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Nanodynamo quantifies subcellular RNA
dynamics revealing extensive coupling
between steps of the RNA life cycle

Lucia Coscujuela Tarrero1,6, Valeria Famà 1,2,6, Giacomo D’Andrea3,4,
Simone Maestri 1, Anna de Polo1, Stefano Biffo 3,4, Mattia Furlan 1,7 &
Mattia Pelizzola 1,5,7

The coordinated action of transcriptional and post-transcriptional machi-
neries shapes gene expression programs at steady state and determines their
concerted response to perturbations. We have developed Nanodynamo, an
experimental and computational workflow for quantifying the kinetic rates of
nuclear and cytoplasmic steps of the RNA life cycle. Nanodynamo is based on
mathematical modelling following sequencing of native RNA from cellular
fractions and polysomes. We have applied this workflow to triple-negative
breast cancer cells, revealing widespread post-transcriptional RNA processing
that is mutually exclusive with its co-transcriptional counterpart. We used
Nanodynamo to unravel the coupling between transcription, processing,
export, decay and translation machineries. We have identified a number of
coupling interactions within and between the nucleus and cytoplasm that
largely contribute to coordinating how cells respond to perturbations that
affect gene expression programs. Nanodynamo will be instrumental in unra-
velling the determinants and regulatory processes involved in the coordina-
tion of gene expression responses.

The RNA life cycle is a multi-step program that stems from the birth of
novel transcripts till their decay1. The fine regulation of these steps
ultimately shapes gene expression programs in physiological and
disease conditions. Research in the last decades has revealed that the
different steps of theRNA life cycle are extensively coupled, evenwhen
the correspondingmachineries are in different cellular compartments.
This ensures robust and precise coordination of these processes at
steady-state conditions, and their concerted regulation when gene
expression programs have to be shaped to support cellular
responses2,3. The coupling is typically mediated by RNA binding pro-
teins (RBPs) or transcription factors (TFs) that are directly involved in
the regulation of multiple machineries4. Several studies focused on
characterising the coordination between RNA synthesis with RNA

processing5 andwith decay6, which were found to be important for the
correct execution of transcriptional and post-transcriptional events
and for the buffering of RNA levels7,8, respectively. RNAprocessingwas
also shown being coordinated with the RNA degradation machinery9.
Finally, various studies documented the link between the translation
machinery and steps of the RNA life cycle10–15.

The results obtained so far in the field often tackle the coupling
between one specific step of the RNA life cycle and another one.
Therefore, despite the progress, a comprehensive picture of the
intricate crosstalk among the various steps is missing. A key reason is
the lack of methods able to determine the efficiency of the various
machineries and how this is impacted by perturbation of individual
steps. To this end, various approaches were proposed in the last
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decade to study the dynamicsof RNAmetabolism, allowing to quantify
the kinetic rates of individual RNA life cycle stages16. The ability to
profile nascent transcription via RNA metabolic labelling, and the
adoption of mathematical modelling were crucial in the field17.
Nowadays, available methods allow extracting, for individual cells or
populations thereof, precious information on how the abundance of
premature and mature RNAs is governed by the kinetic rates of RNA
synthesis, processing anddegradation18. Other studies tried expanding
the covered steps, including the export of RNA into the cytoplasm19 or
focusing on the efficiency of translation, through polysomal or ribo-
somal profiling20. Altogether, eachmethod focuses on specific steps of
the RNA life, relying on important assumptions and ultimately falling
short in covering all key stages. Few recent studies aim at overcoming
these limitations by extending the number of covered RNA life cycle
steps21,22.

Following up the development of INSPEcT, a suite of tools for the
quantification of the kinetic rates of RNA synthesis, processing and
degradation16,23,24 (Supplementary Fig. 1A), we developed Nanody-
namo, an experimental and computational framework that markedly
expands our ability to quantify RNA dynamics. Nanodynamo relies on
RNA metabolic labelling and Nanopore sequencing of native RNA for
the profiling of transcripts from cellular fractions and polysomes.
Mathematical modelling allows following transcripts from their birth
and detachment from chromatin, through their co- or post-
transcriptional processing, their export into the cytoplasm, and their
translation, up to their final degradation (Supplementary Fig. 1B). We
used Nanodynamo to finely characterise transcriptional programs in
triple negative breast cancer cells, and how they are modulated in
response to drugs blocking the spliceosomal, the export, and the
translational machineries. Nanodynamo revealed the prevalence of
post-transcriptional RNA processing as an alternative pathway for
transcripts maturation and shed light on the extensive crosstalk
between steps of the RNA life cycle within and between nucleus and
cytoplasm.

Results
Nanodynamo: model formulation, parameters identifiability
and inference
We modelled the RNA life cycle with a set of deterministic Ordinary
Differential Equations (ODEs) describing the temporal modulation of
RNA species in various RNA pools, including cellular compartments
and polysomes. More in detail, premature RNA associated with chro-
matin is transcribed at rate k1 and is either co-transcriptionally pro-
cessed into its mature form or detached from chromatin to become
premature nucleoplasmic RNA with rates k2 and k4, respectively. Pre-
mature nucleoplasmic RNA is then post-transcriptionally spliced into
mature nucleoplasmic RNA with rate k5. The latter is also produced
from the detachment of mature RNA from chromatin with rate k3.
Mature nucleoplasmic RNA is then exported to cytoplasm at rate k6 to
become cytoplasmic RNA, which can be finally either directly degra-
ded at rate k7 or associated with actively translating polysomes at rate
k8 and subsequently degraded at rate k9 (Fig. 1A, B).

Each parameter of the model, except for the time (t), is a rate
which represents the efficiency of a specific step of the RNA life cycle.
In particular, k2-9 are pure rates expressed as h−1, while k1 is the net
amount of newly transcribed RNA per hour per million of cells. The
rates inference relies as input data on the quantification of RNAs
bound to chromatin, present in thenucleoplasm, in the cytoplasm, and
associated with actively translating ribosomes. Transcripts associated
with different RNA pools are obtained by extracting polyA+ RNAs
following the fractionation of the cells into chromatin, nucleoplasm
and cytoplasm. Transcripts undergoing translation are obtained by
retrieving RNAs associated with more than three ribosomes following
polysome fractionation. Direct Nanopore sequencing of native RNA
(dRNA-seq) is then performed for each of the four pools. Thus, k7

refers to the rate of degradation of cytoplasmatic transcripts not
associatedwith polysomes,while k9 refers to the rate of degradationof
transcripts associatedwith polysomes. Fromhere onwewill refer to k7
as cytoplasmatic degradation, and to k9 as polysomal degradation.

For the quantification of premature and mature RNA species
within each pool, we relied on the in silico classification of the reads
based on the detection of intronic signal, as widely adopted in the
field16,17,23. To validate our ability to classify reads associated with pre-
mature transcripts, we reanalysed publicly available dRNA-seq gener-
ated by nano-COP on K562 cells (GEO Sample ID GSM4663623)25.
Nano-COP relies on the profiling of nascent RNA associated with
chromatin, and Nanodynamo confirmed the previously reported
enrichment in premature RNA (83% of the reads).

To overcome the undetermined nature of the resulting algebraic
systemweopted for the inclusion of nascent RNAprofiling, similarly to
what has been previously proposed by us and others17. For the iden-
tification of newly synthetized transcripts, we adopted metabolic
labelling with 4-Thiouridine (4sU) for fixed amounts of time. This
modified nucleotide can be detected on dRNA-seq data using the
nano-ID tool26, which relies on the impact of 4sU on Nanopore ionic
current for the supervised classification of the reads (Median gene
accuracy ~0.80; Supplementary Fig. 2). This additional piece of data
discloses the temporal evolution of the system and guarantees global
structural identifiability for all the parameters of the model, i.e., the
existence of a unique set of rates for every model output (see the
“Parameters identifiability” methods section).

Following the verification of the theoretical feasibility of kinetic
rates inference, we developed an R framework to identify the optimal
set of rates given a vector of gene expression levels. This framework
relies on the minimization of a cost function (sum of absolute loga-
rithmic fold changes) regularised with the L2 norm of the rates and
provides the numerical value of the rates at the single gene level.

Evaluation of Nanodynamo through simulated data
The analysis of parameters global identifiability disregards the impact
of noise and the numerical issues whichmay affect the rates inference.
Therefore, we relied on simulated data to test the performance of our
approach accounting for these additional factors.

Given a set of kinetic rates, the numerical solution of the ODEs
system returns pre-existing and nascent RNA expression levels for all
the species involved in the model at any time of interest. We bound
each rate of the model to the median of the rates of synthesis, pro-
cessing and degradation previously obtained with INSPEcT for 3T9
mouse fibroblast cells27. In particular, Nanodynamo rates from k2 to k6
were linked to the rate of processing while rates from k7 to k9 to the
rate of degradation, in order to maintain a biologically reasonable
ranking of the efficiency of the processes (see methods for details).
These values were used as means for a set of gaussian distributions
from which the rates were independently sampled for 1000 simulated
genes. The variation coefficient (CV) of each gaussian distribution was
set to 5 in order to explore a broad parameter space covering several
orders of magnitude for each rate. The expression level of each RNA
species resulting from these rates is exact. To mimic experimental
noise, we used this value as the mean of a normal distribution from
which we sampled n simulated replicates. Distributions variation
coefficients were determined from experimental expression data tak-
ing the median CV across all genes for each RNA species (see “Quan-
tification of gene expression levels” and “Data simulation” methods
sections).

The temporal design of metabolic labelling is an important
experimental aspect which could strongly impact the inference
performance26,28. The optimal labelling time(s) should allow capturing
the sharp increase of nascent transcription, while accommodating the
slower dynamics of nascent RNA accumulation for steps further
downstream the RNA life cycle. The chosen labelling time(s) should
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also allow producing non-negligible amounts of labelled RNA in the
various RNA pools. By means of mathematical simulations (see meth-
ods), we identified a labelling time of 20min as a good trade-off for all
the RNA species where the time derivatives of their nascent RNA
saturation curves are significantly higher than zero, i.e., far from the
steady state, but also distant from the initial exponential transition
(Supplementary Fig. 3). Altogether, we simulated three datasets (CVs
assigned as previously explained, 1000 genes, 2 replicates) with an
increasing number of labelling pulses of 20, 60 and 120min. We ran
the inference pipeline, andwecompared the resulting rates against the
real counterparts to quantify the goodness of fit. The increase in per-
formance gained with multiple labelling times was minor (maximum
increase of 15%; Supplementary Fig. 4A).

