will be such a constant. Its peculiar definition will be clarified

during the proof of the quasi-isometry result.

Definition 3.5. We denote by T (ΓA) the same construction as before, but using

the distance T* dΓ and the constant 2λe + 4δ + 2λa for horizontal edges. We call

it the graph of tips. Please note that the vertices of the graph are still atoms.

Despite the choice of the constant looking strange, it is related to the fact that

T* dΓ ≤ 2 dΓ+4δ + 2λa (see Proposition 2.17) and will be fully explained in the

following.

Remark 3.6. Some straightforward properties of ΓA are the following

(a) the tree A is a spanning tree for the graph;

73



(b) the vertices of the n-sphere (ΓA)n are in bijection with An;

(c) the projection πn : (ΓA)n ↠ (ΓA)n−1 is well-defined;

(d) the graph is locally finite, indeed A is locally finite and horizontal edges

starting from a vertex are finite due to the same argument that proves the

fibers of πh are finite (see Theorem 2.22).

(e) the graph of atoms is a subgraph of the graph of tips, since dΓ(a, b) ≤ λe

implies T* dΓ(a, b) ≤ 2λe + 4δ + 2λa. In particular, we have dT (ΓA)(a, b) ≤

dΓA(a, b).

(f) ΓA is an augmented tree in the sense of [Kai03]. Roughly speaking, an aug-

mented tree is a graph constructed starting from a tree where we add

edges between some vertices on the same level with the condition that if

x and y are two vertices that share such an edge and x̃ ∈ [x0, x], ỹ ∈ [x0, y]

are at the same level, then x̃ = ỹ or they share an edge (recall that x0 is the

root).

Theorem 3.7. Let Γ be a hyperbolic graph. Then the graph of atoms ΓA is quasi-

isometric to Γ. In particular, it is hyperbolic and its boundary is homeomorphic to ∂Γ.

Proof. Our quasi-isometry candidate map SA : ΓA → Γ is defined as aSA := x̂

with x̂ a fixed element in T (a).

Quasi-dense image. This argument is exactly the same as Proposition 3.3 as

both maps are defined from tips to element in Γ.

Quasi-isometric embedding. Let aSA = x̂ and bSA = ŷ.

We start by proving that dΓ(x̂, ŷ) ≤M dΓA(a, b) for some constant M .

Let a = a0, a1, . . . , al = b be a geodesic between a and b in T (ΓA). If {ai, ai+1}

74



is vertical, then we recall the bound on consecutive tips (see Proposition 2.26).

If {ai, ai+1} is horizontal, by definition we have a bound between two of their

elements. We need to pay attention: we have a bound for every distance outside

the atoms, but we also need a bound for what happens inside the tips, so that an

element involved in the bound for the edge {ai−1, ai} is at a reasonable distance

from an element involved in {ai, ai+1}. This internal bound follows from the fact

that a tip has diameter at most 2λa (see Proposition 1.54). LetD be the maximum

between the two external bounds, more explicitly if D′ is the bound provided

for vertical edges by Proposition 2.26 and D′′ is the bound coming from the

definition of horizontal edge, then D = max{D′, D′′}. If we put all together, we

have

dΓ(x̂, ŷ) ≤
l−1∑
i=0

dΓ(x̂i, x̂i+1) +
l−1∑
i=1

diamT (ai) ≤ Dl + 2λa(l − 1) ≤M dT (ΓA)(a, b)

with x̂0 = x̂, x̂l = ŷ and x̂i ∈ T (ai) one of the two elements of the tips

involved in the bound for the left and for the right edges. And M = D + 2λa.

By part (e) of Remark 3.6, we get the claim.

We now prove the other part, namely dΓA(a, b) ≤ W dΓ(x̂, ŷ) for some constant

W . We proceed in the same way as before. We take a geodesic in Γ, explicitly

y0 = x̂, y1, y2, . . . , ŷ = yl, between x̂ and ŷ. By the quasi-density, we know that

for every point yi there exists a ni-atom ai such that dΓ(yi, ai) ≤ λ∞ +4δ+3+ λa

and max{0, dΓ(x0, yi)−λ∞} ≤ ni ≤ dΓ(x0, yi). This is due to the fact that either yi

has a infinite cone, hence it is a visible point and the atom ai is at level dΓ(x0, yi)

(see Lemma 3.2) or yi has a finite cone, but there exists another element y ∈

[x0, yi] at a distance at most λ∞ (see Lemma 3.1) that has an infinite cone and the

associated atom ai is at level dΓ(x0, y). Note that, in this way, two consecutive
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atoms are at a distance dΓ less than λe.

