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Abstract

A hidden Markov model is proposed for the analysis of

time‐series of daily log‐returns of the last 4 years of Bitcoin,

Ethereum, Ripple, Litecoin, and Bitcoin Cash. These log‐returns

are assumed to have a multivariate Gaussian distribution con-

ditionally on a latent Markov process having a finite number of

regimes or states. The hidden regimes represent different

market phases identified through distinct vectors of expected

values and variance–covariance matrices of the log‐returns, so

that they also differ in terms of volatility. Maximum‐likelihood

estimation of the model parameters is carried out by the

expectation–maximisation algorithm, and regimes are singularly

predicted for every time occasion according to the maximum‐

a‐posteriori rule. Results show three positive and three nega-

tive phases of the market. In the most recent period, an

increasing tendency towards positive regimes is also predicted.

A rather heterogeneous correlation structure is estimated, and

evidence of structural medium term trend in the correlation of

Bitcoin with the other cryptocurrencies is detected.
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1 | INTRODUCTION

Following the seminal paper of Satoshi Nakamoto (2008) and the creation of the Bitcoin network in 2009, an

increasing number of crypto‐assets have appeared. Almost all are of little interest, being just clones of the

first without any real functional innovation and/or trading liquidity. A few exceptions exist that are relevant

enough to be considered as investable assets. Therefore, crypto‐assets time‐series nowadays consist of

multidimensional and complex data, and these assets represent the most volatile and challenging financial

market (Borri, 2019).

Cryptocurrencies are peculiar assets in terms of both their origin and operating mechanism. Phenomena

such as digital scarcity, periodic halving, emergence of many cryptocurrencies trying to replicate the success

of Bitcoin, which remains the centre of this universe, and the absence of regulation, contribute to make

crypto‐assets unique. Many papers analysed the behaviour of the prices of a single crypto; among others,

Chan et al. (2017), Osterrieder (2017), and Szczygielski et al. (2020) investigated the distributional properties,

showing a considerable and expected distance from the assumption of a Gaussian distribution. Bariviera et al.

(2017) found long‐term memory in the Bitcoin time‐series only up to 2014 highlighting a convergence

process towards efficiency, while Zhang et al. (2018) extended their analysis to the time‐series variance,

identifying long memory.

Many other empirical profiles of cryptocurrencies have been investigated and deserve attention in their high

risk/reward profile. In particular, it is worth mentioning the works focusing on the efficiency of the cryptocurrency

market and its speculative traits resulting in periodic bubbles. Efficiency side is of particular interest, given the

youthfulness of this market. Some notable works are Nadarajah and Chu (2017), Almudhaf (2018), Alvarez‐Ramirez

et al. (2018), and Tiwari et al. (2018). Applying different techniques, they shed light on the inefficiency of Bitcoin in

weak form, while pointing out a marked trend towards greater efficiency.

The speculative nature of cryptocurrencies is a key feature of this market; without this and the resulting

hype and stellar returns, the experiment in decentralised digital currencies would have been short‐lived.

About this issue Cheung et al. (2015), Cheah and Fry (2015), Corbet et al. (2018), and Agosto and Cafferata

(2020) found strong evidence of periodic bubbles through an analysis of the data based on the approaches

adopted in Phillips et al. (2011) and Phillips et al. (2015), which rely on the variants of the augmented

Dickey–Fuller test, and on modelling the cost of mining as in Xiong et al. (2020). The latter also showed that it

is possible to predict these bubbles with a remarkable level of accuracy.

In this study we consider five main cryptocurrencies and monitor their log‐returns jointly. We avoid going into

the debate on the representativeness of the different cryptocurrencies and we focus on the market data referred to

Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Litecoin (LTC), and Bitcoin Cash (BCH). This choice is mainly related to

their trading volume, as will be further explained in the following. We propose a popular unsupervised statistical

method based on a multivariate Hidden Markov (HM) model; see Cappé et al. (1989), Mamon and Elliott (2007), and

Zucchini et al. (2017) for details on the model in the context of time‐series data and Bartolucci et al. (2013) in the

context of longitudinal data. This model may be seen as an extension of the finite mixture model (McLachlan & Peel,

2000) with a particular dependence structure across variables referred to different time points. The HM approach

provides a flexible framework for many financial applications and it allows incorporating stochastic volatility in a

rather simple form. From the pioneering work of Akaike (1998), showing that an ARMA process can be represented

by a Markovian structure, many other extensions have been proposed in the literature. Hamilton (1989) was the

first to formulate a model where the latent regime follows a Markov process, and many other works following this

proposal appeared in the literature; see, among others, Genon‐Catalot et al. (2000), Bartolucci and De Luca (2003),

Rossi and Gallo (2006), Mamon and Elliott (2007), Langrock et al. (2012), Giudici and Abu Hashish (2020), and Lin

et al. (2020).