We adopted a similar approach to evaluate the optimal number of
replicates. We simulated five datasets (CVs assigned as previously
explained, 1000 genes, 20min labelling) with an increasing number of
replicates. The gain in correlation between inferred and real rates at an
increasing number of experiments suggested that two samples are

sufficient to have a performance remarkably close to the optimal one
(maximum increase of 20%; Supplementary Fig. 4B).

The abundances of RNA species, inferred with two replicates and
20min labelling pulse, were highly correlated with their expected
expression levels (median Spearman correlations >0.98; Fig. 1D and
Supplementary Fig. 5). The inferred kinetic rates were well correlated
with the expected counterparts (Spearman coefficients in the 0.68–0.96
range; Fig. 1E). The variability in rates correlations for the last steps of
the RNA life cycle likely derived from the increased complexity of the
model moving away from the RNA synthesis step. In fact, the determi-
nation of k7-9 involved upstream rates in defining cytoplasmic and
polysomal RNA species, complicating the inferences based on these
data. Instead, k4 and k7 were affected by the presence of branching
points in the model. Indeed, the simplification of the equations dis-
regarding certain steps of the RNA life cycle improved the correlation
coefficients of the remaining ones (see Supplemental Material). Never-
theless, we considered this performance a reasonable compromise
between inference quality, experimental workload, and sequencing cost.
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Fig. 1 | Nanodynamo: model formulation, parameters identifiability and
inference validation. A The nuclear and cytoplasmic steps of the RNA life cycle
considered by Nanodynamo, with the corresponding kinetic rates (squared
brackets). Coloured ellipses represent the profiled RNA pools, including cellular
and polysomal fractions. B Mathematical formulation in terms of Ordinary Differ-
ential Equations of the model presented in A. Ch, N, C, and P denote chromatin
associated, nucleoplasmic, cytoplasmic, and polysomal RNA, respectively, while p
and m additionally specify premature or mature forms. C Scheme of the experi-
mental workflow, from cell fractionation to reads classification. D Spearman

correlationcoefficients betweenmodelledexpression levels and their experimental
counterparts for a simulated dataset composed of 1000 genes generated with CVs
retrieved from untreated experimental data, 2 replicates, and 1 labelling time of
20min; abbreviations of the legend as inB. E Smooth density scatterplots between
inferred kinetic rates and their expected counterparts for the same dataset
described inD. For each plot, Spearman correlation coefficient (Cor.), identity line
(red) and loess (green) lines are reported; red dots represent outliers (i.e., data
points in the bottom and top 2.5% of the distribution). For D, E, source data are
provided as a Source Data file.
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Nanodynamounravels complexRNAdynamics of SUM159 triple-
negative breast cancer cells
We used Nanodynamo to profile the RNA dynamics of SUM159 triple-
negative breast cancer cells. We profiled transcription by dRNA-seq
with two replicates for each RNA pool: chromatin-associated RNA,
nucleoplasmic RNA, cytoplasmic RNA and transcripts associated with

actively translating polysomes (Figs. 1C, 2A, and Supplementary
Fig. 6A). See themethods for details on reads number and statistics for
the sequencing runs.

To assess the reproducibility of Nanodynamo we separately ana-
lysed the two replicated datasets. In order to compare the results, we
had to focus on the genes that could be analysed in both replicates

C
luster

GSTP1

Normalized
score [%]

Fig. 2 | Nanodynamo unravels complex RNA dynamics of SUM159 triple-
negative breast cancer cells. A Typical polysome trace for untreated SUM159
cells. B Schematic representation of the Nanodynamo framework, from input data
to kinetic rates interpretation, for the gene GSTP1. Left, RNA species expression
levels (bars and dots report mean and single replicate values respectively). Centre,
kinetic rates coloured according to their relative values; the synthesis rate was
reported in grey because of its different unit of measurement. Right, cartoon
depicting the different efficiencies of the RNA life cycle steps. C Kinetic rates
distributions in log10 scale. D Heatmap reporting for each modelled gene (rows)
RNA species abundance and kinetic rates magnitude (columns). For each column,
values are saturatedbetween the 1st and99th percentiles andnormalised against the
latter. The left bar indicates groups of genes identified by k-means clustering
according to normalised abundances and kinetic rates. E Gene-level median polyA
tail length distributions across RNA pools. F RNA species and kinetic rates for the

simplified models (rows) implemented in Nanodynamo, compared to the com-
pletemodel (1st row); input data required for eachmodel are indicated in blue (not
required in yellow) while the provided kinetic rates are indicated in grey (missing
rates in red). In the figure, Ch, N, C, and P denote chromatin associated, nucleo-
plasmic, cytoplasmic, and polysomal RNA, respectively, while p andm additionally
specifyprematureormature forms. Analyses inC,Dwereperformedon 1914 genes
processedwith thecompletemodelwhile the analysis inEwasperformedon all the
genes with at least one read with profiled polyA tail after replicates pooling (11774,
11957, 11760, 12739 genes for the chromatin, nucleoplasmic, cytoplasmic, and
polysomal fractions respectively). For boxplots, the horizontal line represents the
median value, the box edges represent the 25th (Q1) and 75th (Q3) percentiles, and
the whiskers show the range of data excluding outliers (observations lower that Q1
− 1.5 * interquartile range or larger than Q3 + 1.5 * interquartile range). Source data
are provided as a Source Data file.
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(397 genes), the bottleneck being requiring the quantification of pre-
mature RNA species in all nuclear RNA pools. The Spearman correla-
tion between the abundance of nascent, pre-existing and total RNA
species between the two replicates ranged from 0.60 to 0.99 (median
0.95; Supplementary Fig. 7), with the smallest values associated with
the lowest expressed species, while the correlation between the kinetic
rates ranged from 0.37 to 0.95 (maximum p < 2.2e-16; median 0.67;
Supplementary Fig. 8).

Jointlymodelling the information coming from the two replicates,
we were able to model 1914 genes. These were the genes that fulfilled
the requirement of having at least one read for all the RNA species
included in the model in at least one replicate. The minimum and
median Spearman correlations between modelled expression levels
and their experimental counterparts (replicates means) for these
genes were 0.43 and 0.95 respectively, supporting the goodness of
models’ fits (Supplementary Fig. 9). The median proportion of reads
classified as nascent, upon 20’ 4sU metabolic labelling, ranged from
24% to 45% and followed the expected decreasing trend from chro-
matin to cytoplasmic RNA (Supplementary Fig. 10). The median pro-
portion of reads classified as premature ranged from 7% to 15%, with
the highest value detected in chromatin associated RNA (Supple-
mentary Fig. 10), as expected. The dynamics of RNA metabolism for
GSTP1, a representative gene involved in triple-negative breast cancer
cells metabolism and pathogenicity29, are shown in Fig. 2B.

Among the nine inferred kinetic rates, RNA synthesis (k1) is the only
one that is expressed in terms of polyA+ RNAproduced permillion cells,
thus its absolute value (median of 15 pgMcells−1 h−1) cannot be compared
with the pure rates of the other RNA life-cycle steps (Fig. 2C). We
extrapolated that this value is compatible with the expected yield of
nascent RNA following a 20’ pulse30 (see the “Nascent RNA yield”
methods section). Among the pure rates (k2-8), the fastest step was the
association to actively translating polysomes, which had a median of
32.23 h−1 and spanned various orders of magnitude, suggesting that it
could significantly shape gene expression programs. The remaining
rates were slower with medians ranging from 0.25 h−1 (cytoplasmic
decay) to 7.73 h−1 (polysomal decay). In terms of sequence features, the
rate of RNA synthesis negatively associated with the size of transcrip-
tional units and 5′ and 3′UTRs (Unpaired two-sidedWilcoxon test p< 1e-
4), and genes with the fastest rateswere involved in translation and focal
adhesion (Unpaired two-sided Wilcoxon test p< 1e-10). All cytoplasmic
rates (k7-9) were positively associated with the size of transcriptional
units and 3′UTRs, and negatively associated with 5′UTR CG content
(Supplementary Fig. 11; Unpaired two-sided Wilcoxon test p< 1e-4).

The rates involved in co-transcriptional splicing (k2-3) and those
involved in post-transcriptional splicing (k4-5) had peculiar bimodal
distributions (Fig. 2C). The genes characterised by low and high rates
were conservedwhen analysing individual replicates (accuracy between
0.80 and 0.83, maximum two-sided exact Fisher test p <0.0023; Sup-
plementary Fig. 8). We excluded the numerical origin of these bimodal
distributions which were not present in the simulated data (Supple-
mentary Fig. 12A), nor did they dependon the initial conditions used for
inference (see methods for details, Supplementary Fig. 12B). The clus-
tering of genes based on the abundance of RNA species andmagnitude
of the kinetic rates revealed that 65% of the genes adopted co-
transcriptional processing, in agreement with31, with a preference for
genes with sustained transcriptional activity (Fig. 2D). Notably, distinct
sets of genes relied on either co- or post-transcriptional processing
pathways (i.e., genes with high k2-3 had low k4-5, and vice-versa). This
was confirmed by the Spearman correlations between kinetic rates
which were positive (>0.30) between synthesis and co-transcriptional
processing rates, and negative (<−0.62) between co- and post-
transcriptional processing rates. The same correlative analysis per-
formed on simulated data provided 0.03 and −0.15 respectively (most
extreme correlations), confirming that the structure of the model was
not sufficient to generate similar results. Finally, these analyses also

revealed that high expression levels weremainlymediated by high rates
of synthesis, that genes efficiently translated tended to be efficiently
degraded (Spearman correlations 0.28 and 0.26 against cytoplasmic
and polysomal degradation, respectively), and that the rate of poly-
somal degradation was faster than the rate of cytoplasmic degradation
(Unpaired two-sided Wilcoxon test p< 2.2e-16).