We want to prove that two consecutive atoms ai and ai+1 have a distance in ΓA

bounded by some constant. So if they are at the same level, they are adjacent by

the definition of horizontal edges. If they are on two different levels n and m,

then |n−m| ≤ λ∞+1. Indeed, we combine the fact that two consecutive vertices

yi and yi+1 are such that | dΓ(x0, yi)− dΓ(x0, yi+1)| ≤ 1 (they are two consecutive

points of a geodesic) and max{0, dΓ(x0, yi)−λ∞} ≤ ni ≤ dΓ(x0, yi). Now, we can

assume without loss of generality that m < n. We denote with ami the m-atom

such that ai ⊆ ami and we have

dΓ(a
m
i , ai+1) = min

x∈ami ,y∈ai+1

dΓ(x, y) ≤ min
z∈ai,y∈ai+1

dΓ(z, y) ≤ λe.

This means that ami and ai+1 are adjacent and so dΓA(ai, ai+1) ≤ dΓ(ai, a
m
i ) +

dΓ(a
m
i , ai+1) ≤ λ∞ + 1 + 1 = λ∞ + 2. To conclude, for each edge of the geodesic

in Γ, we have constructed a geodesic in ΓA of length at most λ∞ + 2, hence

dΓA(a, b) ≤ W dΓ(x̂, ŷ) with W = λ∞ + 2.

3.2 Example: uniform tiling of the hyperbolic space.

In this section, we want to study the 1-skeleton of a uniform tiling for the hyper-

bolic space. The tiling is made by cubes and it resembles the one in Figure 1.(b),

which, in some sense, is its 2-dimensional version. More precisely, there are five

cubes meeting in each edge (see Figure 12.(a)) and twenty meeting in each ver-

tex. We have twelve edges starting from a given vertex x0 arranged in a way

such that the dual tiling is made by dodecahedra, which means: each edge of

the original graph starting from x0 intersects one of the twelve pentagons (see

Figure 12.(b)), each square face of a cube of the original graph intersects an edge

of the dodecahedron of the dual and at the center of each cube there is one of
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(a) Five cubes meeting in a edge. (b) Each edge in the tiling corresponds
to a face of a dodecahedron in the dual
tiling.

Figure 12: The tiling and the dual point of view.

the twenty vertices of the dodecahedron of the dual.

This dual point of view, will be helpful to visualize atoms.

We start our description of the atoms by saying that we will count them

using isometric equivalence classes (in this case we are not specifying a group

action, so it is improper to speak about types). We take our distinguished vertex

x0 and we notice that, beside the trivial 0-level atom that we will denote again

by A, there are three different isometric equivalence classes: B, C and D.

Class B. These atoms are the ones that correspond to the vertices that share

an edge with x0. More formally, they are the atoms such that their tips consist in

exactly one element of the sphere of radius 1. So, we need to count the number

of elements in the sphere, or equivalently the number of pentagons, to get how

many children of this class we have. Informally, they resemble the type B in the

plane. See Figure 13.(a).

Class C. In this case, the tip of an atom is exactly one of the vertices opposite

to x0 in one of the squares. In order to count them, we just need to look at the

number of edges of a dodecahedron. They resemble the type C in the plane. See
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x0

(a) Three tips of class B.

x0

(b) Three tips of class C.

x0

(c) The only tip of class D.

Figure 13: The three classes of atoms displayed on one of the twelve cubes shar-
ing x0 as a vertex. In fact, every atom corresponds to its tip.

Figure 13.(b).

Class D. These atoms too can be defined by looking at their tips: we need to

consider the vertices opposite to x0 in each cube. This means that they corre-

spond to the number of vertices of a dodecahedron. See Figure 13.(c).

Now that we discussed the first level of the tree of atoms, we want to in-

vestigate the children of each class. As we did before, we will use the dual

perspective to know how many children for each class we have: we associate

to each tip its dodecahedron and then we associate faces to class B, edges to

class C and vertices to class D. We only need to pay attention to the pentagons

(we mean a face with its five edges and five vertices) that we already use in the

previous levels.

Children of B. In this case the tip has one pentagon that corresponds to the

edge from which we come. But this also means that all the five pentagon that

share an edge with it are also used to define B, C and D classes of the previous

level. So, what is left can be collected in what follows: 6 faces, 10 edges and 5

vertices (see Figure 14.(a)).

Children of C. For this class, we recall that the tip is the opposite vertex of a

square. Here, two pentagons correspond to such square and their common edge
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B

(a) For the class B, we enter the dodecahedron from the central face. All the pen-
tagons around it describe atoms of the previous level.

C

(b) In the class C case, we have two edges entering the dodecahedron: one from the
central face and the other from the face above it. The other two pentagons sharing
a vertex with the C-edge are the one that complete the cube we are coming from.
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D

(c) Class D is associated to a vertex of the dodecahedron and has three edges enter-
ing: they complete the cube and so, no other pentagon, apart from the central one
and the two below it, is involved in the previous level.

Figure 14: Every tip of an atom is the center of a dodecahedron (from the dual
point of view). The Schlegel diagrams give us the perspective from the previous
level. Each vertex, edge or face that is not colored is a child for our class.

is the representative of the class C atom in the previous level. Hence, we also

remove the other two pentagons that share a vertex with the edge. Counting

what remains, we get: 8 class B children, 15 atoms of class C and 8 of class D

(see Figure 14.(b)).