Unlike the prevailing literature, in which applications of switching models are focused exclusively on the

estimation and prediction of volatility and the expected log‐returns are considered as unpredictable (see,
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among others Ang & Bekaert, 2002), we proceed as proposed in De Angelis and Paas (2013) by also modelling

the conditional means of the time‐series. In particular, stable periods, crises, and financial bubbles differ

significantly for mean returns and structural levels of covariance. Furthermore, in line with the most recent

literature, we model the log‐returns of crypto‐assets considering their correlation structure. In fact the study

of interconnectedness, comovements, and volatility spillovers between cryptocurrencies has received con-

siderable attention in recent research; see Corbet et al. (2018), Giudici and Polinesi (2019), and Chen et al.

(2020) for a network analysis; Yi et al. (2018) and Giudici and Pagnottoni (2019, 2020) for a Value‐at‐Risk

analysis; Katsiampa et al. (2019) for a multivariate GARCH analysis; and Sifat et al. (2019) for the ARMA

analysis. Considering multiple time‐series jointly instead of a single series as proposed in Huang et al. (2019)

allow us to account for the sideway movements in the long‐term trends and to identify actual trend change

signals in the market.

The multivariate HM assumes that the daily log‐returns of the five mentioned cryptos comes from a

specific probabilistic distribution associated with the hidden regimes. The expectation‐maximisation (EM)

algorithm (Baum et al., 1970; Dempster et al., 1977; Welch, 2003) is employed for maximum‐likelihood

estimation of the model parameters. The conditional distributions of the observed log‐returns for the states

of the hidden variables are taken from the Gaussian family with different means, variances, and covariances.

This study is a first attempt to estimate a multivariate model of the main cryptocurrencies using the market

prices collected from 3 August 2017, to 30 June 2021. We shed light on the structure of their connection,

simultaneously seizing the dynamics of the regimes. The proposal is consistent with some of the stylised facts

typical of financial time‐series (Rydén & Teräsvirta, 1998) and also accounts for the structural links between

assets (Dias et al., 2015).

The remainder of the paper is organised as follows. In Section 2 we define the notation and the main assumptions of

the HM model, as well as its maximum‐likelihood estimation via the EM algorithm. In Section 3 we describe the data and

the reference market. In Section 4 we show the main results. In Section 5 we provide some conclusions.

2 | MULTIVARIATE HIDDEN MARKOV MODEL

We consider multiple time‐series with data collected in vectors y y, , …1 2 , where each element ytj, with

t j r= 1, 2, …, = 1, …, , corresponds to the log‐return of asset j among those considered. We will use yt to denote

either the random vector at time t or one of its realisations in a way that will be clear from the context; the same

convention will be applied to scalar random variables. In the following, we first describe the HM model assumptions

for our specific formulation and then outline the steps of the EM algorithm for its estimation.

The main assumption of the HM model is that the random vectors y y, , …1 2 are conditionally independent given

a hidden process u u, , …1 2 that follows a Markov chain with k hidden states, labelled from 1 to k . The model includes

two different submodels, named measurement and structural models, which are described in more detail in the

following. The measurement model corresponds to the conditional distribution of every vector yt given the un-

derlying variable u t, = 1, 2, …t . In this regard, we assume a multivariate Gaussian distribution for the overall log‐

returns of the criptocurrencies, that is,

y μu u N u kΣ= ~ ( , ), = 1, …, ,t t r u u

where μu and Σu are, for hidden state u, the specific mean vector and variance–covariance matrix, respectively.

