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Abstract: Probabilistic Point Clouds Registration (PPCR) is an algorithm that, in its multi-iteration
version, outperformed state-of-the-art algorithms for local point clouds registration. However, its
performances have been tested using a fixed high number of iterations. To be of practical usefulness,
we think that the algorithm should decide by itself when to stop, on one hand to avoid an excessive
number of iterations and waste computational time, on the other to avoid getting a sub-optimal
registration. With this work, we compare different termination criteria on several datasets, and prove
that the chosen one produces very good results that are comparable to those obtained using a very
large number of iterations, while saving computational time.
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1. Introduction

Point clouds registration is the problem of finding the transformation (mostly a rigid
transformation) that best aligns two point clouds, usually called the source and target
point clouds.

One of the first approaches to this problem, and still one of the most used, is Iterative
Closest Point (ICP) [1–3], which aligns two point clouds by minimizing the sum of distances
between corresponding points, where corresponding points are nearest neighbouring
points. Probabilistic Point Clouds Registration (PPCR) [4] is a variant of ICP that uses a
probabilistic model to improve the robustness against noise and outliers, one of the most
relevant problem of local registration algorithms. Much like ICP, it is an iterative algorithm
that repeatedly tries to improve a solution, until a stopping criterion is satisfied.

The experiments show that it outperformed most state-of-the-art local registration
algorithms in this field. However, these experiments have been performed using a large
fixed number of iterations as stopping criterion. Instead, we think that, to be of practical
utility, an iterative algorithm should autonomously decide when to stop. Indeed, using a
fixed number of iterations on one hand does not guarantee that the best solution have been
found; on the other, it could result in an excess of computation time, because the solution
have been found earlier.

Despite the relevance of the topic, very little research has been conducted on finding
the best termination criterion for point clouds registration algorithms. Moreover, many
commonly used techniques have parameters to fine tune to each specific application [5].

For these reasons, we propose an improvement of PPCR, analyzing different termi-
nation criteria and finding the best one. Furthermore, we demonstrate that the chosen
solution is as effective as using a very large number of iterations but, at the same time,
results in fewer iterations and, therefore, less computational time. The experiments have
been conducted on the IRALab Point Clouds Registration Benchmark [6], which is com-
posed of many different point clouds from different environments. We used the same set
of parameters for every experiment, to prove that it is generic enough that it does not need
to be fined tuned to different environments.

Signals 2021, 2, 159–173. https://doi.org/10.3390/signals2020013 https://www.mdpi.com/journal/signals

https://www.mdpi.com/journal/signals
https://www.mdpi.com
https://orcid.org/0000-0001-7823-8973
https://orcid.org/0000-0002-4734-7330
https://doi.org/10.3390/signals2020013
https://doi.org/10.3390/signals2020013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/signals2020013
https://www.mdpi.com/journal/signals
https://www.mdpi.com/article/10.3390/signals2020013?type=check_update&version=1


Signals 2021, 2 160

2. Related Work

Point clouds registration algorithms could be divided into two categories: global
and local.

Global registration is the problem of aligning two point clouds without any prior as-
sumption on their misplacement. Traditionally, this problem has been solved using feature-
based techniques, such as PFH [7] and their faster variant FPFH [8], or angular-invariant
features, [9]. Usually the matches are found using algorithms such as RANSAC [10]; the
matches are then used to estimate the rototranslation between the two point clouds. As an
alternative to hand-crafted descriptors, solutions based on neural networks, that aim at
enhancing the discriminative capacity of the features, have been proposed. Examples are
3dMatch [11] and 3DSmoothNet [12]. Networks that combines both the feature match-
ing and the transformation estimation steps together have been proposed too, such as
Pointnetlk [13] and Pcrnet [14].

The drawback of global registration approaches is that they usually cannot provide an
accurate alignment, mainly because of the high number of spurious matches; therefore, they
are rather used to obtain a coarse registration that is later refined with a fine registration
algorithm [5]. For this reason, techniques aimed at estimating a rototranslation from
matches with a high number of outliers have been proposed. Notable examples are Fast
Global Registration [15] and TEASER++ [16], that can even work without any feature,
but using an all-to-all association strategy.

