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Motivation

‚ In financial applications we are interested in Market Analysis:
detection of bull-bear market states; Portfolio Management:
diversification, allocation, and Risk Management: hedging, loss
coverage

‚ How can we track the dynamics of complex systems such as financial
markets?

‚ How can we correctly specify the multivariate distribution of financial
time-series?

‚ A suitable statistical model should account for stylized facts of
financial assets log-returns: non-normality, heavy tails,
cross-correlation, auto-correlation



Regime Switching Copula Models

‚ We propose a multivariate regime switching model based on a
Student-t copula function with parameters governed by a latent
Markov process (Cortese et al., 2024,
https://doi.org/10.1111/insr.12562)

‚ In such a way tails of the joint distribution are accounted by the
number of degrees of freedom and pair-specific dependence
parameters model the correlation structure among assets

‚ We apply the proposal to jointly analyze daily log-returns of the five
cryptocurrencies: Bitcoin, Ethereum, Ripple, Litecoin, and Bitcoin
Cash (Pennoni et al., 2021)

https://doi.org/10.1111/insr.12562


Model Formulation

‚ We consider multivariate log-returns collected in vectors yyy1, . . . ,yyyT ,
with elements ytj , t “ 1, . . . ,T , j “ 1, . . . , r , and with joint
distribution F

‚ By adopting inference for margins method (Joe and Xu, 1996) we
split the modeling process into two steps:

‚ First, fit the marginal distribution of each univariate time-series
F1, . . . ,Fr , then compute pseudo-observations

etj “ Fjpytjq

‚ Second, estimate their joint distribution described by a regime
switching copula model



‚ The uniform pseudo-observations eeet , t “ 1, . . . ,T , follow a regime
switching copula model if:

‚ There exists a latent process ut , t “ 1, . . . ,T assumed to follow a
homogeneous Markov chain with kkk states defined by a transition
matrix ΠΠΠ with elements

πv |u “ Pput “ v | ut´1 “ uq, u, v “ 1, . . . , k

and initial probabilities πu “ Ppu1 “ uq, u “ 1, . . . , k

‚ Local independence assumption: given u1, . . . , uT , the vectors of
uniform pseudo-observations eee1, . . . ,eeeT , are independent and
distributed with copula densities

cp¨;RRRu1 , νu1q, . . . , cp¨;RRRuT , νuT q

being νu the number of degrees of freedom and RRRu the matrix of
dependence parameters of the Student-t copula function



Expectation-Maximization Algorithm

‚ Let θθθ be the full vector of parameters corresponding to the
non-redundant elements of RRRu, together with νu and πu,
u “ 1, . . . , k, and πv |u, u, v “ 1, . . . , k

‚ The EM algorithm is based on the complete data log-likelihood `˚pθθθq

‚ It alternates two steps until convergence:

‚ E-step: compute the posterior expected value given the observed
data

‚ M-step: maximize the expected complete data log-likelihood with
respect to the model parameters



Application

‚ Application based on the market of five cryptocurrencies Bitcoin
(BTC), Ethereum (ETH), Ripple (XRP), Litecoin (LTC), and Bitcoin
Cash (BCH), for the period August 2, 2017 - October, 2, 2022

‚ Data are provided by the Crypto Asset Lab, which is an independent
academic lab established at the University of Milano-Bicocca, Italy

‚ The selection of the cryptocurrencies is based on the criteria
underlying the Crypto Asset Lab Index concerning some aspects
(reliability, liquidity, low manipulation)



‚ We present results for the 2-state RSStC model: selection based on
Integrated Composite Likelihood criteria (ICL)

‚ An ARMA(1,1)-GARCH(1,1) model (Engle and Bollerslev, 1986) for
the marginals, with Skewed Generalized Error Distribution for the
residual terms

‚ Results show that the model identifies bull (profitable) and bear
market states based on the intensity of correlation and fatness of the
tail of the joint distribution

‚ We predict the latent regimes considering global decoding (Viterbi,
1967)



‚ Sample unconditional means and standard deviations of the
log-returns

Cryptocurrency

BTC ETH XRP LTC BCH

Mean (%) 0.090 0.087 0.049 0.002 -0.073
S.D. (%) 4.166 5.271 6.451 5.659 6.585

‚ Linear correlations: a positive association is present for each pair

BTC ETH XRP LTC BCH

BTC 1.000 - - - -
ETH 0.787 1.000 - - -
XRP 0.560 0.653 1.000 - -
LTC 0.765 0.823 0.644 1.000 -
BCH 0.678 0.742 0.583 0.732 1.000