Obviously, the conditional means in μu define the expected log‐returns when the underlying chain is in state u, while

the elements of Σu provide measures of volatility of each asset and correlation between pairs of assets. Different

constraints may be conceived on these matrices that can also be useful to test some hypotheses, the main of which

is that of homoskedasticity: u kΣ Σ= , = 1, …,u . Other formulations could be adopted (Banfield & Raftery, 1993;
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Celeux & Govaert, 1995). Denoting by T the last observation time, the previous assumptions imply that the

conditional distribution of the time‐series given the sequence of hidden states may be expressed as follows:

∏y y y μf u u ϕ Σ( , …, , , …, ) = ( ; , ),T T
t

T

t u u1 1
=1

t t

where, in general, ϕ ( ; , )⋅ ⋅ ⋅ denotes the density of the multivariate Gaussian distribution, in our case of dimension r ,

with a certain mean vector and variance–covariance matrix.

The structural model for the distribution of the hidden Markov process is based on two sets of para-

meters, which are the initial and transition probabilities. They are denoted by λ p u u u k= ( = ), = 1, …,u 1 , and

π p u v u u u v k= ( = = ), , = 1, …,v u( ) t t−1 , respectively, and are collected in the initial probability vector λ and in

the transition matrix Π. Joint together, the measurement and structural models imply that the manifest

distribution of the time‐series has a density that is computed by a forward recursion (Baum et al., 1970;

Welch, 2003). This recursion requires a number of operations that linearly increases with the number of

observation times needed to exploit the factorisation of the manifest distribution.

Maximum‐likelihood estimation of the model based on the previous assumptions is considered. With reference

to the observed time‐series of log‐returns, the log‐likelihood function of this model is defined as follows:

θ y yfℓ( ) = log ( , …, ),T1

where θ is the vector of all model parameters, that is, μ Σ,u u, for u k= 1, …, , and λ, and Π. By maximising θℓ( )

we estimate these parameters and, for this aim, we employ the EM algorithm. The latter is based on the so‐

called complete‐data log‐likelihood denoted by θℓ*( ), which may be expressed as the sum of three compo-

nents that are maximised separately. The EM algorithm alternates two steps until convergence in θℓ( ): E‐step:

compute the conditional expected value of θℓ*( ), given the observed data and the value of the parameters at

the previous step; M‐step: maximise the expected value of θℓ*( ) obtained from the E‐step and then update the

model parameters. In particular, the parameters of the measurement model are updated in a simple way as

follows:

μ y

y μ y μ

w

wΣ

= ∑ ˆ ,

= ∑ ˆ ( − )( − ) ,

∑

∑

u
w

t
T

tu t

u
w

t
T

tu t u t u

1

ˆ
=1

1

ˆ
=1

′

t
T

tu

t
T

tu

=1

=1

for u k= 1, …, , where y yw p u uˆ = ( = , …, )tu t T1 is the posterior probability that the time‐series is in state u at occasion

t. Regarding the parameters of the structural model, we simply have

λ w u k

π z u v k

= ˆ , = 1, …, ,

= ∑ ˆ , , = 1, …, ,
∑

u u

v u
w

t
T

tuv

1

1

ˆ
=2

t
T

t u=2 −1,


where y yz p u u u vˆ = ( = , = , …, )tuv t t T−1 1 . The overall vector of estimates obtained at convergence is denoted by θ̂.

Since the EM algorithm may converge to a local maximum not corresponding to the global maximum, common

initialisation strategies involve a multistart rule from appropriate deterministic and random starting values. Deterministic

starting values of the parameters of the measurement model, μu and u kΣ , = 1, …,u , are defined on the basis of de-

scriptive statistics (mean vector and variance–covariance matrix) of the observed log‐returns. The starting values for the

initial probabilities λu are chosen as k1∕ , for u k= 1, …, , whereas for the transition probabilities we adopt the following
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rule: π h h k= ( + 1)∕ ( + )v u when v u= and π h k= 1∕ ( + )v u when v u≠ , where h is a suitable positive constant (e.g., an

integer from 5 to 10). The random starting rule is instead based on values drawn from a multivariate Gaussian distribution

for μ u k, = 1, …,u , and on normalised random numbers drawn from a uniform distribution between 0 and 1 for initial and

transition probabilities. The starting values for the variance–covariance matrices are again based on their sample coun-

terpart. Overall, for a given k , inference is based on the solution corresponding to the largest value of the log‐likelihood at

convergence, which typically is the global maximum.