Local registration algorithms, instead, (also known as fine registration) aim at finding
the rototranslation that best aligns two point cloud that are already roughly aligned.
Therefore, they refine a pre-existing alignment, that can be obtained in different ways, for
example, with a global algorithm, with an inertial system, or manually.

One of the most important algorithms in this category is Iterative Closest Point
(ICP). ICP was developed independently by Besl and McKay [1], Chen and Medioni [2],
and Zhang [3] and is still one of the most used technique. The most critical problem a
registration algorithm has to solve is the data association problem, that is, associating one
point in a point clouds, to one or more in the another. ICP solves this issue by associating a
point in the source point cloud to the closest in the target. The best transformation resulting
from this data association is found and this process is repeated until convergence.

Many different variants of ICP have been proposed. Usually, they aim at speeding
up the algorithm or at improving the accuracy [17]. One of the most important of these
variants is Generalized ICP (G-ICP) [18], which greatly improves the quality of the results
by using a probabilistic framework with a point-to-plane data association.

Probabilistic Point Clouds Registration (PPCR) [4] uses the same closest-point based
data association of ICP, in conjunction with a probabilistic model, to improve both the
accuracy and, most important, the robustness against noise and outliers. While it was
originally developed to deal with the problem of aligning a sparse point cloud with a dense
one, it was shown to perform very well also on traditional registration problems.

Another important technique used for local point clouds registration is called Normal
Distribution Transform (NDT) [19]. This technique was originally developed to register 2D
laser scans, but has been successfully applied also to 3D point clouds [20]. Differently from
ICP, it does not establish any explicit correspondence between points. Instead, the source
point cloud or laser scan is subdivided into cells and a normal distribution is assigned to
each cell, so that the points are represented by a probability distribution. The matching
problem is then solved as a maximization problem, using Newton’s algorithm.

ICP-like algorithms are usually iterative, that is, they perform several iterations, each
composed of an optimization problem that should improve the previous solution. Deciding
when to stop the algorithm is an important task, since stopping too early would result in a
sub-optimal solution, while too late would be a waste of computational time (crucial in
real-time robotics applications). Moreover, since these algorithms use heuristics to estimate
the data association, it may happen that using too many iterations worsen the result, as we
show in the experimental section.
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Common termination criteria used for point clouds registration algorithms includes:
a maximum number of iterations, a relative or absolute transformation threshold or Mean
Squared Error (MSE) threshold, and a maximum number of similar iterations [5]. Despite
the relevance, very little research has been conducted on this topic. To our knowledge, no
systematic comparison of different termination criteria exists. Moreover, commonly used
criteria have parameters that need to be carefully tuned for each specific scenario.

However, point clouds registration has several affinities to approaches to optimization
based on heuristics, such as Particle Swarm Optimization (PSO) [21] or Genetic Algorithms.
Indeed, it is typically framed as an optimization over the relative pose between the clouds,
exploiting some kind of data association heuristic. For this reason, we took inspiration from
the literature on termination criteria for other approaches to optimization. For example,
Padmanabhan et al. [22] proposed a novel termination criterion for least square optimization
which does not depend on a prior knowledge of the optimum and which does not heavily
relies on fine tuned parameters. Even though the application is different, it shares some
important goals with our work. Zielinski et al. [23] derived a termination criterion for
evolutionary algorithms that analyzes the population to automatically decide when to stop
the optimization process; although it is a sensible alternative to using a fixed number of
iterations, it still relies on a set of parameters that depends on the specific optimization
problem. Another common approach used with evolutionary algorithms is to obtain an
upper bounds on the number of iterations required for an optimal solution, with a certain
probability [24,25].

3. Materials and Methods
3.1. Probabilistic Point Clouds Registration

We already presented PPCR in a previous work [4]; however, since we present an
extension to the original version, we briefly summarize its working.

