Maximum Likelihood Estimation of Multivariate Regime Switching Student-t Copula Models

Fulvia Pennoni

joint work with F. Bartolucci, F. Cortese

Department of Statistics and Quantitative Methods - University of Milano-Bicocca (Italy) fulvia.pennoni@unimib.it

2nd International Conference on Computational Finance and Business Analytics - CFBA -April 6th, 2024

Motivation

- In financial applications we are interested in *Market Analysis*: detection of bull-bear market states; *Portfolio Management*: diversification, allocation, and *Risk Management*: hedging, loss coverage
- How can we track the dynamics of *complex systems* such as financial markets?
- How can we correctly specify the *multivariate distribution* of financial time-series?
- A suitable statistical model should account for stylized facts of financial assets log-returns: *non-normality, heavy tails, cross-correlation, auto-correlation*

Regime Switching Copula Models

- We propose a multivariate regime switching model based on a Student-t copula function with parameters governed by a latent Markov process (Cortese et al., 2024, https://doi.org/10.1111/insr.12562)
- In such a way *tails* of the joint distribution are accounted by the number of degrees of freedom and *pair-specific dependence parameters* model the correlation structure among assets
- We apply the proposal to jointly analyze daily log-returns of the *five* cryptocurrencies: *Bitcoin, Ethereum, Ripple, Litecoin,* and *Bitcoin Cash* (Pennoni et al., 2021)

Model Formulation

- We consider *multivariate log-returns* collected in vectors y₁,..., y_T, with elements y_{tj}, t = 1,..., T, j = 1,..., r, and with joint distribution F
- By adopting *inference for margins* method (Joe and Xu, 1996) we split the modeling process into two steps:
 - First, fit *the marginal distribution* of each univariate time-series F_1, \ldots, F_r , then compute *pseudo-observations*

$$e_{tj} = F_j(y_{tj})$$

• Second, estimate their *joint distribution* described by a regime switching copula model

- The uniform pseudo-observations e_t, t = 1,..., T, follow a regime switching copula model if:
 - There exists a latent process u_t, t = 1,..., T assumed to follow a homogeneous Markov chain with k states defined by a transition matrix **Π** with elements

$$\pi_{v|u} = P(u_t = v \mid u_{t-1} = u), \quad u, v = 1, \dots, k$$

and *initial* probabilities $\pi_u = P(u_1 = u)$, $u = 1, \dots, k$

 Local independence assumption: given u₁,..., u_T, the vectors of uniform pseudo-observations e₁,..., e_T, are independent and distributed with copula densities

$$c(\cdot; \boldsymbol{R}_{u_1}, \nu_{u_1}), \ldots, c(\cdot; \boldsymbol{R}_{u_T}, \nu_{u_T})$$

being ν_u the number of degrees of freedom and R_u the matrix of dependence parameters of the *Student-t* copula function

Expectation-Maximization Algorithm

- Let θ be the *full vector of parameters* corresponding to the non-redundant elements of R_u, together with ν_u and π_u, u = 1,..., k, and π_{v|u}, u, v = 1,..., k
- The EM algorithm is based on the *complete data log-likelihood* $\ell^*(\theta)$
- It alternates two steps until convergence:
- **E-step**: compute the *posterior expected value* given the observed data
- M-step: maximize the expected complete data log-likelihood with respect to the model parameters

Application

 Application based on the market of *five cryptocurrencies* Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Litecoin (LTC), and Bitcoin Cash (BCH), for the period August 2, 2017 - October, 2, 2022

- Data are provided by the *Crypto Asset Lab*, which is an independent academic lab established at the University of Milano-Bicocca, Italy
- The selection of the *cryptocurrencies* is based on the criteria underlying the Crypto Asset Lab Index concerning some aspects (reliability, liquidity, low manipulation)

- We present results for the 2-state RSStC model: selection based on Integrated Composite Likelihood criteria (ICL)
- An *ARMA(1,1)-GARCH(1,1)* model (Engle and Bollerslev, 1986) for the marginals, with *Skewed Generalized Error* Distribution for the residual terms
- Results show that the model identifies **bull** (profitable) and **bear** market *states* based on the intensity of correlation and fatness of the tail of the joint distribution
- We predict the latent regimes considering *global decoding* (Viterbi, 1967)

• Sample *unconditional means* and standard deviations of the log-returns

,		Cryptocurrency				
			ETH	XRP	LTC	BCH
	Mean (%) S.D. (%)			0.049 6.451		-0.073 6.585

• Linear correlations: a positive association is present for each pair

	BTC	ETH	XRP	LTC	BCH
BTC	1.000	-	-	-	-
ETH	0.787	1.000	-	-	-
XRP	0.560	0.653	1.000	-	-
LTC	0.765	0.823	0.644	1.000	-
BCH	0.678	0.742	0.583	0.732	1.000

Results

.