We took advantage that dRNA-seq data offer the possibility of
quantifying the length of polyA tails. Themedian length of the tails for
transcripts associated with chromatin was 152nt, which reduced to
105nt for transcripts retrieved fromother RNApools (Fig. 2E). This is in
agreement with the recently reported rapid nuclear deadenylation of
polyA tails occurring after transcription32. In addition, we found that
transcripts with high rates of synthesis (Fig. 2D, cluster A) had parti-
cularly short tails (median 110 nt, Supplementary Fig. 13), derived from
compact transcriptional units accounting for short 3′UTRs and a low
number and size of exons and introns (Supplementary Fig. 14), and
were often involved in translation (Hypergeometric test p < 8.85e-9).

Gathering all the expected data could be complicated due to var-
ious reasons. We thus developed alternative simplified models accom-
modating the lack of one or more RNA species (Fig. 2F, Supplemental
Material and Supplementary Figs. 42–56). For instance, premature RNA
might not be found in the nucleoplasm for genes that do not go through
post-transcriptional processing, or due to insufficient sequencing depth,
which could prevent the quantification of these low abundant species.
We thusdeveloped an alternativemodel inwhichRNAprocessing is only
co-transcriptional. More in general, processing might be not applicable
at all for certain genes like intron-less transcriptional units (~13% of the
UCSC annotated genes). Modelling RNA processing could also be
complicated for very compact genomes and short introns, such as yeast
and A. thaliana. To accommodate these scenarios, we developed an
alternative model in which transcripts are synthetized directly into their
mature form. Finally, to deal with non-coding genes, we implemented a
framework lacking the step of association with polysomes. These
models could be useful also when technical reasons prevent the acqui-
sition of polysomal RNA which typically requires dedicated instruments
and specific expertise. Supplemental Material reports the reanalysis of
untreated SUM159 cells with all these simplified models, and their
comparison with the complete model.

Finally, we took advantage of the simplified models to compare
RNA synthesis and cytoplasmic degradation rates returned by Nano-
dynamo against those determined with INSPEcT, which requires only
metabolically labelled and total RNA sequencing data. Spearman cor-
relations for the rates of RNA synthesis and degradation are 0.96 and
0.21 respectively. Noticeably, the modest score for RNA degradation
likely reflects the differences in modelling between INSPEcT and
Nanodynamo for this step of the RNA life cycle (Supplementary Fig. 1).
We also extended the analysis including the rates estimations from
nano-ID (Spearman correlation of 0.75 and 0.92 for synthesis and
degradation, respectively).

Altogether, the application of Nanodynamo for analysing the
dynamics of RNAmetabolism in an untreated cell line revealed sets of
genes characterised by substantially different combinations of kinetic
rates and suggested the coordinated regulation of various steps of the
RNA life cycle.We therefore set out to characterise howRNAdynamics
are shaped by perturbations directed against specific steps of the RNA
life cycle.

Blocking the spliceosomal machinery leads to a switch from co-
to post-transcriptional processing
After characterising the transcriptional programsof untreated SUM159
cells, we investigated the response of the same cell system to splicing
perturbationmediatedby Pladienolide B. This drug targets the splicing
factor SF3B1, resulting in an increase of intronic signal33. We confirmed
the expected accumulation of intronic signal by RT-PCR and by
inspecting various genes following dRNA-seq (Fig. 3A, B and
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Supplementary Figs. 15, 16). Globally, the proportion of premature
reads increased by at least 4-fold for 30% of genes, compared to
untreated cells (Fig. 3C). We also observed a significant reduction of
nascent RNA for all nuclear fractions (between 17% and 27%, two-sided
Kolmogorov-Smirnov test p =0; Supplementary Fig. 17) suggesting a
reduction in RNA synthesis. Finally, polysome fractionation revealed a
marked reduction in the presence of polysome-bound RNAs (Fig. 3D,
Supplementary Fig. 6B), suggesting a reduced association with the
polysome.

Following the same approach presented for the untreated con-
dition, we checked the reproducibility of our results with the inde-
pendent analysis of the two replicates (Supplementary Figs. 18 and 19).
We were able to model 1950 genes with Nanodynamo following the
treatment of SUM159 cells with Pladienolide B (Fig. 3E; minimum and
median Spearman correlations between modelled and experimental
data 0.51 and 0.92, respectively; Supplementary Fig. 20). Pladienolide
B treatment led to a significant albeit mild reduction in RNA synthesis
(Fig. 3F, Unpaired one-sided Wilcoxon test p < 5.51e-25). The rates that
presented bimodal distribution in the untreated cells confirmed their
bimodality following the drug treatment (Fig. 3F). We observed the
reduction in co-transcriptional splicing and detachment of mature
RNA from chromatin (Unpaired one-sided Wilcoxon test p < 8.6e-5),
matching an increase in premature RNA associated with chromatin
(Fig. 3F, G). The slowdown in co-transcriptional RNA processing is an
expected consequence of Pladienolide B treatment and reassures
about the ratesmodelledwithNanodynamo. In addition, the reduction
in the co-transcriptional steps were accompanied by a slight increase
in the detachment of premature RNA from chromatin and in the pro-
cessing of premature nucleoplasmic transcripts. These data suggested
a switch from co- to post-transcriptional processing pathways. Indeed,
for 26% of the 966 genes that could bemodelled in both the untreated
and Pladienolide B treated cells, the drug treatment led to reduced co-
transcriptional rates (k2-3) and increased nuclear post-transcriptional
rates (k4-5), compared to untreated cells. Rather, 15% of genes switched
in the opposite direction. Eventually, the reduction in co-
transcriptional processing prevailed, since the net result of these
opposite modulations resulted in a marked reduction of mature RNA
in the nucleoplasm (Fig. 3G). Noticeably, genes repressed in co-
transcriptional processing (Fig. 3G cluster C) were the least expressed
among the most efficiently co-transcriptionally spliced (low k1 and
high k2, Fig. 3H). Similarly, genes repressed in post-transcriptional
processing (Fig. 3G cluster A) were the most efficiently post-
transcriptionally spliced and were also particularly low expressed
(high k5 and low k1, Fig. 3H).

We also observed an increase in nucleoplasmic RNA export fol-
lowing Pladienolide B treatment, which might represent an attempt to
compensate for the aforementioned shortage of nucleoplasmic tran-
scripts (Fig. 3F, G). However, in the cytoplasm, the rate of association
with actively translating polysomesdecreased, as a consequenceof the
strong reduction in the yield of the polysomal transcripts (Fig. 3G).
Thiswas accompaniedby amarked increase in polysomaldegradation,
suggesting the need of removing transcripts that could not be prop-
erly translated, potentially through the nonsense-mediated decay
pathway34. Transcripts containing Terminal Oligo Pyrimidine motifs at
their 5′ end (5′ TOP) encode proteins that are essential for protein
synthesis, whose translation is decreased under stress conditions. The
vast majority of 5′ TOP factors that we could assess had indeed a
markedly reduced rate of polysomal association, suggesting their
involvement in the broad reduction of this RNA life cycle step (Sup-
plementary Fig. 21A)35.

Finally, we found that the length of polyA tails was reduced fol-
lowing Pladienolide B treatment and that their shortening after tran-
scription was less pronounced, compared to untreated cells (Fig. 3I).
Changes in polyA tails length were positively correlated with changes
in the rate of RNA export (Spearman correlation 0.25, p < 8.29e-15),

suggesting that the tails length could impact export efficiency36.
Rather, polyA tails length for genes in cluster E are more similar to
those of untreated cells (Supplementary Fig. 22). Genes in this cluster
are characterised by a marked increase in RNA export, and a mild
reduction in RNA synthesis, potentially as an attempt to compensate
for the drug effects.

Altogether, Nanodynamo revealed that treating cells with a drug
directed against the splicing machinery has broad consequences that
go beyond the expected repression of RNA processing, involving a
switch from co- to post-transcriptional RNA processing and impacting
the export and translational machineries.

Perturbation of the export machinery leads to downstream
alterations of translation and degradation machineries
For the block of RNA export, we opted for treating SUM159 cells for
16 h with Leptomycin B, an inhibitor of CRM1, a major receptor for the
export of RNA and proteins to cytoplasm37. Polysome fractionation
revealed amarked reduction in the presence of polysome-boundRNAs
(Fig. 4A, Supplementary Fig. 6D), suggesting a reduced rate of asso-
ciation with the polysome. After a check on the reproducibility of the
modelling across two independent replicates (Supplementary
Figs. 23 and 24), we performed the inference of the completemodel as
described above resulting in 1371 genes (Fig. 4B).

According to a recent report, overnight Leptomycin B treatment
impacted RNA export only for selected genes. Consistently, we found
40 genes that were markedly impacted in their export rates (k6
ratio > 2.5 compared to untreated cells), which were reduced for 32 of
them (Fig. 4C). RT-PCR validation in an independent experiment
confirmed the altered ratio of nuclear vs cytoplasmic RNA for 6 genes
previously reported to be affected by Leptomycin B. Specifically, the
transcripts for 4 genes (LGALS, PRKAG2, POLE4, ADARB1) were accu-
mulated in thenucleus anddepleted in the cytoplasm,while RNAs for 2
genes (CYREN, DOTIL) were accumulated in the cytoplasm and deple-
ted in the nucleus, as previously described38. We additionally validated
2 genes that were not previously reported being altered in RNA export
(DOTIL and LGALS) (Fig. 4D) and two genes that we identified as not
impacted in their RNA export (Supplementary Fig. 25). Genes up-
regulated in k6 were enriched in transcriptional units down-regulated
in nuclearmature RNA (Two-sided exact Fisher testp < 4.0e-4) and vice
versa for genes down-regulated in k6 (Two-sided exact Fisher test
p < 1.5e-3—see the “Differential RNA species” methods section for the
definition of differentially expressed genes. Notably, genesmodulated
in opposite directions in RNA export were differently affected in other
RNA life cycle steps. In particular, RNAs whose export was reduced
weremore likely to be reduced in RNA synthesis and co-transcriptional
events (while being promoted in post-transcriptional nuclear events),
whilst those that were promoted in the export were more likely to be
increased in cytoplasmic degradation and association with polysomes.