PPCR is a closest-point based algorithm for local point clouds registration. This means
that it is aimed at fine-aligning two point clouds that are already roughly aligned. It
does not use any feature to estimate correspondences between two point clouds; instead,
similarly to ICP, it approximates the true, unknown, correspondences by using a data-
association policy based on the closest distance.

However, the PPCR data association policy differs from that of ICP (and many of its
variants)—in ICP each point in the source point cloud is associated with only a single point
in the target point cloud, while PPCR associates a point in the source point cloud with a set
of points in the target cloud. Moreover, each association is weighted. The weights represent
the probability of an association of being the right data-association for a particular point.

The two different data association methods are depicted in Figure 1.

(a) (b)

Figure 1. The two different data association policies. (a) Iterative Closest Point (ICP) Data Association
(b) Probabilistic Data Association
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For each point xj in the source point cloud, we look for the n nearest points, y0, ..., yn,
in the target cloud. For each of these points yk, with 0 ≤ k ≤ n, we define an error term
given by

‖yk − (Rxj + T)‖2, (1)

where R is a rotation matrix and T a translation vector. Equation (1) represents the squared
error between the point yk in the target point cloud and the associated point xj from the source
point cloud, transformed using the current estimate of the rotation R and translation T.

Summing all the error terms, calculated according to Equation (1), we build a Least
Squares optimization problem which is solved using a suitable method (such as Levenberg-
Marquardt). However, given a set of points associated to xj, not all the corresponding error
terms should have the same weight. Intuitively we want to give more importance to the
associations which are in accordance with the current estimate of the transformation and
lower importance to the others. Thus, the weight wkj of the error term ‖yk − (Rxj + T)‖2 is
given by

wkj ∝ e−
‖yk−(Rxj+T)‖2

2 , (2)

where the proportionality implies a normalization among all the error terms associated
with xj so that their weights represent a probability distribution (therefore they must sum
to 1). Equation (2) was derived from an Expectation-Maximization algorithm [26], with an
additive Gaussian noise model [4].

The Gaussian probability density function (pdf) used in Equation (2) is appropriate
assuming that there are no outliers and all points in the source point cloud have a corre-
sponding point in the target point cloud. However, a t-distribution is a better choice in
presence of outliers, especially when there is lot of distortion in one of the point clouds
that, thus, cannot be aligned perfectly. Consequently, we decided to use a more robust
formulation for the weights, basing on the t-distribution. A t-distribution is very similar to a
Gaussian, but its tails have a higher probability; therefore, it better represents a population
with a higher probability of having outliers.

The weight wkj of the association between xj and yk is given by:

wkj = pkj
ν + d

ν + ‖yk − (Rxj + T)‖2 , (3)

with

pkj ∝

(
1 +
‖yk − (Rxj + T)‖2

ν

)− ν+d
2

, (4)

where ν the is number of degrees of freedom of the t-distribution (which is a parameter
of our algorithm) and d is the dimension of the error terms (in our case 3, since we are
operating with points in the 3D space). Equations (3) and (4) were derived from the same
Expectation-Maximization model of Equation (2), but using a multivariate t-distribution
instead of a Gaussian pdf. For the full demonstration of the derivation, please consult the
original paper [4].

In Equations (1)–(4) we need an estimate of the rotation and translation; however, these
are estimated by solving the optimization problem whose error terms are weighted with
the weights we want to calculate. Hence, our problem cannot be formulated as a simple
least-square error problem, but it has to be reformulated as an Expectation Maximization
problem. During the Expectation phase, the latent variables, that is, the weights, are
estimated using the previous iteration estimate of the target variables (the rotation and
translation); during the Maximization phase, the problem becomes a least-square error
optimization problem, with the latent variables assuming the values estimated during the
Expectation phase.

The proposed approach, in its multi-iteration version, is composed of two nested
loops. The inner one finds the best rototranslation that minimizes the sum of weighted
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squared errors (as in Equation (1), very similarly to ICP. However, differently to ICP, our
problem cannot be solved in closed form and, thus, we use an iterative algorithm such as
Levenberg-Marquard. It has to be noted that, at each iteration of Levenberg-Marquard,
the associations are not estimated again, but their weights are recalculated. Thus, we solve
an iteratively reweighted mean squared error problem. In the outer loop, we move the
source cloud with the result of the optimization, re-estimate the associations and build a
new optimization problem.