• Estimated *dependences parameters* $\hat{\rho}_{u}^{(ij)}$ for the 2-states RSStC model

State 1	BTC	ETH	XRP	LTC	BCH
BTC	1.000	-	-	-	-
ETH	0.911	1.000	-	-	-
XRP	0.902	0.910	1.000	-	-
LTC	0.875	0.902	0.910	1.000	-
BCH	0.902	0.907	0.927	0.901	1.000
State 2	BTC	ETH	XRP	LTC	BCH
BTC	1.000	-	-	-	-
BTC ETH	1.000 0.652	_ 1.000	-	-	- -
		- 1.000 0.728	- 1.000	- - -	- - -
ETH	0.652		- 1.000 0.592	- - 1.000	- - -

- Estimated Kendall's tau: $\hat{\tau}_{u}^{(ij)} = \frac{2}{\pi} \arcsin \hat{\rho}_{u}^{(ij)}$ under the 2-state RSStC model with estimated number of degrees of freedom: $\nu_{1} = 6.231$, $\nu_{2} = 9.416$
- First regime shows high interdependence

State 1	BTC	ETH	XRP	LTC	BCH
BTC	1.000	-	-	-	-
ETH	0.730	1.000	-	-	-
XRP	0.715	0.728	1.000	-	-
LTC	0.678	0.715	0.728	1.000	-
BCH	0.716	0.724	0.756	0.714	1.000
State 2	BTC	ETH	XRP	LTC	BCH
BTC	1.000	-	-	-	-
ETH	0.452	1.000	-	-	-
XRP	0.465	0.519	1.000	-	-
LTC	0.324	0.420	0.403	1.000	-
BCH	0.385	0.446	0.469	0.346	1.000

• Estimated *transition probabilities* for the 2-state RSStC model

State	1	2	
1	0.912	0.088	
2	0.121	0.879	

- *High persistence*, that is high estimated self-transition probabilities, is observed in both specifications
- Useful property for the construction of efficacy *trading strategy*: frequent changes in the inferred regimes might result in excessive trading costs and inferior portfolio performance

State-Conditional Mean/S.D.

- State allocation obtained through the Viterbi algorithm
- These estimates charaterize each state *bearish and bullish* market regimes, respectively
- Standard deviations indicate high volatility in both regimes

State 1	Mean (%)	S.D. (%)	State 2	Mean (%)	S.D. (%)
BTC	-0.363	4.121	втс	0.744	4.147
ETH	-0.509	5.400	ETH	0.948	4.957
XRP	-0.699	5.377	XRP	1.131	7.619
LTC	-0.725	5.454	LTC	1.052	5.788
BCH	-0.902	6.013	ВСН	1.125	7.169

Concluding remarks

- New proposal of a *multivariate* regime switching Student-*t* copula model
- To the best of our knowledge, there are no previous works studying cryptocurrencies with regime switching copulas
- *Bear* market regimes are characterized by *high cross-correlation*, *fat-tailed* joint distribution
- RSStC models can account for observed *persistence* of market regimes
- The model can be easily estimated and it is suitable to be used for simulating portfolio scenarios and to compute *risk-measures* (VaR, backtesting)

Main References I

- F. Cortese, F. Pennoni, and F. Bartolucci. Maximum likelihood estimation of multivariate regime switching student-t copula models. *International Statistical Review*, pages 1–28, 2024, https://doi.org/10.1111/insr.12562.
- R. F. Engle and T. Bollerslev. Modelling the persistence of conditional variances. *Econometric Reviews*, 5:1–50, 1986.
- H. Joe and J. J. Xu. The estimation method of inference functions for margins for multivariate models. University of British Columbia, Department of Statistics, Technical Report, 166, 1996.
- F. Pennoni, F. Bartolucci, G. Forte, and F. Ametrano. Exploring the dependencies among main cryptocurrency log-returns: A hidden Markov model. *Economic Notes*, 51:e12193, 2021.
- A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. *IEEE Transactions on Information Theory*, 13:260–269, 1967.

Expectation-Maximization Algorithm

- Let θ be the *full vector of parameters* corresponding to the non-redundant elements of R_u, together with ν_u and π_u, u = 1,..., k, and π_{v|u}, u, v = 1,..., k
- The EM algorithm is based on the complete data log-likelihood

$$\ell^{*}(\boldsymbol{\theta}) = \sum_{t=1}^{T} \sum_{u=1}^{k} w_{tu} \log c(\boldsymbol{e}_{t}; \boldsymbol{R}_{u}, \nu_{u}) + \sum_{u=1}^{k} w_{1u} \log \pi_{u} + \sum_{t=2}^{T} \sum_{u=1}^{k} \sum_{v=1}^{k} z_{tuv} \log \pi_{v|u}$$
(1)

where $w_{tu} = I(u_t = u)$ is an indicator variable equal to 1 if the process is in state u at time t and 0 otherwise, while $z_{tuv} = w_{t-1,u}w_{tv}$ denotes the transition at time tfrom state u to v

- The EM algorithm alternates two steps until convergence:
 - **E-step**: compute the *posterior expected value* of each indicator variable w_{tu} , t = 1, ..., T, u = 1, ..., k, and z_{tuv} , t = 2, ..., T, u, v = 1, ..., k, given the observed data
 - **M**-step: maximize the expected complete data log-likelihood with respect to the model parameters. The estimates at the (m + 1)-th step are given by

$$\hat{\pi}_{u}^{(m+1)} = \frac{\hat{w}_{1u}}{\sum_{\nu=1}^{k} \hat{w}_{1\nu}}, \quad u = 1, \dots, k$$

$$\hat{\pi}_{\nu|u}^{(m+1)} = \frac{\sum_{t \ge 2} \hat{z}_{tu\nu}}{\sum_{t \ge 2} \hat{w}_{t-1u}}, \quad u, \nu = 1, \dots, k$$

$$\left(\hat{\boldsymbol{R}}_{u}^{(m+1)}, \hat{\nu}_{u}^{(m+1)}\right) = \operatorname*{argmax}_{\boldsymbol{R}_{u}, \nu_{u}} \sum_{t=1}^{T} \sum_{u=1}^{k} \hat{w}_{tu} \log c(\boldsymbol{e}_{t}; \boldsymbol{R}_{u}, \nu_{u}), \quad u = 1, \dots, k$$

but this optimization problem is not feasible in higher dimension