Comparing all themodelled genes to untreated cells revealed that
48% of these were polarised in terms of co- or post-transcriptional
processing (Fig. 4E, F). Indeed, these genes were either promoted in
co-transcriptional processing and detachment of mature RNA from
chromatin, while being hampered in the detachment of premature
RNA from chromatin and post-transcriptional processing (Fig. 4F
cluster D), or subjected to the opposite modulation (Fig. 4F clusters A-
C). Even more strikingly and consistently, most of the modelled genes
had altered rates of polysomal association and degradation (Fig. 4E, F).
In particular, we observed amarked increase in polysomal degradation
(98% of the genes). Similarly to Pladienolide B, the polysomal asso-
ciation of transcripts encoding for 5’ TOP factors was markedly
reduced, suggesting their involvement in the broad reduction of this
RNA life cycle step (Supplementary Fig. 21B)35. Analysis of sequence
features for themodelled genes indicated that transcripts repressed in
RNA export (Fig. 4C top) had shorter 5′UTRs and fewer, shorter exons
compared to genes unaffected in RNA export and, even more
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prominently, compared to genes with increased RNA export (Supple-
mentary Fig. 26).

Finally, the analysis of polyA tails length following Leptomycin B
treatment revealed that, while they were shortened following the
detachment from chromatin as discussed for the untreated cells, they
had a marked increase in length for the transcripts associated with
chromatin (Fig. 4G). Similarly to Pladienolide B, changes in polyA tails
length were positively correlated with changes in the rate of RNA
export (Spearman correlation 0.11, p <0.0023).

Eventually, given the length of the Leptomycin B treatment and
the impact on the export of transcripts encoding for proteins involved
in RNA decay and translation (Fig. 4C), it is possible that the observed

major alterations in polysomal association and decay could be attrib-
uted to indirect downstream effects of the alteration of those Lepto-
mycin B targets. Altogether, Nanodynamo revealed that treating the
cells with a commonly used drug against RNA and protein export has
consequences that are broader and more complex than expected,
possibly due to nonspecific effects following the prolonged drug
treatment.

Blocking the translational machinery hampers RNA export and
cytoplasmatic degradation
The block of translation was obtained by treating SUM159 cells for 1 h
with Harringtonine, an inhibitor of translation initiation. The net result
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of this treatment was a clear block of translation, as determined
through Polysome fractionation profiles (Fig. 5A, Supplementary
Fig. 6C). As a result, we could not isolate enough RNA associated with
polysomes for the sequencing (Fig. 5B). For this reason, we applied
Nanodynamo based on a simplified model which neglects RNA trans-
lation and has only one step of cytoplasmic degradation (Supple-
mentary Fig. 27). After a check on the reproducibility of the modelling
across two independent replicates (SupplementaryFigs. 28 and29),we
succeeded in modelling 1616 genes (Fig. 5C). The block of translation
had positive consequences on RNA synthesis for 17% of the modelled
genes, and negative consequences for the remaining ones (Fig. 5D, E).
40% of the genes switched from co- to post-transcriptional processing
or vice-versa. These changes were accompanied by a reduction in RNA
export (71% of the genes). The slowdown in RNA export was also
associated with a marked reduction in cytoplasmic degradation (77%
of the genes), leading to an accumulation of transcripts in the
cytoplasm.

Finally, similarly to the LeptomycinB treatment, also in the caseof
Harringtonine treatment the length of polyA tails showed a marked
increase for the transcripts associated with chromatin (Fig. 5F).

Altogether, Nanodynamo revealed that blocking RNA translation
hasmajor consequences on all steps of the RNA life cycle, leading to an
accumulation of transcripts in both the nucleus and the cytoplasm.

Coupling of RNA life cycle steps markedly influence the coor-
dinated response of RNA metabolism to perturbations
The comprehensive characterisation of RNA dynamics in untreated
cells and how they are impacted by a set of perturbations is well suited
for studying the coupling between steps of the RNA life cycle. We
reasoned that we could study the coordination of the corresponding
machineries by determining whether changes in the kinetic rates fol-
lowing the described drug treatments are correlated. We then deter-
mined, for each pair of kinetic rates and for each drug treatment, the
correlation between kinetic rates log2 Fold Changes to the untreated
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condition. Significant correlations (p < 1e-4) upon treatment with Pla-
dienolide B were displayed as edges in a graph, whose width and col-
our identify strength and direction of coupling, respectively. The same
analysis was repeated upon perturbation with Leptomycin B and
Harringtonine (Fig. 6A). Importantly, the latter is only partially infor-
mative to this regard, as it derives from the implementation of a sim-
plifiedmodel lacking RNA life cycle steps associated with polysome. In
addition, while the readout of the Leptomycin B treatment could be
complicated by potentially prevalent indirect effects, this was not
relevant for the identification of couplings. Indeed, what mattered for
these analyses is that whichever the perturbation was, we could
determine how RNA metabolism adapted to it. Eventually, 92% of the
couplings identified upon Pladienolide B treatment were shared with
and had the same direction of those identified upon Leptomycin B
treatment. Similarly, the couplings were shared and had consistent
direction with those reported for the Harringtonine treat-
ment (Fig. 6A).

The final network of couplings shared between Pladienolide B and
Leptomycin B revealed couplings linking processes within and
between nucleus and cytoplasm (Fig. 6B). RNA synthesis (k1) turned
out to be positively coordinated with co-transcriptional processing
and detachment of mature RNA from chromatin (k2-3). Detachment of
premature transcripts and post-transcriptional processing (k4-5) were
also positively associated. Rather, transcription and co-transcriptional
processing steps were anti-correlated with the post-transcriptional
processing counterparts. Additionally, the rate of synthesis (k1) was
positively coupled with RNA export (k6) and polysomal degradation
(k9), while both k1 and k9 were negatively coupled with polysomal
association (k8). k1 and k9 were globally down- and up- regulated in
response to the Pladienolide B (Fig. 3G). Consequently, their positive
coupling denoted that strong regulations of the former were asso-
ciated with weak down-regulations of the latter, and vice-versa (Sup-
plementary Fig. 30). Finally, these analyses revealed that co-
transcriptional processing steps were positively coupled with several
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accounting for all RNA life cycle steps except for association with polysomes and
polysomal degradation in both untreated and Harringtonine treated conditions.
Source data are provided as a Source Data file.
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downstream steps, including export and both degradation rates. The
same holds true for post-transcriptional processing steps, while this
occurred through negative couplings. These observations suggested
the relevance of RNA processing in shaping gene expression
responses.

Wenextwonderedhow the responseof individual genes is shaped
by the reported couplings. For each of the identified global couplings,
and for each modelled gene we determined whether that gene
exploited it, and whether the coupling involved the coordinated
increase or decrease of the kinetic rates or their opposite modulation
(Fig. 6C for Pladienolide B response and Supplementary Fig. 31 for the
other drug treatments).

Genes responding to Pladienolide B exploited a remarkable frac-
tion of the possible mechanisms (14 couplings for 50% of the genes)
typically involving the coordination between rates in different cellular
compartments. Half of the genes (clusters E-L) were pervasively
regulated by couplings, involvingmost of the interactions reported for
Pladienolide B (Fig. 6C). Among these, only those in cluster F differed
since they did not exploit couplings stemming from the synthesis step,
while they relied on the coordinated response between co- and post-
transcriptional processing steps (k2-5) and between these and cyto-
plasmic steps. We characterized the clusters of genes in terms of
structural features, CG content, and polyA tail length. Genes within
cluster G, which were down-regulated in synthesis and in both co- and
post- transcriptional processing rates, were the only that had longer
tails compared to untreated cells in contrast with the trend observed
for the other gene sets (compare Supplementary Fig. 32 with Figs. 2E
and 3I). In terms of size and genomic complexity, genes in clusters I,
which did not exploit the coupling to polysomal degradation, were
characterized by the longest transcriptional units. Rather, genes in the
aforementioned cluster F, which did not exploit the couplingwith RNA
synthesis, were characterized by the shortest transcriptional units
(Supplementary Fig. 33). These results were largely confirmed by the
analysis of Leptomycin B response.

We used the Hamming distance to compare the coupling profiles
of the genes modelled upon both Pladienolide B and Leptomycin B
treatments. Using as a reference a null distribution of Hamming dis-
tances, obtained through the shuffling of the heatmaps columns
(Supplementary Fig. 34—see methods section “Couplings” for details),
we identified 97 genes whose coupling profiles were consistent fol-
lowing the two treatments. This analysis indicated the conservation of
gene-level coupling for a sizable fraction of the analysed genes,
involving genes with either a high or a low number of couplings
(Supplementary Fig. 35).

Finally, we sought to identify regulatory factors potentially
responsible for each of the detected couplings. To this end, we
took advantage of ENCODE data to search for RNA Binding Pro-
teins (RBPs) and Transcription Factors (TFs) targeting genes
supported by a given coupling. Specifically, we computed the
product of log2 Fold Changes for each pair of coupled rates, and
we used this quantity to perform Gene Set Enrichment Analyses
(see methods section “Couplings” for further details). Overall, we
identified 100 and 114 factors for Pladienolide B and Leptomycin
B respectively (GSEA adjusted p < 0.05 for at least one edge), the
vast majority deriving from the k1,9 edge. 93 of these factors were
shared further supporting the conservation of coupling mechan-
isms. The 5 most significant factors for each coupling were
reported in Fig. 6D for the Pladienolide B treatment, and in
Supplementary Fig. 36 for the Leptomycin B one. Three proteins
involved in gene expression regulation emerged as top candi-
dates for implementing the couplings between RNA synthesis and
processing (k3-5) in both the treatments: NIPBL, APEX1, and
PABPN1. Interestingly, the latter takes part in RNA polyadenyla-
tion which might suggest the involvement of this regulatory layer
in mediating transcriptional couplings39,40.

Discussion
The Nanodynamo model, limitations and potential extensions
We developed Nanodynamo, a method combining an experimental
and computational approach for the quantification of the kinetic rates
governing the dynamics of RNAmetabolism, and we used it to unravel
coupling interactions between steps of the RNA life cycle. Nanody-
namo combines the profiling of native metabolically labelled tran-
scripts from various RNA pools, including cell fractions and
polysomes, with mathematical modelling. Compared to available
methods, Nanodynamo significantly expands the considered steps of
the RNA life cycle, which is integrally modelled from the birth of the
transcripts within chromatin until their decay in the cytoplasm. The
adopted model does not only account for a chain of steps, but also
includes two branch points, where the transcripts can be directed
towards co- or post-transcriptional processing in the nucleus, or
towards degradation or association to polysomes in the cyto-
plasm (Fig. 1).