This structure has been already briefly described in our previous work. However, here
we present a novel way to decide when the outer loop should stop, instead than using a
predefined number of iterations.

3.2. Termination Criteria

When the source and the target point clouds are very close, a single iteration of the
proposed probabilistic point clouds registration algorithm may be enough. However,
a typical real scenario requires more than a single iteration.

To obtain a good solution, most of the correspondences used to form the optimization
problem need to be right. Since we use an ICP-like data association policy based on nearest
neighbours, this happens only if the two point clouds are close enough.

In our algorithm, two parameters control which and how many points in the target
point cloud are associated to a particular point in the source point cloud—the maximum
distance between neighbours and the maximum number of neighbours. Setting these
parameters to very high values could help the algorithm to converge to a good solution
even when the starting poses of the two point clouds are not really close. However, this
solution allows more outliers, that is, wrong data associations, to get into the optimization
step. Even tough the probabilistic approach has the capability to soft-filtering out outliers,
thanks to the probabilistic weighting technique, using too many points will lead to a huge
optimization problem which would be very slow to solve. Usually, a much more practical
and fast solution is to use lower values for the maximum distance and the maximum
number of neighbors, while using multiple iterations of the probabilistic approach, which
implies re-estimating the data associations, in the same way it is done, for example, in ICP
and G-ICP.

Using this technique, our approach becomes composed of two nested loops. The outer
one moves the source point cloud with the current result, estimates the point correspon-
dences, sets up the optimization problem, and activates the solver. This process is repeated
until a convergence criterion is met. The inner loop, instead, is composed of the iterations
of the Levenberg-Marquard algorithm, which is used to solve the optimization problem.

The multi iteration version of our algorithm provides good results, compared to other
state-of-the-art algorithms [4]. Of course, in order to be of practical usefulness, such an al-
gorithm would greatly benefit from some kind of automatic termination criterion. It would
mean that the algorithm could decide by itself when it should stop, without adaptation of
parameters to the specifics of each problem.

The most simple termination criterion is to use a fixed predefined number of iterations.
This is the technique we used in our previous work. However, this solution is far from
being optimal, since the number of iterations would become a parameter of the algorithm.
Most importantly, there would be no automatic way of estimating this parameter a-priori,
so this solution is unpractical and has to be discarded. Lastly, using a fixed value for this
parameter would probably mean using too many iterations in some cases and using too
few in others. On the other hand, using a very large value would greatly increase the
execution time, in many cases without improving the quality of the result.

For these reasons, we evaluated different automatic termination criteria, to find which
one works best with PPCR.

Our first choice was to evaluate the Mean Squared Error (MSE) with respect to the
previous iteration: we take the source point cloud and apply, separately, the rototrans-
lations estimated during the current iteration of the algorithm and during the previous
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one. Therefore, we have the same point cloud in two different poses. Since applying a
rototranslation, that is, a matrix multiplication, maintains the order of the points, we know
that point xt

i in Xt (the source point cloud aligned with the current estimate) corresponds
to point xt−1

i in Xt−1 (the source point cloud aligned with the previous estimate). Hence,
the point correspondences are known and exact. We used Equation (5), where N is the size
of the point cloud, to calculate the Mean Squared Error (MSE) between two iterations.

MSE(Xt, Xt−1) =
∑N

i ||xt
i − xt−1

i ||2

N
. (5)

We stop the algorithm when the MSE drops under a certain relative threshold. With rel-
ative we mean that we are not using a fixed absolute threshold, but we want to stop when,
for example, the Mean Squared Error becomes smaller than a certain fraction of that at the
previous iteration. That is:

MSE(Xt, Xt−1) <
MSE(Xt−1, Xt−2)

threshold
. (6)

This means that we are stopping the algorithm when it is not able to move (or it is
moving of a negligible amount) the source point cloud any more; thus, it has converged.
We use a relative threshold, instead of an absolute, because it is much more flexible and
does not have to be tuned for each set of point clouds. However, rather than checking for
Equation (6) just once, we ensure that the condition holds for several consecutive iterations.
In this way we avoid stopping too early because of a single iteration during which the
alignment was not improved, but that could be followed by other successful iterations.