A further important aspect concerns model selection in terms of choice of the appropriate number

of regimes, denoted by k . When there are not substantial reasons to assume a predefined value for k ,

we rely on the Bayesian information criterion (BIC; Schwarz, 1978), which is based on the following

index:

TBIC = −2ℓ̂ + log( )#par ,k k k
(1)

where ℓ̂k denotes the maximum of the log‐likelihood of the model with k states and #park denotes the number of

free parameters equal to k r r r k[ + ( + 1)∕2] + − 12 for the heteroskedastic model. Another common criterion is the

Akaike information criterion (AIC, Akaike, 1973), which is based on the following index

AIC = −2ℓ̂ + 2#par .k k k

It is worth mentioning that other indices could be considered for selecting the model that represents the best

compromise between goodness‐of‐fit and complexity. Among them we mention the corrected AIC (AICc), proposed

in Hurvich and Tsai (1993), and defined with a different penalisation term:

n
AIC = −2ℓ̂ + 2

#par (#par − 1)

− #par − 1
.c k k

k k

k
,

In practice we estimate a series of HM models for increasing value k and we select the number of hidden states

corresponding to the minimum value of the chosen index.

Among the previous ones, it is worth noting that, once the maximum‐likelihood estimates are obtained, prediction of

the most likely sequence of hidden states can be performed through the so‐called local decoding. This is a maximum‐a‐

posteriori prediction based on probabilities obtained from the EM algorithm. Global decoding may also be performed

through the Viterbi algorithm (Juang & Rabiner, 1991; Viterbi, 1967) that is able to predict the entire sequence of latent

states. Computational tools required for the estimation are implemented by adapting suitable functions of package LMest

(Bartolucci et al., 2017) in R (R Core Team, 2021); they are available upon request from the authors.

3 | DATA AND REFERENCE MARKET

The crypto‐asset market lacks regulation and established best practices, and it is quite common to have

manipulated asset prices and trading volumes. For these reasons, suitable criteria must be used to select

crypto‐assets for quantitative analyses. Approaches based on the so‐called market capitalisation are un-

reliable because it is not easy to define the real free‐floating capital for every asset. Descriptive statistics in

the market indices are available, but they are generally not relevant from an economic point of view. In fact,

due to the anonymity/pseudonymity of the blockchain protocol, it is difficult to determine the amount of

capital lost forever, making the calculations of the actual capital available for trading almost always

impossible.
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The adopted criteria to select the cryptocurrencies for the illustrative example are the same underlying the

Crypto Asset Lab Index defined by the Crypto Asset Lab (CAL).1 Each crypto‐assets must satisfy the following

requirements: (i) being a scarce digital bearer asset that; (ii) having a value that is not pegged to any other asset or

currency; (iii) being traded on at least two reliable exchanges;2 (iv) having no more than 80% of its combined 90‐day

trading volume on a single reliable exchange; and (v) being actively traded on reliable exchanges against traditional

fiat currencies, stablecoins (i.e., crypto‐assets pegged to fiat currencies), BRC, or ETH.

In light of the above remarks, we consider BTC, ETH, XRP, LTC, and BCH focusing on a recent time span

of almost 4 years for the seek of comparability on the liquidity side. In this way, we account for the recent

introduction and development of XRP and LTC. The data provided by the CAL are referred to daily quotes

from 3 August 2017, to 30 June 2021; these data are available upon request from the CAL. Prices are

collected daily every midnight, and they come from eight exchanges among the 81 currently active ones,

namely: BitFlyer, BitStamp, Bittrex, Coinbase, Gemini, itBit, Kraken, and Poloniex. The selection of these

exchanges is justified by their relevance, reliability, and ethical standards. It is known that the cryptocurrency

market is affected by distinct phenomena of volume manipulation aimed at attracting customers displaying

false liquidity. Therefore, we have followed exclusion criteria based on manipulation, taken also into account

by the CAL for the design of its index, and similar to those of Bitwise submitted to the Securities and

Exchange Commission (SEC).3

Overall, we dispose of a series of T = 1,429 log‐returns for r = 5 assets. Figure 1 shows the daily prices of

the five cryptocurrencies over the entire period of observation. It is immediate to recognise the high volatility

that characterises this market and the waves of exponential price increases. The first wave started in mid‐

2017, the first big “bubble” that brought BTC above 20k USD, another one in mid‐2019, and the most recent

one started in late 2020. Figure 2 depicts the daily log‐returns of the five cryptocurrencies, confirming their

high volatility, a strong degree of comovement, and showing the typical volatility clustering common to

financial assets.