This model relies on the following assumptions: (i) RNA degra-
dation only occurs in the cytoplasm, i.e., nuclear RNA is not degraded,
(ii) premature RNA is not exported into the cytoplasm, (iii) ribosome-
bound RNA that is not in active translation can be degraded.

Nanodynamo complete model disregards nuclear degradation.
We tested extending the model to incorporate degradation of either
premature ormature nucleoplasmic RNA (see SupplementalMaterial).
Even though the models including these extra steps are globally
identifiable, we could not infer the corresponding nucleoplasmic
decay rates (Spearman correlation coefficients based on simulated
data 0.05 and 0.08, respectively), possibly due to a lack of sensitivity
for these parameters compared to the other rates. Importantly, the
presenceor lackof these extra steps hadno impacton theother kinetic
rates (Supplementary Figs. 37, 38). It could be interesting to further
investigate this aspect searching for rates configurations more
dependent on nuclear degradation, which could reveal the importance
of this step of the RNA life cycle for specific subsets of genes, as sug-
gested in ref. 21.

Regarding the second assumption, there are two ways to avoid it.
Thefirst possibility is by assuming that premature andmatureRNA can
be exported, subjected to cytoplasmic degradation, polysomal asso-
ciation and subsequent degradation with the same rates as themature
species. We tested this possibility and confirmed that the main con-
clusions drawn by this study are maintained, see for example Supple-
mentaryFig. 39 for the impact of Pladienolide B. The secondpossibility
is to markedly expand the model incorporating a number of steps
which act specifically on premature species. This would substantially
complicate the model and likely require additional data. For all these
reasons we deemed reasonable to maintain this assumption.

Regarding the third assumption, avoiding it would likely imply to
extend themodel. RNA translation is amultistep process including the
association of multiple ribosomes to coding transcripts, initiation,
elongation and detachment of the translational machinery. Nanody-
namo currently only considers the association of mRNAs with poly-
somes and the subsequent polysomal degradation. In fact, our
modelling does not assume nor depend on the fact that translation
actually occurred. In addition, we have no information on whether
RNAs profiled in the cytoplasm were previously associated with poly-
somes or not. Further development of the method could in the future
be dedicated to the inclusion of additional steps for a more thorough
modelling of the translation machinery.

The same perspective could be applied also to improve our
characterization of RNA synthesis by explicitly modelling key steps of
RNA polymerase activity27 (e.g., initiation, pause-release, elongation,
and termination). More generally, the Nanodynamo framework could
be extended to include rates describing the transition of RNA mole-
cules across a large set of states defined according to a specific feature
of the transcripts (e.g., retention of intronic signal) and/or their
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localization. In this regard, we foresee an interesting extension of our
model based on the isolation of biomolecular condensates (e.g., stress
granules and P-bodies).

Moreover, we anticipate the possibility of extending the Nano-
dynamo framework to incorporate information about key determi-
nants of gene expressionprogramsand kinetic rates couplings, such as
the level of RNAmodifications, RBPs, andTFs. For the latter twoclasses
of regulatory factors, gene expression levels and/or the rate of asso-
ciation with polysomes are potential proxies for those factors protein
abundance. For example, the models of genes targeted by specific
factors could be coupled with the equations describing those factors’
life cycle.

All these potential extensions are feasible until the ODEs system
parameters are globally identifiable, and the required RNA pools can
be isolated for: dRNA-seq library preparation and RNA yield mea-
surement. Noticeably, these two steps of the Nanodynamo framework
are decoupled and they can be performed on independent samples
providing more flexibility in the experimental design and allowing for
the collection of various replicates of RNA yields without incurring
additional sequencing costs and waiting time. This is particularly
important because RNA yield quantification is crucial for inference
purposes, and it can potentially introduce systematic biases affecting
the absolute kinetic rates quantifications.

The adopted experimental workflow, which relies on the
sequencing of two independent replicates through Nanopore dRNA-
seq, allowed us to apply the complete model quantifying the kinetic
rates for 9 steps of the RNA life cycle of 1.5–2 thousand genes,
depending on the condition. This is mostly under the control of the
sequencing throughput and could be significantly improved by
switching from MinION/GridION to PromethION Nanopore flow cells,
which provide a substantial increase in the throughput. As an alter-
native, PromethION flow cells could also be adopted to combine the
profiling of the various RNA pools within the same sequencing run, by
setting up a barcoding strategy to track the RNAs within each pool. An
increase in throughput would also improve the inference performance
for genes already profiled. Indeed, we observed a mild overfit for low-
expressed species (i.e., higher correlation between inferred and
expression data than between replicates for nascent nucleoplasmic
premature RNA) which was significantly reduced selecting highly
expressed genes (top 10% genes in nucleoplasmic premature RNA -
Supplementary Fig. 40). Similarly, the inference performance would
benefit from the profiling of a higher number of replicates, as sug-
gested by the modest yet clear trend observed in simulated datasets
(Supplementary Fig. 4). Clearly, the drawback of all these improve-
ments is the significant increase in experimental costs; for this reason,
we suggest the experimental design used in this study as a reasonable
compromise.

We anticipate that an alternative and effective workaround to
reduce the experimental cost of Nanodynamo would be shifting from
the Nanopore to the Illumina RNA sequencing platform, leveraging
protocols for the chemical conversion of incorporated nucleotides for
nascent RNA profiling17,21. This would provide better control over
sequencing depth (i.e., cost) and a higher ratio of detected genes per
million sequenced bases. On the other hand, this approach would not
benefit from key features of long-read direct RNA-seq, such as the
ability to better discriminate expressed isoforms and intronic signal, as
well as the intrinsic profiling of important determinants of gene
expression programs like RNA modifications and polyA tails.

dRNA-seq requires the presence of polyA tails, and the profiling of
the various RNApools in this studywas performed by selecting polyA+
transcripts. With this approach, we could have lost premature tran-
scripts not yet polyadenylated. To assess this, we considered depleting
ribosomal species as an alternative to polyA selection. We have pre-
viously shown that theprofilingof premature andmatureRNA through
Illumina short reads sequencing and the subsequent quantification of

RNA dynamics are consistent across various library preparation and
RNA selection methods16. To further assess this, we performed dRNA-
seq through ribo depletion - following in vitro polyadenylation to
comply with dRNA-seq requirements of polyA tails - and compared it
to polyA selection (both experiments performed with K562 cells).
Ribo-depletion resulted in a slightly higher yield of premature reads
(4.0%), compared to polyA selection (3.2%), which, however, were
associatedwith a lower proportion of genes (48%), compared to polyA
selection (64%). Eventually, this alternative approach proved not so
reliable in our hands and often resulted in reduced sequencing
throughput. Given the limited amount of extra information gained, we
considered that the increased number of steps and costs required for
this alternative approach was not worth it, and we decided to rely on
polyA selection.

The pervasive role of post-transcriptional RNA processing
The analysis of the dynamics of RNAmetabolism in SUM159TNBCcells
(Fig. 2) revealed that a substantial number of genes adopt the post-
transcriptional processing pathway, which is still largely under-
investigated compared to its co-transcriptional counterpart. The
consistent association of specific gene sets to co- and post-
transcriptional pathways in different biological replicates, suggests
that the assignment of a given gene to either pathway is not the con-
sequence of stochastic leakage of premature transcripts between
chromatin and nucleoplasmatic fractions. In addition, the lack of
structural and sequence features differentiating these gene sets sug-
gests that they are unlikely to be originated by chemical or physical
properties leading to contamination between fractions (Supplemen-
tary Fig. 14).

Our data indicate that co- and post-transcriptional processing
pathways are often mutually exclusive, suggesting the existence of
different machineries, or that mechanisms exist that select whether
the same spliceosomalmachinery has to be recruitedwithin chromatin
or in the nucleoplasm. All the perturbations considered in this study
caused for many genes a switch between these alternative processing
pathways (Figs. 3–5); which is confirmed between treatments biologi-
cal replicates. In particular, the treatment with a drug inhibiting spli-
cing, Pladienolide B, which impacted both processing pathways,
revealed the widespread transition of genes from co- to post-
transcriptional processing and vice-versa (Fig. 3G clusters A and C)
specifically affecting low expressed, efficiently spliced genes (Fig. 3H).
The impact of the drug on poorly expressed genes is reasonable
because, assuming a uniform distribution of Pladienolide B, they
would be those with the highest proportion of drug molecules per
transcript. On the other hand, the up-regulation of post-transcriptional
processing rates in response to the impairment of the co-
transcriptional processing ones—and vice-versa—suggests the exis-
tence of either active or passive compensatory mechanisms. These
mechanisms could be based, for instance, on the coordinated mod-
ulation of kinetic rates mediated by RBPs. Additionally, these
mechanisms could originate from the release of spliceosomal resour-
ces which would promote the re-equilibrium between the two
mutually exclusive processing pathways. Importantly, regardless of
the biological explanation, the increase in co-transcriptional proces-
sing as a consequence of switching was facilitated by the low magni-
tude of the co-transcriptional rate for genes in cluster A, and the same
applied to genes in cluster C for the switch to post-transcriptional
processing.

A comprehensive analysis of coupling among RNA life
cycle steps
The quantification of RNA dynamics with Nanodynamo enabled us to
identify coupling interactions between steps of the RNA life cycle
(Fig. 6) which do not emerge from properties of the data or of the
adopted modelling. The fact that these interactions are consistent
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across perturbations not only reinforces our conclusions, but also
suggests that these coupling mechanisms are robust and could not be
easily perturbed.

While coupling interactions areunable to predict differential gene
expression programs resulting from perturbations of RNA life cycle
steps, they should be able to shape how steps of the RNA life cycle
adapt to the perturbation consequences. Depending on the extent and
length of the perturbation, only the steps directly coupled to the
perturbed one(s) could have enough time to reshape the RNA life
cycle. If enough time is given, also indirect coupling connections could
be activated and shape a new steady-state gene expression program.
Minimizing the length of a given treatment is important to minimize
the occurrence of indirect effects. However, distinguishing between
direct or indirect effects, or avoiding the latter, is not relevant for the
purpose of identifying coupling interactions.