Children of D. In this case, we rely on a cube that means a vertex in the do-

decahedron. So we need to remove the three pentagons that touch this vertex.

We are left with 9 class B atoms, 18 class C atoms and 10 atoms of class D (see

Figure 14.(c)).

We are now ready to introduce the horizontal edges in the graph of atoms.

We assume λe to be 1 to simplify the pictures. One can easily observe that con-

sidering the n-horizontal graph at each level, i.e. the graph made just by hori-

zontal edges between atoms of the n-level, we get a tiling of the 2-dimensional
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sphere. Instead of showing the whole graph, we exhibit a rule to replace each

vertex of the (n−1)-horizontal graph with the portion of the n-horizontal graph

made just by children of such vertex. There is a specific rule for each class (see

Figure 15). And we explain how to glue all these portions to get the result (see

Figure 16). This way of describing the horizontal graph resembles the approach

of subdivision rules (see e.g. [Rus14, Rus17]) and it may be possible that further

and deeper analogies between the graph of atoms and the history graph of such

rules exist.
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(a) Each class B atom can only be found in the middle of a pentagon made by squares
as in the picture on the left. On the right the way that its children are displaced in the
horizontal graph of the next step.

(b) In this case atoms of class C can be only be found between two square-pentagons.
On the right we see their expansion.

(c) Class D atoms correspond to vertices shared by three square-pentagons. On the
right we see the children in the horizontal graph of their level.

Figure 15: On the left we have a portion of the current horizontal graph. The
“center” of each portion is a vertex of a class we want to expand. On the right we
have the corresponding expansion in the next horizontal graph of such vertex,
that means the way the children of the vertex are displaced. How to replace the
edge will be described in the next figure.
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Figure 16: Any square in a horizontal graph is as in the picture (left), where
the red atom is of Class B, the blue one is of class D and the other two in green
are of class C. After replacing each of them, we also need to replace edges, that
means we need a rule for gluing each subgraph to get the next horizontal graph.
Gluing rules are depicted on the right.

3.3 Example: fractal.

In this section, we will deal with the group

⟨g1, g2, g3, g4 | g2i , (gigj)
6, i ∈ {1, 2, 3, 4}, j > i⟩.

Geometrically, we can represent each of the relations with an hexagon of

edge gigj (see Figure 17.(a)). Since we have four generators and all of them are

involutions, we can imagine the situation depicted in Figure 17.(b), that is the

vertex gi coincides with its inverse and we have six “hexagonal” relations.

Now, we can consider two types of atoms at the first level: a wide one (in

Figure 18 there are two of them, outlined by blue lines) and a narrow one (there
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id

g1

g1

g1

g1

g1

g1

g2

g2

g2

g2

g2

g2

(a) The relation (g1g2)
6.

g1

g2

g3

g4

(b) In red the four generators, the
dashed lines are part of the six
hexagons.

Figure 17: Generators and relations of the group.

id

Figure 18: The two types of atom at the first level seen on a single relation (gigj)
6.

is one of these in Figure 18 and it is the green one). The narrow type, unlike the

wide, will not split for the next four levels, this is due to the fact that we have to

wait until B6(id) to intersect the atom. So, the only child has a different type at

each step, but all of them are homeomorphic.

(a) (b)

Figure 19: The first horizontal graph and a portion of it.
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To construct the horizontal graph (again here we suppose λe = 1 for the sake

of simplicity, as in the previous example), we have to imagine the four wide

type atoms as vertices of a tetrahedron, while the six narrow type atoms are the

middle point of the edges (see Figure 19.(a)).

Due to the self-similar nature of the atoms, we can focus only to one portion

of the tetrahedron: we consider a wide atom and its three adjacent narrow atoms

(see Figure 19.(b)). Then we just focus on this portion and it can be seen that the

sequence of horizontal graphs is the one depicted in Figure 20. In particular, in

these four steps the narrow type atom remains a vertex, while the expansion is

made by the wide type atom. This process leads to an Apollonian gasket.

Remark 3.8. This is the last of three examples, after Figure 1.(b) and the example

developed in Section 3.2, for which the containment of Proposition 1.47 is in fact

an equality.

85



Figure 20: The first four portions of horizontal graphs.
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CHAPTER 4

RATIONAL GLUING OF HOROFUNCTIONS

4.1 The gluing automaton

The goal of this chapter is to construct a machine that can tell if two elements of

∂hG, represented by their atom-codings, are in the same πh-fiber.

In order to do that, we give the following

Definition 4.1. Let Σ be a finite alphabet and Σω its associate Cantor set of in-

finite strings. We say that an equivalence relation G on Σω is rational if it is a

rational subset of Σω × Σω in the sense of Definition 1.61.