Table 1 reports the observed correlations and partial correlations. The correlations are above 0.5, and

very high for the pairs BTC‐ETH, ETH‐LTC, and LTC‐BCH. However, the partial correlation structure is not so

obvious to interpret, suggesting that the BTC dominance does not necessarily result in a unique comoving

driver.

4 | RESULTS

Results for the HM model estimated through the procedure outlined in Section 2 show that the minimum value of

the Bayesian information criterion (BIC) is reached considering a six‐state heteroskedastic structure. The estimation

is performed for a number of states ranging from 1 to 7, and Table 2 shows for each of these models, the maximum‐

log‐likelihood (ℓ̂ )k , the number of free parameters (#park), the BICk, AICk, and AICc k, values. The sequence of BIC

values leads to selecting an HM model with k = 6 latent states.

1The Crypto Asset Lab (CAL) is an independent academic lab established at the University of Milano‐Bicocca; for more details, see the web page at

https://cryptoassetlab.diseade.unimib.it/. CAL developed an index (CAL Index) of the cryptocurrency market in 2019 which is reliable in terms of data

inclusion criteria and independence. The price of each cryptocurrency originates from a double weighting scheme for trading volumes. The first step is to

convert the prices of each cryptocurrency expressed in EUR, CAD, GBP, JPY into USD (using the European Central Bank [ECB] exchange rates) to have all

cryptocurrency pairs expressed in one currency. Then the price of every coin for each of the eight exchanges stems from a volume‐based weighted

average price in each fiat currency (EUR, CAD, GBP, JPY, and USD). The final price is then calculated by taking the volume‐weighted average of the single

prices on the different exchanges.
2An exchange is considered reliable when it: (i) has not been charged for publishing false or inflated trading volumes; (ii) is registered and has obtained the

license to operate in its jurisdiction; (iii) provides open and reliable functioning application programming interface; and (iv) applies trading fees.
3The presentation is available at the following link https://www.sec.gov/comments/sr-nysearca-2019-01/srnysearca201901-5164833-183434.pdf. We

also note that the selected exchanges coincide with those used by the Chicago Mercantile Exchange (CME) to calculate BTC futures prices.
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4.1 | Hidden Markov model with six regimes

The vectors of the expected conditional log‐returns estimated under the selected model with k = 6 regimes

are shown in Table 3. According to the elements of such vectors, three negative regimes (1, 2, 3) and three

positive regimes (4, 5, 6) are estimated, which represent a variety of situations in the market. The first

relevant evidence that emerges is that, when looking at cryptocurrencies as a whole, their average return

from State 1 to 6 is increasing in a monotonic and exponential trend. This is in agreement with the evidence

of speculative bubbles as discussed in Section 1. Considering cryptocurrencies individually, however, this

regularity is not strictly observed. Regime 3 shows a negative overall average return; however, three of the

five cryptocurrencies have positive returns, meaning that this regime reflects a more mixed pattern rather

than a common negative expectation.

The results in Table 4, characterise each regime in terms of estimated conditional variances, correlations,

and partial correlations. In particular, Regimes 3 and 5 are the most volatile among those with negative and

positive average log‐returns, respectively. Considering the correlations, these are very high for all regimes,

with the only exception of Regime 6, which is also the one characterised by the highest average returns.

Looking at the partial correlations, ETH and XRP, often show a divergent behaviour with respect to the other

cryptocurrencies.

Table 5 shows the estimated matrix of transition probabilities among regimes. We remark that the

highest persistence is observed for Regimes 2, 4, and 6, whereas Regime 1 and especially 5 are less

F IGURE 1 Daily time‐series of prices of BTC, ETH, XPR, LTC, and BCH. Complete observations are referred
to the period from 3 August 2017, to 30 June 2021 (ETH, XPR, LTC, and BCH prices have been appropriately
scaled for comparison). BCH, Bitcoin cash; BTC, Bitcoin; ETH, Ethereum; LTC, Litecoin; XRP, Ripple

PENNONI ET AL. | 7 of 16
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persistent. There is a quite high probability of transition towards State 3 that has average log‐returns close to

zero and which may be considered as a “centre of gravity.” Concerning the highest estimated transition

probability from the less persistent Regime 5 to Regime 3, we notice that this switch is not surprising, as

Regime 5 represents positive log‐returns. This transition can be read like the typical pullback following a

substantial price increase.