Another option we evaluated is the use of the so-called Cost Drop. During the execution
of the inner loop of the multi-iteration version of PPCR, an optimization problem is solved.
This optimization problem is a weighted least squares problem, and the cost we want
to minimize is the weighted sum of squared distances between corresponding points,
as described in the previous section. Before the optimization, the problem we are going
to optimize will have a certain cost. The optimizer will, hopefully, reduce this cost to a
lower value. The difference between the initial and the final cost is called Cost Drop. We
use this value to stop the outer loop when the cost drop of the inner loop drops under a
threshold. We want to avoid absolute thresholds, since they need to be specifically tuned
for each application. Instead, we express this threshold with respect to the initial cost of
the problem: for example we could stop when the cost drop is less than 1% of the initial
cost of the problem. This is what we used for our experiments and proved to be a good
threshold for obtaining accurate registrations. This condition is expressed by Equation (7).

cost f inal − costinitial

costinitial
< threshold, (7)

where costinitial is the initial cost of the optimization problem solved at each iteration of
PPCR and cost f inal is the corresponding cost after the optimization.

Similarly to the MSE, and for the same reasons, this condition should hold for several
iterations and not just once.

The third criterion we evaluated is the number of successful iterations of the weighted
least squares optimization problems. Solving an optimization problem with Levenberg-
Marquard is an iterative process. Each step of this process can be successful, if the step
managed to reduce the cost of the problem, or, otherwise, unsuccessful. We wanted to test
if this value could be used as termination criterion, for example, stopping after too many
unsuccessful steps.

To evaluate the effectiveness of a termination criterion, we used the following idea.
Suppose we have the ground truth for the source point cloud, that is, we know the true
rototranslation between the reference frames of the source and target point clouds. At
the end of each iteration, we obtain an estimate of this rototranslation. Therefore, we
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can calculate the Mean Squared Error (as in Equation (6)) between our estimate and the
ground truth, since they are the same point cloud in different poses. Theoretically, if the
algorithm was working properly, this error should decrease among the steps of the outer
loop of the algorithm; therefore, the more the iterations, the smaller the difference becomes.
Practically, at some point this difference will cease to decrease, or, more precisely, it will
start decreasing of a negligible amount. This is the iteration to which we should stop, since
it means that the algorithm has converged to a solution. This does not mean that it has
converged to the right solution, but, nevertheless, that it is the best solution we can get
with the algorithm and the set of parameters we are using.

Ideally, a good termination criterion should behave similarly to the difference w.r.t.
the ground truth. It should stop the algorithm more or less at the same iteration at which
we would stop if we would be using the difference w.r.t. the ground truth (that, in a real
problem, is unknown).

We evaluated the selected termination criteria on two datasets, to find which one
works best. Eventually, we evaluated the best one on other datasets, to ensure that the
results could be generalized and were not specific to the data we were using for the
comparison and that the results we obtained were as good as if we were using a fixed high
number of iterations.

4. Results

In Figure 2 we plotted the three termination criteria while aligning two point clouds
from the Stanford Bunny dataset [27]. The starting transformation between the two clouds
is a rotation of 45◦ around the vertical axis. On the x-axis we have the number of the
iteration, while on the y-axis we can find—the number of successful steps of the “inner”
optimization problem, the initial and final cost of the “inner” optimization problem, the cost
drop (i.e., the difference between the two previous values), the Mean Squared Error w.r.t.
the previous iteration, the Mean Squared Error w.r.t. the ground truth and the discrete
derivatives of the last three variables. We plotted also the discrete derivatives because they
clearly show when a variable is not changing anymore: when the derivative becomes zero,
the value of a variable has stabilized.