Before proving that the gluing relation on atoms is rational, we want to

present a few examples of the property and point out that the definition is in

some way well-posed.

Example 4.2. Gromov boundaries of hyperbolic groups can be seen as quotients

of the Cantor set given by geodesic rays (see beginning of Section 1.4). The fact

that the relation is rational is due to the fact that Gromov boundaries are semi-

Markovian. See [CP93] for definitions and for a proof in the torsion free case,

and see [Paw15] for the connection between semi-Markovian and rational and

for the groups with torsion.

Example 4.3. Limit spaces of contracting self similar groups (the gluing relation

is given by the orbits of the action). See [Nek07] for definitions and, in particular,
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Proposition 5.6 for the rationality.

Example 4.4. Limit spaces of rearrangement groups of fractals (see [BF19]) seem

to be natural candidates. We bring attention on the work of Donoven on the

more general topic of invariant factors ([Don16]). We are interested in Section

4.3, which is devoted to replacement systems. Even if his approach is similar,

the question is still open.

Proposition 4.5. Let G be a rational equivalence relation on Σω. Then G is preserved

by rational homeomorphisms of Σω.

What we are going to do is to show that this is a direct consequence of Proposi-

tion 1.65.

Proof. To start, we observe that Σω × Σω = (Σ × Σ)ω. Setting Ξ = Σ × Σ, by

virtue of Proposition 1.65 we have a rational map ϕ : Ξ
ω → Ξωwith image G. Let

ψ : Σω → Σ̃ω be a rational homeomorphism. We denote by ψ × ψ : Ξω → Ξ̃ω

with Ξ̃ = Σ̃× Σ̃ the map that is ψ on each component. Since the composition of

two rational maps is a rational map, it remains to prove that ψ × ψ is rational,

hence the composition ϕ(ψ × ψ) is rational as well.

Ξω Ξ̃ω

Ξ
ω

ψ×ψ

ϕ
ϕ(ψ×ψ)

If (Σ, Σ̃,Θ,→, out) is the defining transducer for ψ, we just create

(Ξ, Ξ̃,Θ×Θ,→ × →, out× out)

such that if (σj, θij) → θoj with j = 1, 2, then ((σ1, σ2), (θ
i
1, θ

i
2)) → (θo1, θ

o
2) and an

adjusted condition holds for the output function.
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Now that we have set a connection with the literature, we can start working

on our case. But before introducing the machine, we need to fix some notation.

First of all, we define a slightly more rigid version of a self-similar structure.

Definition 4.6. Let T be a self-similar rooted tree. We define a rigid structure as

the subcollection of rooted tree isomorphims of the given self-similar structure

that satisfy the following

(a) for each pair of vertices x and y of the same class, there exists a unique

isomorphism φx,y that maps Tx on Ty;

(b) it is closed under composition, that means φx,yφy,z = φx,z for x, y and z of

the same class;

(c) if x′ is a child of x and y′ = x′φx,y, then φx′,y′ is the restriction of φx,y onto

Tx′ .

It is always possible to retrieve a rigid structure starting from a self-similar

one

Proposition 4.7. Every self-similar tree has a rigid structure.

We are interested in the technique involved in the proof of Proposition 4.7 (see

[BBM21, Proposition 2.18] for the complete version). More specifically, we need

to define markings. We take a set of vertices that contains exactly one element

for each class and the root. We denote it with Ω̂. Let Ω be the set of vertices

which are children of elements in Ω̂. For each o ∈ Ω we choose τo to be a rooted

tree isomorphism between o and the only vertex in Ω̂ that belongs to the same

class and we call it an elementary marking. Now, we take any vertex x and we

define its marking ψx as follows:

(1) if x is the root, then ψx is the identity isomorphism of T ;
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(2) if x is a vertex of T with marking ψx and y is a child of x, denote by o = yψx

the corresponding child of xψx inside Ω̂ and define ψy = ψxτo.

Note that the composition is partial, which means that actually we are consider-

ing ψxτo with ψ′
x the restriction of ψx onto Ty.

Tx Txψ

Ty To

ψx

ψ′
x

τo

One can see that the rooted tree isomorphism defined as φx,y := ψxψ
−1
y with x

and y two vertices of the same class are in fact a rigid structure.

As already briefly stated before Theorem 1.67, we observe that the tree of

atoms is self-similar with respect to the structure given by morphisms and

types. Hence, for each atom a we associate a marking ψa and we have a col-

lection {τi | i ∈ I} for some finite set of indices I . These help us defining our

coding in the following sense: we take an alphabet R and we call it the set of

rigid types that is in a 1 to 1 correspondence with the set of elementary mark-

ings. We will usually have ri ↔ τi. An atom a is of rigid type ri if its marking

is of the form ψa = ψaτi with a child of a. Finally, given a horofunction (un)
∞
n=1,

we get a corresponding string based on R.