The method that we devised for the identification of coupling
interactions aims at identifying global coupling mechanisms that are
supported by large sets of genes. Nevertheless, it is possible that dif-
ferent coupling modes exist, or that the coupling interactions that we
revealed have the opposite sign, for specific subset of genes. This is
especially true for the weakest global coupling interactions.

Discrete modules of coupling interactions emerged, involving co-
transcriptional (k1,2,3) and post-transcriptional (k4,5) processing steps.
Each module relied on positive interactions. This could be due to the
fact that positive coupling interactions are effective for steps in a chain
of events directed towards the goal of maximising an output, such as
the production of processed (mature) transcripts. Rather, co- and
post-transcriptional processing modules were linked by negative
couplings, in agreement with the aforementioned mutual exclusivity
of the two processes. A set of additional modules based on positive
couplings stemmed from the co-transcriptional module, involving
export and both degradation steps (k1,6,9 and k2,3,7). The positive
coordination between transcription and degradation is likely instru-
mental for RNA production buffering8. On the other hand, modules
stemming from the post-transcriptional processingmodule negatively
coordinate these steps with the degradation machinery (k4,5,7
and k4,1,9).

The positive coupling between RNA synthesis and co-
transcriptional processing was expected and is supported by various
studies5. However, our study documented the intricacies of these
connections, revealed the prevalence of an alternative post-
transcriptional processing pathway, and how this is connected with
RNA synthesis and co-transcriptional processing machineries.

RNA processing was also previously shown being coupled with
RNA export, apparently favoured by the co-localization of the two
machineries41. Indeed, we found a conserved positive association
between the detachment of mature RNA from chromatin and RNA
export.

The coupling between the translational and the degradation
machineries was also previously documented and includes a variety of
mechanisms linked to the quality control steps associated with ribo-
somes. One of the most important coupling mechanisms between
translation and degradation is the decay of transcripts that cannot be
properly translated11,12. In agreement with thismechanism,we revealed
a negative coupling between polysomal association and degradation,
following both Pladienolide B and Leptomycin B treatments.

Final perspectives
We developed Nanodynamo as a framework for the comprehensive
analysis of the dynamics of RNA metabolism. This approach could
facilitate studying the functional role of poorly characterized RNA
binding proteins or RNA modifications, by determining how their loss
or depletion impacts RNA fate. We illustrated the application of
Nanodynamo in the identification of couplings between steps of the
RNA life cycle. Follow up studies might be dedicated to shedding light

on specific coupling mechanisms. For example by studying RNA
modifications, RNA binding proteins or transcription factors acting as
coupling factors, including those that we proposed here to be asso-
ciated with specific couplings (Fig. 6D). The data generated in this
study and the described approaches could also be instrumental for
studying system-level properties emerging from the combined reg-
ulation of the different machineries of the RNA life cycle. Finally,
studying whether RNA dynamics and coupling mechanisms are aber-
rant in disease conditionsmight point to unexpected vulnerabilities of
RNA metabolism.

Methods
Cell culture
SUM159PT (Asterand, RRID:CVCL_5423, Female) -CRISPRi cells (PB
TRE dCAS9-KRAB), fromhere on and in the text named SUM159, were
cultured in HAM’s-F12medium (Thermofisher 11765054) with 5%TET-
free serum (Thermofisher A4736301), insulin 5 μg/ml (Lonza BE02-
033E20), hydrocortisone 1 μg/ml (MERK H0888), HEPES 10mM
(Thermofisher,15630080) and Hygromycin B 100 μg/mL (Thermo-
fisher, 10453982). Cells were grown at 37 °C and 10% carbon dioxide.
In absence of doxycycline, we checked that these cells showed no
difference with SUM159 parental cells in terms of Cas9 expression.
To inhibit splicing, SUM159 cells were treated with 100 nM of Pla-
dienolide B (Santa Cruz CAS 445493-23-2) for 4 h. To inhibit nuclear
export, cells were treated with 20 ng/ml of Leptomycin B (Santa Cruz
CAS 87081-35-4) for 18 h. One hour of Harringtonine (1ug/ml, Abcam
26833-85-2) was used to inhibit translation. For metabolic labelling
SUM159 cells were treated with 500uM of 4-Thiouridine (Santa Cruz
CAS 13957-31-8) for 20min.

K562 (Kristian Helin lab, RRID:CVCL_0004, Female)-MycER cells -
from here on, and in the text, named K562 - were grown and main-
tained in RPMI-1640 medium (Invitrogen Corporation; Cat No. 23400-
021) containing 5% FBS in a 5% CO2 incubated at 37 °C. In absence of
OHT, K562-MycER showed no difference with K562 parental cells in
terms of expression of MycER and endogenous MYC levels. For
metabolic labelling, K562 cells were treated with 500μM 5-Ethynyl
Uridine (Jena Bioscience CLK-N002-10) for 60min.

Western Blot
Proteins from the different fractions were extracted from Qiazol
(Qiagen 79306) and quantified using BCA Protein Assay Kit (Thermo-
fisher 23227). The absorbance was read at 562 nm with Glomax
Explorer. Precast TGX Stain-Free 4-15% gradient SDS-PAGE gels (Cri-
terion 5678084) were used for protein separation. Proteins were then
transferred onto nitrocellulose membranes, which were blocked with
BSA 5% and incubated with antibodies against 1:10000 Vinculin
(SIGMA V9131), 1:1000 LaminB1 (SantaCruz sc-374015), 1:1000 H3
(Abcam ab1791). Membranes were then incubated with peroxidase-
labelled goat anti-rabbit IgG 1:10000 (Cell signaling 7074P2) or goat
anti-mouse IgG 1:10000 (Cell signaling 7076P2) for 60min. Antigen
detection was achieved using the Clarity Western ECL substrate
(Biorad 1705061). See Supplementary Fig. 6E and Supplemen-
tary Fig. 57.

Retrotranscription and qRT-PCR
SUM159 cells treated with 100 nM of Pladienolide B (Santa Cruz CAS
445493-23-2) and total RNA was extracted from the different fractions
using Qiazol (Qiagen 79306). 1ug of purified RNAwas retrotranscribed
using Superscript III Reverse Transcriptase (Thermofisher 18080093),
following manufacturer’s protocol. Briefly, The reaction mix included
1 µL of oligo(dT)20 (50 µM), 1 µL of 10mM dNTP Mix, and sterile, dis-
tilled water to a final volume of 13 µL. The mix was heated to 65 °C for
5minutes and chilled on ice for 1minute. After brief centrifugation,
4 µL of 5× First-Strand Buffer, 1 µL of 0.1M DTT, 1 µL of RNaseOUT, and
1 µL of SuperScript III RT were added. The reaction was incubated at
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50 °C for 30–60minutes and terminated by heating at 70 °C for
15minutes. Working stock was diluted at 5 ng/ul and stored at −20 °C.
ComplementaryDNAwas analysedbyqPCRusing SYBR®GreenMaster
Mix (Biorad 1725150) with the primers reported in Table S1.

Fractionation and mRNA extraction
SUM159 cells were resuspended in PBS, counted, centrifugated at 110 g
for 5min and washed with ice cold PBS containing RNAse inhibitor
(New England Biolabs M0307L). The pellet was resuspended in a
cytoplasmic lysis buffer for the subsequent fractionation, following the
protocol described in ref. 42. Briefly, cell pellets were rinsed with 1×
PBS/1mM EDTA and lysed in ice-cold NP-40 lysis buffer (10mM Tris-
HCl [pH 7.5], 0.05%NP-40, 150mMNaCl) for 5min. The lysatewas then
placed on 2.5 volumes of chilled sucrose cushion (24% sucrose in lysis
buffer) and centrifuged at 16,000g for 10minutes at 4 °C, the super-
natant containing the cytoplasmic fraction was collected. The nuclear
pellet was gently rinsed with ice-cold 1× PBS/1mM EDTA and resus-
pended in prechilled glycerol buffer (20mM Tris-HCl [pH 7.9], 75mM
NaCl, 0.5mM EDTA, 0.85mM DTT, 0.125mM PMSF, 50% glycerol) by
gently flicking the tube. An equal volume of cold nuclei lysis buffer
(10mM HEPES [pH 7.6], 1mM DTT, 7.5mM MgCl2, 0.2mM EDTA,
0.3M NaCl, 1M UREA, 1% NP-40) was then added. The mixture was
gently vortexed for 2 × 2 s, incubated on ice for 2min, and centrifuged
again at 16,000g for 2min at 4 °C. The supernatant, containing the
nuclear fraction, was collected. Pellet of chromatin fraction was
resuspended in the homogenization buffer. The RNA in the three
subcellular fractions was extracted using Maxwell RSC miRNA tissue
Kit (Promega AS1460). Total RNA was quantified, and mRNA purifica-
tion was performed with up to 200ug of Total RNA using µMACS™
mRNA Isolation Kit (Miltenyi Biotec 130-075-201) following the man-
ufacturer’s protocol. ThemRNAwas quantified with Qubit and used as
an input for Nanopore Direct RNA sequencing libraries preparation.
Fractions yields are reported in Table S2.

Polysome Profiling
SUM159 cells were labelled with 500uM of 4-Thiouridine (Santa Cruz
CAS 13957-31-8) for 20min and treated with cycloheximide 100 µg/ml
(MerkC4859) for 10min before being lysed andwashed twicewith ice-
cold PBS containing cycloheximide 10 µg/ml. Cells were lysed in a
buffer containing 20mMTris-HCl, pH 7.5, 50mMNaCl, 10mMMgCl2,
0.1% NP-40, 100 µg/ml cycloheximide, 1mM DTT, and 0.2mg/ml
heparin and let sit 10minutes on ice. After centrifugation at 14,000 g
for 10min at 4 °C, cytoplasmic extracts were loaded on a 15–50%
sucrose gradient and centrifuged at 4 °C in a SW41Ti Beckman rotor
for 3 h 30min at 180,000g Absorbance at 254 nm was recorded by
BioLogic LP software (BioRad). RNA from polysome fraction was
extracted using Qiazol (Qiagen 79306). mRNA purification was per-
formed using µMACS™ mRNA Isolation Kit (Miltenyi Biotec 130-075-
201) and used as an input for Nanopore Direct RNA sequencing.