Figure 2. Plots of various termination criteria and their derivative for two point clouds from the Stanford Bunny dataset.
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We can see that both the cost drop and the MSE w.r.t. the previous iteration have a
very similar trend to the MSE w.r.t. the ground truth. Most important, the three values
stabilizes more or less at the same iteration. This is particularly obvious if we compare the
discrete derivatives: they become almost zero more or less at the same time. Although the
MSE w.r.t. to the ground truth keeps decreasing for a few iterations after the other two
values stabilizes, its effect on the quality of the result is negligible. This becomes obvious
looking at Figure 3, where we have two point clouds, one aligned using a predefined very
large number of iterations, the second one using the cost drop as stopping criterion. We
can seen that they overlap almost perfectly. The difference between the errors with respect
to the ground truth of the two alignments is less than one tenth of the resolution of the
point clouds, thus can be considered definitely negligible. Other experiments on the same
datasets yielded similar results.

Figure 3. The same point cloud aligned with two different termination criteria: a large number of
iterations (green point cloud) and our termination criterion based on the cost drop (pink point cloud).

Instead, the number of successful steps oscillates greatly and appears to be not corre-
lated to the MSE w.r.t. the ground truth. For these reasons it was discarded.

In Figures 4a,b we show a pair of point clouds from the Bremen Dataset [28], to which
we applied, respectively, a small rotation and a small translation. The results obtained on
these data are shown in Figures 5a,b. In these plots, and in the followings, we will not
show the derivatives for space reasons. We can see that the cost drop stabilizes more or
less when also the MSE w.r.t. the previous iteration stabilizes, that is, when the cloud has
already been moved to the right solution (future adjustments are negligible compared to
the resolution of the point cloud).

Considering the results, there seems to be no strong reason to choose the MSE w.r.t.
the previous iteration over the cost drop as termination criterion. However, it has to be
considered that the MSE has to be specifically calculated after each iteration and is relatively
computationally intensive, since the whole source point clouds has to be traversed. This is
not a computationally expensive operation per se but, on the other hand, the relative cost
drop is very fast to compute. Indeed, while solving an optimization problem we already
calculate the absolute cost drop, since it is used as termination criterion of the inner loop
by the optimization algorithm. Thus, calculating the relative cost drop requires only few
more operations—it comes practically for free. For this reason we have chosen to use the
cost drop as termination criterion—it is very fast to compute and is as good as the Mean
Squared Error.

We performed experiments also with clouds that the PPCR algorithm was not able to
align properly. The reason is that we wanted to discover whether the termination criteria
were able to stop the algorithm early enough, so that computational time is not wasted.
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(a) (b)

Figure 4. Two point clouds from the Bremen Dataset, to which we applied (a) a small translation (b)
a small rotation.

(a) (b)

Figure 5. Termination criteria for the Bremen Dataset with (a) a small rotation (b) a small translation applied.

As an example, we show the results on two point clouds from the Stanford Bunny
dataset, whose initial misalignment is a rotation of 90◦ around the vertical axis, (Figure 6a),
and a rotation of 180◦ around the vertical axis (Figure 6b). In these cases, it can be seen that
the cost drop stabilizes much earlier than the MSE w.r.t. the ground truth. This behaviour,
indeed, is desirable, since it appeared only in unsuccessful alignments, during which stopping
earlier is an advantage (going further would be only a waste of computational time).
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(a) (b)

Figure 6. Termination criteria for two point clouds from the Stanford Bunny Dataset. Initial misalignment of (a) 90◦ (b) 180◦.

We tested the chosen termination criterion on the same datasets we presented in our
previous work [4] and on pairs of point clouds taken from the Stanford Bunny and Bremen
datasets. Our goal is to show that the criterion is effective at stopping the algorithm at the
right iteration: too late is a waste of computational time, too early leads to sub-optimal
results. For this reason, we did not fine tune other parameters, since the performances of
the algorithm were already shown in our previous work.

To show the effectiveness of our termination criteria, we executed the algorithm twice
on each dataset. The first time using a predefined very large number of iterations. The second
one using the cost drop to stop the algorithm. As a measure of the quality of the results we
used the MSE w.r.t. the ground truth. The results are shown in Tables 1 and 2.