A first consequence of this coding is that we can construct the type automaton

(see Example 2.5 in [BBM21] for a general treatment on the subject): the set of

states are the types of atoms and the number of transitions between two types

are the number of children that an atom of the first type has of the second type.

It is easy to see that this number does not depend on the choice of the atoms and

that can be labeled by the rigid types.
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Example 4.8. We consider the usual hyperbolic tiling and its 1-skeleton (see Fig-

ure 1.(b)). And the groups of isometries given by

G = ⟨g, h | g5 = 1, h2 = 1, (gh)4 = 1⟩

with g the rotation by 72° around the center and h the 180° rotation around the

middle point of one of the edges starting from the center. By looking at the first

levels (see Figure 8.(a)), we can argue that there are four types of atoms.

• The root, that is the only 0-level atom; we call it A.

• The first type, we call it B, there is one of them for each edge starting from

x0, so at the first level there are five.

• The second type, we call it C, these are the intersections between two red

regions; again we have five of them at the first level.

So, we will need ten letters {0, 1, . . . , 9} to codify the first level. At this point,

we notice that every type B has three children, two of type B and one of type

C. Hence, we will use the letters B0, B1, B2. While for the type C, there are three

children, two of type C and

• The fourth type, we call it D, it is the middle child of a type C and it has

just one child of type B.

To conclude, we need three letters C0, C1, C2 and a letter D0 to fully encode the

elementary markings. See Figure 21, for the type automaton.

Definition 4.9. We define the automaton M = (∆/∼, R
2,→, (a0, a0)∼) in the fol-

lowing way:

States The set ∆ := {(a, b) | a, b ∈ An for some n ∈ N, dΓ(a, b) ≤ λ} with λ

the gluing constant and the quotient is on the relation (a, b) ∼ (c, d) there
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Aroot B

C D

0, 2, 4, 6, 8

1, 3, 5, 7, 9

B0, B2

B1

C1

C0,C2

D0

Figure 21: The type automaton for the 1-skeleton of the hyperbolic tiling.

exists g ∈ G such that g = ψaψ
−1
c = ψbψ

−1
d . The elements of the quotient

are denoted by (a, b)∼ for some representative (a, b) ∈ ∆.

Alphabet We consider the cartesian product of the set R of rigid types with

itself, that correspond to the cartesian product of the set of elementary

markings.

Transition function We put an arrow (r1, r2) ∈ R2 from (a, b)∼ to (c, d)∼ when-

ever there exist two elements (a, b) ∈ (a, b)∼ and (c, d) ∈ (c, d)∼ such that c

is a child of a and in particular ψc = ψaτ1 with τ1 the elementary marking

associated to r1. The same holds for d, c and r2.

Initial state We denote with a0 the atom of level 0. The notation follows from

the description of the states.

Remark 4.10. Note that the rigid structure does not define new types, so the

requirement in the definition of ∼ is the same as asking for a g ∈ G that is a

morphism between a and c, but also between b and d.

Remark 4.11. The automaton contains a copy of the type automaton. Indeed,

given a type there is a state (a, a)∼ which collects all a of that type paired with

themselves. And the transitions between two of these states are labeled pre-

cisely by (r, r) with r ranging in the set of all transition labels of the type au-
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tomaton.

We now proceed in the following way: first we need to verify that the ma-

chine is actually doing what we expect on horofunctions and then we will prove

that it is finite-state.

Proposition 4.12. Let M be the automaton described above and let (un)
∞
n=1 and

(vn)
∞
n=1 be two horofunctions described by their codings. We have that the horofunctions

are the same element in ∂G if and only if there exists an infinite transition through the

states {(an, bn)∼}∞n=1 in M.

Proof. We first suppose that two horofunctions glue together. Then by Theo-

rem 2.4, we know that dΓ(un, vn) ≤ λ holds for every n. Hence, by definition of

the automaton, we can take an = un and bn = vn. We then know that, by pass-

ing through these states, we can read the string that is the sequence of double

elementary markings associated to the horofunctions.

On the other hand, suppose we can read the two horofunctions on M. Sup-

pose, also, that for k ≤ n we have (uk, vk) ∈ (ak, bk)∼. In particular, dΓ(uk, vk) =

dΓ(ukg, vkg) = dΓ(ak, bk) ≤ λ. We want to show that (un+1, vn+1) ∈ (an+1, bn+1)∼.

By hypothesis we know that g = ψunψ
−1
an = ψvnψ

−1
bn

. Since we read (r1, r2) to

reach the state (an+1, bn+1)∼ from the state (an, bn)∼, we have

ψun+1 = ψunτ1 and ψvn+1 = ψvnτ2,

with ri the digit associated to the elementary marking τi for i = 1, 2.

By the same token, we can choose the representative (an+1, bn+1) such that

ψan+1 = ψanτ1 and ψbn+1 = ψbnτ2.
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To conclude, an+1 and un+1 are of the same type (they have the same mark-

ing), the same holds for bn+1 and vn+1. So there exist h1, h2 ∈ G such that

h1 = ψun+1ψ
−1
an+1

and h2 = ψvn+1ψ
−1
bn+1

.