Figure 3 illustrates the estimated posterior probabilities of being in latent state u, at time t, and u k= 1, …, , with

t T= 1, …, , conditional on the observed time‐series and with over‐imposed trend according to a smoothed local

regression. Through these probabilities we are able to characterise the assets along time at the different market

phases. In the most recent period, considering the trend line we notice the increasing tendency for Regimes 4, 5,

and 6, and a decreasing tendency especially for Regime 2. Moreover, apart from few exceptions, there are no stable

periods.

F IGURE 2 Daily time‐series of log‐returns of the BTC, ETH, XRP, LTC, and BCH cryptocurrencies based on
closing prices (complete observations are referred to the period from 3 August 2017, to 30 June 2021). BCH,
Bitcoin cash; BTC, Bitcoin; ETH, Ethereum; LTC, Litecoin; XRP, Ripple

TABLE 1 Observed correlation (left panel) and partial correlation (right panel) matrices of the five
cryptocurrencies

Correlations Partial correlations

BTC ETH XRP LTC BCH BTC ETH XRP LTC BCH

BTC 1.000 1.000

ETH 0.840 1.000 0.732 1.000

XRP 0.463 0.693 1.000 −0.319 0.270 1.000

LTC 0.721 0.857 0.787 1.000 0.463 0.040 0.474 1.000

BCH 0.378 0.684 0.689 0.789 1.000 −0.575 0.429 −0.044 0.571 1.000

Abbreviations: BCH, Bitcoin cash; BTC, Bitcoin; ETH, Ethereum; LTC, Litecoin; XRP, Ripple.
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Figure 4 depicts the decoded states obtained through local decoding by considering the maximum

of the posterior probabilities showed in Figure 3. The predicted trajectories indicate that States 1, 2, and 3,

representing negative phases of the market, are visited the 19%, 27%, and 22% of the overall period,

respectively. States 4, 5, and 6, related to phases of a market with rise in prices, are visited the 20%, 4%, and

7% of the T = 1,429 days, respectively. Therefore, States 5 and 6 occur in a small fraction of the time

occasions.

On the basis of the previous results some conclusions can be drawn. The distribution of states closely

mirrors the dynamics of the cryptocurrency market. In particular, the speculative waves are caught by States

5 and 6, which have been less persistent and show clusters during the “explosive” trends, at the end of 2017,

the first big bubble, in mid‐2019, and the most recent surge in the second half of 2020 that brought the price

of BTC to $60K. Such periods of extreme price movements are characterised by rapid price accelerations

with an exponential or even explosive behaviour and are one of the primary concerns for investors due to the

high risk represented by the subsequent bubble burst with extremes losses. Bouri et al. (2019) and Agosto

and Cafferata (2020) estimated a relevant interconnection between couples of cryptos during both the price

surge and the subsequent bubble burst. As a result, protection opportunities in the cryptocurrency market

during these periods are limited. The estimated posterior probabilities in Figure 3 suggest that the proposed

model adequately succeeds in identifying a trend of a sharp decrease of these episodes. This is important

TABLE 2 Summary information for selecting the number of regimes for the multivariate Hidden Markov model

k ˆkℓ #park BICk AICc,k AICk

1 11,945.160 15 −23,781.360 −23,860.320 −23,890.023

2 13,901.684 43 −27,491.014 −27,717.367 −27,800.759

3 14,361.176 68 −28,228.397 −28,586.351 −28,715.651

4 14,507.426 95 −28,324.769 −28,824.852 −29,001.453

5 14,653.901 124 −28,407.061 −29,059.801 −29,284.408

6 14,766.747 155 −28,407.570 −29,223.495 −29,495.993

7 14,868.592 188 −28,371.531 −29,361.180 −29,693.150

Note: Figures in bold correspond to the selected model.