Ribo depletion and PolyA tailing
10ug of total RNA purified from K562 cells were Ribo depleted using
RiboMinus™ Eukaryote Kit (Thermofisher Scientific A1083708) fol-
lowing manufacturer’s protocol. Two rounds of Ribo depletion were
performed for each sample. Around 1ug of ribo depleted RNA were
obtained. Subsequently, Ribo depleted RNA was denatured, and
Poly(A) tailed in vitro using E. coli Polymerase NEB (NEB#M0276). 1ug
of RNA was incubated 30min at 37 °C. RNA was cleaned using RNA-
Clean XP beads (Beckman Coulter A63987) and then loaded into
µMACS™ columns for mRNA purification. 100 ng of mRNA were used
as an input for Nanopore library preparation.

dRNA-seq. Between 100 ng and 500ng of Poly(A)-selected RNA were
used as input for Nanopore direct RNA sequencing kit (SQK-RNA002).
RNA was prepared following the manufacturer’s protocol. Sequencing

was carried out on anOxfordNanopore GridIONMk1 using R9.4.1 flow
cells for ∼72 h. Table S3 reports statistics on inputmaterial and output
data for the samples sequenced in this study.

Reads Alignment
DirectRNAnanopore sequencing readswereobtained for each cellular
fraction (chromatin, nucleoplasm, cytoplasm), and for polysomes.
FAST5 files were basecalled using Guppy6 (v6.2.1 + 6588110) with the
following parameters: --fast5_out -c rna_r9.4.1_70bps_hac.cfg --num_-
callers 20 --gpu_runners_per_device 1 --trim_strategy ‘rna’ --dis-
able_qscore_filtering. Subsequently, FASTQ were filtered based on the
average readquality score (qvalue = 7) with NanoFilt (v2.8.0)43, and the
selected reads were aligned to the human genome assembly GRCh38
extended with ERCC sequences (provided by ThermoFisher web doc-
umentation) and yeast ENO2 gene (assembly R64-1-1, Ensembl version
109) with minimap2 (v0.1 - minimap2 -ax splice –k14)44,45. Subse-
quently, samtools (v1.6)46 was used to filter out unmapped reads, reads
with not primary alignments and with supplementary alignments.

Quantification of gene expression levels
Premature reads profiling. For each gene, we retrieved regions
annotated as exonic in at least one isoform from the R object
TxDb.Hsapiens.UCSC.hg38.knownGene (Bioconductor v3.17)47

through the R package GenomicFeatures (v1.48.1)48, and we defined
gaps between these portions as intronic regions. We loaded samples
BAM files in R, and we associated each read to the corresponding gene
according to their overlap (findOverlaps method of the R package
GenomicAlignments v1.32.1)48. Genes overlapping the intronic regions
of the gene were classified as premature, the others as mature. We
considered overlaps of at least 10 bases and reads overlapping more
than one gene were discarded. Premature reads were discarded for
cytoplasmic and polysomal samples.

Nascent reads profiling. Transcripts containing 4sUwere profiled with
nano-ID26 (reference GitHub repository: https://github.com/
birdumbrella/nano-ID) relying on a neural network trained to distin-
guish between reads from unlabelled and fully-labelled samples; the
latter obtained after 8 hours of 4sU metabolic labelling (500nM) fol-
lowed by nascent transcripts pull-down. Briefly, total RNAwas extracted
with Trizol and the isolated RNAwas treated with biotin that specifically
reacts with 4sU. To purify biotinylated RNA we used Dynabeads MyOne
Streptavidin T1 (Invitrogen 65601). The isolated newly synthesised RNA
labelled with 4sU was converted into libraries used for direct RNA
sequencing with Nanopore. We processed the training samples by
extracting all the features required by nano-ID with a custom Nextflow
pipeline (Manuscript in preparation) that performs: reads alignment
(minimap2 -ax splice -k14), BAM sorting and filtering (samtools view -F
2308 -q 20), and executes all the R scripts provided by Maier and col-
leagues in the original nano-ID publication. The dataset was then sub-
sampled to balance the amount of labelled and unlabelled reads per
gene, and splitted in training and test sets (70% and 30% of the reads,
respectively) which were finally used for the training of the neural net-
work and its evaluation. The same pipeline was used to profile nascent
RNA in SUM159 untreated and treated samples. In this case, after feature
extraction, we used the previously trained instance of nano-ID to esti-
mate a modification probability for each read. Reads with modification
probability greater or smaller than 0.5 were classified as nascent or pre-
existing respectively. Spike-ins and Yeast – Reads mapping to spike-ins
and S. cerevisiae ENO2 gene were retrieved for each sample from BAM
files in R. Total reads - The total number of reads was retrieved for each
sample from the FASTQ files through the bash command cat file.fastq |
seqtk seq -A - | grep \“^>\“ | wc -l”.

Counts normalization. For each sample, the following factor was
computed to account for the amount of polyA RNA extracted from

Article https://doi.org/10.1038/s41467-024-51917-2

Nature Communications |         (2024) 15:7725 14

https://github.com/birdumbrella/nano-ID
https://github.com/birdumbrella/nano-ID
www.nature.com/naturecommunications


each fraction; a crucial step to move from relative to absolute gene
expression levels.

Normalization f actor =
f g of mRNA

Millions of cells
ð1Þ

Then, for each RNA species and sequenced sample, we estimate
genes counts and we use them to split the yield of the corresponding
fraction (e.g., given 100 fg/Millions of cells of chromatin RNA, if 7% of
the reads were annotated as nascent premature the yield of Chpn
would be 7 fg/Millions of cells - see themethods section “Fractionation
and mRNA extraction”). Then, we applied DESeq2 independently to
each RNA species to estimate the parameters of gene-specific negative
binomial distributions: dispersion values, and replicate-specific mean
values. After that, we randomly sampled each distribution andwe used
the resulting counts to split the yield of each RNA species across genes
(same principle applied above for fractions). Iterating this sampling
scheme 1000 times, we got a normalized expression level distribution
for each RNA species at the single gene and single replicate resolution.
The means of these distributions were used as input data for rates
inference. Importantly, theprofilingofRNAyield and the acquisitionof
transcriptional profiles through dRNA-seq were performed on inde-
pendent samples for all the fractions except for polysomes.

Gene expression quantification was performed in R 4.2 using the
Bioconductor package DESeq249 (v1.38.3).

Differential RNA species. The normalized counts distributions pre-
viously described allow to identify RNA species modulations between
samples. We used this approach to get genes modulated in nuclear
mature RNA in response to Leptomycin B. Specifically, we considered a
gene up-regulated when comparing a Leptomycin B sample against an
untreated one if the mean of the treated distribution was larger than
the 97.5% quantile of the untreated one while the mean of the
untreated distribution was lower than the 2.5% of treated one. Vice
versa, we classified it as down-regulated if the mean of the untreated
distributionwas larger than the 97.5% quantile of the treated onewhile
the mean of the treated distribution was lower than the 2.5% of the
untreated one.We repeated this analysis for each pair of untreated and
treated samples and we decided to classify a gene as up- or down-
regulated if it was coherently modulated in at least 2 of the 4 possible
combinations (configurations characterized by the same number of
opposite regulationswerediscarded). Noticeably, the fractionof genes
classified as up- or down-regulated comparing replicates from the
same treatment was remarkably low, reassuring about the precision of
our procedure (Supplementary Fig. 41).

Transcripts characterization
PolyA tails. We applied the polya routine of Nanopolish (v0.13.3)50 to
profile transcripts polyA tail length; only esteems flagged as “PASS” in
the polya_results.tsv file were used for our analyses.

UTRs structural features. 3’UTRsgenomic coordinateswere extracted
from the R object TxDb.Hsapiens.UCSC.hg38.knownGene (Bio-
conductor v3.17)47 through the R routine threeUTRsByTranscript.
Standard chromosomes were kept (keepStandardChromosomes rou-
tine), and the longest 3’UTR for each gene was selected for further
analyses. Their coordinates were saved in BED format and used to
extract the corresponding genomic sequence with bedtools getfasta
(v2.30.0)51. The same was done for 5’UTRs (fiveUTRsByTranscript).
CustomR scriptswereused to estimateUTRsGCcontent and Shannon
Entropy (Entropy function of the package DescTools - v 0.99.49).

ODEs model solution
The complete model equations presented in Fig. 1 were numerically
solved (see the dedicatedmethod section) except for their steady state

solutionwhichwas obtained analytically setting the time derivatives to
zero. Since pre-existing RNA species are equal to their steady state
values before labelling, these equations were used to estimate their
initial conditions:

Chp =
k1

k2 + k4
ð2Þ

Chm =
k2

k3
� k1

k2 + k4
ð3Þ

Np =
k4

k5
� k1

k2 + k4
ð4Þ

Nm =
k1

k6
ð5Þ

C =
k1

k7 + k8
ð6Þ

P =
k8

k9
� k1

k7 + k8
ð7Þ

The very same approach was used for all the simplified frame-
works; see Supplemental material for the corresponding equations.

Parameters identifiability
To assess model’s parameters identifiability, we used the Julia imple-
mentation of software for structural identifiability analysis of ODE
models (SIAN)48,52,53 which takes as input the system of ODEs and the
parameters of the model and returns a summary of globally, locally,
andnot identifiableparameters. Briefly, the softwareperforms aTaylor
expansion of the ODEs to obtain a polynomial representation of the
systems. Polynomials are then truncated in such a way to obtain the
minimal system containing all identifiability information. The problem
is solved for each parameter, chosen in a random order, up to a cor-
rectness level p (by default 0.99). Last, the algorithmuses the results of
the third step to distinguish between locally, globally, and not identi-
fiable parameters.