If we put everything together, we get

h1 = ψun+1ψ
−1
an+1

= ψunτ1τ
−1
1 ψ−1

an = g = ψvnτ2τ
−1
2 ψ−1

bn
= ψvn+1ψ

−1
bn+1

= h2.

This means that dΓ(un+1, vn+1) = dΓ(an+1g, bn+1g) = dΓ(an+1, bn+1). In partic-

ular, (un+1, vn+1) belongs to ∆ and to (an+1, bn+1)∼ as desired.

A couple of remarks about efficiency and geometric interpretation of the ma-

chine are needed.

Remark 4.13.

(1) Notice that the number of steps before stopping is not optimal. This oc-

curs since we rely on a gluing constant and so we may create some states

without any possible transition from there, in other words the automaton

is not reduced.

(2) The automaton roughly gives an estimate about the distance between two

points in the Gromov boundary by looking at their codings. Indeed, by

Theorem 2.35 and by Definition 4.9 the (discrete) amount of time at which

the machine stops is not far from the Gromov product between the two

elements in input.

In order to leave the previous proposition as clean as possible, we collect

here the properties of the automaton needed to get the rationality.

Corollary 4.14. The machine M is deterministic and recognizes the horofunctions.
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Proof.

Determinism. Suppose that the following situation occurs in the automaton:

(a, b)∼

(a1, b1)∼

(a2, b2)∼

(r,
s)

(r, s)

we want to prove that (a1, b1)∼ = (a2, b2)∼. This is a consequence of the rigid

structure, namely there exist

(a, b) ∈ (a, b)∼ and (a1, b1) ∈ (a1, b1)∼ with ψa1 = τrψa, ψb1 = τsψb

and

(a, b) ∈ (a, b)∼ and (a2, b2) ∈ (a2, b2)∼ with ψa2 = ψaτr, ψb2 = ψbτs;

moreover there exists g ∈ G such that g = ψaψ
−1
a = ψbψ

−1
b . So we have

ψa2ψ
−1
a1

= ψaτrτ
−1
r ψ−1

a = g = ψbτsτ
−1
s ψ−1

b = ψb2ψ
−1
b1
,

that yields the claim.

Recognizer. Suppose

(a0, a0)∼ → (a1, b1)∼ → . . .→ (an, bn)∼ → . . .

is a transition of states on M. We recall (a0, a0)∼ is the initial state, related to the

word

(r1, s1)(r2, s2) . . . (rn, sn) . . .
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This means that there exist an−1
rn−→ an and an

rn+1−−→ an+1, but an and an have the

same type and so rn+1 must be an allowed rigid type for an too, hence we can

provide an+1 such that an
rn+1−−→ an+1.

This last part is devoted to showing that M is a finite state machine, namely

we want a bound for the cardinality of ∆/∼. For this purpose, we need the key

definition introduced in [BBM21] to prove that the number of types are finite.

Before that, we recall that if two elements x and y belong to the same k-level

atom a, then dx = dy over Bk. Hence, da is well defined over Bk.

If Γ0 is a subset of vertices of Γ, f is a function from Γ0 to Z and g ∈ G, then we

define fg to be the function yfg := yg−1f for all y ∈ Γ0g. Note also that if f1 and

f2 differ by a constant, that f1g and f1g also differ by a constant. Putting these

two facts together leads to the definition of dag on Bkg.

Definition 4.15. Let a ∈ Am and b ∈ An. We say that an element g ∈ G induces

a geometric equivalence between a and b if

(1) P (a, Sm)g = P (b, Sn);

(2) dag = db over P (b, Sn);

(3) C(p)g = C(pg) for all p ∈ P (a, Sm).

The main result concerning this definition is the following

Proposition 4.16. If g ∈ G induces a geometric equivalence between two atoms a and

b, then it induces a morphism. Hence a and b are of the same type.

Most of Section 3.5 of [BBM21] consists of a proof for this Proposition. The

following proof is taken from Corollary 3.28 in [BBM21] and we show it here
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because it will be useful to understand our case.

Proof(Theorem 1.51). By virtue of Proposition 4.16, it suffices to prove that geo-

metric equivalence classes are finite.

Since the action of G onto Γ is cocompact, there exists a compact, hence finite,

subset K of vertices such that

KG = {Kg | g ∈ G}

is the whole graph. Now take p ∈ P (a, Sm), then there exists an element h ∈

G such that ph ∈ KG; exploiting Proposition 1.42(b) we have that P (a, Sn) is

contained in a 8δ+2-neighborhood ofK. This means that there are finitely many

possibilities for P (a, Sm) modulo the action ofG. Moreover, since the action ofG

is properly discontinuous and by Proposition 1.45 there are finitely many cone

types, we have only finitely many choices for C(p) for each p ∈ P (a, Sm), and

there are only finitely many choices for the restriction of da to P (a, Sm).