Results

‚ Estimated dependences parameters ρ̂
pijq
u for the 2-states RSStC model

State 1 BTC ETH XRP LTC BCH

BTC 1.000 - - - -
ETH 0.911 1.000 - - -
XRP 0.902 0.910 1.000 - -
LTC 0.875 0.902 0.910 1.000 -
BCH 0.902 0.907 0.927 0.901 1.000

State 2 BTC ETH XRP LTC BCH

BTC 1.000 - - - -
ETH 0.652 1.000 - - -
XRP 0.667 0.728 1.000 - -
LTC 0.487 0.613 0.592 1.000 -
BCH 0.569 0.645 0.672 0.517 1.000



‚ Estimated Kendall’s tau: τ̂
pijq
u “ 2

π arcsin ρ̂
pijq
u under the 2-state RSStC

model with estimated number of degrees of freedom: ν1 “ 6.231,
ν2 “ 9.416

‚ First regime shows high interdependence

State 1 BTC ETH XRP LTC BCH

BTC 1.000 - - - -
ETH 0.730 1.000 - - -
XRP 0.715 0.728 1.000 - -
LTC 0.678 0.715 0.728 1.000 -
BCH 0.716 0.724 0.756 0.714 1.000

State 2 BTC ETH XRP LTC BCH

BTC 1.000 - - - -
ETH 0.452 1.000 - - -
XRP 0.465 0.519 1.000 - -
LTC 0.324 0.420 0.403 1.000 -
BCH 0.385 0.446 0.469 0.346 1.000



‚ Estimated transition probabilities for the 2-state RSStC model

State 1 2

1 0.912 0.088

2 0.121 0.879

‚ High persistence, that is high estimated self-transition probabilities, is
observed in both specifications

‚ Useful property for the construction of efficacy trading strategy:
frequent changes in the inferred regimes might result in excessive
trading costs and inferior portfolio performance



State-Conditional Mean/S.D.

‚ State allocation obtained through the Viterbi algorithm

‚ These estimates charaterize each state bearish and bullish market
regimes, respectively

‚ Standard deviations indicate high volatility in both regimes

State 1 Mean (%) S.D. (%) State 2 Mean (%) S.D. (%)

BTC -0.363 4.121 BTC 0.744 4.147

ETH -0.509 5.400 ETH 0.948 4.957

XRP -0.699 5.377 XRP 1.131 7.619

LTC -0.725 5.454 LTC 1.052 5.788

BCH -0.902 6.013 BCH 1.125 7.169



Concluding remarks

‚ New proposal of a multivariate regime switching Student-t copula
model

‚ To the best of our knowledge, there are no previous works studying
cryptocurrencies with regime switching copulas

‚ Bear market regimes are characterized by high cross-correlation,
fat-tailed joint distribution

‚ RSStC models can account for observed persistence of market regimes

‚ The model can be easily estimated and it is suitable to be used for
simulating portfolio scenarios and to compute risk-measures (VaR,
backtesting)
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Expectation-Maximization Algorithm

‚ Let θθθ be the full vector of parameters corresponding to the
non-redundant elements of RRRu, together with νu and πu,
u “ 1, . . . , k, and πv |u, u, v “ 1, . . . , k

‚ The EM algorithm is based on the complete data log-likelihood

`˚pθθθq “
T
ÿ

t“1

k
ÿ

u“1

wtu log cpeeet ;RRRu, νuq`

k
ÿ

u“1

w1u log πu `
T
ÿ

t“2

k
ÿ

u“1

k
ÿ

v“1

ztuv log πv |u

(1)

where wtu “ I put “ uq is an indicator variable equal to 1 if
the process is in state u at time t and 0 otherwise,
while ztuv “ wt´1,uwtv denotes the transition at time t
from state u to v



‚ The EM algorithm alternates two steps until convergence:

‚ E-step: compute the posterior expected value of each indicator
variable wtu, t “ 1, . . . ,T , u “ 1, . . . , k , and ztuv , t “ 2, . . . ,T ,
u, v “ 1, . . . , k , given the observed data

‚ M-step: maximize the expected complete data log-likelihood with
respect to the model parameters. The estimates at the pm ` 1q-th step
are given by

π̂pm`1q
u “

ŵ1u
řk

v“1 ŵ1v

, u “ 1, . . . , k

π̂
pm`1q
v |u “

ř

tě2 ẑtuv
ř

tě2 ŵt´1u
, u, v “ 1, . . . , k

´

R̂RR
pm`1q

u , ν̂pm`1q
u

¯

“ argmax
RRRu,νu

T
ÿ

t“1

k
ÿ

u“1

ŵtu log cpeeet ;RRRu, νuq, u “ 1, . . . , k

but this optimization problem is not feasible in higher dimension
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