Data simulation
General Framework. For the in-silico data simulation, we started from
the median rates of synthesis, processing and degradation estimated
by INSPEcT in27: 12 RPKM/h, 30 1/h and 1.3 1/h respectively. We linked
these data to the rates of our extended model with the following
numerical coefficients defined to maintain a biologically reasonable
ranking between the processes: synthesis = synthesis, co-
transcriptional processing = processing, detachment of mature chro-
matin RNA = processing, detachment of premature chromatin RNA =
0.1*processing, post-transcriptional processing = 0.25*processing,
export = 1.5*processing, association to polysomes = 0.5*degradation,
cytoplasmic degradation = degradation, polysomal degradation =
degradation, and nucleoplasmic degradation = 0.5*degradation. Each
initial rate was used as mean of a normal distribution with variation
coefficient equal to 5 sampled to simulate different genes; this pro-
duced a set of simulated rates. For each set of rates, we solved theODE
system at given time-points defined in input (deSolve R package54) to
retrieve the corresponding expression levels for all the RNA species
involved in the model. To simulate the impact of noise, we employed
each value as the mean of a normal distribution. The variation coeffi-
cient was set equal to the median CV of the normalized expression
levels of the corresponding RNA species in the untreated condition.
Noticeably, CVs formissing species (e.g., nascent RNA at 0 hours) were
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set to0.5. The resulting valueswere used asRNAnormalized counts for
the RNA species of interest. We set expression levels lower than 1e-10
in module to this value, and we filtered out genes with negative
expression levels because the corresponding set of rates is not biolo-
gicallymeaningful. Finally, we retrieved thefirst 1000genes for further
analyses. The samedata generation routinewasused to simulate all the
different configurations and models presented in the article. In this
regard, it was designed to select a specificODEmodel according to the
initial input rates.

Temporal Design. To define the optimal temporal design, we investi-
gated nascent RNAaccumulation simulating 1000geneswithout noise.
We noticed a very rapid saturation of nascent premature RNA asso-
ciated to chromatin which, on average, reached its steady state value
around20minutes as expected for anRNAspecies actively transcribed.
We observed slower dynamics for other nuclear RNA species which
bring thenascentRNAbetween83%and95%of the steady state value in
20minutes. We also noticed that around 20minutes most of the RNA
species are far both from the corresponding steady state, and from the
initial exponential regime where small fluctuations in labelling time
and/or efficiency could result in large deviations of nascent gene
expression levels. This is particularly important to avoid further
increasing the variance for RNA species that are already noisy due to
their poor abundance, such as nuclear premature RNAs. As previously
mentioned in the main text, all these considerations suggest that a
labelling time of 20minutes could be a good trade-off for all the RNA
species. Data simulation was always performed with R 4.2.

Rates inference
Nanodynamo. We designed a routine for kinetic rates inference sui-
table to process both real and simulated data. According to the
expression levels in input and the initial rates, the function selects the
proper model defining the correct ODE system. Then, for each gene,
we performed the minimization of the following cost function (optim
method from the R package stats) seeking for the set of rates which
better recapitulates the expression levels:

XRNA species

i

Log
Modeledi

Experimentali

� �����

���� � jRates vectorjj j2 ð8Þ

Notice that each replicate contributes independently to the cost
function, therefore, a gene canbe analysedwith a givenmodel if all the
RNA species required are defined at least once. This approach
accommodates missing datapoints fully exploiting the available
information. We performed each minimization with three different
algorithms (“L-BFGS-B”,“BFGS”,“Nelder-Mead”), and three different
initial values equal to the order of magnitude of ceiling, round, and
floor of the initial rates values. The rationale behind these initial con-
ditions was to exploit what we expected in terms of order of magni-
tudes of the rates without providing too much information about real
rates mean values. We also tested a less informative initial condition
with all the rates equal to 1 finding a minimum impact on the inferred
rates. For each gene, the rates’ configuration minimizing the cost
function was finally selected. The regularization strength lambda was
set to 0.05. Rates below 1e-6 and above 1e4were penalizedwith a fixed
cost function value of 1e8; the upper boundwas set to 1e6 for real data
to accommodate high rates of synthesis. The parameters optimization
was performed in the logarithmic space. Rates inference was per-
formed with R 4.2.

INSPEcT. To analyse the Untreated SUM159 dataset with the first
version of INSPEcT, we had to merge gene expression levels to mimic
the standard input data of the tool. Specifically, for each replicate and
each gene, we started excluding polysomal RNA species from the
normalized counts matrix. Then, we simulated 4sU-seq data summing

all nascent RNA species to generate the exonic signal, and all the
prematurenascent RNA species to estimate the intronic one. For genes
lacking premature RNA, we set the intronic signal to 0. Similarly, to
simulate Total RNA-seq data, we summed all the RNA species to gen-
erate the exonic signal, and all the premature RNA species to estimate
the intronic one. After this preliminary step, we applied to the Total
and Nascent RNA datasets the INSPEcT method quantifyExpressions-
FromTrAbundancemerging, in this way, the information from the two
replicates. The resulting objects were finally used as input for the
newINSPEcT method which computed the rates estimation. This ana-
lysis was performed in R 4.2 with INSPEcT 1.28.

Nascent RNA yield
Nascent transcripts after 15minutes ofmetabolic labelling are expected
to represent the 1.5% of the total RNA yield30. According to our quan-
tifications of RNA cumulative yield in untreated SUM159 cells (~180 ng -
see the methods section “Fractionation and mRNA extraction”), this
corresponds to ~11 ng/(Millions of cells * hour). This value is well reca-
pitulated by Nanodynamo which returned a median rate of synthesis
per gene of ~15 pg/(Millions of cells * h). Indeed, assuming 103−104

expressed genes per cell, this sums up to 15-150*103pg/(Millions of cells
* h), which corresponds to 15-150ng/(Millions of cells * h). Notably, this
analysis was conducted using a limited set of highly expressed genes,
which may account for the slight overestimation observed.

Couplings
Couplingsconservation. Toevaluate the conservationof the coupling
mechanisms in response to Pladienolide B and Leptomycin B at single
gene resolution, we started defining, independently for each gene and
each treatment, a couplings vector. This object comprised an element
for each treatment-specific coupling (Fig. 6A). The values were set as
follows: 0 if at least one of the two rates defining the coupling was not
modulated compared to the untreated counterpart (|log2 Fold
Change | <0.5), 1.25 or 0.75 if both rates were up- or down-regulated
(log2 Fold Change > 0.5 and < −0.5 respectively), or −1 if both rates
were regulated but in opposite directions. The Hamming distance
between the Pladienolide B and Leptomycin B coupling vectors of the
same gene, restricted to the common elements, provided a quantita-
tive estimation of coupling conservation. To identify distances sig-
nificantly lower than expected by chance (i.e., significantly conserved
genes), we computed a null distribution of Hamming distances by
shuffling Pladienolide B and Leptomycin B coupling vectors (Supple-
mentary Fig. 34). Specifically, we retrieved coupling vectors from the
Pladienolide B treatment for half of the genes and coupling vectors
from the Leptomycin B treatment for the remaining ones, generating a
first set of vectors. Then, we created a second complementary set
composed of vectors from Leptomycin B and Pladienolide B for the
first and second half of the genes respectively. Finally, for 1000 itera-
tions, we shuffledgenenames independentlywithin each set of vectors
and computed geneHamming distances. The threshold for identifying
significantly conserved genes was set at the 5% level of the resulting
distribution. Notably, the coupling vectors for a given treatment were
clustered according to the Hamming distance and depicted as heat-
maps in Fig. 6C and Supplementary Fig. 30.

Enrichment analysis. We performed a GSEA-based analysis to identify
enrichments in RBPs and TFs targets among genes supporting a given
coupling. Proteins binding sites were retrieved from the ENCODE web
portal55,56 downloading ChIP-seq and eCLIP BED files respectively
(GRCh38 - K562 and HepG2 not perturbed cell lines). RBPs binding
sites were annotated according to the overlap with genes exonic
regions (see the methods section “Premature reads profiling”); only
genes with at least 25 binding sites for a given RPB were considered
targets. TFs binding siteswere annotated according to the overlapwith
promoters which were defined as regions 2000 bases upstream and
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1000 bases downstream genes transcription start sites (TSSs) in a
strand-aware manner. TSSs were retrieved from genes exonic regions
(see themethods section “Premature reads profiling”) taking the lower
coordinate for genes on the positive strand and the larger coordinate
otherwise. The rankings for the GSEA analyses were defined according
to the product of rates Log2 Fold Changes compared to the untreated
condition times the sign of their Spearman correlation. In this way, the
top genes for positive or negative couplings were characterised by
strong coherent or oppositemodulations respectively. Noticeably, this
score accommodated also the peculiar positive coupling between
synthesis and polysomal degradation where the first rate was globally
down-regulated while the second one was globally up-regulated.
Indeed, genes strongly supporting the coupling were characterised by
a modulation in k1 and not in k9 or vice-versa, which resulted in scores
small in modules that guaranteed a top ranking since the scores were
mainly negative. All these analyses were performed in R 4.2 using the
GSEA function of the Bioconductor package clusterProfiler (v4.6.2)57,58

with default options (p cut off = 0.05, p-value adjusted with Benjamini
Hochberg method).

Statistics & Reproducibility
Theoptimumsample size (i.e., number of replicates and labelling time-
points) was determined based on simulated data analyses. No data
were excluded from the study. Data and kinetic rate reproducibility
were confirmed through correlative analyses across biological repli-
cates. Sample allocation and randomization, as well as blinding, were
not relevant for this study. Statistical analyseswere performedusing R,
nano-ID and Excel. Spearman correlation significance was estimated
using the default options of the R 4.2 cor.test function from the stats
package (algorithm AS 89 for n < 1290 or via the asymptotic t
approximation otherwise). Details regarding other statistical tests and
analyses are indicated in dedicated methods sections, as well as in the
main text and figure legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data generated in this study have been deposited in
the SRA database under the accession code PRJNA1023045. The re-
analysed sequencing data of K562 cells are publicly available in the
GEO database under the accession code GSM4663623. Abundance of
RNA species and the corresponding kinetic rates for untreated cells
and the drug treatments are available as SupplementaryData 1. Source
data are provided with this paper.

Code availability
The Nanodynamo source code, as well as the scripts used for the
analyses and figures included in this study, have been uploaded to
GitHub [https://github.com/mfurla/Nanodynamo.git]59.
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