We are going to study a slight refinement of geometric equivalences and

types. In order to do that, we consider a λ-neighborhood of an atom with respect

to dΓ. The fact that the collection of atoms in the neighborhood of an atom is

finite is due to the fact that dΓ ≤ T* dΓ ≤ dΓ +λ with λ the gluing constant

together with the fact that the tips are finite (see Proposition 1.54).

We denote the set of all n-level atoms within a distance λ to an n-level atom a

with Aλ(a) and we call a the center of the neighborhood.

Definition 4.17. Two atoms a, b ∈ A have the same λ-type if there exists an

element g ∈ G that induces a bijection between Aλ(a) and Aλ(b) and such that

g|aλ is a morphism of types between aλ and bλ for all aλ ∈ Aλ(a).

Before giving the corresponding definition of geometric equivalence, we
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want to notice the following.

Remark 4.18.

(1) There can be two atoms in a λ-neighborhood with the same type.

(2) Since g is an isometry, we have that the distance between two atoms in a

λ-neighborhood depends just on the λ-type of its center.

Definition 4.19. Two atoms a, b ∈ A are said to be geometric λ-equivalent if

there exists g ∈ G such that for all aλ ∈ Aλ(a) and bλ ∈ Aλ(b) the following hold

(1) P (aλ, Sn)g = P (bλ, Sm);

(2) daλg agrees with dbλ on P (bλ, Sm);

(3) C(p)g = C(pg) for all p ∈ P (aλ, Sn);

for suitable positive integers n and m.

We have the following version of Proposition 4.16.

Lemma 4.20. If two atoms are geometric λ-equivalent, than they have the same λ-type.

Proof. By definition, the element g that induces the geometric λ-equivalence

also induces a geometric equivalence on each atom that belongs to Aλ(a). By

Proposition 4.16, we have that g induces a morphism on each atom. Hence the

claim.

All that is left to do is prove that the number of geometric λ-equivalence classes

is finite. But again this follow almost immediately by [BBM21].

Lemma 4.21. The number of equivalence classes with respect to the geometric λ-

equivalence is finite.
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Proof. One can argue as in the proof of Theorem 1.51 and by noticing that the

union of all the proximal sets of atoms in A
λ
(a) has a finite diameter by virtue

of the Hooking Lemma.

We are now ready to prove the following

Proposition 4.22. The set ∆/∼ is finite.

Proof. The key idea is that there exists a way to cover ∆ by Aλ(a) as a ranges in

A, or, more explicitly, for each (a, b) ∈ ∆, we have that b ∈ Aλ(a).

By combining Lemma 4.20 and Lemma 4.21, we have that there are finitely

many λ-types. Set Cλ to be the finite number of λ-types. We also know that

|Aλ(a)| is finite, and in particular there are finitely many pairs (a, b) as b ∈ Aλ(a).

Finally, if (a, b) ∼ (c, d) then there exists g ∈ G that induces a map g : Aλ(a) →

Aλ(c) and such that (a, b)g = (c, d). So there are at most Cλ(|Aλ(a)|−1) elements

in ∆/∼.

To summarize what we achieved in this Section, we explicit give this

Theorem 4.23. The quotient map πh : ∂hΓ ↠ ∂Γ defines a rational equivalence rela-

tion.

As a final remark, we point out that since two atoms in a λ-neighborhood

may have the same rigid type, we cannot conclude that the gluing relation

is semi-Markovian as for other tree structures on the Gromov boundary. But

something more can be said about λ-types.

Proposition 4.24. The λ-types are a self-similar structure for the tree of atoms.

Proof. The claim follows easily from the fact that λ-types are finite and the fol-
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lowing argument: the element g ∈ G that maps one λ-neighborhood into an-

other is an isometry and it is a morphism on each atom of the neighborhood.

Hence, it preserves the λ-neighborhoods of chidren and the types of the atoms

contained in them.

4.2 Example: uniform tiling of the hyperbolic plane.

In this section we give the automaton M for the 1-skeleton of the hyperbolic

tiling depicted in Figure 1.(b). We already discussed the number and the types

of atoms in Example 4.8 and we provided the type automaton (see Figure 21).

In order to get a simplified, but still correct, version of the machine we set λ = 1,

so that two atoms define an element in ∆ if and only if they are adjacent.