TABLE 3 Estimated expected conditional log‐returns under the Hidden Markov model with k = 6 hidden states
(states are ordered according to increasing average values of the expected log‐returns)

1 2 3 4 5 6

BTC −0.0044 0.0000 0.0002 0.0067 −0.0002 0.0178

ETH −0.0024 −0.0007 0.0067 0.0010 −0.0077 0.0142

XRP −0.0089 −0.0030 0.0056 −0.0004 0.0489 −0.0005

LTC −0.0069 −0.0029 −0.0053 0.0058 0.0287 0.0219

BCH 0.0005 −0.0040 −0.0120 −0.0029 −0.0162 0.0752

Average −0.0044 −0.0021 −0.0010 0.0020 0.0107 0.0257

Abbreviations: BCH, Bitcoin cash; BTC, Bitcoin; ETH, Ethereum; LTC, Litecoin; XRP, Ripple.
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TABLE 4 Estimated conditional correlations (lower triangle), variances (diagonal, figures in bold), and partial
correlations given all remaining variables (upper triangle, figures in italics) under the Hidden Markov model with
k = 6 hidden states

BTC ETH XPR LTC BCH

State 1

BTC 0.0331 0.0276 0.2916 0.4796 0.0039

ETH 0.5098 0.0565 0.1951 0.0639 −0.0775

XRP 0.8949 0.5479 0.0417 0.3814 0.1401

LTC 0.9221 0.5214 0.9204 0.0499 0.5179

BCH 0.8442 0.4564 0.8577 0.9080 0.0639

State 2

BTC 0.0166 0.3406 0.1437 0.0924 0.2909

ETH 0.7782 0.0216 0.2039 0.1679 0.1218

XRP 0.7548 0.7602 0.0172 0.3541 0.2168

LTC 0.7591 0.7623 0.8213 0.0225 0.3989

BCH 0.7922 0.7608 0.8017 0.8382 0.0231

State 3

BTC 0.0520 −0.1693 −0.1352 0.5073 0.3364

ETH 0.5241 0.0487 −0.1230 0.3795 0.1279

XRP 0.6083 0.4397 0.0821 0.4131 0.1388

LTC 0.8632 0.6624 0.7369 0.0627 0.3944

BCH 0.8368 0.6091 0.6809 0.8842 0.0727

State 4

BTC 0.0407 0.3350 −0.0947 −0.0045 0.4603

ETH 0.7961 0.0395 0.3541 0.1405 0.2357

XRP 0.6782 0.7950 0.0392 0.1375 0.3360

LTC 0.6505 0.7138 0.6902 0.0508 0.3146

BCH 0.8293 0.8406 0.8029 0.7616 0.0399

State 5

BTC 0.1002 0.2956 −0.1371 0.1731 0.3267

ETH 0.6987 0.1253 −0.0047 0.1620 0.2869

XRP 0.3787 0.4327 0.2151 −0.0514 0.4864

LTC 0.6806 0.6786 0.4533 0.1617 0.4480

BCH 0.7349 0.7409 0.6313 0.7865 0.1495

State 6

BTC 0.0497 −0.0361 0.3656 0.2929 −0.2580

ETH 0.1965 0.0372 0.3270 −0.0826 −0.0110

XRP 0.6271 0.3821 0.0494 0.5177 0.1521

LTC 0.6013 0.2124 0.7200 0.0633 0.1202

BCH −0.0884 0.0500 0.1465 0.1389 0.1509

Abbreviations: BCH, Bitcoin cash; BTC, Bitcoin; ETH, Ethereum; LTC, Litecoin; XRP, Ripple.
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since these bubbles poses a serious limit for retail and institutional investors in considering cryptocurrencies

as investable assets.

Figures from 1 to 5 reported in the supplementary information depict the observed log‐returns, the

predicted averages, and standard deviations over the entire time period for each cryptocurrency. In our

intention, the HM model with six regimes is not meant to provide precise univariate predictions of log‐returns

or volatility, but the results are truly comforting; the model seems able to detect regimes of high or low

returns and volatilities timely.