Table 1. Experimental results with the proposed termination criterion.

Dataset MSE Iterations

Corridor 0.31 14
Office 0.42 19

Linkoping 0.53 8
Bunny 0.0025 19
Bremen 0.45 8

Table 2. Experimental results with fixed number of iterations.

Dataset MSE Iterations

Corridor 0.66 100
Office 0.48 100

Linkoping 0.50 100
Bunny 0.0024 100
Bremen 0.48 100

As it can be seen, the results using our criterion are usually comparable, and sometimes
better, than when using many more iterations. This means that it succeeds at stopping the
algorithm at the right iteration. In some cases, such as for the corridor dataset, the results
in Table 1 are much better than those in Table 2. This happens because, sometimes,
an excessive number of iterations is not only a waste of time, but could also bring the
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algorithm to converge to a wrong solution, even though the right solution was reached.
This could happen with every algorithm that uses closest point based associations as a
greedy approximation for the (unknown) correspondences.

We performed experiments also on the IRALab Benchmark for Point Clouds Regis-
tration algorithms [6]—it is composed of several point clouds, produced with different
kinds of sensor and in different environments. Moreover, it includes several registration
problems, with different initial misalignments and different overlaps between the clouds
to align. For these reasons, we think that is particularly suitable to prove that the chosen
criterion is at least as good as using a high number of iterations, but more efficient. Since
the benchmark is composed of several datasets, we show statistics for both the single
datasets and for the whole benchmark. The result is expressed in terms of median and
0.75 and 0.95 quantiles of the scaled mean squared error, as described in [6]. In Table 3
we compare the median of the results on the various datasets of the benchmark, using
PPCR with a high fixed number of iterations (100 iterations) and using the cost drop as
termination criterion (stopping when the cost drop is less the 1% of the initial cost for
more than 10 iterations). For the cost drop, in the column named Number of iterations, we
show the mean number of iterations required to solve the registration problems. The same
results are shown in Figure 7 as histograms. For most sequences, the differences between
the results obtained using the two methods are negligible. Indeed, the medians among all
the registration problems of all the sequences (that is, the row named total in Table 3) are
very close.

However, there are notable exceptions. For the box_met and the urban05 sequences,
the cost drop leads to much better results (a lower median means a better alignment).
This is the same behaviour we observed for the Corridor dataset in the previous set of
experiments. On the other hand, on the p2at_met and the plain sequences the high number
of iterations leads to better results. Nevertheless, it has to be considered that, even when
the cost drop is not the best termination criterion, its results are still very good. At the
same time, the average number of iterations required using the cost drop is 18.55 and,
considering the sequences individually, never greater than 31; therefore there is a great
reduction in computational time, w.r.t. using 100 iterations.

Table 4 shows that, using the cost drop, we obtain even more consistent results, since
its 0.95 quantile is less than that of the 100 iterations. The 0.75 quantiles, instead, are
very similar.

The proposed termination criterion requires two parameters—the percentage of drop
and the number of iterations during which the condition described by Equation (7) should
hold. However, the experiments show that using 1% and 10 iterations as thresholds leads
to good results in a very large and varied set of registration problems. Therefore, this
values should be adequate for most cases and should not require any further fine-tuning.

In Table 5, we show the results using 1% and 20 iterations as thresholds. The median
result is very close to that obtained using 100 iterations, although the mean number of
iterations used is less than 30; therefore, there is a great saving in computational time.
However, in our opinion, the difference w.r.t. using 10 iterations as threshold is so negligible
that it is not worth the extra computational time. Anyway, it is still an option if a very
accurate result is desired.

PPCR using the proposed termination criterion, along with instructions on how to use
it, is available on GitHub: https://github.com/iralabdisco/probabilistic_point_clouds_
registration (accessed on 17 Mar 2021).

https://github.com/iralabdisco/probabilistic_point_clouds_registration
https://github.com/iralabdisco/probabilistic_point_clouds_registration
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Table 3. The median of the results of Probabilistic Point Clouds Registration (PPCR) on a compre-
hensive benchmark [6] with two different termination criterion: 100 iterations and the cost drop.
For the cost drop we list also the number of iterations used to reach the solution (under the column
N. of iterations).