We also recall that M contains a copy of the type automaton: in Figure 22 the

states of such a copy are in red and the labels on the transitions are omitted, since

they are the ones already discussed in Figure 1.(b). We said that ∆ is composed

by pairs (a, b) of atoms that are adjacent: this can happen when a is of type B

and b is of type C or a is of type C, but in this case b can either be of type B or

D. Obviously we also need to consider (b, a). This leads to eight equivalence

classes. To understand the transitions between these classes, we consider two

codings that are equal up to level n, this means that for k steps they are read by

the copy of the type automaton. To enter into the blue part (see the figure), we

want two children to differ just by 1 bit, this means that on the first level only

the transitions (k, k + 1) with k ∈ {0, 1, . . . , 8} and (9, 0) are allowed and also

their symmetric versions. When in a type B, we only read (B0, B1) and (B1, B2),

and the same holds for type C. In order to get two horofunctions that glue,

we need to continue with two periodic strings where the pairs are (B0, C2) or
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A× A B ×B

C × C

D ×D

B × CC ×B B × C C ×B

C ×D C ×DD × CD × C

i× (i+ 1)

ȷ× ȷ+ 1

j × j − 1

9× 0

ı× (ı− 1)

0× 9

B0 ×B1

B2 ×B1

B1 ×B2

B1 ×B0

C0 × C1

C2 × C1C1 × C2C1 × C0

C2 ×D0 C0 ×D0D0 × C0D0 × C2

C2 ×B0 C0 ×B2B2 × C0B0 × C2

Figure 22: The gluing automaton for Figure 1.(b). Here λ is set to 1. And i ∈
{0, 2, 4, 6, 8}, ı ∈ {2, 4, 6, 8}, j ∈ {1, 3, 5, 7, 9}, ȷ ∈ {1, 3, 5, 7}.

(B2, C0) (except at most one auxiliary step in the C case to read out the D type).
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4.3 Example: fractal.

We want to discuss the construction of the gluing automaton for the fractal ex-

ample of Section 3.3. We do not exhibit the full automaton, but we provide a

sketch of how to build it.

We start by saying that the type automaton is depicted in Figure 23, where λ

is set to 1 as for the other examples and we highlight the blue and green states

corresponding respectively to the wide and the narrow type at the first level

(the initial state is A as always). Names for the other states are given by fol-

lowing a geometric intuition that we prefer to omit since it is not useful for this

description.

We proceed by levels and we only show the first one. We need to list all

the elements in ∆ at the current level (we can look at the tetrahedron in Fig-

ure 19.(a)). So, in this case we have

w1 w2 w3 w4

n1 1 0 0 1

n2 1 0 1 0

n3 1 1 0 0

n4 0 1 0 1

n5 0 1 1 0

n6 0 0 1 1

and note that each pair need to be counted twice (wi, nj) and (nj, wi).

In order to compute the states of M, we should provide elements of the

group that send pairs to pairs. Note that this does not mean that whenever we
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A

W

N

N1 N2

N3

N5

N4

Ñ

W ′

W ′′

N ′ N ′1

N ′′

4

6

1

1

1

1

1

1 4

2

2 2

1

1

3

3

3

3

2

2 1

1

2 4

2

1

Figure 23: The type automaton: labels denote the number of arrows of that kind,
the blue state and the letterW mean the wide type from Section 3.3 and the same
holds for the green state and the letter N (narrow).

have a pair of atoms (a, b) and (a′, b′) such that a′ shares the same type with

a and b′ with b, there exists such element. Once we have completed the first

level, we pass to the second having in mind that now we already have some

states in M and hence new elements in ∆ may be in the same equivalence class

of an element of the previous level. Moreover, we have to add all the possible

transitions according to the rigid structure. The procedure ends when we are

sure that all possible rigid types have been processed and this can be done by

looking at the type automaton.
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[Vä05] J. Väisälä. Gromov hyperbolic spaces. Expositiones Mathematicae,
23(3):187–231, 2005. doi:10.1016/j.exmath.2005.01.010.

[Wil70] S. Willard. General Topology. Addison-Wesley Series in Mathematics.
Addison-Wesley, 1970.

[WW05] C. Webster and A. Winchester. Boundaries of hyperbolic metric
spaces. Pac. J. Math., 221(1):147–158, 2005. doi:10.2140/pjm.
2005.221.147.

[WW06] C. Webster and A. Winchester. Busemann points of infinite graphs.
Transactions of the American Mathematical Society, 358(9):4209–4224,
2006. doi:10.1090/S0002-9947-06-03877-3.

106

https://doi.org/10.1016/j.exmath.2005.01.010
https://doi.org/10.2140/pjm.2005.221.147
https://doi.org/10.2140/pjm.2005.221.147
https://doi.org/10.1090/S0002-9947-06-03877-3

	Contents
	List of Symbols
	List of Figures
	Introduction
	Background
	Metric Geometry
	Graphs and Coarse Geometry
	Hyperbolic Groups and their Boundaries
	Trees associated to Hyperbolic Graphs
	Balls, Cones and Atoms
	Languages and Automata

	Geodesic behavior of atom-codings
	Gluing Relation via Atoms
	Distances on tips and consequences
	Using geodesics and geodesic rays

	Quasi-isometries
	The set of tips and the graph of atoms
	Example: uniform tiling of the hyperbolic space.
	Example: fractal.

	Rational gluing of horofunctions
	The gluing automaton
	Example: uniform tiling of the hyperbolic plane.
	Example: fractal.

	Bibliography