TABLE 5 Estimated transition probabilities under the Hidden Markov model with k = 6 hidden states, figures
in italics correspond to the probabilities in the main diagonal and in bold to the largest probability in each row out
of the main diagonal

1 2 3 4 5 6

1 0.4762 0.2056 0.1822 0.1035 0.0136 0.0188

2 0.1933 0.6988 0.0197 0.0882 0.0000 0.0000

3 0.1544 0.0282 0.5813 0.0913 0.0853 0.0594

4 0.1013 0.1491 0.0253 0.6816 0.0276 0.0151

5 0.0000 0.0000 0.5300 0.0295 0.3847 0.0557

6 0.0000 0.0000 0.2745 0.0114 0.0476 0.6664

F IGURE 3 Predicted posterior probabilities under the Hidden Markov model with k = 6 states with
over‐imposed trend according to smoothed local regression (in blue)
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Finally, Figure 5 shows the estimates of daily correlations between BTC and the other cryptocurrencies,

namely, ETH, XPR, LTC, BCH, along with a trend line inferred according to a smooth local regression. A clear

contribution of the multivariate HM model is to detect structural trends in the interconnection between

assets, and we show that in absence of speculative bubbles, correlations remain very high, with marked

decreases only during those periods. A possible interpretation of this result is related to the maturity stage of

the cryptocurrency market. Indeed, our analysis focuses on the most recent period of market development

from 2017 to 2021. The strengthening of the systematic risk can be explained by factors such as the highest

number of institutional players involved in transactions, the spread of derivatives on BTC, and the increased

diffusion of cryptocurrency‐based indices. All factors were pushing for investments in a portfolio logic.

Another explanation could be the rise of stablecoins pair dominance during the year 2018, concurring to the

overall decline in the contribution of BTC pairs to total industry trade volume, with a pressure to a stronger

link with USD of all cryptocurrencies and a subsequent increase in correlation.

5 | CONCLUSION

We propose a multivariate Hidden Markov model to analyse log‐returns of the main five cryptocurrencies:

Bitcoin, Ethereum, Ripple, Litecoin, and Bitcoin cash in the period 2017–2021. The narrow universe of

cryptocurrencies and exchanges we selected fulfills the intention to concentrate on the more reliable, liquid,

and less manipulated crypto‐assets in the market. The choice of recent observations (nearly 4 years of data)

followed similar criteria of homogeneity between time‐series, especially with reference to the liquidity

profile. The proposed approach is coherent with many stylised facts in finance. The advantage of employing

an HM model that includes expected log‐returns and state‐specific variance–covariance matrices lies in the

use of the surplus of information provided by this model compared to traditional regime‐switching models

that focus exclusively on volatility.

F IGURE 4 Predicted sequence of hidden states over time under the Hidden Markov model with k = 6 states

12 of 16 | PENNONI ET AL.
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To choose the appropriate number of regimes, we rely on the Bayesian information criterion and select a model

with six regimes. We showed that the model performs well in capturing the different regime dynamics of this

market. The model proves capable of segmenting into six regimes with consistent monotonic dynamics of average

log‐returns, thus providing rather remarkable univariate predictions of log‐returns and volatility. Three of these

regimes represent a negative phase of the market, and Regime 3 shows high volatility. Regimes 4, 5, and 6

are related to phases of a marked rise in price. Finally, we spot a trend of increase of the market correlation from the

predicted correlations of the cryptocurrencies coupled to Bitcoin. This evidence is coherent with the hypothesis of

an increasing association observed in more mature markets, and the induced stronger link with the USD starting

from 2018 due to the rise of stablecoins. The robustness of the proposal concerning variation in the data was

empirically assessed by estimating the model with prices considered for a shorter time interval (from 3 August

2017, to 27 February 2020); see Pennoni et al. (2021).

Further improvements of the present approach may consider a generalisation of the model using different

conditional distributions of the log‐returns, among which is the multivariate Student's t distribution. We may also

consider comparing of the proposed approach with regime‐switching copula models where the states are char-

acterised on the basis of the correlation structures. This approach may be more suitable to model the distribution

tails and thus the probabilities of simultaneous occurrence of rare events (Demarta & McNeil, 2005; Nasri &

Rémillard, 2019). Another promising approach, especially when portfolio allocation is of interest, may be based on

the estimation procedure proposed in Nystrup et al. (2020) to reduce the estimated switching patterns.

F IGURE 5 Predicted correlations between BTC and the other cryptocurrencies under the Hidden Markov
model with k = 6 hidden states with over‐imposed smooth trend according to a local regression (blue line). BCH,
Bitcoin cash; BTC, Bitcoin; ETH, Ethereum; LTC, Litecoin; XRP, Ripple
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