Sequence Cost Drop N. of Iterations 100 Iterations

box_met 1.17 29.33 1.92
hauptgebaude 0.01 31.46 0.01
pioneer_slam3 0.19 24.29 0.08
urban05 0.36 21.81 1.13
gazebo_winter 0.02 29.97 0.02
planetary_map 0.59 14.82 0.42
long_office_household 0.19 23.96 0.17
plain 0.26 19.32 0.06
pioneer_slam 0.19 27.27 0.16
stairs 0.03 24.02 0.03
gazebo_summer 0.06 25.11 0.04
wood_autumn 0.02 29.34 0.02
apartment 0.07 23.04 0.06
wood_summer 0.02 30.71 0.01
p2at_met 0.50 18.55 0.27

total 0.12 18.55 0.08

Table 4. The 0.75 and 0.95 quantiles of the results of PPCR on a comprehensive benchmark [6] with two different termination
criterion (100 iterations and the cost drop).

Sequence 0.75 Quantile
(Cost Drop)

0.95 Quantile
(Cost Drop)

0.75 Quantile
(100 Iterations)

0.95 Quantile
(100 Iterations)

box_met 2.26 3.95 3.36 5.02
hauptgebaude 0.03 0.72 0.02 0.78
pioneer_slam3 0.38 0.77 0.18 0.78
urban05 0.50 2.12 1.77 3.33
gazebo_winter 0.03 0.23 0.03 0.05
planetary_map 1.16 2.18 0.83 1.81
long_office_household 0.66 2.00 0.62 2.07
plain 0.50 0.94 0.20 1.00
pioneer_slam 0.43 3.54 0.45 4.68
stairs 0.09 0.24 0.09 0.24
gazebo_summer 0.20 0.65 0.13 1.02
wood_autumn 0.03 0.27 0.03 0.04
apartment 0.29 1.30 0.27 2.02
wood_summer 0.02 0.27 0.02 0.03
p2at_met 1.04 2.00 0.84 2.29

total 0.44 1.79 0.47 2.38
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Figure 7. Histograms of the median results of PPCR on a comprehensive benchmark [6] with two different termination
criterion (100 iterations and the cost drop).

Table 5. Results of PPCR on a comprehensive benchmark [6], using the cost drop with 1% and 20
iterations as thresholds.

Sequence Median 0.75 Quantile 0.95 Quantile Iterations

box_met 1.28 2.49 4.27 39.40
hauptgebaude 0.01 0.02 0.77 42.35
pioneer_slam3 0.15 0.34 0.75 36.34
urban05 0.44 0.65 4.31 39.65
gazebo_winter 0.02 0.03 0.05 41.09
planetary_map 0.54 1.08 2.07 24.89
long_office_household 0.17 0.63 1.99 35.20
plain 0.17 0.46 0.93 31.78
pioneer_slam 0.18 0.44 3.64 38.13
stairs 0.03 0.09 0.23 34.08
gazebo_summer 0.05 0.19 0.74 35.96
wood_autumn 0.02 0.03 0.06 40.41
apartment 0.06 0.28 1.50 33.36
wood_summer 0.01 0.02 0.03 42.44
p2at_met 0.47 0.97 1.96 29.75

total 0.10 0.45 1.86 29.75

5. Conclusions

We introduced the usage of the relative cost drop as termination criterion for the
Probabilistic Point Clouds Registration Algorithm. We tested this criterion on different
datasets and on a comprehensive benchmark for point clouds registration algorithms [6],
which is composed of several registration problems, with different degrees of overlap and
initial misalignment. The experiments prove that the cost drop is effective at stopping
the algorithm at the right iteration, that is, when the algorithm has converged to a good
solution that cannot be improved substantially anymore. Moreover, it stops the algorithm
very early when solving problems that are not going to converge to the right solution even
when using more iterations, which is a very desirable behaviour. While it requires two
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parameters, we propose values that are effective on a wide range of registration problems
and do not need any further fine-tuning.
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